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Preface

This textbook is the second in a three-part series covering the core material typically taught in a one-
year Ph.D. course in econometrics. The sequence is

1. Introduction to Econometrics (first volume)

2. Econometrics (this volume)

The textbooks are written as an integrated series. Each volume is reasonably self-contained, but each
builds on the material introduced in the previous volume(s).

This volume assumes that students have a background in multivariate calculus, probability theory,
linear algebra, and mathematical statistics. A prior course in undergraduate econometrics would be
helpful but not required. Two excellent undergraduate textbooks are Wooldridge (2015) and Stock and
Watson (2014). The relevant background in probability theory and mathematical statistics is provided in
Introduction to Econometrics.

For reference, the basic tools of matrix algebra and probability inequalites are reviewed in the Ap-
pendix.

For students wishing to deepen their knowledge of matrix algebra in relation to their study of econo-
metrics, I recommend Matrix Algebra by Abadir and Magnus (2005).

For further study in econometrics beyond this text, I recommend White (1984) and Davidson (1994)
for asymptotic theory, Hamilton (1994) and Kilian and Liitkepohl (2017) for time series methods, Cameron
and Trivedi (2005) and Wooldridge (2010) for panel data and discrete response models, and Li and Racine
(2007) for nonparametrics and semiparametric econometrics. Beyond these texts, the Handbook of
Econometrics series provides advanced summaries of contemporary econometric methods and theory.

Alternative PhD-level econometrics textbooks include Theil (1971), Amemiya (1985), Judge, Griffiths,
Hill, Liitkepohl, and Lee (1985), Goldberger (1991), Davidson and MacKinnon (1993), Johnston and Di-
Nardo (1997), Davidson (2000), Hayashi (2000), Ruud (2000), Davidson and MacKinnon (2004), Greene
(2017) and Magnus (2017). For a focus on applied methods see Angrist and Pischke (2009).

The end-of-chapter exercises are important parts of the text and are meant to help teach students of
econometrics. Answers are not provided, and this is intentional.

I'would like to thank Ying-Ying Lee and Wooyoung Kim for providing research assistance in preparing
some of the numerical analysis, graphics, and empirical examples presented in the text.

This is a manuscript in progress. Parts I-III are near complete. Parts IV and V are incomplete, in
particular Chapters 16, 21, 22 and 23.
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Chapter 1

Introduction

1.1 Whatis Econometrics?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of Norway,
one of the three principal founders of the Econometric Society, first editor of the journal Econometrica,
and co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969. It is therefore fitting
that we turn to Frisch’s own words in the introduction to the first issue of Econometrica to describe the
discipline.

A word of explanation regarding the term econometrics may be in order. Its definition
is implied in the statement of the scope of the [Econometric] Society, in Section I of the
Constitution, which reads: “The Econometric Society is an international society for the ad-
vancement of economic theory in its relation to statistics and mathematics.... Its main object
shall be to promote studies that aim at a unification of the theoretical-quantitative and the
empirical-quantitative approach to economic problems....”

But there are several aspects of the quantitative approach to economics, and no single
one of these aspects, taken by itself, should be confounded with econometrics. Thus, econo-
metrics is by no means the same as economic statistics. Nor is it identical with what we call
general economic theory, although a considerable portion of this theory has a defininitely
quantitative character. Nor should econometrics be taken as synonomous with the appli-
cation of mathematics to economics. Experience has shown that each of these three view-
points, that of statistics, economic theory, and mathematics, is a necessary, but not by itself
a sufficient, condition for a real understanding of the quantitative relations in modern eco-
nomic life. It is the unification of all three that is powerful. And it is this unification that
constitutes econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.

This definition remains valid today, although some terms have evolved somewhat in their usage.
Today, we would say that econometrics is the unified study of economic models, mathematical statistics,
and economic data.

Within the field of econometrics there are sub-divisions and specializations. Econometric theory
concerns the development of tools and methods, and the study of the properties of econometric meth-
ods. Applied econometrics is a term describing the development of quantitative economic models and
the application of econometric methods to these models using economic data.
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1.2 The Probability Approach to Econometrics

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-1999)
of Norway, winner of the 1989 Nobel Memorial Prize in Economic Sciences, in his seminal paper “The
probability approach in econometrics” (1944). Haavelmo argued that quantitative economic models
must necessarily be probability models (by which today we would mean stochastic). Deterministic mod-
els are blatently inconsistent with observed economic quantities, and it is incoherent to apply determin-
istic models to non-deterministic data. Economic models should be explicitly designed to incorporate
randomness; stochastic errors should not be simply added to deterministic models to make them ran-
dom. Once we acknowledge that an economic model is a probability model, it follows naturally that an
appropriate tool way to quantify, estimate, and conduct inferences about the economy is through the
powerful theory of mathematical statistics. The appropriate method for a quantitative economic analy-
sis follows from the probabilistic construction of the economic model.

Haavelmo’s probability approach was quickly embraced by the economics profession. Today no
quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its imple-
mentation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic model
is specified, and the quantitative analysis performed under the assumption that the economic model
is correctly specified. Researchers often describe this as “taking their model seriously”’The structural
approach typically leads to likelihood-based analysis, including maximum likelihood and Bayesian esti-
mation.

A criticism of the structural approach is that it is misleading to treat an economic model as correctly
specified. Rather, it is more accurate to view a model as a useful abstraction or approximation. In this
case, how should we interpret structural econometric analysis? The quasi-structural approach to infer-
ence views a structural economic model as an approximation rather than the truth. This theory has led
to the concepts of the pseudo-true value (the parameter value defined by the estimation problem), the
quasi-likelihood function, quasi-MLE, and quasi-likelihood inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially spec-
ified but some features are left unspecified. This approach typically leads to estimation methods such
as least-squares and the Generalized Method of Moments. The semiparametric approach dominates
contemporary econometrics, and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar to the
quasi-structural approach, the calibration approach interprets structural models as approximations and
hence inherently false. The difference is that the calibrationist literature rejects mathematical statistics
(deeming classical theory as inappropriate for approximate models) and instead selects parameters by
matching model and data moments using non-statistical ad hoc' methods.

Trygve Haavelmo

The founding ideas of the field of econometrics are largely due to the Nor-
weigen econometrician Trygve Haavelmo (1911-1999). His advocacy of proba-
bility models revolutionized the field, and his use of formal mathematical rea-
soning laid the foundation for subsequent generations. He was awarded the No-
bel Memorial Prize in Economic Sciences in 1989.

1 Ad hoc means “for this purpose” — a method designed for a specific problem — and not based on a generalizable principle.
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1.3 Econometric Terms and Notation

In a typical application, an econometrician has a set of repeated measurements on a set of variables.
For example, in a labor application the variables could include weekly earnings, educational attainment,
age, and other descriptive characteristics. We call this information the data, dataset, or sample.

We use the term observations to refer to the distinct repeated measurements on the variables. An
individual observation often corresponds to a specific economic unit, such as a person, household, cor-
poration, firm, organization, country, state, city or other geographical region. An individual observation
could also be a measurement at a point in time, such as quarterly GDP or a daily interest rate.

Economists typically denote variables by the italicized roman characters y, x, and/or z. The conven-
tion in econometrics is to use the character y to denote the variable to be explained, while the characters
x and z are used to denote the conditioning (explaining) variables.

Following mathematical convention, real numbers (elements of the real line R, also called scalars)
are written using lower case italics such as x, and vectors (elements of R¥) by lower case bold italics such
as x, e.g.

X1

X2
X =

Xk

Upper case bold italics such as X are used for matrices.

We denote the number of observations by the natural number 7, and subscript the variables by the
index i to denote the individual observation, e.g. y;, x; and z;. In some contexts we use indices other
than i, such as in time series applications where the index ¢ is common. In panel studies we typically use
the double index i to refer to individual i at a time period t.

The i*" observation is the set ( Vi, Xi,Zi).
The sample is the set {(y;,x;,z;):i=1,...,n}.

It is proper mathematical practice to use upper case X for random variables and lower case x for
realizations or specific values. Since we use upper case to denote matrices, the distinction between
random variables and their realizations is not rigorously followed in econometric notation. Thus the
notation y; will in some places refer to a random variable, and in other places a specific realization.
This is undesirable but there is little to be done about it without terrifically complicating the notation.
Hopefully there will be no confusion as the use should be evident from the context.

We typically use Greek letters such as 8, 6 and o to denote unknown parameters of an econometric
model, and use boldface, e.g. B or 8, when these are vector-valued. Estimators are typically denoted by
putting a hat “/”, tilde “~” or bar “-” over the corresponding letter, e.g. ,6 and ,6 are estimators of .

The covariance matrix of an econometric estimator will typically be written using the capital bold-
face V, often with a subscript to denote the estimator, e.g. Vg = var [ﬁ] as the covariance matrix for [Ai
Hopefully without causing confusion, we will use the notatlon Vg = avar| ﬁ] to denote the asymptotic
covariance matrix of \/n (ﬁ p) (the variance of the asymptotic distribution). Estimators will be denoted
by appending hats or tildes, e.g. Vp is an estimator of V.
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1.4 Observational Data

A common econometric question is to quantify the causal impact of one set of variables on another
variable. For example, a concern in labor economics is the returns to schooling — the change in earnings
induced by increasing a worker’s education, holding other variables constant. Another issue of interest
is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns to
schooling, an experiment might randomly divide children into groups, mandate different levels of ed-
ucation to the different groups, and then follow the children’s wage path after they mature and enter the
labor force. The differences between the groups would be direct measurements of the effects of differ-
ent levels of education. However, experiments such as this would be widely condemned as immoral!
Consequently, in economics non-laboratory experimental data sets are typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data col-
lection we can record the level of a person’s education and their wage. With such data we can measure
the joint distribution of these variables, and assess the joint dependence. But from observational data it
is difficult to infer causality as we are not able to manipulate one variable to see the direct effect on the
other. For example, a person’s level of education is (at least partially) determined by that person’s choices.
These factors are likely to be affected by their personal abilities and attitudes towards work. The fact that
a person is highly educated suggests a high level of ability, which suggests a high relative wage. This is an
alternative explanation for an observed positive correlation between educational levels and wages. High
ability individuals do better in school, and therefore choose to attain higher levels of education, and their
high ability is the fundamental reason for their high wages. The point is that multiple explanations are
consistent with a positive correlation between schooling levels and education. Knowledge of the joint
distribution alone may not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. This means that
all variables must be treated as random and possibly jointly determined.

This discussion means that it is difficult to infer causality from observational data alone. Causal
inference requires identification, and this is based on strong assumptions. We will discuss these issues
on occasion throughout the text.

1.5 Standard Data Structures

There are five major types of economic data sets: cross-sectional, time series, panel, clustered, and
spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative records
are a typical source for cross-sectional data. In typical applications, the individuals surveyed are per-
sons, households, firms or other economic agents. In many contemporary econometric cross-section
studies the sample size n is quite large. It is conventional to assume that cross-sectional observations
are mutually independent. Most of this text is devoted to the study of cross-section data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates, prices
and interest rates. This type of data is characterized by serial dependence. Most aggregate economic data
is only available at a low frequency (annual, quarterly or perhaps monthly) so the sample size is typically
much smaller than in cross-section studies. An exception is financial data where data are available at a
high frequency (weekly, daily, hourly, or by transaction) so sample sizes can be quite large.
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Panel data combines elements of cross-section and time series. These data sets consist of a set of
individuals (typically persons, households, or corporations) measured repeatedly over time. The com-
mon modeling assumption is that the individuals are mutually independent of one another, but a given
individual’s observations are mutually dependent. In some panel data contexts, the number of time se-
ries observations T per individual is small while the number of individuals 7 is large. In other panel data
contexts (for example when countries or states are taken as the unit of measurement) the number of
individuals 7 can be small while the number of time series observations T can be moderately large. An
important issue in econometric panel data is the treatment of error components.

Clustered samples are increasing popular in applied economics and are related to panel data. In clus-
tered sampling, the observations are grouped into “clusters” which are treated as mutually independent
yet allowed to be dependent within the cluster. The major difference with panel data is that clustered
sampling typically does not explicitly model error component structures, nor the dependence within
clusters, but rather is concerned with inference which is robust to arbitrary forms of within-cluster cor-
relation.

Spatial dependence is another model of interdependence. The observations are treated as mutually
dependent according to a spatial measure (for example, geographic proximity). Unlike clustering, spatial
models allow all observations to be mutually dependent, and typically rely on explicit modeling of the
dependence relationships. Spatial dependence can also be viewed as a generalization of time series
dependence.

Data Structures

¢ Cross-section
e Time-series
e Panel

¢ Clustered

e Spatial

As we mentioned above, most of this text will be devoted to cross-sectional data under the assump-
tion of mutually independent observations. By mutual independence we mean that the i observation
(yi,%i,2;) is independent of the j observation (y;,x;,z;) for i # j. In this case we say that the data
are independently distributed. (Sometimes the label “independent” is misconstrued. It is a statement
about the relationship between observations i and j, not a statement about the relationship between y;
and x; and/or z;.)

Furthermore, if the data is randomly gathered, it is reasonable to model each observation as a draw
from the same probability distribution. In this case we say that the data are identically distributed.
If the observations are mutually independent and identically distributed, we say that the observations
are independent and identically distributed, i.i.d., or a random sample. For most of this text we will
assume that our observations come from a random sample.

Definition 1.1 The observations (y;, x;, z;) are a sample from the distribution
F if they are identically distributed across i = 1, ..., n with joint distribution F.




CHAPTER 1. INTRODUCTION 6

Definition 1.2 The observations (y;, x;,z;) are a random sample if they are
mutually independent and identically distributed (i.i.d.) across i = 1,..., n.

In the random sampling framework, we think of an individual observation ( Vi Xi, zi) as a realization
from a joint probability distribution F (y,x,z) which we can call the population. This “population” is
infinitely large. This abstraction can be a source of confusion as it does not correspond to a physical
population in the real world. It is an abstraction since the distribution F is unknown, and the goal of
statistical inference is to learn about features of F from the sample. The assumption of random sampling
provides the mathematical foundation for treating economic statistics with the tools of mathematical
statistics.

The random sampling framework was a major intellectual breakthrough of the late 19th century;,
allowing the application of mathematical statistics to the social sciences. Before this conceptual devel-
opment, methods from mathematical statistics had not been applied to economic data as the latter was
viewed as non-random. The random sampling framework enabled economic samples to be treated as
random, a necessary precondition for the application of statistical methods.

1.6 Econometric Software

Economists use a variety of econometric, statistical, and programming software.

Stata (www.stata.com) is a powerful statistical program with a broad set of pre-programmed econo-
metric and statistical tools. It is quite popular among economists, and is continuously being updated
with new methods. It is an excellent package for most econometric analysis, but is limited when you
want to use new or less-common econometric methods which have not yet been programed. At many
points in this textbook specific Stata estimation methods and commands are described. These com-
mands are valid for Stata version 15.

MATLAB (www.mathworks.com), GAUSS (www.aptech.com), and OxMetrics (www.oxmetrics.net)
are high-level matrix programming languages with a wide variety of built-in statistical functions. Many
econometric methods have been programed in these languages and are available on the web. The ad-
vantage of these packages is that you are in complete control of your analysis, and it is easier to program
new methods than in Stata. Some disadvantages are that you have to do much of the programming your-
self, programming complicated procedures takes significant time, and programming errors are hard to
prevent and difficult to detect and eliminate. Of these languages, GAUSS used to be quite popular among
econometricians, but currently MATLAB is more popular.

An intermediate choice is R (www.r-project.org). R has the capabilities of the above high-level matrix
programming languages, but also has many built-in statistical environments which can replicate much
of the functionality of Stata. R is the dominate programming language in the statistics field, so methods
developed in that arena are most commonly available in R. Uniquely, R is open-source, user-contributed,
and best of all, completely free! A smaller but growing group of econometricians are enthusiastic fans of
R.

For highly-intensive computational tasks, some economists write their programs in a standard pro-
gramming language such as Fortran or C. This can lead to major gains in computational speed, at the
cost of increased time in programming and debugging.

There are many other packages which are used by econometricians, include Eviews, Gretl, PcGive,
Python, Julia, RATS, and SAS.

As the packages described above have distinct advantages, many empirical economists end up using
more than one package. As a student of econometrics, you will learn at least one of these packages, and
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probably more than one. My advice is that all students of econometrics should develop a basic level of
familiarity with Stata, and either Matlab or R (or all three).

1.7 Replication

Scientific research needs to be documented and replicable. For social science research using obser-
vational data, this requires careful documentation and archiving of the research methods, data manipu-
lations, and coding.

The best practice is as follows. Accompanying each published paper an author should create a com-
plete replication package (set of data files, documentation, and program code files). This package should
contain the source (raw) data used for analysis, and code which executes the empirical analysis and other
numerical work reported in the paper. In most cases this is a set of programs which may need to be ex-
ecuted sequentially. (For example, there may be an initial program which “cleans” and manipulates
the data, and then a second set of programs which estimate the reported models.) The ideal is full docu-
mentation and clarity. This package should be posted on the author(s) website, and posted at the journal
website when that is an option.

A complicating factor is that many current economic data sets have restricted access and cannot be
shared without permission. In these cases the data cannot be posted nor shared. The computed code,
however, can and should be posted.

Most journals in economics require authors of published papers to make their datasets generally
available. For example:

Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must
be replicable. Therefore, authors of accepted papers must submit data sets, programs, and
information on empirical analysis, experiments and simulations that are needed for replica-
tion and some limited sensitivity analysis.

The American Economic Review states:

All data used in analysis must be made available to any researcher for purposes of replica-
tion.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data used in
the analysis are clearly and precisely documented and are readily available to any researcher
for purposes of replication.

If you are interested in using the data from a published paper, first check the journal’s website, as
many journals archive data and replication programs online. Second, check the website(s) of the paper’s
author(s). Most academic economists maintain webpages, and some make available replication files
complete with data and programs. If these investigations fail, email the author(s), politely requesting the
data. You may need to be persistent.

As amatter of professional etiquette, all authors absolutely have the obligation to make their data and
programs available. Unfortunately, many fail to do so, and typically for poor reasons. The irony of the
situation is that it is typically in the best interests of a scholar to make as much of their work (including
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all data and programs) freely available, as this only increases the likelihood of their work being cited and
having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end prod-
uct, you will need (and want) to provide all data and programs to the community of scholars. The greatest
form of flattery is to learn that another scholar has read your paper, wants to extend your work, or wants
to use your empirical methods. In addition, public openness provides a healthy incentive for trans-
parency and integrity in empirical analysis.

1.8 Data Files for Textbook

On the textbook webpage http://www.ssc.wisc.edu/~bhansen/econometrics/ there are posted a num-
ber of files containing data sets which are used in this textbook both for illustration and for end-of-
chapter empirical exercises. For most of the data sets there are four files: (1) Description (pdf format);
(2) Excel data file; (3) Text data file; (4) Stata data file. The three data files are identical in content: the
observations and variables are listed in the same order in each, and all have variable labels.

For example, the text makes frequent reference to a wage data set extracted from the Current Popula-
tion Survey. This data set is named cps09mar, and is represented by the files cpsO9mar_description.pdf,
cpsO9mar.x1sx, cpsO9mar . txt, and cpsO9mar.dta.

