CAAM 499 HW 9. DUE BY IN-CLASS WEDNESDAY 11/8

Problem 1 Show that the function $f(x)=\operatorname{sgn}(x)$ is not in $H^{1}((-1,1)) \subset$ $\mathcal{D}^{\prime}((-1,1))$. (Take a weak derivative and pair with a test function to see what happens)

Problem 2 Show that the function $f(x)=|x|, x \in \mathbb{R}^{1}$ is in $H^{1}((-1,1)) \subset$ $\mathcal{D}^{\prime}((-1,1))$ but it is not in $H^{2}((-1,1))$. (Hint: Consider $\partial_{x}^{2} T_{f}$ paired with a text function $\phi \in C_{c}^{\infty}((-1,1))$ and split up the integral to see what happens)

Problem 3 Interpret Problem 2 in the context of the Sobolev embedding theorem (which also holds for $H^{N}((-1,1))$. That is, why does the Sobolev embedding theorem tell you automatically that f is in H^{1} but not in H^{2} ?

Problem 4 If $f \in H^{k}\left(\mathbb{R}^{n}\right)$, show that $\partial_{x_{j}} f$ is in $H^{k-1}\left(\mathbb{R}^{n}\right)$. Which Sobolev space is $\partial_{x}^{\alpha} f$ for $0 \leq|\alpha| \leq k$?