The data sets currently included are

e AB1991
— Data file from Arellano and Bond (1991)
* AJR2001
- Data file from Acemoglu, Johnson and Robinson (2001)
e AK1991
— Data file from Angrist and Krueger (1991)
e AL1999
- Data file from Angrist and Lavy (1999)
e BMN2016
— Data file from Bernheim, Meer and Novarro (2016)
¢ cpsO9mar
- household survey data extracted from the March 2009 Current Population Survey
e Card1995
— Data file from Card (1995)

e CHJ2004
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— Data file from Cox, Hansen and Jimenez (2004)
e CK1994

- Data file from Card and Krueger (1994)
e DDK2011

— Data file from Duflo, Dupas and Kremer (2011)
e D32004

- Data file from DiTella and Schargrodsky (2004)
e FRED-MD and FRED-QD

— U.S. monthly and quarterly macroeconomic databases from McCracken and Ng (2015)
* Invest1993

— Data file from Hall and Hall (1993)
* Kilian2009

— Data file from Kilian (2009)
e MRW1992

— Data file from Mankiw, Romer and Weil (1992)
¢ Nerlovel963

— Data file from Nerlov (1963)
* RR2010

- Data file from Reinhard and Rogoff (2010)

1.9 Reading the Manuscript

I have endeavored to use a unified notation and nomenclature. The development of the material is
cumulative, with later chapters building on the earlier ones. Nevertheless, every attempt has been made
to make each chapter self-contained so readers can pick and choose topics according to their interests.

To fully understand econometric methods it is necessary to have a mathematical understanding of its
mechanics, and this includes the mathematical proofs of the main results. Consequently, this text is self-
contained with nearly all results proved with full mathematical rigor. The mathematical development
and proofs aim at brevity and conciseness (sometimes described as mathematical elegance), but also at
pedagogy. To understand a mathematical proof it is not sufficient to simply read the proof, you need to
follow it and re-create it for yourself.
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Nevertheless, many readers will not be interested in each mathematical detail, explanation, or proof.
This is okay. To use a method it may not be necessary to understand the mathematical details. Accord-
ingly I have placed the more technical mathematical proofs and details in chapter appendices. These
appendices and other technical sections are marked with an asterisk (*). These sections can be skipped
without any loss in exposition.

The key concepts of matrix algebra and probability inequalities are reviewed in Appendices A & B.
It may be useful to read or review Appendix A.1-A.11 before starting Chapter 3, and review Appendix B
before Chapter 6. It is not necessary to understand all the material in the appendices. They are intended
to be reference material and some of the results are not used in this textbook.



CHAPTER 1. INTRODUCTION

1.10 Common Symbols

A o< = Q9

Ry

Rk

P [A]
P[A]| B]
F(x)
(x)
fx)
E[X]

E[Y|X=x]E[Y|X]

var [X]
var[Y | X]
cov(X,Y)
var [X]
2y1x|
corr(X,Y)
Xn

62

11

scalar

vector

matrix

random variable

random vector

real line

positive real line

Euclidean k space
probability

conditional probability
cumulative distribution function
probability mass function
probability density function
mathematical expectation
conditional expectation
variance

conditional variance
covariance

covariance matrix

best linear predictor
correlation

sample mean

sample variance
biased-corrected sample variance
estimator

standard error of estimator
limit

probability limit

convergence
convergence in probability

convergence in distribution

likelihood function

log-likelihood function

information matrix

standard normal distribution

normal distribution with mean p and variance o
chi-square distribution with k degrees of freedom

2
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I, n x n identity matrix

1, n x 1 vector of ones

trA trace

A vector or matrix transpose
A7l matrix inverse

A>0  positive definite
A=0  positive semi-definite

lall Euclidean norm
A matrix norm
def

= definitional equality
1(a) indicator function (1 if a is true, else 0)
=~ approximate equality
~ is distributed as
log(x) natural logarithm
exp(x) exponential function

xummation fromi=1toi=n

~
I
—
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Regression
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Chapter 2

Conditional Expectation and Projection

2.1 Introduction

The most commonly applied econometric tool is least-squares estimation, also known as regression.
As we will see, least-squares is a tool to estimate an approximate conditional mean of one variable (the
dependent variable) given another set of variables (the regressors, conditioning variables, or covari-
ates).

In this chapter we abstract from estimation and focus on the probabilistic foundation of the condi-
tional expectation model and its projection approximation. This is to some extent a review of probability
theory. For a background in intermediate probability theory see Chapters 1-5 of Statistical Theory for
Econometricians.

2.2 The Distribution of Wages

Suppose that we are interested in wage rates in the United States. Since wage rates vary across work-
ers, we cannot describe wage rates by a single number. Instead, we can describe wages using a probabil-
ity distribution. Formally, we view the wage of an individual worker as a random variable wage with the
probability distribution

F(u) =P [wage< u].

When we say that a person’s wage is random we mean that we do not know their wage before it is mea-
sured, and we treat observed wage rates as realizations from the distribution F. Treating unobserved
wages as random variables and observed wages as realizations is a powerful mathematical abstraction
which allows us to use the tools of mathematical probability.

A useful thought experiment is to imagine dialing a telephone number selected at random, and then
asking the person who responds to tell us their wage rate. (Assume for simplicity that all workers have
equal access to telephones, and that the person who answers your call will respond honestly.) In this
thought experiment, the wage of the person you have called is a single draw from the distribution F of
wages in the population. By making many such phone calls we can learn the distribution F of the entire
population.

When a distribution function F is differentiable we define the probability density function

d
f(u)—aF(u).

The density contains the same information as the distribution function, but the density is typically easier
to visually interpret.

14
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Figure 2.1: Wage Distribution and Density. All Full-time U.S. Workers

In Figure 2.1 we display estimates! of the probability distribution function (panel (a)) and density
function (panel (b)) of U.S. wage rates in 2009. We see that the density is peaked around $15, and most
of the probability mass appears to lie between $10 and $40. These are ranges for typical wage rates in the
U.S. population.

Important measures of central tendency are the median and the mean. The median m of a continu-
ous? distribution F is the unique solution to

F( )—l
m)= .

The median U.S. wage is $19.23. The median is a robust® measure of central tendency, but it is tricky to
use for many calculations as it is not a linear operator.
The expectation or mean of a random variable y with discrete support is

u=[E[y]=]§Tj"”[y=Tj]-

For a continuous random variable with density f(y) the expectation is

p=Ely]= f:yf(y)dy-

Here we have used the common and convenient convention of using the single character y to denote
a random variable, rather than the more cumbersome label wage. We sometimes use the notation Ey
instead of E [ y| when the variable whose expectation is being taken is clear from the context. There is no
distinction in meaning. An alternative notation which includes both discrete and continuous random
variables as special cases is

p=E[y] =f ydF(y).

IThe distribution and density are estimated nonparametrically from the sample of 50,742 full-time non-military wage-
earners reported in the March 2009 Current Population Survey. The wage rate is constructed as annual individual wage and
salary earnings divided by hours worked.

1
21f F is not continuous the definition is m = inf{ u:F(u) = 3 }

3The median is not sensitive to pertubations in the tails of the distribution.
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This notation means the average with respect to the distribution function F(y).

The mean is a convenient measure of central tendency because it is a linear operator and arises
naturally in many economic models. A disadvantage of the mean is that it is not robust* especially in the
presence of substantial skewness or thick tails, which are both features of the wage distribution as can be
seen easily in the right panel of Figure 2.1. Another way of viewing this is that 64% of workers earn less
than the mean wage of $23.90, suggesting that it is incorrect to describe the mean $23.90 as a “typical”
wage rate.

In this context it is useful to transform the data by taking the natural logarithm®. Figure 2.1(c) shows
the density of log hourly wages log(wage) for the same population. The density of log wages is much less
skewed and fat-tailed than the density of the level of wages, so its mean

E [log(wage)] =2.95

is a much better (more robust) measure® of central tendency of the distribution. For this reason, wage
regressions typically use log wages as a dependent variable rather than the level of wages.

Another useful way to summarize the probability distribution F(u) is in terms of its quantiles. For
any a € (0,1), the ath quantile of the continuous’ distribution F is the real number gq Which satisfies

F(gq) = a.

The quantile function g,, viewed as a function of a, is the inverse of the distribution function F. The
most commonly used quantile is the median, that is, go.5 = m. We sometimes refer to quantiles by the
percentile representation of «, and in this case they are often called percentiles, e.g. the median is the
50" percentile.

2.3 Conditional Expectation

We saw in Figure ?? the density of log wages. Is this distribution the same for all workers, or does
the wage distribution vary across subpopulations? To answer this question, we can compare wage dis-
tributions for different groups - for example, men and women. The plot on the left in Figure 2.2 displays
the densities of log wages for U.S. men and women. We can see that the two wage densities take similar
shapes but the density for men is somewhat shifted to the right.

The values 3.05 and 2.81 are the mean log wages in the subpopulations of men and women workers.
They are called the conditional means (or conditional expectations) of log wages given gender. We can
write their specific values as

E [log(wage) | gender = man| = 3.05

E [log(wage) | gender = woman| = 2.81.

We call these means conditional as they are conditioning on a fixed value of the variable gender.
While you might not think of a person’s gender as a random variable, it is random from the viewpoint of
econometric analysis. If you randomly select an individual, the gender of the individual is unknown and
thus random. (In the population of U.S. workers, the probability that a worker is a woman happens to be
43%.) In observational data, it is most appropriate to view all measurements as random variables, and
the means of subpopulations are then conditional means.

4The mean is sensitive to pertubations in the tails of the distribution.

SThroughout the text, we will use log(y) or log y to denote the natural logarithm of y.

6More precisely, the geometric mean exp (E[log w]) = $19.11 is a robust measure of central tendency.
If F is not continuous the definition is o =influ: F(u) = a}
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—-- white men
—— white women
''''' black men

-- black women

(a) Women and Men (b) By Gender and Race

Figure 2.2: Log Wage Density by Gender and Race

As the two densities in Figure 2.2 appear similar, a hasty inference might be that there is not a mean-
ingful difference between the wage distributions of men and women. Before jumping to this conclusion
let us examine the differences in the distributions more carefully. As we mentioned above, the primary
difference between the two densities appears to be their means. This difference equals

E [log(wage) | gender = man| — E [log(wage) | gender = woman| = 3.05 - 2.81
=0.24. (2.1)

A difference in expected log wages of 0.24 is often interpreted as an average 24% difference between the
wages of men and women, which is quite substantial. (For a more complete explanation see Section 2.4.)

Consider further splitting the men and women subpopulations by race, dividing the population into
whites, blacks, and other races. We display the log wage density functions of four of these groups on the
right in Figure 2.2. Again we see that the primary difference between the four density functions is their
central tendency.

Focusing on the means of these distributions, Table 2.1 reports the mean log wage for each of the six
sub-populations.

Table 2.1: Mean Log Wages by Gender and Race

men women
white 3.07 2.82
black 2.86 2.73
other 3.03 2.86

The entries in Table 2.1 are the conditional means of log(wage) given gender and race. For example
E [log(wage) | gender = man, race = white| = 3.07

and
E [log(wage) | gender = woman, race = black| = 2.73.
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One benefit of focusing on conditional means is that they reduce complicated distributions to a sin-
gle summary measure, and thereby facilitate comparisons across groups. Because of this simplifying
property, conditional means are the primary interest of regression analysis and are a major focus in
econometrics.

Table 2.1 allows us to easily calculate average wage differences between groups. For example, we can
see that the wage gap between men and women continues after disaggregation by race, as the average
gap between white men and white women is 25%, and that between black men and black women is 13%.
We also can see that there is a race gap, as the average wages of blacks are substantially less than the
other race categories. In particular, the average wage gap between white men and black men is 21%, and
that between white women and black women is 9%.

2.4 LogDifferences
A useful approximation for the natural logarithm for small x is
log(1+ x) = x. (2.2)

This can be derived from the infinite series expansion oflog (1 + x) :

lo (1+x)—x——2+x—3—x—4+
g AT T T
—x+O(x2).

The symbol O(x?) means that the remainder is bounded by Ax? as x — 0 for some A < co. Numerically,
the approximation log (1 + x) = x is within 0.001 for |x| < 0.1. The approximation error increases with | x|.
If y* is ¢% greater than y then
y* =(1+c¢/100)y.

Taking natural logarithms,
logy* =logy+log(1+ ¢/100)

or

logy* —log y =log(1 + ¢/100) ~ —
gy* —logy =log S 1o

where the approximation is (2.2). This shows that 100 multiplied by the difference in logarithms is ap-
proximately the percentage difference between y and y*. Numerically, the approximation error is less
than 0.1 percentage points for |c| < 10.

Many econometric equations take the semi-log form

E[log(w) | group=1| = ay
E [log(w) | group=2| = ay.

How should we interpret the difference A = a; — a»? In the previous section we stated that this difference
is often interpreted as the average percentage difference. This is not quite right, but is not quite wrong
either.

As mentioned earlier, the geometric mean of a random variable w is 8 = exp (E[log(w)]). Thus
01 = exp(a;) and 6, = exp (ap) are the conditional geometric means for group 1 and group 2. The ge-
ometric mean is a measure of central tendency, different from the arithmetic mean, and often closer to
the median. The difference A = p; — p» is the difference in the logarithms between the two geometric
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means. Thus by the above discussion about log differences A approximately equals the percentage dif-
ference between the conditional geometric means 6, and 6,. The approximation is good for percentage
differences less than 10% and the approximation deteriorates for percentages above that.

To compare different measures of percentage difference in our example see Table 2.2. In the first two
columns we report average wages for men and women in the CPS population using three “averages”:
mean (arithmetic), median, and geometric mean. For both groups the mean is higher than the median
and geometric mean, and the latter two are similar to one another. This is a common feature of skewed
distributions such as the wage distribution. The next two columns report the percentage differences
between the first two columns. There are two ways of computing a percentage difference depending on
which is the baseline. The third column reports the percentage difference taking the average woman'’s
wage as the baseline, so for example the first entry of 34% states that the mean wage for men is 34%
higher than the mean wage for women. The fourth column reports the percentage difference taking the
average men’s wage as the baseline. For example the first entry of —25% states that the mean wage for
women is 25% less than the mean wage for men.

Table 2.2 shows that when examining average wages the difference between women’s and men’s
wages is 25-34% depending on the baseline. If we examine the median wage the difference is 20-26%.
If we examine the geometric mean we find a difference of 21-26%. The percentage difference in mean
wages is considerably different from the other two measures as they measure different features of the
distribution.

Returning to the log difference in equation (2.1), we found that the difference in the mean logarithm
between men and women is 0.24, and we stated that this is often interpreted as implying a 24% average
percentage difference. More accurately it should be described as the approximate percentage difference
in the geometric mean. Indeed, we see that that the actual percentage difference in the geometric mean
is 21-26%, depending on the baseline, which is quite similar to the difference in the mean logarithm.

What this implies in practice is that when we transform our data by taking logarithms (as is common
in economics) and then compare means (including regression coefficients) we are computing approxi-
mate percentage differences in the average as measured by the geometric mean.

Table 2.2: Average Wages and Percentage Differences

men  women % Difference % Difference
men over women women over men
Mean $26.80  $20.00 34% —25%
Median $21.14 $16.83 26% —-20%
Geometric Mean $21.03 $16.64 26% —21%

2.5 Conditional Expectation Function

An important determinant of wage levels is education. In many empirical studies economists mea-
sure educational attainment by the number of years® of schooling. We will write this variable as educa-
tion.

The conditional mean of log wages given gender, race, and education is a single number for each

8Here, education is defined as years of schooling beyond kindergarten. A high school graduate has education=12, a college
graduate has education=16, a Master’s degree has education=18, and a professional degree (medical, law or PhD) has educa-
tion=20.
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category. For example
E [log(wage) | gender = man, race = white, education=12| = 2.84.

We display in Figure 2.3 the conditional means of log(wage) for white men and white women as a
function of education. The plot is quite revealing. We see that the conditional mean is increasing in years
of education, but at a different rate for schooling levels above and below nine years. Another striking
feature of Figure 2.3 is that the gap between men and women is roughly constant for all education levels.
As the variables are measured in logs this implies a constant average percentage gap between men and
women regardless of educational attainment.

35
1

Log Dollars per Hour
3.0

25

® white men
- A white women

T T T T T T T T 1
4 6 8 10 12 14 16 18 20

2.0

Years of Education
Figure 2.3: Mean Log Wage as a Function of Years of Education

In many cases it is convenient to simplify the notation by writing variables using single charac-
ters, typically y, x and/or z. It is conventional in econometrics to denote the dependent variable (e.g.
log(wage)) by the letter y, a conditioning variable (such as gender) by the letter x, and multiple condi-
tioning variables (such as race, education and gender) by the subscripted letters x;, X, ..., Xk.

Conditional expectations can be written with the generic notation

[E[y | X1, X2 ee0y xk] = m(XI, X2 een Xk).

We call this the conditional expectation function (CEF). The CEF is a function of (x;, x, ..., X§) as it varies
with the variables. For example, the conditional expectation of y = log(wage) given (x1, x») = (gender,
race) is given by the six entries of Table 22. The CEF is a function of (gender, race) as it varies across the
entries.

For greater compactness, we will typically write the conditioning variables as a vector in R¥:

X1
X2
x= . . (2.3)

Xk
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Here we follow the convention of using lower case bold italics x to denote a vector. Given this notation,
the CEF can be compactly written as
E[lylx]=m(x).

The CEFE [y | x] is arandom variable as it is a function of the random variable x. It is also sometimes
useful to view the CEF as a function of x. In this case we can write m (1) = E[y | x = u], which is a function
of the argument u. The expression E[y | x = u] is the conditional expectation of y, given that we know
that the random variable x equals the specific value u. However, sometimes in econometrics we take
a notational shortcut and use E [y | x] to refer to this function. Hopefully, the use of E [y | x] should be
apparent from the context.

2.6 Continuous Variables

In the previous sections, we implicitly assumed that the conditioning variables are discrete. However,
many conditioning variables are continuous. In this section, we take up this case and assume that the
variables (y, x) are continuously distributed with a joint density function f(y, x).

As an example, take y = log(wage) and x = experience, the number of years of potential labor market
experience’. The contours of their joint density are plotted on the left side of Figure 2.4 for the population
of white men with 12 years of education.
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Labor Market Experience (Years)

(b) Conditional Density of log(wage) given experi-

(a) Joint Density of log(wage) and experience ence

Figure 2.4: White Men with High School Degree

Given the joint density f(y,x) the variable x has the marginal density

[e.0]
fum=f fx)dy.
—0o
For any x such that fy(x) > 0 the conditional density of y given x is defined as

_ f,x)
fx(x) '

9Here, experience is defined as potential labor market experience, equal to age—education—6

(2.4)

Tyix (v1x)
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The conditional density is a (renormalized) slice of the joint density f(y,x) holding x fixed. The slice is
renormalized (divided by fx(x) so that it integrates to one and is thus a density.) We can visualize this
by slicing the joint density function at a specific value of x parallel with the y-axis. For example, take
the density contours on the left side of Figure 2.4 and slice through the contour plot at a specific value
of experience, and then renormalize the slice so that it is a proper density. This gives us the conditional
density of log(wage) for white men with 12 years of education and this level of experience. We do this
for four levels of experience (5, 10, 25, and 40 years), and plot these densities on the right side of Figure
2.4. We can see that the distribution of wages shifts to the right and becomes more diffuse as experi-
ence increases from 5 to 10 years, and from 10 to 25 years, but there is little change from 25 to 40 years
experience.
The CEF of y given x is the mean of the conditional density (2.4)

m(x) =E[y|x] =f Vi (1 2)dy. 2.5)

Intuitively, m (x) is the mean of y for the idealized subpopulation where the conditioning variables are
fixed at x. This is idealized since x is continuously distributed so this subpopulation is infinitely small.

This definition (2.5) is appropriate when the conditional density (2.4) is well defined. However, the
conditional mean m(x) exists quite generally. In Theorem 2.13 in Section 2.31 we show that m(x) exists
solongasE|y|<oo.

In Figure 2.4 the CEF of log(wage) given experience is plotted as the solid line. We can see that the
CEF is a smooth but nonlinear function. The CEF is initially increasing in experience, flattens out around
experience = 30, and then decreases for high levels of experience.

2.7 Law of Iterated Expectations

An extremely useful tool from probability theory is the law of iterated expectations. An important
special case is the known as the Simple Law.

Theorem 2.1 Simple Law of Iterated Expectations
IfE | y| < oo then for any random vector x,

E[E[ylx]] =E[y].

The simple law states that the expectation of the conditional expectation is the unconditional expec-
tation. In other words the average of the conditional averages is the unconditional average. When x is

discrete
oo

[E[[E[ylx]]=j;[E[ylx=xj]P[x=xj]

and when x is continuous
E[E(y1x]]= [ Elyix] frtoax

Going back to our investigation of average log wages for men and women, the simple law states that

E [log(wage) | gender = man| P |gender = man|
+E [log(wage) | gender = woman| P gender = woman|
=E [log(wage)] .
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Or numerically,
3.05x0.57+2.81 x 0.43 = 2.95.

The general law of iterated expectations allows two sets of conditioning variables.

Theorem 2.2 Law of Iterated Expectations
IfE|y| < oo then for any random vectors x1 and x»,

E[E[ylx1, %] 1x1] =E[y|x1].

Notice the way the law is applied. The inner expectation conditions on x; and x;, while the outer
expectation conditions only on x;. The iterated expectation yields the simple answer E(y | x;), the ex-
pectation conditional on x; alone. Sometimes we phrase this as: “The smaller information set wins.”

As an example

E [log(wage) | gender = man, race = white] P [race = white | gender = man|
+E [log(wage) | gender = man, race = black]P [race = black | gender = man)|
+E [log(wage) | gender = man, race = other|P [race = other | gender = man|

= E [log(wage) | gender = man)|

or numerically
3.07 x0.84+2.86 x 0.08 +3.03 x 0.08 = 3.05.

A property of conditional expectations is that when you condition on a random vector x you can
effectively treat it as if it is constant. For example, E[x|x] = x and E [g x) | x] = g(x) for any function
g(-). The general property is known as the Conditioning Theorem.

Theorem 2.3 Conditioning Theorem
If[E|y| < oo then
Elg®) ylx]=gxE[ylx]. (2.6)

If in addition E | g (x) y| < oo then

E[g®) y] =E[g®E[ylx]]. @7

The proofs of Theorems 2.1, 2.2 and 2.3 are given in Section 2.33.

2.8 CEF Error

The CEF error e is defined as the difference between y and the CEF evaluated x:
e=y—m(x).

By construction, this yields the formula
y=m(x)+e. (2.8)
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In (2.8) it is useful to understand that the error e is derived from the joint distribution of (y, x), and so
its properties are derived from this construction.

Many authors in econometrics denote the CEF error using the Greek letter €. I do not follow this con-
vention since the error e is a random variable similar to y and x, and it is typical to use Latin characters
for random variables.

A key property of the CEF error is that it has a conditional mean of zero. To see this, by the linearity
of expectations, the definition m(x) = E[y | x| and the Conditioning Theorem

Ele|x]=E[(y—m(x)) | x]
=E[ylx|-E[mx)]|x]
=m(x)— m(x)
=0.

This fact can be combined with the law of iterated expectations to show that the unconditional mean
is also zero.
Ele] =E[E[e| x]]=E[0] =0.

We state this and some other results formally.

Theorem 2.4 Properties of the CEF error
IfE|y| < oo then

1. Ele| x] =0.
2. Ele] =0.

3. IfE|y|" <oofor r = 1 thenEle|" < co.

4. For any function i (x) such thatE|h (x) e| < oo thenE[h(x)e] =0.

The proof of the third result is deferred to Section 2.33.The fourth result, whose proofis left to Exercise
2.3, implies that e is uncorrelated with any function of the regressors.
The equations

y=m(x)+e
Ele|x]=0

together imply that m(x) is the CEF of y given x. Itisimportant to understand that this is not a restriction.
These equations hold true by definition.

The condition E[e| x] = 0 is implied by the definition of e as the difference between y and the CEF
m (x). The equation E [e | x] = 0 is sometimes called a conditional mean restriction, since the conditional
mean of the error e is restricted to equal zero. The property is also sometimes called mean indepen-
dence, for the conditional mean of e is 0 and thus independent of x. However, it does not imply that the
distribution of e is independent of x. Sometimes the assumption “e is independent of x” is added as a
convenient simplification, but it is not generic feature of the conditional mean. Typically and generally,
e and x are jointly dependent even though the conditional mean of e is zero.

As an example, the contours of the joint density of e and experience are plotted in Figure 2.5 for the
same population as Figure 2.4. Notice that the shape of the conditional distribution varies with the level
of experience.
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Figure 2.5: Joint Density of Error e and experience for White Men with High School Education

As a simple example of a case where x and e are mean independent yet dependent let e = xu where
x and u are independent N(0,1). Then conditional on x the error e has the distribution N(0, x?). Thus
Ele| x] = 0 and e is mean independent of x, yet e is not fully independent of x. Mean independence does
not imply full independence.

2.9 Intercept-Only Model

A special case of the regression model is when there are no regressors x. In this case m(x) =E[y] = u,
the unconditional mean of y. We can still write an equation for y in the regression format:

y=p+e
Ele] =0.

This is useful for it unifies the notation.

2.10 Regression Variance

An important measure of the dispersion about the CEF function is the unconditional variance of the
CEF error e. We write this as
o? =var[e] =E[(e—E[e])*] =E[¢?].

Theorem 2.4.3 implies the following simple but useful result.

Theorem 2.5 IfE[y?] < oo then 02 < co.

We can call o2 the regression variance or the variance of the regression error. The magnitude of o
measures the amount of variation in y which is not “explained” or accounted for in the conditional mean

E[ylx].
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The regression variance depends on the regressors x. Consider two regressions

y=Elylxi]+e
y=E[ylx1,x2] +ez.

We write the two errors distinctly as e} and e, as they are different — changing the conditioning informa-
tion changes the conditional mean and therefore the regression error as well.

In our discussion of iterated expectations we have seen that by increasing the conditioning set the
conditional expectation reveals greater detail about the distribution of y. What is the implication for the
regression error?

It turns out that there is a simple relationship. We can think of the conditional mean E [y | x] as the
“explained portion” of y. The remainder e = y—E [ y | x] is the “unexplained portion”. The simple relation-
ship we now derive shows that the variance of this unexplained portion decreases when we condition on
more variables. This relationship is monotonic in the sense that increasing the amont of information
always decreases the variance of the unexplained portion.

Theorem 2.6 If E[y?] < oo then

var[y| zvar[y—E[y|x1]| =var[y—E[y|x1,x2]].

Theorem 2.6 says that the variance of the difference between y and its conditional mean (weakly)
decreases whenever an additional variable is added to the conditioning information.
The proof of Theorem 2.6 is given in Section 2.33.

2.11 Best Predictor

Suppose that given a realized value of x we want to create a prediction or forecast of y. We can write
any predictor as a function g (x) of x. The prediction error is the realized difference y — g(x). A non-
stochastic measure of the magnitude of the prediction error is the expectation of its square

E|(y-g@)*|. (2.9)

We can define the best predictor as the function g (x) which minimizes (2.9). What function is the
best predictor? It turns out that the answer is the CEF m(x). This holds regardless of the joint distribution
of (y,x).

To see this, note that the mean squared error of a predictor g (x) is

E [(y—g(x))z] —F [(e+ m(x) —g(x))z]
=E[e*] +2E[e(m(x) - g(x))] +E [(m(x) —g(x))z]
=E[e?] +E[(m @) - g )’
> [e?]
=E|(y-m@)’|
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where the first equality makes the substitution y = m(x) + e and the third equality uses Theorem 2.4.4.

The right-hand-side after the third equality is minimized by setting g (x) = m (x), yielding the inequality

in the fourth line. The minimum is finite under the assumption [ [y?| < co as shown by Theorem 2.5.
We state this formally in the following result.

Theorem 2.7 Conditional Mean as Best Predictor
If E [y?] < oo, then for any predictor g (x),

[E[(y—g(x))z] EIE[(y—m(x))Z]

where m (x) =E[y | x].

It may be helpful to consider this result in the context of the intercept-only model

y=u+e
El[e] =0.

Theorem 2.7 shows that the best predictor for y (in the class of constants) is the unconditional mean
w=E[y], in the sense that the mean minimizes the mean squared prediction error.

2.12 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution it does
not provide information about the spread of the distribution. A common measure of the dispersion is
the conditional variance. We first give the general definition of the conditional variance of a random
variable w.

Definition 2.1 IfE [w?| < oo, the conditional variance of w given x is

var[w | x] = E [(w—E[w | x])?*| x].

The conditional variance is distinct from the unconditional variance var [w]. The difference is that
the conditional variance is a function of the conditioning variables. Notice that the conditional variance
is the conditional second moment, centered around the conditional first moment.

Given this definition we define the conditional variance of the regression error.

Definition 2.2 IfE [ez] < 00, the conditional variance of the regression error e
is
2008 _ 2
o°(x) =var[e| x] =E[e” | x].
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Again, the conditional variance o2(x) is distinct from the unconditional variance 2. The conditional
variance is a function of the regressors, the unconditional variance is not. Generally, o (x) is a non-trivial
function of x and can take any form subject to the restriction that it is non-negative. One way to think
about 0 (x) is that it is the conditional mean of e? given x. Notice as well that o?(x) = var [y | x| so it is
equivalently the conditional variance of the dependent variable.

The variance is in a different unit of measurement than the original variable. To convert the variance
back to the same unit of measure we define the conditional standard deviation as its square root o(x) =
Vo2(x).

As an example of how the conditional variance depends on observables, compare the conditional
log wage densities for men and women displayed in Figure 2.2. The difference between the densities is
not purely a location shift but is also a difference in spread. Specifically, we can see that the density for
men’s log wages is somewhat more spread out than that for women, while the density for women’s wages
is somewhat more peaked. Indeed, the conditional standard deviation for men’s wages is 3.05 and that
for women is 2.81. So while men have higher average wages they are also somewhat more dispersed.

In general the unconditional variance is related to the conditional variance by the following relation-
ship.

Theorem 2.8 If E|w?] < co then

var[w] =E[var[w | x]] +var[E[w | x]].

See Theorem 4.14 of Introduction to Econometrics. Theorem 2.8 decomposes the unconditional vari-
ance into what are sometimes called the “within group variance” and the “across group variance”. For
example, if x is education level, then the first term is the expected variance of the conditional means by
education level. The second term is the variance after controlling for education.

The regression error has a conditional mean of zero, so its unconditional error variance equals the
expected conditional variance, or equivalently can be found by the law of iterated expectations

o? =E[e?*] =E[E[e? | x]] =E[0*(x)].

That is, the unconditional error variance is the average conditional variance.
Given the conditional variance we can define a rescaled error
e

We can calculate that since o (x) is a function of x

Elu|x]=E

e ] 1
x| = Ele|x]=0
o(x) o(x)

and
2

E[e?x] = o%(x)

_ 2 _ _
var(u|x]=E[u” | x] =E = "

X| =
0%(x)
Thus u has a conditional mean of zero and a conditional variance of 1.
Notice that (2.10) can be rewritten as

0%(x)

e=o0(x)u.
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and substituting this for e in the CEF equation (2.8), we find that
y=m(x)+ox)u.

This is an alternative (mean-variance) representation of the CEF equation.

Many econometric studies focus on the conditional mean m(x) and either ignore the conditional
variance o2 (x), treat it as a constant o2 (x) = 02, or treat it as a nuisance parameter (a parameter not of
primary interest). This is appropriate when the primary variation in the conditional distribution is in the
mean but can be short-sighted in other cases. Dispersion is relevant to many economic topics, includ-
ing income and wealth distribution, economic inequality, and price dispersion. Conditional dispersion
(variance) can be a fruitful subject for investigation.

The perverse consequences of a narrow-minded focus on the mean has been parodied in a classic
joke:

An economist was standing with one foot in a bucket of boiling water
and the other foot in a bucket of ice. When asked how he felt, he replied,
“On average I feel just fine.”

Clearly, the economist in question ignored variance!

2.13 Homoskedasticity and Heteroskedasticity

An important special case obtains when the conditional variance o?(x) is a constant and indepen-
dent of x. This is called homoskedasticity.

Definition 2.3 The error is homoskedastic if E [e2 | x] = g2 does not de-
pend on x.

In the general case where o (x) depends on x we say that the error e is heteroskedastic.

Definition 2.4 The error is heteroskedastic if E [¢? | x| = 0 (x) depends on
x.

It is helpful to understand that the concepts homoskedasticity and heteroskedasticity concern the
conditional variance, not the unconditional variance. By definition, the unconditional variance o?isa
constant and independent of the regressors x. So when we talk about the variance as a function of the
regressors we are talking about the conditional variance 2 (x).

Some older or introductory textbooks describe heteroskedasticity as the case where “the variance of e
varies across observations”. This is a poor and confusing definition. It is more constructive to understand
that heteroskedasticity means that the conditional variance o2 (x) depends on observables.
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Older textbooks also tend to describe homoskedasticity as a component of a correct regression spec-
ification and describe heteroskedasticity as an exception or deviance. This description has influenced
many generations of economists but it is unfortunately backwards. The correct view is that heteroskedas-
ticity is generic and “standard”, while homoskedasticity is unusual and exceptional. The default in em-
pirical work should be to assume that the errors are heteroskedastic, not the converse.

In apparent contradiction to the above statement we will still frequently impose the homoskedastic-
ity assumption when making theoretical investigations into the properties of estimation and inference
methods. The reason is that in many cases homoskedasticity greatly simplifies the theoretical calcula-
tions and it is therefore quite advantageous for teaching and learning. It should always be remembered,
however, that homoskedasticity is never imposed because it is believed to be a correct feature of an em-
pirical model but rather because of its simplicity.

Heteroskedastic or Heteroscedastic?

The spelling of the words homoskedastic and heteroskedastic have been
somewhat controversial. Early econometrics textbooks were split, with
some using a “c” as in heteroscedastic and some “k” as in heteroskedastic.
McCulloch (1985) pointed out that the word is derived from Greek roots.
opotog means “same”. eTepo means “other” or “different”. oxedavvour
means “to scatter”. Since the proper transliteration of the Greek letter x
in oxedavvou is “k”, this implies that the correct English spelling of the

two words is with a “k” as in homoskedastic and heteroskedastic.

2.14 Regression Derivative

One way to interpret the CEF m(x) = E[y | x] is in terms of how marginal changes in the regressors
x imply changes in the conditional mean of the response variable y. It is typical to consider marginal
changes in a single regressor, say x;, holding the remainder fixed. When a regressor x; is continuously
distributed, we define the marginal effect of a change in x;, holding the variables xy, ..., x; fixed, as the
partial derivative of the CEF

—1m(X1, 00y Xf)-
6x1

When x; is discrete we define the marginal effect as a discrete difference. For example, if x; is binary,
then the marginal effect of x; on the CEF is

m(1, xo,..., xr) — m(0, xa, ..., X.).

We can unify the continuous and discrete cases with the notation

0 e .
—m(X1, .0y XE), if x; is continuous
6x1
Vim(x) =

m(1, x, ..., X)) — m(0, X, ..., Xi.), if x; is binary.
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Collecting the k effects into one k x 1 vector, we define the regression derivative with respect to x:

Vim(x)

Vom(x)
Vm(x) =

Vim(x)

0
When all elements of x are continuous, then we have the simplification Vm(x) = P m(x), the vector of
x

partial derivatives.

There are two important points to remember concerning our definition of the regression derivative.

First, the effect of each variable is calculated holding the other variables constant. This is the ceteris
paribus concept commonly used in economics. But in the case of a regression derivative, the condi-
tional mean does not literally hold all else constant. It only holds constant the variables included in the
conditional mean. This means that the regression derivative depends on which regressors are included.
For example, in a regression of wages on education, experience, race and gender, the regression deriva-
tive with respect to education shows the marginal effect of education on mean wages, holding constant
experience, race and gender. But it does not hold constant an individual’s unobservable characteristics
(such as ability), nor variables not included in the regression (such as the quality of education).

Second, the regression derivative is the change in the conditional expectation of y, not the change in
the actual value of y for an individual. It is tempting to think of the regression derivative as the change
in the actual value of y, but this is not a correct interpretation. The regression derivative Vm(x) is the
change in the actual value of y only if the error e is unaffected by the change in the regressor x. We return
to a discussion of causal effects in Section 2.30.

2.15 Linear CEF

An important special case is when the CEF m (x) = E[y | x] is linear in x. In this case we can write the
mean equation as
m(x) = x1f1+ x2P2 + -+ + Xk fic + Prc+1-

Notationally it is convenient to write this as a simple function of the vector x. An easy way to do so is to
augment the regressor vector x by listing the number “1” as an element. We call this the “constant” and
the corresponding coefficient is called the “intercept”. Equivalently, specify that the final element'? of
the vector x is x; = 1. Thus (2.3) has been redefined as the k x 1 vector

X1
X2
x= : . (2.11)
Xk-1
1
With this redefinition, the CEF is
m(x) = x1P1+ %22 + -+ P = x'B (2.12)

10The order doesn’t matter. It could be any element.
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where
B
p=| :
P
is a k x 1 coefficient vector. This is the linear CEF model. It is also often called the linear regression

model, or the regression of y on x.
In the linear CEF model the regression derivative is simply the coefficient vector. That is

Vm(x) = B.

This is one of the appealing features of the linear CEF model. The coefficients have simple and natural
interpretations as the marginal effects of changing one variable, holding the others constant.

Linear CEF Model
y=x'f+e
Ele|x]=0

If in addition the error is homoskedastic we call this the homoskedastic linear CEF model.

Homoskedastic Linear CEF Model

y=x'B+e
Ele|x]=0

E[e* | x] = o?

2.16 Linear CEF with Nonlinear Effects

The linear CEF model of the previous section is less restrictive than it might appear, as we can include
as regressors nonlinear transformations of the original variables. In this sense, the linear CEF framework
is flexible and can capture many nonlinear effects.

For example, suppose we have two scalar variables x; and x,. The CEF could take the quadratic form

m(xy, x2) = xlﬁl + xZﬁz + x%ﬁg + x§ﬂ4 + xleﬁ5 + ,66. (2.13)

This equation is quadratic in the regressors (x, x2) yet linear in the coefficients g = (81, ..., Bs)’. We will
descriptively call (2.13) a quadratic CEE and yet (2.13) is also a linear CEF in the sense of being linear in
the coefficients. The key is to understand that (2.13) is quadratic in the variables (x, x») yet linear in the
coefficients B.
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To simplify the expression we define the transformations x3 = x2, x4 = X2, X5 = X1 X2, and xg = 1, and
1 2
redefine the regressor vector as x = (xg, ..., Xg)'. With this redefinition,

m(xy,x2) = x'B

which is linear in B. For most econometric purposes (estimation and inference on ) the linearity in g is
all that is important.

An exception is in the analysis of regression derivatives. In nonlinear equations such as (2.13) the re-
gression derivative should be defined with respect to the original variables not with respect to the trans-
formed variables. Thus

0
——mi(x1,X2) = f1+2x1 83 + X205
6x1

i771()(31, Xo2) = ﬂg + ZXZ,B4 + xlﬁs.

6XZ
We see that in the model (2.13), the regression derivatives are not a simple coefficient, but are functions
of several coefficients plus the levels of (x1,x,). Consequently it is difficult to interpret the coefficients
individually. It is more useful to interpret them as a group.

We typically call 85 the interaction effect. Notice that it appears in both regression derivative equa-
tions and has a symmetric interpretation in each. If 85 > 0 then the regression derivative with respect to
x1 is increasing in the level of x, (and the regression derivative with respect to x, is increasing in the level
of x1), while if §5 < 0 the reverse is true.

2.17 Linear CEF with Dummy Variables

When all regressors take a finite set of values it turns out the CEF can be written as a linear function
of regressors.

This simplest example is a binary variable which takes only two distinct values. For example, in
traditional data sets the variable gender takes only the values man and woman (or male and female).
Binary variables are extremely common in econometric applications and are alternatively called dummy
variables or indicator variables.

Consider the simple case of a single binary regressor. In this case the conditional mean can only take
two distinct values. For example,

wo if  gender = man
E[y| gender] =
w if gender = woman

To facilitate a mathematical treatment we typically record dummy variables with the values {0, 1}. For
example
0 if der =
X = { i gender = man ©.14)

1 if gender=woman °
Given this notation we can write the conditional mean as a linear function of the dummy variable x;,
that is
E[ylxi]=Bixi+ B2
where §, = u1 — po and B2 = yo. In this simple regression equation the intercept ; is equal to the con-

ditional mean of y for the x; = 0 subpopulation (men) and the slope $; is equal to the difference in the
conditional means between the two subpopulations.
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Equivalently, we could have defined x; as

x1={ 1 if gender=man 2.15)

0 if gender=woman °

In this case, the regression intercept is the mean for women (rather than for men) and the regression
slope has switched signs. The two regressions are equivalent but the interpretation of the coefficients
has changed. Therefore it is always important to understand the precise definitions of the variables, and
illuminating labels are helpful. For example, labelling x; as “gender” does not help distinguish between
definitions (2.14) and (2.15). Instead, it is better to label x; as “women” or “female” if definition (2.14) is
used, or as “men” or “male” if (2.15) is used.

Now suppose we have two dummy variables x; and x,. For example, x, = 1 if the person is married,
else x = 0. The conditional mean given x; and x, takes at most four possible values:

too if x;=0andx,=0 (unmarried men)
por if x;=0andx,=1 (married men)
po if x;=1landx, =0 (unmarried women)
pi1 if xy=landx,=1 (married women)

E[ylx,x]=

In this case we can write the conditional mean as a linear function of x;, x, and their product x; x; :
E[y|x1,x2] = Brx1+ Poxa+ Psx1x2+ Pa

where f1 = 10 — Hoo, B2 = Ho1 — Moo, B3 = 11 — H10 — Mo1 + Moo, and B4 = Hoo.

We can view the coefficient 8, as the effect of gender on expected log wages for unmarried wage
earners, the coefficient f, as the effect of marriage on expected log wages for men wage earners, and the
coefficient B3 as the difference between the effects of marriage on expected log wages among women
and among men. Alternatively, it can also be interpreted as the difference between the effects of gender
on expected log wages among married and non-married wage earners. Both interpretations are equally
valid. We often describe 3 as measuring the interaction between the two dummy variables, or the
interaction effect, and describe 3 = 0 as the case when the interaction effect is zero.

In this setting we can see that the CEF is linear in the three variables (x1, x2, x; x2). To put the model
in the framework of Section 2.15, we define the regressor x3 = x; x» and the regressor vector as

X1

X2

X3
1

X =

So even though we started with only 2 dummy variables, the number of regressors (including the inter-
cept) is 4.

If there are 3 dummy variables xy, x2, x3, then E [ yx1, X, x3] takes at most 23 = 8 distinct values and
can be written as the linear function

E [J/ | x1, xz»xs] = P1x1+ Paxz + B3x3 + Pax1X2 + P5X1X3 + PeX2X3 + PrX1X2X3 + B3

which has eight regressors including the intercept.

In general, if there are p dummy variables x;,..., x,, then the CEF E [ y1x1, %2, ...,xp] takes at most 27
distinct values and can be written as a linear function of the 27 regressors including x1, x2, ..., X, and all
cross-products. This might be excessive in practice if p is modestly large. In the next section we will
discuss projection approximations which yield more parsimonious parameterizations.
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We started this section by saying that the conditional mean is linear whenever all regressors take
only a finite number of possible values. How can we see this? Take a categorical variable, such as race.
For example, we earlier divided race into three categories. We can record categorical variables using
numbers to indicate each category, for example

1 if white
x3=<X 2 if black
3 if other

When doing so, the values of x3 have no meaning in terms of magnitude, they simply indicate the relevant
category.

When the regressor is categorical the conditional mean of y given x3 takes a distinct value for each
possibility:

H1 if JC3=1
E[ylxs] =4 po if x3=2
M3 if X3=3.

This is not a linear function of x3 itself, but it can be made a linear function by constructing dummy
variables for two of the three categories. For example

1 if black
=Y 0 if notblack

= 1 if other
571 0 if notother

In this case, the categorical variable x3 is equivalent to the pair of dummy variables (x4, x5). The explicit
relationship is
1 if x4=0andx5=0
x3=1 2 if x4=1landx5=0
3 if X4=031'ldX5=1.

Given these transformations, we can write the conditional mean of y as a linear function of x4 and x5

[E[y | X3] = IE[}/ | X4,X5] = ﬁ1x4+ﬁ2x5 +,33.

We can write the CEF as either E[y | x3] or E[y| x4, x5] (they are equivalent), but it is only linear as a
function of x4 and xs.

This setting is similar to the case of two dummy variables, with the difference that we have not in-
cluded the interaction term x4 x5. This is because the event {x; = 1 and x5 = 1} is empty by construction,
S0 x4 x5 = 0 by definition.

2.18 Best Linear Predictor

While the conditional mean m(x) = E [ vl x] is the best predictor of y among all functions of x, its
functional form is typically unknown. In particular, the linear CEF model is empirically unlikely to be
accurate unless x is discrete and low-dimensional so all interactions are included. Consequently in most
cases it is more realistic to view the linear specification (2.12) as an approximation. In this section we
derive a specific approximation with a simple interpretation.

Theorem 2.7 showed that the conditional mean m (x) is the best predictor in the sense that it has the
lowest mean squared error among all predictors. By extension, we can define an approximation to the
CEF by the linear function with the lowest mean squared error among all linear predictors.
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For this derivation we require the following regularity condition.

Assumption 2.1
1. E[y?] <oo.
2. E[lx?] < co.

3. Qux = E[xx'] is positive definite.

In Assumption 2.1.2 we use the notation | x|| = (x’ x)“2 to denote the Euclidean length of the vector
X.

The first two parts of Assumption 2.1 imply that the variables y and x have finite means, variances,
and covariances. The third part of the assumption is more technical, and its role will become apparent
shortly. It is equivalent to imposing that the columns of the matrix Qxx = E [xx] are linearly indepen-
dent, or that the matrix is invertible.

A linear predictor for y is a function of the form x’g for some B € R*. The mean squared prediction
error is

S(ﬁ):E[(y—x’ﬁ)z]. (2.16)

The best linear predictor of y given x, written & [y | x|, is found by selecting the vector § to minimize

S(p).

Definition 2.5 The Best Linear Predictor of y given x is
2[yix]=x'p
where f# minimizes the mean squared prediction error
S(p)=E [(y—x'ﬁ)z] )
The minimizer

p = argmin S(b) 2.17)
beRk

is called the Linear Projection Coefficient.

We now calculate an explicit expression for its value. The mean squared prediction error (2.16) can
be written out as a quadratic function of §:

S(B) =E[y*] -2B'E[xy] + B'E[xx'] B. (2.18)

The quadratic structure of S() means that we can solve explicitly for the minimizer. The first-order
condition for minimization (from Appendix A.20) is

0= %S(ﬁ) = _2E[xy] + 2E[xx] B. (2.19)
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Rewriting (2.19) as
2E [xy] =2E [xx'] B

and dividing by 2, this equation takes the form

Qxy = Qxxp (2.20)

where Qy,, = E[xy] is k x 1 and Qxx = E[xx'] is k x k. The solution is found by inverting the matrix Qx,
and is written

b= Q;;:Qxy
or
p=(E[xx']) " E[xy]. (2.21)

It is worth taking the time to understand the notation involved in the expression (2.21). Qxx is a k x k ma-

trixand Q) is a k x 1 column vector. Therefore, alternative expressions such as E[;CJ’C',]] orE[xy] (E[xx'])”"

are incoherent and incorrect. We also can now see the role of Assumption 2.1.3. It is equivalent to assum-
ing that Q,, has an inverse Q. which is necessary for the normal equations (2.20) to have a solution or
equivalently for (2.21) to be uniquely defined. In the absence of Assumption 2.1.3 there could be multiple
solutions to the equation (2.20).

We now have an explicit expression for the best linear predictor:

2 [y1x] = (E[xx']) " E[xy].
This expression is also referred to as the linear projection of y on x.
The projection error is
e=y-x'p. (2.22)

This equals the error (2.8) from the regression equation when (and only when) the conditional mean is
linear in x, otherwise they are distinct.
Rewriting, we obtain a decomposition of y into linear predictor and error

y=x'B+e. (2.23)

In general, we call equation (2.23) or x'§ the best linear predictor of y given x or the linear projection of y
on x. Equation (2.23) is also often called the regression of y on x but this can sometimes be confusing as
economists use the term regression in many contexts. (Recall that we said in Section 2.15 that the linear
CEF model is also called the linear regression model.)

An important property of the projection error e is

E[xe] = 0. (2.24)
To see this, using the definitions (2.22) and (2.21) and the matrix properties AA~! = I and Ia = a,
E [xe] = E[x(y—x'B)]

= E[xy] ~E[xx'] (E[xx']) " E[xy]
=0 (2.25)

as claimed.
Equation (2.24) is a set of k equations, one for each regressor. In other words, (2.24) is equivalent to

E[xje] =0 (2.26)
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for j =1,...,k. As in (2.11), the regressor vector x typically contains a constant, e.g. x; = 1. In this case
(2.26) for j = k is the same as
Ele] =0. (2.27)

Thus the projection error has a mean of zero when the regressor vector contains a constant. (When x
does not have a constant (2.27) is not guaranteed. As it is desirable for e to have a zero mean this is a
good reason to always include a constant in any regression model.)

It is also useful to observe that since cov(xj,e) = E[x;e| —E[x;] E[e], then (2.26)-(2.27) together imply
that the variables x; and e are uncorrelated.

This completes the derivation of the model. We summarize some of the most important properties.

Theorem 2.9 Properties of Linear Projection Model
Under Assumption 2.1,

1. The moments E [xx’| and E [xy] exist with finite elements.

2. The Linear Projection Coefficient (2.17) exists, is unique, and equals
B=(E[xx])"E[xy].
3. The best linear predictor of y given x is
Pylx)=x ([E[xx'])_l[E[xy].

4. The projection error e = y — x' § exists and satisfies

E [ez] <00
and
E[xe] =0.
5. If x contains an constant, then
Ele] =0.

6. IfE|y|" <ocoand E[x||" < oo for r =2 then Ele|” < oco.

A complete proof of Theorem 2.9 is given in Section 2.33.

It is useful to reflect on the generality of Theorem 2.9. The only restriction is Assumption 2.1. Thus
for any random variables (y, x) with finite variances we can define a linear equation (2.23) with the prop-
erties listed in Theorem 2.9. Stronger assumptions (such as the linear CEF model) are not necessary. In
this sense the linear model (2.23) exists quite generally. However, it is important not to misinterpret the
generality of this statement. The linear equation (2.23) is defined as the best linear predictor. It is not
necessarily a conditional mean, nor a parameter of a structural or causal economic model.
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Linear Projection Model

y=x'p+e.
Elxe]=0

B = (E[xx']) " E[xy]

Invertibility and Identification

The linear projection coefficient f = (E[xx']) "' E[xy] exists and is unique
as long as the k x k matrix Qxyx = E [xx’ ] is invertible. The matrix Q is some-
times called the design matrix as in experimental settings the researcher is able
to control Qxx by manipulating the distribution of the regressors x.

Observe that for any non-zero & € R,

@' Qura=E[a'xx'a] =E [(a’x)z] >0

so Qxx by construction is positive semi-definite, conventionally written as
Qxx = 0. The assumption that it is positive definite means that this is a strict
inequality, E [(a’x)z] > 0. This is conventionally written as Qxx > 0. This
condition means that there is no non-zero vector & such that a’x = 0 iden-
tically. Positive definite matrices are invertible. Thus when Qyx > 0 then
B = (E[xx']) " E[xy] exists and is uniquely defined. In other words, if we
can exclude the possibility that a linear function of x is degenerate, then f is
uniquely defined.

Theorem 2.5 shows that the linear projection coefficient g is identified
(uniquely determined) under Assumption 2.1. The key is invertibility of Q.
Otherwise, there is no unique solution to the equation

QuxB = Qs (2.28)

When Qy is not invertible there are multiple solutions to (2.28). In this case
the coefficient f is not identified as it does not have a unique value.

39
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Minimization

The mean squared prediction error (2.18) is a function with vector argu-
ment of the form
f(x)=a-2b'x+x'Cx

where C > 0. For any function of this form, the unique minimizer is
x=C'b. (2.29)

To see that this is the unique minimizer we present two proofs. The first uses
matrix calculus. From Appendix A.20

0

P (b'x)=h (2.30)
% (x'Cx)=2Cx (2.31)

2
m (x'Cx) =2C. (232)

Using (2.30) and (2.31), we find

%f(x) =-2b+2Cx.

The first-order condition for minimization sets this derivative equal to zero.
Thus the solution satisfies —2b +2Cx = 0. Solving for x we find (2.29). Using
(2.32) we also find ,

0xox’
which is the second-order condition for minimization. This shows that (2.29)
is the unique minimizer of f(x).
Our second proof is algebraic. Re-write f(x) as

fx)=2C>0

f@=(a-b'C'b)+(x-C'b) C(x-C'b).

The first term does not depend on x so does not affect the minimizer. The
second term is a quadratic form in a positive definite matrix. This means that
for any non-zero @, @’ Ca > 0. Thus for x # C~!b, the second-term is strictly
positive, yet for x = C~!b this term equals zero. It is therefore minimized at
x=C"!bas claimed.

2.19 Illustrations of Best Linear Predictor

40

We illustrate the best linear predictor (projection) using three log wage equations introduced in ear-

lier sections.

For our first example, we consider a model with the two dummy variables for sex and race similar to
Table 2.1. As we learned in Section 2.17, the entries in this table can be equivalently expressed by a linear
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CEE For simplicity, let’s consider the CEF of log(wage) as a function of Black and Female.
E [log(wage) | black, female] = —0.20black — 0.24female+ 0.10black x female+ 3.06. (2.33)

This is a CEF as the variables are binary and all interactions are included.
Now consider a simpler model omitting the interaction effect. This is the linear projection on the
variables black and female

2 [log(wage) | black, female] = —0.15black — 0.23 female + 3.06. (2.34)

What is the difference? The full CEF (2.33) shows that the race gap is differentiated by gender: it is 20%
for black men (relative to non-black men) and 10% for black women (relative to non-black women). The
projection model (2.34) simplifies this analysis, calculating an average 15% wage gap for blacks, ignoring
the role of gender. Notice that this is despite the fact that the gender variable is included in (2.34).

35
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Figure 2.6: Projections of log(wage) onto education and experience

For our second example we consider the CEF of log wages as a function of years of education for
white men which was illustrated in Figure 2.3 and is repeated in Figure 2.6(a). Superimposed on the
figure are two projections. The first (given by the dashed line) is the linear projection of log wages on
years of education

2 [log(wage) | education] = 0.11education+1.5.

This simple equation indicates an average 11% increase in wages for every year of education. An in-
spection of the Figure shows that this approximation works well for education= 9, but under-predicts
for individuals with lower levels of education. To correct this imbalance we use a linear spline equation
which allows different rates of return above and below 9 years of education:

2 [log(wage) | education, (education—9) x 1 (education>9)]
=0.02education+ 0.10 x (education—9) x 1 (education > 9) + 2.3.

This equation is displayed in Figure 2.6(a) using the solid line, and appears to fit much better. It indicates
a 2% increase in mean wages for every year of education below 9, and a 12% increase in mean wages for
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every year of education above 9. It is still an approximation to the conditional mean but it appears to be
fairly reasonable.

For our third example we take the CEF of log wages as a function of years of experience for white men
with 12 years of education, which was illustrated in Figure 2.4 and is repeated as the solid line in Figure
2.6(b). Superimposed on the figure are two projections. The first (given by the dot-dashed line) is the
linear projection on experience

2 [log(wage) | experience] = 0.011experience+ 2.5
and the second (given by the dashed line) is the linear projection on experience and its square
P [log(wage) | experience| = 0.046experience— 0.0007 experience® +2.3.

It is fairly clear from an examination of Figure 2.6(b) that the first linear projection is a poor approxima-
tion. It over-predicts wages for young and old workers, and under-predicts for the rest. Most importantly,
it misses the strong downturn in expected wages for older wage-earners. The second projection fits much
better. We can call this equation a quadratic projection since the function is quadratic in experience.

2.20 Linear Predictor Error Variance
As in the CEF model, we define the error variance as
o’ =F [e?‘] )

Setting Qy, = E[y*] and Q,, = E[yx’] we can write 0% as

o®=E|(y-x'B)’|
=E[y*] -2E[yx'] B+ B'E[xx'] B
= Qyy —2QyxQ5xQxy + Q)5 Q51 QexQ5x Qsxy
= Qyy— QyxQ5xQyxy

d
Y Q. (2.35)

One useful feature of this formula is that it shows that Qy.x = Qyy — nyQ;;Qxy equals the variance of
the error from the linear projection of y on x.

2.21 Regression Coefficients

Sometimes it is useful to separate the constant from the other regressors and write the linear projec-
tion equation in the format
y=x'f+a+e (2.36)

where « is the intercept and x does not contain a constant.
Taking expectations of this equation, we find

E[y] =E[+'B] +Elal +E[e]

or
py=pB+a
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where p, = E [ y] and p, = E[x], since E[e] = 0 from (2.27). (While x does not contain a constant, the
equation does so (2.27) still applies.) Rearranging, we find

a =y — PP
Subtracting this equation from (2.36) we find

Y-y =(x-p) B+e, (2.37)

alinear equation between the centered variables y — u;, and x— u .. (They are centered at their means, so
are mean-zero random variables.) Because x -, is uncorrelated with e, (2.37) is also a linear projection.
Thus by the formula for the linear projection model,

) (G- p) (- )]

p= (E[(x_ﬂx) (x_ﬂx)/

=var [x] ' cov(x, y)

a function only of the covariances'! of x and y.

Theorem 2.10 In the linear projection model

y=x'B+a+e,

then
a=py—@p (2.38)
and
B =var[x]"! cov (x,y). (2.39)
2.22 Regression Sub-Vectors
Let the regressors be partitioned as
x:( 1 ) (2.40)
X2
We can write the projection of y on x as
y=x'B+e
=x|B,+x,B,+e (2.41)
E[xe] =0.

In this section we derive formulae for the sub-vectors f, and f,.
Partition Qxx conformably with x

Q. Q1
Q Qy

1 The covariance matrix between vectors x and z is cov (x, z) = E [(x —-E[x])(z—E [z])’] . The (co)variance matrix of the vector
x is var [x] = cov (x,x) =E[(x - E[x]) (x - E[x])'].

Qxx =

:[ E[x:1x]] E[x1x}]
E[xox] E[x2x)]
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and similarly Q,,

Q. = Qly _ [ E [xl y]
*y QZy E [ny]
By the partitioned matrix inversion formula (A.3)
-1 _ _ _
Q:l= Q1 Qp def Q' Q" ] _ [ Qlll-z _Qlll~20120221 (2.42)
™ Q2 Qy Q% @* -Q5,.1Q:: Q7 Q5.

def B def _
where Qy;., = Q11 - Q12Q5,Qz; and Q4 = Q2 — Q2,Q7, Q5. Thus

_( B )
F=\ g,
- Ql_ll-z _Q1_11-2012Q521 ] [ Qyy ]
-Q3,,Q1 Q7! Q3 Q.

Ql_ll.z (Qly - 01202_21 Q2y) )
02_211 (QZy - QZlQl_llqu)
Ql_ll.ZQIy-Z )

Qg_gl.lozy-l ’

We have shown that

B, = Ql_11-201y~2
B, = Q521-1Q2y~1-

2.23 Coefficient Decomposition

In the previous section we derived formulae for the coefficient sub-vectors f, and f,. We now use
these formulae to give a useful interpretation of the coefficients in terms of an iterated projection.
Take equation (2.41) for the case dim(x;) =1 so that §; € R.

y=x1p1+x,, +e. (2.43)
Now consider the projection of x; on x5 :
X1=XpY,+ U
E[xou,] =0.
From (2.21) and (2.35), ¥, = Q5; Qz; and E [uf]| = Q1.5 = Q1; — Q12Q5, Q2. We can also calculate that
E[uy] =E[(x1 —v2x2) y] =E[x1¥] = V2E [%2)] = Qi - leQz_leZy =Qyy.2.

We have found that
E [uly ]

E[u]

p1= Q1_11.2Q1y~2 =

the coefficient from the simple regression of y on u;.

What this means is that in the multivariate projection equation (2.43), the coefficient 8, equals the
projection coefficient from a regression of y on u;, the error from a projection of x; on the other regres-
sors x,. The error u; can be thought of as the component of x; which is not linearly explained by the
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other regressors. Thus the coefficient §; equals the linear effect of x; on y after stripping out the effects
of the other variables.

There was nothing special in the choice of the variable x;. This derivation applies symmetrically to
all coefficients in a linear projection. Each coefficient equals the simple regression of y on the error from
a projection of that regressor on all the other regressors. Each coefficient equals the linear effect of that
variable on y after linearly controlling for all the other regressors.

2.24 Omitted Variable Bias

Again, let the regressors be partitioned as in (2.40). Consider the projection of y on x; only. Perhaps
this is done because the variables x, are not observed. This is the equation

y=x1y,+u (2.44)
E[xyu] =0.

Notice that we have written the coefficient on x; as y, rather than 8, and the error as u rather than e. This
is because (2.44) is different than (2.41). Goldberger (1991) introduced the catchy labels long regression
for (2.41) and short regression for (2.44) to emphasize the distinction.

Typically, B, # vy, except in special cases. To see this, we calculate

¥1=(E[xixi]) " E[x1y]
= (E[xix1])) " E[x1 (¥ + %35, + )]
=B, +(E [xlxll])_l E[x1x5] B,
=P, +T12p,

where I'1, = QﬁlQm is the coefficient matrix from a projection of x, on x; where we use the notation
from Section 2.22.

Observe that y, = , + I'12f, # B, unless I'12 = 0 or f, = 0. Thus the short and long regressions have
different coefficients on x;. They are the same only under one of two conditions. First, if the projection
of x» on x; yields a set of zero coefficients (they are uncorrelated), or second, if the coefficient on x»
in (2.41) is zero. In general, the coefficient in (2.44) is y, rather than f,. The difference I';» 8, between
Y, and B, is known as omitted variable bias. It is the consequence of omission of a relevant correlated
variable.

To avoid omitted variables bias the standard advice is to include all potentially relevant variables in
estimated models. By construction, the general model will be free of such bias. Unfortunately in many
cases it is not feasible to completely follow this advice as many desired variables are not observed. In this
case, the possibility of omitted variables bias should be acknowledged and discussed in the course of an
empirical investigation.

For example, suppose y is log wages, x; is education, and x; is intellectual ability. It seems reasonable
to suppose that education and intellectual ability are positively correlated (highly able individuals attain
higher levels of education) which means I';» > 0. It also seems reasonable to suppose that conditional
on education, individuals with higher intelligence will earn higher wages on average, so that §, > 0.
This implies that I'12 8, > 0 and y; = B; + 1262 > 1. Therefore, it seems reasonable to expect that in
a regression of wages on education with ability omitted, the coefficient on education is higher than in
a regression where ability is included. In other words, in this context the omitted variable biases the
regression coefficient upwards. It is possible, for example, that §; = 0 so that education has no direct
effect on wages yet y; = I'12 82 > 0 meaning that the regression coefficient on education alone is positive,
but is a consequence of the unmodeled correlation between education and intellectual ability.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 46

Unfortunately the above simple characterization of omitted variable bias does not immediately carry
over to more complicated settings, as discovered by Luca, Magnus, and Peracchi (2018). For example,
suppose we compare three nested projections

!
y=x171+tu
y=x161+x,62+up

y=X\By +x58, + x5 +e.

We can call them the short, medium, and long regressions. Suppose that the parameter of interestis f#, in
the long regression. We are interested in the consequences of omitting x3 when estimating the medium
regression, and of omitting both x, and x3 when estimating the short regression. In particular we are
interested in the question: Is it better to estimate the short or medium regression, given that both omit
x3? Intuition suggests that the medium regression should be “less biased” but it is worth investigating in
greater detail. By similar calculations to those above, we find that

Y1=B1+T12p,+T136;
01=P, +T13.2P;3

where I'j3. = Qfll.ngs-z using the notation from Section 2.22.

We see that the bias in the short regression coefficient is I'12 §, + I'13 f3 which depends on both g,
and f;, while that for the medium regression coefficient is I'13., #; which only depends on f;. So the
bias for the medium regression is less complicated and intuitively seems more likely to be smaller than
that of the short regression. However it is impossible to strictly rank the two. It is quite possible that y, is
less biased than é,. Thus as a general rule it is strictly impossible to state that estimation of the medium
regression will be less biased than estimation of the short regression.

2.25 Best Linear Approximation

There are alternative ways we could construct a linear approximation x’f to the conditional mean
m(x). In this section we show that one alternative approach turns out to yield the same answer as the
best linear predictor.

We start by defining the mean-square approximation error of x'f to m(x) as the expected squared
difference between x’f and the conditional mean m(x)

dp) =E [(mx) - ¥'B)*.

The function d(p) is a measure of the deviation of x' g from m(x). If the two functions are identical then
d(p) = 0, otherwise d(f) > 0. We can also view the mean-square difference d(f) as a density-weighted
average of the function (m(x) - x'g)” since

d(ﬁ) = \[Rk (m(X) —x’ﬁ)zfx(x)dx

where fy(x) is the marginal density of x.
We can then define the best linear approximation to the conditional m(x) as the function x’'f ob-
tained by selecting 8 to minimize d(f) :

p = argmind(b). (2.45)
beRK
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Similar to the best linear predictor we are measuring accuracy by expected squared error. The difference
is that the best linear predictor (2.17) selects f to minimize the expected squared prediction error, while
the best linear approximation (2.45) selects ff# to minimize the expected squared approximation error.

Despite the different definitions, it turns out that the best linear predictor and the best linear approx-
imation are identical. By the same steps as in (2.18) plus an application of conditional expectations we
can find that

B = (E[xx']) " Elxm(x)] (2.46)
= (E[xx']) " E[xy] (2.47)

(see Exercise 2.19). Thus (2.45) equals (2.17). We conclude that the definition (2.45) can be viewed as an
alternative motivation for the linear projection coefficient.

2.26 Regression to the Mean

The term regression originated in an influential paper by Francis Galton (1886) where he examined
the joint distribution of the stature (height) of parents and children. Effectively, he was estimating the
conditional mean of children’s height given their parent’s height. Galton discovered that this conditional
mean was approximately linear with a slope of 2/3. This implies that on average a child’s height is more
mediocre (average) than his or her parent’s height. Galton called this phenomenon regression to the
mean, and the label regression has stuck to this day to describe most conditional relationships.

One of Galton’s fundamental insights was to recognize that if the marginal distributions of y and x
are the same (e.g. the heights of children and parents in a stable environment) then the regression slope
in a linear projection is always less than one.

To be more precise, take the simple linear projection

y=xf+a+e (2.48)

where y equals the height of the child and x equals the height of the parent. Assume that y and x have
the same mean so that p, = p, = p. Then from (2.38)

a=(1-p)u

so we can write the linear projection (2.48) as

P (ylx)=(1-p)pu+xp.

This shows that the projected height of the child is a weighted average of the population average height
p and the parent’s height x with the weight equal to the regression slope . When the height distribution
is stable across generations so that var [y] = var[x], then this slope is the simple correlation of y and x.
Using (2.39)

cov(x,y)

B= ~aria = corr(x, y).

By the Cauchy-Schwarz inequality (B.32), —1 < corr(x, y) < 1, with corr(x, y) = 1 only in the degenerate
case y = x. Thus if we exclude degeneracy, f is strictly less than 1.

This means that on average a child’s height is more mediocre (closer to the population average) than
the parent’s.
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A common error — known as the regression fallacy - is to infer from f < 1 that the population is
converging meaning that its variance is declining towards zero. This is a fallacy because we derived the
implication < 1 under the assumption of constant means and variances. So certainly § < 1 does not
imply that the variance y is less than than the variance of x.

Another way of seeing this is to examine the conditions for convergence in the context of equation
(2.48). Since x and e are uncorrelated, it follows that

var[y] = % var[x] + varle].

Then var[y] < var[x] if and only if
3 var|e]

B<1

var|[x]

which is not implied by the simple condition || < 1.

The regression fallacy arises in related empirical situations. Suppose you sort families into groups by
the heights of the parents, and then plot the average heights of each subsequent generation over time.
If the population is stable, the regression property implies that the plots lines will converge — children’s
height will be more average than their parents. The regression fallacy is to incorrectly conclude that the
population is converging. A message to be learned from this example is that such plots are misleading
for inferences about convergence.

The regression fallacy is subtle. It is easy for intelligent economists to succumb to its temptation. A
famous example is The Triumph of Mediocrity in Business by Horace Secrist published in 1933. In this
book, Secrist carefully and with great detail documented that in a sample of department stores over 1920-
1930, when he divided the stores into groups based on 1920-1921 profits, and plotted the average profits
of these groups for the subsequent 10 years, he found clear and persuasive evidence for convergence
“toward mediocrity”. Of course, there was no discovery —regression to the mean is a necessary feature of
stable distributions.

2.27 Reverse Regression

Galton noticed another interesting feature of the bivariate distribution. There is nothing special
about a regression of y on x. We can also regress x on y. (In his heredity example this is the best lin-
ear predictor of the height of parents given the height of their children.) This regression takes the form

x=yp +a* +e". (2.49)

This is sometimes called the reverse regression. In this equation, the coefficients a*, §* and error e* are
defined by linear projection. In a stable population we find that

p* =corr(x,y) =

a*=(1-Pflu=a
which are exactly the same as in the projection of y on x! The intercept and slope have exactly the same
values in the forward and reverse projections!
While this algebraic discovery is quite simple, it is counter-intuitive. Instead, a common yet mistaken
guess for the form of the reverse regression is to take the equation (2.48), divide through by  and rewrite
to find the equation

x=ye-2_ 1 e (2.50)
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suggesting that the projection of x on y should have a slope coefficient of 1/ instead of 8, and intercept
of —a/p rather than a. What went wrong? Equation (2.50) is perfectly valid because it is a simple ma-
nipulation of the valid equation (2.48). The trouble is that (2.50) is neither a CEF nor a linear projection.
Inverting a projection (or CEF) does not yield a projection (or CEF). Instead, (2.49) is a valid projection,
not (2.50).

In any event, Galton’s finding was that when the variables are standardized the slope in both projec-
tions (y on x, and x and y) equals the correlation and both equations exhibit regression to the mean. It
is not a causal relation, but a natural feature of all joint distributions.

2.28 Limitations of the Best Linear Projection

Let’s compare the linear projection and linear CEF models.

From Theorem 2.4.4 we know that the CEF error has the property E[xe] = 0. Thus a linear CEF is
the best linear projection. However, the converse is not true as the projection error does not necessarily
satisfy E [e | x] = 0. Furthermore, the linear projection may be a poor approximation to the CEE

To see these points in a simple example, suppose that the true process is y = x+x? with x ~N(0,1). In
this case the true CEF is m(x) = x + x? and there is no error. Now consider the linear projection of y on x
and a constant, namely the model y = fx+ a+ u. Since x ~ N(0, 1) then x and x2 are uncorrelated and the
linear projection takes the form 2 [y | x| = x + 1. This is quite different from the true CEF m(x) = x + x2.
The projection error equals e = x> — 1 which is a deterministic function of x yet is uncorrelated with x.
We see in this example that a projection error need not be a CEF error and a linear projection can be a
poor approximation to the CEE
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Figure 2.7: Conditional Mean and Two Linear Projections

Another defect of linear projection is that it is sensitive to the marginal distribution of the regressors
when the conditional mean is non-linear. We illustrate the issue in Figure 2.7 for a constructed'? joint
distribution of y and x. The solid line is the non-linear CEF of y given x. The data are divided in two

12The x in Group 1 are N(2,1) and those in Group 2 are N(4,1), and the conditional distribution of y given x is N(m(x), 1)
where m(x) =2x— x2/6.
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groups — Group 1 and Group 2 - which have different marginal distributions for the regressor x, and
Group 1 has a lower mean value of x than Group 2. The separate linear projections of y on x for these two
groups are displayed in the Figure by the dashed lines. These two projections are distinct approximations
to the CEE A defect with linear projection is that it leads to the incorrect conclusion that the effect of x
on y is different for individuals in the two groups. This conclusion is incorrect because in fact there
is no difference in the conditional mean function. The apparent difference is a by-product of a linear
approximation to a nonlinear mean, combined with different marginal distributions for the conditioning
variables.

2.29 Random Coefficient Model

A model which is notationally similar to but conceptually distinct from the linear CEF model is the
linear random coefficient model. It takes the form

y=x'n

where the individual-specific coefficient 57 is random and independent of x. For example, if x is years of
schooling and y is log wages, then 5 is the individual-specific returns to schooling. If a person obtains
an extra year of schooling, 5 is the actual change in their wage. The random coefficient model allows the
returns to schooling to vary in the population. Some individuals might have a high return to education
(a high 77) and others a low return, possibly 0, or even negative.

In the linear CEF model the regressor coefficient equals the regression derivative — the change in
the conditional mean due to a change in the regressors, = Vm(x). This is not the effect on a given
individual, it is the effect on the population average. In contrast, in the random coefficient model the
random vector 7 = V (x'n) is the true causal effect - the change in the response variable y itself due to a
change in the regressors.

It is interesting, however, to discover that the linear random coefficient model implies a linear CEE
To see this, let f and X denote the mean and covariance matrix of 7 :

p=E[n]
> =var 7]

and then decompose the random coefficient as
n=p+u
where u is distributed independently of x with mean zero and covariance matrix . Then we can write
Eylx] =xE[n|x]=xE[n] =x'p

so the CEF is linear in x, and the coefficients § equal the mean of the random coefficient 7.
We can thus write the equation as a linear CEF

y=x'p+e
where e = x'u and u = n — B. The error is conditionally mean zero:

Ele|x] =0.
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Furthermore

var[e| x] = x'var [n] x

=x'>x

so the error is conditionally heteroskedastic with its variance a quadratic function of x.

Theorem 2.11 In the linear random coefficient model y = x'n with 5 indepen-
dent of x, E || x| < 0o, and E ||1)||2 < oo, then

E[ylx]=x'p
var[y|x] =x'Zx

where B=E[n] and Z =var|n].

2.30 Causal Effects

So far we have avoided the concept of causality, yet often the underlying goal of an econometric anal-
ysis is to uncover a causal relationship between variables. It is often of great interest to understand the
causes and effects of decisions, actions, and policies. For example, we may be interested in the effect
of class sizes on test scores, police expenditures on crime rates, climate change on economic activity,
years of schooling on wages, institutional structure on growth, the effectiveness of rewards on behavior,
the consequences of medical procedures for health outcomes, or any variety of possible causal relation-
ships. In each case, the goal is to understand what is the actual effect on the outcome y due to a change
in the input x. We are not just interested in the conditional mean or linear projection, we would like to
know the actual change.

Two inherent barriers are that the causal effect is typically specific to an individual and that it is
unobserved.

Consider the effect of schooling on wages. The causal effect is the actual difference a person would
receive in wages if we could change their level of education holding all else constant. This is specific to
each individual as their employment outcomes in these two distinct situations is individual. The causal
effect is unobserved because the most we can observe is their actual level of education and their actual
wage, but not the counterfactual wage if their education had been different.

To be even more specific, suppose that there are two individuals, Jennifer and George, and both
have the possibility of being high-school graduates or college graduates, but both would have received
different wages given their choices. For example, suppose that Jennifer would have earned $10 an hour
as a high-school graduate and $20 an hour as a college graduate while George would have earned $8 as
a high-school graduate and $12 as a college graduate. In this example the causal effect of schooling is
$10 a hour for Jennifer and $4 an hour for George. The causal effects are specific to the individual and
neither causal effect is observed.

Avariable x; can be said to have a causal effect on the response variable y if the latter changes when
all other inputs are held constant. To make this precise we need a mathematical formulation. We can
write a full model for the response variable y as

y=h(x,x,u) (2.51)
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where x; and x, are the observed variables, u is an ¢ x 1 unobserved random factor, and % is a functional
relationship. This framework, called the potential outcomes framework, includes as a special case the
random coefficient model (2.29) studied earlier. We define the causal effect of x; within this model as
the change in y due to a change in x; holding the other variables x, and u constant.

Definition 2.6 In the model (2.51) the causal effect of x; on y is
C(x1,x2,u) = Vih(x1,%2,u), (2.52)

the change in y due to a change in x;, holding x» and u constant.

To understand this concept, imagine taking a single individual. As far as our structural model is
concerned this person is described by their observables x; and x» and their unobservables u. In a wage
regression the unobservables would include characteristics such as the person’s abilities, skills, work
ethic, interpersonal connections, and preferences. The causal effect of x; (say, education) is the change
in the wage as x; changes holding constant all other observables and unobservables.

It may be helpful to understand that (2.52) is a definition and does not necessarily describe causal-
ity in a fundamental or experimental sense. Perhaps it would be more appropriate to label (2.52) as a
structural effect (the effect within the structural model).

Sometimes it is useful to write this relationship as a potential outcome function

y(x1) = h(x1, %2, u)

where the notation implies that y(x;) is holding x, and u constant.

A popular example arises in the analysis of treatment effects with a binary regressor x;. Let x; =1
indicate treatment (e.g. a medical procedure) and x; = 0 indicate non-treatment. In this case y(x;) can
be written

y(o) =h (O)xZ) u)
y(l) = h(l)er u)-

In the literature on treatment effects it is common to refer to y(0) and y(1) as the latent outcomes asso-
ciated with non-treatment and treatment, respectively. That is, for a given individual, y(0) is the health
outcome if there is no treatment and y(1) is the health outcome if there is treatment. The causal effect of
treatment for the individual is the change in their health outcome due to treatment — the change in y as
we hold both x, and u constant:

C (x2,u) = y(1) — y(0).

This is random (a function of x, and u) as both potential outcomes y(0) and y(1) are different across
individuals.
In a sample, we cannot observe both outcomes from the same individual. We only observe the real-
ized value
y©) if x3=0
y =
y) if x =1
As the causal effect varies across individuals and is not observable it cannot be measured on the in-
dividual level. We therefore focus on aggregate causal effects, in particular what is known as the average
causal effect.
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Definition 2.7 In the model (2.51) the average causal effect of x; on y condi-
tional on x> is

ACE(x1,x2) =E[C(x1,x2,u) | X1, %3]

szvlh(xl,xz,u)f(ulxl,xz)du

where f(u | x;,x7) is the conditional density of u given x;, x».

We can think of the average causal effect ACE(x;,x;) as the average effect in the general population.
Take the Jennifer & George schooling example given earlier. Suppose that half of the population are
Jennifer’s and the other half are George’s. Then the average causal effect of college is (10 +4)/2 = $7 an
hour. This is not the individual causal effect, it is the average of the causal effect across all individuals in
the population. Given data on only educational attainment and wages, the ACE of $7 is the best we can
hope to learn.

When we conduct a regression analysis (that is, consider the regression of observed wages on ed-
ucational attainment) we might hope that the regression reveals the average causal effect. Technically,
that the regression derivative (the coefficient on education) equals the ACE. Is this the case? In other
words, what is the relationship between the average causal effect ACE(x}, x,) and the regression deriva-
tive V1 m (x1,x2)? Equation (2.51) implies that the CEF is

m(x1,x2) =E[h(x1, %2, u) | X1, X2]

:fwh(xl,xz,u)f(ulx1,x2)du,

the average causal equation, averaged over the conditional distribution of the unobserved component
u.
Applying the marginal effect operator, the regression derivative is

Vim(xy, x)) =fw Vih(xy,x2,u) f(u| x1,x2)du
+f[h(xl,xz,u)Vlf(ulxl,xz)du
R
:ACE(xl,x2)+[[h(xl,xg,u)Vlf(u|xl,xg)du. (2.53)
R

Equation (2.53) shows that in general the regression derivative does not equal the average causal
effect. The difference is the second term on the right-hand-side of (2.53). The regression derivative and
ACE equal in the special case when this term equals zero, which occurs when V; f(u | x1, x2) =0, that is,
when the conditional density of u given (x1, x») does not depend on x;. When this condition holds then
the regression derivative equals the ACE. This means that regression analysis can be interpreted causally
in the sense that it uncovers average causal effects.

The condition is sufficiently important that it has a special name in the treatment effects literature.

Definition 2.8 Conditional Independence Assumption (CIA). Conditional on
X2, the random variables x; and u are statistically independent.
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Table 2.3: Example Distribution

$8 $10 $12 $20 Mean
High-School Graduate 10 6 0 0 $8.75
College Graduate 0 0 6 10 $17.00

The CIA implies f(u | x1,x2) = f(u | x2) does not depend on x;, and thus V; f(u| x1,x2) = 0. Thus the
CIA implies that Vy m(x1, x2) = ACE(x3, x2), the regression derivative equals the average causal effect.

Theorem 2.12 In the structural model (2.51), the Conditional Independence
Assumption implies
Vim(xy, x2) = ACE(x1, X2)

the regression derivative equals the average causal effect for x; on y condi-
tional on x,.

This is a fascinating result. It shows that whenever the unobservable is independent of the treat-
ment variable (after conditioning on appropriate regressors) the regression derivative equals the average
causal effect. In this case, the CEF has causal economic meaning, giving strong justification to estima-
tion of the CEE Our derivation also shows the critical role of the CIA. If CIA fails, then the equality of the
regression derivative and ACE fails.

This theorem is quite general. It applies equally to the treatment-effects model where x; is binary or
to more general settings where x; is continuous.

It is also helpful to understand that the CIA is weaker than full independence of u from the regressors
(x1,x2). The CIA was introduced precisely as a minimal sufficient condition to obtain the desired result.
Full independence implies the CIA and implies that each regression derivative equals that variable’s av-
erage causal effect, but full independence is not necessary in order to causally interpret a subset of the
regressors.

To illustrate, let’s return to our education example involving a population with equal numbers of
Jennifer’s and George’s. Recall that Jennifer earns $10 as a high-school graduate and $20 as a college
graduate (and so has a causal effect of $10) while George earns $8 as a high-school graduate and $12 as a
college graduate (so has a causal effect of $4). Given this information, the average causal effect of college
is $7, which is what we hope to learn from a regression analysis.

Now suppose that while in high school all students take an aptitude test. If a student gets a high (H)
score he or she goes to college with probability 3/4, and if a student gets a low (L) score he or she goes to
college with probability 1/4. Suppose further that Jennifer’s get an aptitude score of H with probability
3/4, while George’s get a score of H with probability 1/4. Given this situation, 62.5% of Jennifer’s will go
to college'3, while 37.5% of George’s will go to college'.

An econometrician who randomly samples 32 individuals and collects data on educational attain-
ment and wages will find the wage distribution in Table 2.3.

Let college denote a dummy variable taking the value of 1 for a college graduate, otherwise 0. Thus
the regression of wages on college attendance takes the form

E[wage| college| = 8.25college+ 8.75.

13p [college | Jennifer] = P [college| H| P [H | Jennifer] + P [college| L|P[L | Jennifer] = (3/4)% + (1/4)2.
14p [college | George] =P [college| H|P[H | George] + P [college| L|P[L| George] = (3/4)(1/4) + (1/4)(3/4).
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Table 2.4: Example Distribution 2

$8 $10 $12 $20 Mean

High-School Graduate + High Test Score 1 3 0 0 $9.50
College Graduate + High Test Score 0 0 3 9 $18.00
High-School Graduate + Low Test Score 9 3 0 0 $8.50
College Graduate + Low Test Score 0 0 3 1 $14.00

The coefficient on the college dummy, $8.25, is the regression derivative, and the implied wage effect
of college attendance. But $8.25 overstates the average causal effect of $7. The reason is because the
CIA fails. In this model the unobservable u is the individual’s type (Jennifer or George) which is not
independent of the regressor x; (education), since Jennifer is more likely to go to college than George.
Since Jennifer’s causal effect is higher than George’s the regression derivative overstates the ACE. The
coefficient $8.25 is not the average benefit of college attendance, rather it is the observed difference in
realized wages in a population whose decision to attend college is correlated with their individual causal
effect. At the risk of repeating myself, in this example $8.25 is the true regression derivative. It is the
difference in average wages between those with a college education and those without. It is not, however,
the average causal effect of college education in the population.

This does not mean that it is impossible to estimate the ACE. The key is conditioning on the appro-
priate variables. The CIA says that we need to find a variable x, such that conditional on x, u and x;
(type and education) are independent. In this example a variable which will achieve this is the aptitude
test score. The decision to attend college was based on the test score not on an individual’s type. Thus
educational attainment and type are independent once we condition on the test score.

This also alters the ACE. Notice that Definition 2.7 is a function of x, (the test score). Among the
students who receive a high test score, 3/4 are Jennifer’s and 1/4 are George’s. Thus the ACE for students
with a score of His (3/4) x 10+ (1/4) x 4 = $8.50. Among the students who receive a low test score, 1/4 are
Jennifer’s and 3/4 are George’s. Thus the ACE for students with a score of Lis (1/4) x 10+ (3/4) x4 = $5.50.
The ACE varies between these two observable groups (those with high test scores and those with low test
scores). Again, we would hope to be able to learn the ACE from a regression analysis, this time from a
regression of wages on education and test scores.

To see this in the wage distribution, suppose that the econometrician collects data on the aptitude
test score as well as education and wages. Given a random sample of 32 individuals we would expect to
find the wage distribution in Table 2.4.

Define the dummy variable highscore which takes the value 1 for students who received a high test
score, else zero. The regression of wages on college attendance and test scores (with interactions) takes
the form

E[wage| college, highscore] = 1.00highscore+ 5.50college+ 3.00highscore x college+ 8.50.

The coefficient on college, $5.50, is the regression derivative of college attendance for those with low test
scores, and the sum of this coefficient with the interaction coefficient, $8.50, is the regression derivative
for college attendance for those with high test scores. These equal the average causal effect as calculated
above. Furthermore, since 1/2 of the population achieves a high test score and 1/2 achieve a low test
score, the measured average causal effect in the entire population is $7, which precisely equals the true
value.

In this example, by conditioning on the aptitude test score, the average causal effect of education on
wages can be learned from a regression analysis. What this shows is that by conditioning on the proper
variables, it may be possible to achieve the CIA, in which case regression analysis measures average
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causal effects.

2.31 Existence and Uniqueness of the Conditional Expectation*

In Sections 2.3 and 2.6 we defined the conditional mean when the conditioning variables x are dis-
crete and when the variables (y, x) have a joint density. We have explored these cases because these are
the situations where the conditional mean is easiest to describe and understand. However, the condi-
tional mean exists quite generally without appealing to the properties of either discrete or continuous
random variables.

To justify this claim we now present a deep result from probability theory. What it says is that the
conditional mean exists for all joint distributions (y, x) for which y has a finite mean.

Theorem 2.13 Existence of the Conditional Mean
IfE|y| < oo then there exists a function m(x) such that for all sets  for which
P[x € & is defined,

E[l(xeX)y] =E[l(xeX)mx)]. (2.54)

The function m(x) is almost everywhere unique, in the sense that if s (x) satis-
fies (2.54), then there is a set S such that P[S] = 1 and m(x) = h(x) for x € S. The
function m(x) is called the conditional mean and is written m(x) =E [y | x].

See, for example, Ash (1972), Theorem 6.3.3.

The conditional mean m(x) defined by (2.54) specializes to (2.5) when (y, x) have a joint density. The
usefulness of definition (2.54) is that Theorem 2.13 shows that the conditional mean m(x) exists for all
finite-mean distributions. This definition allows y to be discrete or continuous, for x to be scalar or
vector-valued, and for the components of x to be discrete or continuously distributed.

You may have noticed that Theorem 2.13 applies only to sets & for which P [x € &] is defined. This is
a technical issue -measurability — which we largely side-step in this textbook. Formal probability theory
only applies to sets which are measurable — for which probabilities are defined — as it turns out that not all
sets satisfy measurability. This is not a practical concern for applications, so we defer such distinctions
for formal theoretical treatments.

2.32 Identification*

A critical and important issue in structural econometric modeling is identification, meaning that a
parameter is uniquely determined by the distribution of the observed variables. It is relatively straight-
forward in the context of the unconditional and conditional mean, but it is worthwhile to introduce and
explore the concept at this point for clarity.

Let F denote the distribution of the observed data, for example the distribution of the pair (y, x). Let
Z be a collection of distributions F. Let 0 be a parameter of interest (for example, the mean E [ y]).

Definition 2.9 A parameter 6 € R is identified on & if for all F € &, there is a
uniquely determined value of 6.
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Equivalently, 0 is identified if we can write it as a mapping 8 = g(F) on the set &. The restriction to the
set & is important. Most parameters are identified only on a strict subset of the space of all distributions.

Take, for example, the mean p = E[y]. It is uniquely determined if E | y| < 00, s0  is identified for the
set F ={F:E|y| < oo}.

Next, consider the conditional mean. Theorem 2.13 demonstrates that E | y| < oo is a sufficient con-
dition for identification.

Theorem 2.14 Identification of the Conditional Mean
If E|y| < oo, the conditional mean m(x) = E[y| x| is identified almost every-
where.

It might seem as if identification is a general property for parameters, so long as we exclude degener-
ate cases. This is true for moments of observed data, but not necessarily for more complicated models.
As a case in point, consider the context of censoring. Let y be a random variable with distribution F.
Instead of observing y, we observe y* defined by the censoring rule

« |y ifysrt
It ifyst

That is, y* is capped at the value 7. A common example is income surveys, where income responses are
“top-coded” meaning that incomes above the top code 7 are recorded as the top code. The observed
variable y* has distribution
F(u) foru<rt

1 foru=r.

F*(u)={

We are interested in features of the distribution F not the censored distribution F*. For example, we are
interested in the mean wage p = E[y] . The difficulty is that we cannot calculate y from F* except in the
trivial case where there is no censoring P [y = 7] = 0. Thus the mean y is not generically identified from
the censored distribution.

A typical solution to the identification problem is to assume a parametric distribution. For example,
let &% be the set of normal distributions y ~ N(y, o). Ttis possible to show that the parameters (u, o?) are
identified for all F € &. That is, if we know that the uncensored distribution is normal we can uniquely
determine the parameters from the censored distribution. This is often called parametric identification
as identification is restricted to a parametric class of distributions. In modern econometrics this is gen-
erally viewed as a second-best solution as identification has been achieved only through the use of an
arbitrary and unverifiable parametric assumption.

A pessimistic conclusion might be that it is impossible to identify parameters of interest from cen-
sored data without parametric assumptions. Interestingly, this pessimism is unwarranted. It turns out
that we can identify the quantiles g, of F for & < P [y <7]. For example, if 20% of the distribution is
censored we can identify all quantiles for a € (0,0.8). This is often called nonparametric identification
as the parameters are identified without restriction to a parametric class.

What we have learned from this little exercise is that in the context of censored data moments can
only be parametrically identified while non-censored quantiles are nonparametrically identified. Part of
the message is that a study of identification can help focus attention on what can be learned from the
data distributions available.
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2.33 Technical Proofs*

Proof of Theorem 2.1 For convenience, assume that the variables have a joint density f (y,x). Since
E[y|x] is a function of the random vector x only, to calculate its expectation we integrate with respect
to the density f; (x) of x, that is

E[E[y]|x]] :kaE[ylx]fx(x)dx‘

Substituting in (2.5) and noting that fyx (y|x) fx (x) = f (y,x), we find that the above expression equals

ka (fRJ’fylx(ﬂx)dJ’)fx(x)dx:kafRyf(y,x)dydx:[E[y]

the unconditional mean of y. |
Proof of Theorem 2.2 Again assume that the variables have a joint density. It is useful to observe that

f(y’xl’xZ) f(xl,xz)
= f(y, , 2.55
Fanm  fan f W) (2:53)

I lxr, x2) f (x2lx1) =

the density of (y,x2) given x;. Here, we have abused notation and used a single symbol f to denote the
various unconditional and conditional densities to reduce notational clutter.
Note that

E[y]x1,x2] :‘[Ryf(ylxl,xg)dy. (2.56)
Integrating (2.56) with respect to the conditional density of x, given x;, and applying (2.55) we find that
E[E[ylx1,%2] | %] =ka E[y | x1,%2] f (¥2lx1) dx,
2
:/ (f yf(ylxl,xz)dy)f(xglxl)dxg
Rk2 \JR
:f /J’f(ylxl,xz)f(lexl)dydxz
Rk2 JR

=f fyf(y,lexl)dydxz
RF2 JR
=[E[y|x1]

as stated. [ |

Proof of Theorem 2.3
E[gx) ylx]= ng(xJ Vi (y1x)dy = g(x)fRyfyu (vix)dy=g®E[y|x]

This is (2.6). Equation (2.7) follows by applying the simple law of iterated expectations (Theorem 2.1) to
(2.6). [ ]

Proof of Theorem 2.4 Applying Minkowski’s inequality (B.34) to e = y — m(x),

(E|€|r)1/r — (E|y_ m(x)|r)1/r < (IE|y|r)l/r " ([E|m(x)|r)l/r < oo,
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where the two parts on the right-hand-side are finite since E | y| "< o0 by assumption and E|m(x)|" < oo
by the conditional expectation inequality (B.29). The fact that (E|e]”)!’” < oo implies E|e|” < co. [

Proof of Theorem 2.6 The assumption that E [ y?] < co implies that all the conditional expectations below
exist.

Using the law of iterated expectations (Theorem 2.2) E[y|x1] = E(E[y|x1,x2] | x1) and the condi-
tional Jensen’s inequality (B.28),

Ely =) = EE[y1x1,x] 121))* SE[(E]y 1 20,2:])° 3]

Taking unconditional expectations, this implies

E[Ely 1))’ <E[Ely1x2])].
Similarly,
€L <E[(Ely10])°] <E|E[y130%])°] 2:57)

The variables y, E[y | x1] and E[y | x1,x2] all have the same mean E [y], so the inequality (2.57) im-
plies that the variances are ranked monotonically:

0<var(E[y|x:]) <var(E[y]x1,x2]). (2.58)
Define e=y—E[y|x] and u=E[y|x] - uso that we have the decomposition
y-pu=e+u.

Notice E[e | x] = 0 and u is a function of x. Thus by the conditioning theorem (Theorem 2.3), E[eu] =0
so e and u are uncorrelated. It follows that

var[y| =var|e] +var[u] =var[y—E[y|x]] +var[E[y]|x]]. (2.59)
The monotonicity of the variances of the conditional mean (2.58) applied to the variance decomposition

(2.59) implies the reverse monotonicity of the variances of the differences, completing the proof. |

Proof of Theorem 2.9 For part 1, by the expectation inequality (B.30), (A.16) and Assumption 2.1,
[E[xx']]| <E|xx'|| = E|lx|? < oo.

Similarly, using the expectation inequality (B.30), the Cauchy-Schwarz inequality (B.32) and Assumption
2.1,

JEfxy]] <Ellxy] < E120°) " €[] <00
Thus the moments E [xy] and E [xx'] are finite and well defined.

For part 2, the coefficient f = (E [xx']) " E[xy] is well defined since (E [xx]) ™" exists under Assump-
tion 2.1.

Part 3 follows from Definition 2.5 and part 2.

For part 4, first note that

E[e?] =E|(y-%p)’|
=E[y*] -2E[yx'| B+ BE[xx'] B
=E[)?] - [yx'] (E[xx']) " E[xy]
<E[y?]

< o0.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 60

The first inequality holds because E[yx'] (E [xx']) " E [xy] is a quadratic form and therefore necessarily
non-negative. Second, by the expectation inequality (B.30), the Cauchy-Schwarz inequality (B.32) and

Assumption 2.1,
IE (xe)ll < Elxell = (Elx12) "% (E[2])"* < 00

It follows that the expectation E [xe] is finite, and is zero by the calculation (2.25).
For part 6, Applying Minkowski’s inequality (B.34) to e = y — x'B,

(Elel”)"" = (E|y-«'B|")"""

< (E|y|")"" + (E]«'B|")
< ]y +E1n) | 8]

< oo,

1/r

the final inequality by assumption. |
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Exercises

Exercise 2.1 Find E [E[E[y|x1,x2,x3] | X1, %2] | x1].

Exercise 2.2 IfE[y| x| = a+ bx, find E [yx] as a function of moments of x.
Exercise 2.3 Prove Theorem 2.4.4 using the law of iterated expectations.

Exercise 2.4 Suppose that the random variables y and x only take the values 0 and 1, and have the fol-
lowing joint probability distribution

x=0 x=1
0 1 2
1 4 3

y
y

FindE[y|x]|,E[y*|x] and var[y| x] forx=0and x = 1.
Exercise 2.5 Show that o (x) is the best predictor of e? given x:

(a) Write down the mean-squared error of a predictor h(x) for e,
(b) What does it mean to be predicting e?

(c) Show that o%(x) minimizes the mean-squared error and is thus the best predictor.
Exercise 2.6 Use y = m(x) + e to show that
var [y] = var [m(x)] + o*

Exercise 2.7 Show that the conditional variance can be written as

o* () =E[)* | x] - (E[y1x])".

Exercise 2.8 Suppose that y is discrete-valued, taking values only on the non-negative integers, and the
conditional distribution of y given x is Poisson:

exp (—x'p) (x'B)’

Ply=jlx]= i . j=012,.
Compute E [y | x] and var [y | x| . Does this justify a linear regression model of the form y = x'f + ¢?
DA
Hint: IfP [y = j] = w then E[y] = A and var(y) = A.
j!

Exercise 2.9 Suppose you have two regressors: x; is binary (takes values 0 and 1) and x; is categorical
with 3 categories (A, B, C). Write E [ ylx, xz] as a linear regression.

Exercise 2.10 True or False. If y = xf§+ e, x€ R, and E[e| x] = 0, then E [x?e] = 0.
Exercise 2.11 True or False. If y=xf+e, x€R, and E[xe] =0, then E [xze] =0.

Exercise 2.12 True or False. If y = x'f + e and E[e | x] = 0, then e is independent of x.
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Exercise 2.13 True or False. If y = x'+ e and E [xe] =0, then E[e | x] = 0.

Exercise 2.14 True or False. If y = x'f + ¢, E[e| x] =0, and E[é? | x] = 02

dent of x.

, a constant, then e is indepen-

Exercise 2.15 Consider the intercept-only model y = a +e defined as the best linear predictor. Show that
a=E[y].

Exercise 2.16 Let x and y have the joint density f (x,y) =3 (x*+ y*) on0<x<1,0< y < 1. Compute the
coefficients of the best linear predictor y = a + fx + e. Compute the conditional mean m(x) =E[y| x].
Are the best linear predictor and conditional mean different?

Exercise 2.17 Let x be a random variable with u = E [x] and 0 = var[x]. Define

g(x1m0?) = ( . _xﬂgzﬂ_ L )

Show that E[g (x| m,s)] =0ifand only if m = g and s = 2.

1
X = X2
X3

(a) Show that Q,, = E[xx'] is not invertible.

Exercise 2.18 Suppose that

and x3 = a; + a2 X, is a linear function of x;.

(b) Use alinear transformation of x to find an expression for the best linear predictor of y given x. (Be
explicit, do not just use the generalized inverse formula.)

Exercise 2.19 Show (2.46)-(2.47), namely that for
d(B) =E[(mx) - x' p)’]
then
p = argmind(b)
beRFK
= (E[xx']) " Elxm(x)]
= (E[xx]) "E[xy].

Hint: To show E [xm(x)] = E[xy] use the law of iterated expectations.
Exercise 2.20 Verify that (2.54) holds with m(x) defined in (2.5) when (y, x) have a joint density f(y, x).
Exercise 2.21 Consider the short and long projections

y=xy +e

y=x,61+x2,62+u
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(a) Under what condition does y; = 8,?

(b) Now suppose the long projection is
y:x01+x392+ v

Is there a similar condition under which y; = 6,2

Exercise 2.22 Take the homoskedastic model

y=x\p+x,B, +e
Ele|x1,x2]1=0
E[e® | x1,%2] = 0*
Elx2 | x1] =Tx;
I'#0.

Suppose the parameter f, is of interest. We know that the exclusion of x;, creates omited variable bias
in the projection coefficient on x,. It also changes the equation error. Our question is: what is the ef-
fect on the homoskedasticity property of the induced equation error? Does the exclusion of x, induce
heteroskedasticity or not? Be specific.



Chapter 3

The Algebra of Least Squares

3.1 Introduction

In this chapter we introduce the popular least-squares estimator. Most of the discussion will be alge-
braic, with questions of distribution and inference deferred to later chapters.

3.2 Samples

In Section 2.18 we derived and discussed the best linear predictor of y given x for a pair of random
variables (y,x) € R x R* and called this the linear projection model. We are now interested in estimating
the parameters of this model, in particular the projection coefficient

B = (E[xx']) " E[xy]. (3.1)

We can estimate f from observational data which includes joint measurements on the variables
(,x). For example, supposing we are interested in estimating a wage equation, we would use a dataset
with observations on wages (or weekly earnings), education, experience (or age), and demographic char-
acteristics (gender, race, location). One possible dataset is the Current Population Survey (CPS), a sur-
vey of U.S. households which includes questions on employment, income, education, and demographic
characteristics.

Notationally we wish to distinguish observations from the underlying random variables. The con-
vention in econometrics is to denote observations by appending a subscript i which runs from 1 to n,
thus the i*"* observation is (y;, x;), and n denotes the sample size. The dataset is then {(y;, x;); i = 1,..., n}.
We call this the sample or the observations.

From the viewpoint of empirical analysis a dataset is an array of numbers often organized as a table,
where the columns of the table correspond to distinct variables and the rows correspond to distinct
observations. For empirical analysis the dataset and observations are fixed in the sense that they are
numbers presented to the researcher. For statistical analysis we need to view the dataset as random, or
more precisely as a realization of a random process.

In order for the coefficient f defined in (3.1) to make sense as defined the expectations over the
random variables (x, y) need to be common across the observations. The most elegant approach to
ensure this is to assume that the observations are draws from an identical underlying population F. This
is the standard assumption that the observations are identically distributed:

64
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Assumption 3.1 The observations {(y1,*1),...,(¥i,X;),...,(¥n,X,)} are identically
distributed; they are draws from a common distribution F.

This assumption does not need to be viewed as literally true, rather it is a useful modeling device so
that parameters such as f are well defined. This assumption should be interpreted as how we view an
observation a priori, before we actually observe it. If I tell you that we have a sample with n = 59 obser-
vations set in no particular order, then it makes sense to view two observations, say 17 and 58, as draws
from the same distribution. We have no reason to expect anything special about either observation.

In econometric theory we refer to the underlying common distribution F as the population. Some
authors prefer the label the data-generating-process (DGP). You can think of it as a theoretical con-
cept or an infinitely-large potential population. In contrast we refer to the observations available to us
{(yi,x;) : i =1,..., n} as the sample or dataset. In some contexts the dataset consists of all potential ob-
servations, for example administrative tax records may contain every single taxpayer in a political unit.
Even in this case we view the observations as if they are random draws from an underlying infinitely-large
population as this will allow us to apply the tools of statistical theory.

The linear projection model applies to the random observations (y;,*;). This means that the prob-
ability model for the observations is the same as that described in Section 2.18. We can write the model
as

yi=x;p+e; (3.2)

where the linear projection coefficient B is defined as

p = argmin S(b), (3.3)
beRk

the minimizer of the expected squared error

S =E|(vi-%;p)’. (3.4)
The coefficient has the explicit solution

B = (E[xix}]) " E[xiyi]. (3.5)

3.3 Moment Estimators

We want to estimate the coefficient § defined in (3.5) from the sample of observations. Notice that
P is written as a function of certain population expectations. In this context an appropriate estimator is
the same function of the sample moments. Let’s explain this in detail.

To start, suppose that we are interested in the population mean p of a random variable y; with dis-
tribution function F

u=E[yi] =f ydF(y). (3.6)

The mean p is a function of the distribution F as written in (3.6). To estimate u given a sample {y1, ..., yn}

a natural estimator is the sample mean
n

~_—_ 15
u—Y—ni:Zlyl-

Notice that we have written this using two pieces of notation. The notation y with the bar on top is
conventional for a sample mean. The notation fi with the hat “A” is conventional in econometrics to
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denote an estimator of the parameter p. In this case ¥ is the estimator of y, so i and y are the same. The
sample mean y can be viewed as the natural analog of the population mean (3.6) because y equals the
expectation (3.6) with respect to the empirical distribution - the discrete distribution which puts weight
1/n on each observation y;. There are many other justifications for y as an estimator for yu. We will
defer these discussions for now. Suffice it to say that it is the conventional estimator in the lack of other
information about y or the distribution of y;.

Now suppose that we are interested in a set of population means of possibly non-linear functions of
arandom vector y, say g = E [h(y;)]. For example, we may be interested in the first two moments of y;,

E[y:] and E[y?]. In this case the natural estimator is the vector of sample means,

12
:;; (¥i)

1 1
where h(y) = (3, y?). In this case fi; = — Yriyiandflp=—=X", yl?. We call fi the moment estimator for
n= n==

B
Now suppose that we are interested in a nonlinear function of a set of moments. For example, con-

sider the variance of y
2 2 2
o” =var[y;] =E[y;] - (E[y])"-
In general, many parameters of interest can be written as a function of moments of y. Notationally,

p=gW

p=E[h(y)].
Here, y; are the random variables, h(y;) are functions (transformations) of the random variables, and
[ is the mean (expectation) of these functions. B is the parameter of interest, and is the (nonlinear)

function g(:) of these means.
In this context a natural estimator of f is obtained by replacing p with fi.

(&)

=)
Il
S|~ o
=

™M=

B= h(yl)

i

The estimator B is sometimes called a “plug-in” estimator, and sometimes a “substitution” estimator. We
typically call f amoment, or moment-based, estimator of f§, since it is a natural extension of the moment
estimator fi.

Take the example of the variance o

= var[y;]. Its moment estimator is

i vi- (;iyi)z-

This is not the only possible estimator for o2 (there is also the well-known bias-corrected estimator) but

&2 is a straightforward and simple choice.

3.4 Least Squares Estimator

The linear projection coefficient g is defined in (3.3) as the minimizer of the expected squared error
S(P) defined in (3.4). For given B, the expected squared error is the expectation of the squared error
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(vi- x} ﬁ)2 . The moment estimator of S(f) is the sample average:

n

SB) ==Y (vi-;p)* (3.7)

1=

—

S
—

S|~

SSE(p)

where

SSEB) = 3 (i~ x;)°
i=1

is called the sum-of-squared-errors function.

Since S(B) is a sample average we can interpret it as an estimator of the expected squared error S().
Examining S(B) as a function of B is informative about how S(B) varies with . Since the projection
coefficient minimizes S(f) an analog estimator minimizes (3.7).

We define the estimator ﬁ as the minimizer of S().

Definition 3.1 The least-squares estimator ii is

p = argmin ()
BeRk

where

SB) =

As S(B) is a scale multiple of SSE(f8) we may equivalently define B as the minimizer of SSE(B). Hence
[Ai is commonly called the least-squares (LS) estimator of . The estimator is also commonly refered to
as the ordinary least-squares (OLS) estimator. For the origin of this label see the historical discussion on
Adrien-Marie Legendre below. Here, as is common in econometrics, we put a hat “A” over the parameter
P to indicate that ii is a sample estimate of B. This is a helpful convention. Just by seeing the symbol
ii we can immediately interpret it as an estimator (because of the hat) of the parameter . Sometimes
when we want to be explicit about the estimation method, we will write BOIS to signify that it is the OLS
estimator. It is also common to see the notation iin, where the subscript “n” indicates that the estimator
depends on the sample size n.

It is important to understand the distinction between population parameters such as f and sample
estimators such as ﬁ The population parameter f is a non-random feature of the population while the
sample estimator lAi is arandom feature of a random sample. B is fixed, while B varies across samples.

3.5 Solving for Least Squares with One Regressor

For simplicity, we start by considering the case k = 1 so that there is a scalar regressor x; and a scalar
coefficient B. To illustrate, Figure 3.1(a) displays a scatter plot!' of 20 pairs (y;, x;).

The sum of squared errors SSE(B) is a function of . Given  we calculate the “error” y; — x; 8 by
taking the vertical distance between y; and x; . This can be seen in Figure 3.1(a) by the vertical lines
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(a) Deviation from Fitted Line

(b) Sum of Squared Error Function

Figure 3.1: Regression With One Regressor

which connect the observations to the straight line. These vertical lines are the errors y; — x; . The sum
of squared errors is the sum of the 20 squared lengths.
The sum of squared errors is the function

n

SSE(B) = Z Vi—Xip

{5 Zﬁ(;w)+ﬁ £4)

This is a quadratic function of 8. The sum of squared error function is displayed in Figure 3.1(b) over the
range [2,4]. The coefficient  ranges along the x-axis. The sum-of-squared errors SSE(f) as a function of
B is displayed on the y-axis.

The OLS estimator B minimizes this function. From elementary algebra we know that the minimizer
of the quadratic function a —2bx + cx? is x = b/ ¢. Thus the minimizer of SSE(p) is

0 [\/]z

llxlyl

-
X

B = (3.8)

i-1
For example, the minimizer of the sum of squared error function displayed in Figure 3.1(b) is E =3.07,
and is marked on the x-axis.

The intercept-only model is the special case x; = 1. In this case we find

1 1 -
—ZEZ%‘:% (3.9)
the sample mean of y;. Here, as is common, we put a bar “~” over y to indicate that the quantity is a
sample mean. This calculation shows that the OLS estimator in the intercept-only model is the sample
mean.

1 The observations were generated by simulation as x; ~ U[0,1], e; ~N[0,1], and y; = 3x; + e;.
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Technically, the estimator E in (3.8) only exists if the denominator is non-zero. Since it is a sum of

squares it is necessarily non-negative. Thus f existsif ¥, xl? > 0.

3.6 Solving for Least Squares with Multiple Regressors

We now consider the case with k > 1 so that the coefficient § is a vector.
To illustrate, Figure 3.2(a) displays a scatter plot of 100 triples (y;, x1;, x2;). The regression function
x'B = x1 81 + x2 B2 is a 2-dimensional surface and is shown as the plane in Figure 3.2(a).

35
I

14
L
B2
3.0
L

20 25 308 35 4.0 25 30 35 40

B

(a) Regression Plane (b) Sum of Squared Error Function (c) SSE Contour

Figure 3.2: Regression with Two Variables

The sum of squared errors SSE(B) is a function of the vector . For any f the error y; — x B is the
vertical distance between y; and x; 8. This can be seen in Figure 3.2(a) by the vertical lines which connect
the observations to the plane. As in the single regressor case these vertical lines are the errors e; = y; —
x; . The sum of squared errors is the sum of the 100 squared lengths.

The sum of squared errors can be written as

n n n
SSEB) =Y. y* -2 xiyi+ B Y x:x,B.
i=1 i=1 i=1

As in the single regressor case this is a quadratic function in B. The difference is that in the multiple
regressor case this is a vector-valued quadratic function. To visualize the sum of squared errors function
Figure 3.2(b) displays SSE(f). Another way to visualize a 3-dimensional surface is by a contour plot.
A contour plot of the same SSE(f) function is shown in Figure ?2. The contour lines are points in the
(B1, B2) space where SSE(P) takes the same value. The contour lines are elliptical.

The least-squares estimator f minimizes SSE(f). A simple way to find the minimum is by solving the
first-order conditions. The latter are

0 N n n N
0=—SSE(f)=-2) x;y;+2)_ x;xp. (3.10)
op izl i-1

We have written this using a single expression, but it is actually a system of k equations with k unknowns
(the elements of ).
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The solution for ﬁ may be found by solving the system of k equations in (3.10). We can write this
solution compactly using matrix algebra. Dividing (3.10) by 2 we obtain

n n
Y xixip=) xiyi. (3.11)
i=1 i=1

This is a system of equations of the form Ab = ¢ where A is k x k and b and ¢ are k x 1. The solution is
b= A"'c, and can be obtained by pre-multiplying Ab = ¢ by A~! and using the matrix inverse property
A~'A=I,. Applied to (3.11) we find an explicit formula for the least-squares estimator

n -1y
= (Z xix'i) (Z xiyi). (3.12)
i=1 i=1

This is the natural estimator of the best linear projection coefficient  defined in (3.3), and can also be
called the linear projection estimator.

Recall that we claim that fi in (3.12) is the minimizer of SSE(f), and we found this by solving the
first-order conditions. To be complete we should verify the second-order conditions. We calculate that

2
3p3p ——SSE(p) = ZI_Zixlx >0
which is a positive definite matrix. This shows that the second-order condition for minimization is sat-
isfied so [Ai is indeed the unique minimizer of SSE(f).

Returning to the example sum-of-squared errors function SSE(f) displayed in Figures 22 and 22, the
least-squares estimator ﬁ is the the pair (Bl, 52) which minimize this function; visually it is the low spot
in the 3-dimensional graph, and is marked in Figure 22 as the center point of the contour plots.

Returning to equation (3.12) suppose that k = 1. In this case x; is scalar so x;x, = x‘l?‘. Then (3.12)
simplifies to the expression (3.8) previously derived. The expression (3.12) is a notationally simple gen-
eralization but requires a careful attention to vector and matrix manipulations.

Alternatively, equation (3.5) writes the projection coefficient f as an explicit function of the popula-
tion moments Q,, and Q. Their moment estimators are the sample moments

z:xlyl
i=1

n
Qux=—) xix.
n&s

The moment estimator of B replaces the population moments in (3.5) with the sample moments:

Qxy

F—‘E

PPN

ﬁ Qxexy

which is identical with (3.12).

Technically, the estimator ff in (3.12) exists and is unique only if the inverted matrix is actually invert-
ible, which holds if (and only if) this matrix is positive definite. This excludes the case that x; contains
redundant regressors or regressors with no sample variation. This will be discussed further in Section
3.24.
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Theorem 3.1 If Y. | x;x’ >0, the least squares estimator equals

n 1
() [£0)

Adrien-Marie Legendre

The method of least-squares was first published in 1805 by the French mathe-
matician Adrien-Marie Legendre (1752-1833). Legendre proposed least-squares
as a solution to the algebraic problem of solving a system of equations when the
number of equations exceeded the number of unknowns. This was a vexing and
common problem in astronomical measurement. As viewed by Legendre, (3.2) is
a set of n equations with k unknowns. As the equations cannot be solved exactly,
Legendre’s goal was to select f# to make the set of errors as small as possible. He
proposed the sum of squared error criterion and derived the algebraic solution
presented above. As he noted, the first-order conditions (3.10) is a system of k
equations with k unknowns which can be solved by “ordinary” methods. Hence
the method became known as Ordinary Least Squares and to this day we still
use the abbreviation OLS to refer to Legendre’s estimation method.

3.7 IMlustration

We illustrate the least-squares estimator in practice with the data set used to calculate the estimates
reported in Chapter 2. This is the March 2009 Current Population Survey, which has extensive informa-
tion on the U.S. population. This data set is described in more detail in Section 3.22. For this illustration
we use the sub-sample of married (spouse present) black female wage earners with 12 years potential
work experience. This sub-sample has 20 observations.

In Table 3.1 we display the observations for reference. Each row is an individual observation which
are the data for an individual person. The columns correspond to the variables (measurements) for the
individuals. The second column is the reported wage (total annual earnings divided by hours worked).
The third column is the natural logarithm of the wage. The fourth column is years of education. The
fifth and six columns are further transformations, specifically the square of education and the product of
education and log(wage). The bottom row are the sums of the elements in that column.

Putting the variables into the standard regression notation, let y; be log wages and x; be years of
education and an intercept. Then from the column sums in Table 3.1 we have

ix‘y. _( 995.86 )
LJir —
] 62.64

and
( 5010 314 )

314 20
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Table 3.1: Observations From CPS Data Set

Observation Wage log(Wage) Education Education? Education*log(Wage)

1 37.93 3.64 18 324 65.44
2 40.87 3.71 18 324 66.79
3 14.18 2.65 13 169 34.48
4 16.83 2.82 16 256 45.17
5 33.17 3.50 16 256 56.03
6 29.81 3.39 18 324 61.11
7 54.62 4.00 16 256 64.00
8 43.08 3.76 18 324 67.73
9 14.42 2.67 12 144 32.03
10 14.90 2.70 16 256 43.23
11 21.63 3.07 18 324 55.44
12 11.09 241 16 256 38.50
13 10.00 2.30 13 169 29.93
14 31.73 3.46 14 196 48.40
15 11.06 2.40 12 144 28.84
16 18.75 2.93 16 256 46.90
17 27.35 3.31 14 196 46.32
18 24.04 3.18 16 256 50.76
19 36.06 3.59 18 324 64.53
20 23.08 3.14 16 256 50.22

Sum 515 62.64 314 5010 995.86

72
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Taking the inverse we obtain

ix.x, (00125 -0.196
Z7 o -0196 3124 )

Thus by matrix multiplication

B 0.0125 -0.196 995.86
-0.196 3.124 62.64

_(0.155
B ( 0.698 ) ’

In practice, the regression estimates ii are computed by computer software without the user taking
the explict steps listed above. However, it is useful to understand that the least-squares estimator can
be calculated by simple algebraic operations. If your data is in a spreadsheet similar to Table 3.1, then
the listed transformations (logarithm, squares and cross-products, column sums) can be computed by
spreadsheet operations. B could then be calculated by matrix inversion and multiplication. Once again,

this is rarely done by applied economists since computer software is available to ease the process.
We often write the estimated equation using the format

log(wage) = 0.155 education +0.698. (3.13)

An interpretation of the estimated equation is that each year of education is associated with a 16% in-
crease in mean wages.

Equation (3.13) is called a bivariate regression as there are two variables. It is also called a simple
regression as there is a single regressor. A multiple regression has two or more regressors and allows a
more detailed investigation. Let’s take an example similar to (3.13) but include all levels of experience.
This time we use the sub-sample of single (never married) Asian men which has 268 observations. In-
cluding as regressors years of potential work experience (experience) and its square (experience’/100)
(we divide by 100 to simplify reporting) we obtain the estimates

loE,(Tuche) =0.143 education+ 0.036 experience—0.071 experience2 /100 + 0.575. (3.14)

These estimates suggest a 14% increase in mean wages per year of education holding experience con-
stant.

3.8 Least Squares Residuals

As a by-product of estimation we define the fitted value

and the residual
ei=yi—7i =y,-—x'l-[Ai. (3.15)
Sometimes 7; is called the predicted value but this is a misleading label. The fitted value y; is a function
of the entire sample, including y;, and thus cannot be interpreted as a valid prediction of y;. It is thus
more accurate to describe j; as a fitted rather than a predicted value.
Note that y; = §; + €; and
yi=x,B+é;. (3.16)
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We make a distinction between the error e; and the residual é;. The error e; is unobservable while the
residual e; is a by-product of estimation. These two variables are frequently mislabeled which can cause
confusion.

Equation (3.10) implies that

n
) x;8;=0. (3.17)
i=1

To see this by a direct calculation, using (3.15) and (3.12),

Z i€i xi (yi _x,iB)

>
K
M:

Il
—

x,yl Zxx[i

n -1 n
xiYi le ~(Z xix’i) (Z xiJ’i)
i=1 i=1

I}
M= 10 I™Ms IMs

Xiyi— leyl
i=1

I Il
e
L

When x; contains a constant an implication of (3.17) is

n
Y & =0. (3.18)
i=1

Thus the residuals have a sample mean of zero and the sample correlation between the regressors and
the residual is zero. These are algebraic results, and hold true for all linear regression estimates.

3.9 Demeaned Regressors

Sometimes it is useful to separate the constant from the other regressors, and write the linear projec-
tion equation in the format
yi=x;p+a+e;

where «a is the intercept and x; does not contain a constant. The least-squares estimates and residuals
can be written as
Vi :x'l.ﬁ+@+é,-.

In this case (3.17) can be written as the equation system

The first equation implies

Subtracting from the second we obtain

éxi ((yi -7) - (xi —E)’B) =0.
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Solving for f we find
B= (i xi (% —f)')_l (iéxi (vi —?))
- (ié(xi %) (s -x)’)_l (ié(xi 3 -7)). (3.19)

Thus the OLS estimator for the slope coefficients is a regression with demeaned data.
The representation (3.19) is known as the demeaned formula for the least-squares estimator.

3.10 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in ma-
trix notation. The linear equation (2.23) is a system of n equations, one for each observation. We can
stack these n equations together as

y1= x1ﬁ+e1
Yo = x2ﬁ+e2

Yn=%,B+ep.

Now define

/

N X €1
/

Y2 X, €2

y=| . | X=1 .| e=

/

Yn Xn €n

Observe that y and e are n x 1 vectors and X is an n x k matrix. Then the system of n equations can be
compactly written in the single equation
y=Xp+e. (3.20)

Sample sums can be written in matrix notation. For example
x =X'X

xlyl =

Therefore the least-squares estimator can be written as
B=(xx)"(xy).
The matrix version of (3.16) and estimated version of (3.20) is
y=X B +e.

Equivalently the residual vector is
e=y-XB.
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Using the residual vector we can write (3.17) as
X'e=o0.
It can also be useful to write the sum-of-squared error criterion as
SSE(P) = (v~ XPp) (y-XB).

Using matrix notation we have simple expressions for most estimators. This is particularly conve-
nient for computer programming as most languages allow matrix notation and manipulation.

Theorem 3.2 Important Matrix Expressions
(x'X)" (x'y)
y—-X

0.

) Q) ™D
Il 1
=)

XI

Early Use of Matrices

The earliest known treatment of the use of matrix methods to
solve simultaneous systems is found in Chapter 8 of the Chinese
text The Nine Chapters on the Mathematical Art, written by sev-
eral generations of scholars from the 10" to 2" century BCE.

3.11 Projection Matrix

Define the matrix

P=X(X'X)"'X.

Observe that
PX=X(X'X)"'X'X=X.

This is a property of a projection matrix. More generally, for any matrix Z which can be written as
Z = XT for some matrix I (we say that Z lies in the range space of X), then

PZ=PXT=X(X'X)"'X'XT=XT =Z.
As an important example, if we partition the matrix X into two matrices X; and X» so that
X=[X1 Xz,

then PX; = X;. (See Exercise 3.7.)
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The projection matrix P has the algebraic property that it is an idempotent matrix PP = P. See

Theorem 3.3.2 below. For the general properties of projection matrices see Section A.11.
The matrix P creates the fitted values in a least-squares regression:

1

Py=X(X'X)" X'y=XB=7.

Because of this property P is also known as the “hat matrix”.
A special example of a projection matrix occurs when X = 1, is an n-vector of ones. Then

P=1,(1,1,)"1,
1 !
Note that in this case

Py:ln(llnln)_lllny
=1,y

creates an n-vector whose elements are the sample mean y of y;.

The projection matrix P appears frequently in algebraic manipulations in least squares regression.

The matrix has the following important properties.

Theorem 3.3 The projection matrix P = X (X'X) ™" X' for any n x k X with n >
k has the following algebraic properties

1. Pissymmetric (P’ = P).
2. Pisidempotent (PP = P).
3. trP=k.

4. The eigenvalues of P are 1 and 0. There are k eigenvalues equalling 1 and
n— k equalling 0.

5. rank(P) = k.

We close this section by proving the claims in Theorem 3.3. Part 1 holds since
P'=(x(x'x)" X’)/
= (%) (%)) o
=X ((X’X)’)_1 X’
=x (0’ (X’)')_l b
=P.
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To establish part 2, the fact that PX = X implies that

PP=PX(X'x)"' X'
=X (x'x)"'x'
=P

as claimed.
For part 3,

P =tr(X(X'x)" X/)
= or((x'x) " X'x)

=tr(Iy)
= k.

See Appendix A.5 for definition and properties of the trace operator.

For part 4, it is shown in Appendix A.11 that the eigenvalues A; of an idempotent matrix are all 1
and 0. Since tr P equals the sum of the n eigenvalues and tr P = k by part 3, it follows that there are k
eigenvalues equalling 1 and the remainder (n — k) equalling n — k.

For part 5, observe that P is positive semi-definite since its eigenvalues are all non-negative. By
Theorem A.4.5 its rank equals the number of positive eigenvalues, which is k as claimed.

3.12 Orthogonal Projection

Define

M=1I,-P
=I,-X(X'X)"' X'

where I, is the n x n identity matrix. Note that
MX=(I,-P)X=X-PX=X-X=0. (3.22)

Thus M and X are orthogonal. We call M an orthogonal projection matrix, or more colorfully an anni-
hilator matrix, due to the property that for any matrix Z in the range space of X then

MZ=Z-PZ=0.

For example, MX; = 0 for any subcomponent X of X, and MP = 0 (see Exercise 3.7).
The orthogonal projection matrix M has similar properties with P, including that M is symmetric
(M’ = M) and idempotent (MM = M). Similarly to Theorem 3.3.3 we can calculate

trM=n-k. (3.23)

(See Exercise 3.9.) One implication is that the rank of M is n — k.
While P creates fitted values, M creates least-squares residuals:

My=y-Py=y-Xp=¢. (3.24)
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As discussed in the previous section, a special example of a projection matrix occurs when X =1, is
an n-vector of ones, so that P =1,,(1),1 n)_1 1,. In this case the orthogonal projection matrix is
M=1,-P
=1,-1,(1,1,)7"1),.

While P creates a vector of sample means, M creates demeaned values:

My=y-1,y.
For simplicity we will often write the right-hand-side as y — 3. The i’ element is y; — 7, the demeaned
value of y;.

We can also use (3.24) to write an alternative expression for the residual vector. Substituting y =
Xp + einto e = My and using MX = 0 we find

e=My=M(Xp+e)=Me (3.25)

which is free of dependence on the regression coefficient g.

3.13 Estimation of Error Variance

The error variance 0* = E [¢?] is a moment, so a natural estimator is a moment estimator. If e; were

observed we would estimate o2 by
1 n
5% = - Y et (3.26)

However, this is infeasible as e; is not observed. In this case it is common to take a two-step approach to
estimation. The residuals &; are calculated in the first step, and then we substitute &; for e; in expression
(3.26) to obtain the feasible estimator

1 n
i==Y ¢&. (3.27)
n¢

In matrix notation, we can write (3.26) and (3.27) as

d=n"léee

and
6*=n""d. (3.28)
Recall the expressions € = My = Me from (3.24) and (3.25). Applied to (3.28) we find

o°=n"'e'e

=n"lyMMy

=n"ly' My

=n"'e'Me (3.29)
the third equality since MM = M.

An interesting implication is that

~2

5> —6°

=nlee—nleMe

=n"le'Pe

=0.
The final inequality holds because P is positive semi-definite and e’ Pe is a quadratic form. This shows
that the feasible estimator &2 is numerically smaller than the idealized estimator (3.26).
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3.14 Analysis of Variance

Another way of writing (3.24) is
y=Py+My=7y+e. (3.30)

This decomposition is orthogonal, that is
y'e=(Py) (My)=y'PMy=0. (3.31)

It follows that

or

Subtracting y from both sides of (3.30) we obtain
y-1,y=y-1,y+e.

This decomposition is also orthogonal when X contains a constant, as

under (3.18). It follows that
(y-1,7) (r-1.7) = (7-1.7) (7-1.7) + @@

or
n n
—\2 o =2
Y-y = @y e
i=1 i=1 i=1
This is commonly called the analysis-of-variance formula for least squares regression.
A commonly reported statistic is the coefficient of determination or R-squared:
~ =2 e
R? = ?:1(yi_y) _1- ?:Iezg
- -2 -2
i (vi-v) X, (vi-y)

Itis often described as the fraction of the sample variance of y; which is explained by the least-squares fit.
R? is a crude measure of regression fit. We have better measures of fit, but these require a statistical (not
just algebraic) analysis and we will return to these issues later. One deficiency with R? is that it increases
when regressors are added to a regression (see Exercise 3.16) so the “fit” can be always increased by
increasing the number of regressors.

The coefficient of determination was introduced by Wright (1921).

3.15 Projections

One way to visualize least squares fitting is as a projection operation.

Write the regressor matrix as X = [X; X» ... X] where X is the j th column of X. The range space
Z(X) of X is the space consisting of all linear combinations of the columns X;,X>,...X;. Z(X)isak
dimensional surface contained in R”. If k = 2 then Z(X) is a plane. The operator P = X (X'X) ™ X’
projects vectors onto the % (X). In particular, the fitted values 3 = Py are the projection of y onto %(X).
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To visualize, examine Figure 3.3. This displays the case n = 3 and k = 2. Displayed are three vectors
y, X1, and X, which are each elements of R3. The plane which is created by X; and X, is the range
space £ (X). Regression fitted values must be linear combinations of X; and X, and so lie on this plane.
The fitted value y is the vector on this plane which is closest to y. The residual @ = y — ¥ is the difference
between the two. The angle between the vectors y and € must be 90°, and therefore are orthogonal as
shown.

Figure 3.3: Projection of y onto X; and X»

3.16 Regression Components

Partition
X=[X; X]
and
_ ﬁl)
. (ﬁz '

Then the regression model can be rewritten as
y=X1B, +X2B, +e. (3.32)
The OLS estimator of g = (f7, B,)’ is obtained by regression of y on X = [X; X»] and can be written as
y=Xp+e=Xp,+X2B,+e. (3.33)

We are interested in algebraic expressions for iil and ﬁz.
Let’s focus on finding an algebraic expression for f,. The least-squares estimator by definition is
found by the joint minimization

(31’32) = argmin SSE (ﬁpﬁz) (3.34)

BB,
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where
SSE (B, B,) = (¥ — X1B, - X28,) (¥ — X1B, — X2,).

An equivalent expression for iil can be obtained by concentration (nested minimization). The solution
(3.34) can be written as

-~

B, = argmin nlljinSSE (B1,B,)]- (3.35)
i 2

The inner expression ming, SSE (B,, B,) minimizes over §, while holding f, fixed. It is the lowest pos-
sible sum of squared errors given ff,. The outer minimization argming finds the coefficient §, which

minimizes the “lowest possible sum of squared errors given f,”. This means that [Ail as defined in (3.34)
and (3.35) are algebraically identical.

Examine the inner minimization problem in (3.35). This is simply the least squares regression of
¥ — X1 B, on X,. This has solution

argminSSE (B1,B,) = (X3X2) ' (X, (y—X18y))

with residuals
y-X1B - X2 (X4X:) 7 (X (y - X18y)) = (May - Mo X, )
=M;(y-X15,)

where
My=1,-X,(X,X2) ' X}, (3.36)

is the orthogonal projection matrix for X,. This means that the inner minimization problem (3.35) has
minimized value

minSSE (B, B,) = (y—X18,) Mo M, (y— X1 B,)

=(y—X18)) Mz (y—X:15,)
where the second equality holds since M» is idempotent. Substituting this into (3.35) we find

iil = argmin (J’_Xlﬁl)/MZ (J’_Xlﬁl)

1
= (X M2X1) "' (X| M2y).
By a similar argument we can find
B, = (X,M:1X,) ™" (X, M1y)

where
M, =1I,-X,(X,X)) "X} (3.37)

is the orthogonal projection matrix for X;.

Theorem 3.4 The least-squares estimator ([Ail,iiz) for (3.33) has the algebraic
solution

B, = (XM X1) " (X| May) (3.38)
B, = (X,M1 X,) ™" (X, M1y) (3.39)

where M; and M, are defined in (3.37) and (3.36), respectively.
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3.17 Regression Components (Alternative Derivation)*

An alternative proof of Theorem 3.4 uses an algebraic argument which is identical to that for the
population coefficients as presented in Section 2.22. Since this is a classic derivation we present it here
for completeness.

Partition Q xx aS

~ ~ 1 ! 1 !
-X\X; —X'X,
R Qu Q. n n
Qux = R R = . .
Qa1 Qx —X,X; —X)X,
n n
and similarly Q xy as
1
R Qly ﬁXlly
sz EX,Z-V
By the partitioned matrix inversion formula (A.3)
~ ~ -1 ~11  ~12 ~—1 ~—1 ~  ~-]
. Q Qp def Q Q Qi1 -Q112Q12Q%
x = = = (3.40)
A A ~21  ~22 ~] ~ Al ~—1
Q2 Q Q Q —Q5.1Q2:Q1; Q24
~ ~ PPN PN ~ ~ PPN PN
where Q1.2 = Q11 — Q12Q2; Q2 and Quy.1 = Q22 — Q21 Qy; Q2. Thus
5 (B
B=| %!
B,
~—1 ~—1 ~ ~-1 ~
_ 1Qn.z ) —Qu.lequz ] [ Q,
—Q.1Q2:Q3 Q224 Qy,
~—] ~
_ Q111~201y-2 )
Q2.1Q2y1
Now
~ ~ PPN PN
Q112=011-Q120Q,, Q
]' ! ]‘ ! ]' ! -1 ]' !
n n n n
]' !
= X\ MyX,
n
and

~ ~ PO Y
Q1y2=0Q1,-Q12Q2Qyy

Equation (3.39) follows.

~ ~ ~ 1 ~
Similarly to the calculation for Q;;, and Q,,., you can show that Q,,.; = —X’ZM 1y and Qg5 =
n

1
;X ’2 M, X,. This establishes (3.38). Together, this is Theorem 3.4.
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3.18 Residual Regression

As first recognized by Frisch and Waugh (1933) and extended by Lovell (1963), expressions (3.38)
and (3.39) can be used to show that the least-squares estimators ﬁl and ﬁz can be found by a two-step
regression procedure.

Take (3.39). Since M, is idempotent, M; = M M, and thus

B, = (X/lexz)_1 (X5My)
= (X, MM X,) ™" (XM My )
JOPUUIRNS
SEEANEA
where
X, =M X>
and
61 = Mly.

Thus the coefficient estimate Bz is algebraically equal to the least-squares regression of &, on Xo.
Notice that these two are y and X», respectively, premultiplied by M;. But we know that multiplication
by M, is equivalent to creating least-squares residuals. Therefore €, is simply the least-squares residual
from a regression of y on X1, and the columns of X> are the least-squares residuals from the regressions
of the columns of X, on X;.

We have proven the following theorem.

Theorem 3.5 Frisch-Waugh-Lovell (FWL)

In the model (3.32), the OLS estimator of , and the OLS residuals @ may be
equivalently computed by either the OLS regression (3.33) or via the following
algorithm:

1. Regress y on X1, obtain residuals e;;
2. Regress X, on X, obtain residuals Xo;

3. Regress'e; on X, obtain OLS estimates [Aiz and residuals e.

In some contexts (such as panel data models, to be introduced in Chapter 17), the FWL theorem can
be used to greatly speed computation.

The FWL theorem is a direct analog of the coefficient representation obtained in Section 2.23. The
result obtained in that section concerned the population projection coefficients; the result obtained here
concern the least-squares estimates. The key message is the same. In the least-squares regression (3.33)
the estimated coefficient ﬁz algebraically equals the regression of y on the regressors X, after the regres-
sors X; have been linearly projected out. Similarly, the coefficient estimate 31 algebraically equals the
regression of y on the regressors X after the regressors X, have been linearly projected out. This result
can be insightful when interpreting regression coefficients.

A common application of the FWL theorem is the demeaning formula for regression obtained in
(3.19). Partition X = [X; X,] where X, =1, is a vector of ones and X, is a matrix of observed regressors.
In this case

M =1,-1,(1,1,)"1

ne
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Observe that
Xo =M X,=X,-Xp
and
My=y-y
are the “demeaned” variables. The FWL theorem says that Bz is the OLS estimate from a regression of
Yi—yonxy—Xxp:

p, = é(m—@) (xZi—EZ)’)_l (é(’%i—fﬂ (vi=7)]-

This is (3.19).

Ragnar Frisch
Ragnar Frisch (1895-1973) was co-winner with Jan Tinbergen of the first No-
bel Memorial Prize in Economic Sciences in 1969 for their work in developing
and applying dynamic models for the analysis of economic problems. Frisch
made a number of foundational contributions to modern economics beyond the
Frisch-Waugh-Lovell Theorem, including formalizing consumer theory, produc-
tion theory, and business cycle theory.

3.19 Leverage Values

The leverage values for the regressor matrix X are the diagonal elements of the projection matrix
P=X(X'X )_1 X' . There are n leverage values, and are typically written as h;; for i = 1,..., n. Since

x)
)
P=| Z|(xXX)"(x1 x - xn)
Xy
they are
hii = x, (X'X) " x;. (3.41)

The leverage value h;; is a normalized length of the observed regressor vector x;. They appear fre-
quently in the algebraic and statistical analysis of least-squares regression, including leave-one-out re-
gression, influential observations, robust covariance matrix estimation, and cross-validation.

A few properties of the leverage values are now listed.

Theorem 3.6
1. 0<h;; <1.

2. h;; = 1/nif X includes an intercept.

3. Y hii=k.
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We prove Theorem 3.6 below.

The leverage values h;; measure how unusual the i'" observation x; is relative to the other values
in the sample. A large h;; occurs when x; is quite different from the other sample values. A measure of
overall unusualness is the maximum leverage value

h = max h;;. (3.42)
1<isn

It is common to say that a regression design is balanced when the leverage values are all roughly
equal to one another. From Theorem 3.6.3 we can deduce that complete balance implies h;; = h = k/n.
An example where complete balance occurs is when the regressors are all orthogonal dummy variables,
each of which have equal occurrance of 0’s and 1’s.

A regression design is unbalanced if some leverage values are highly unequal from the others. The
most extreme case is i = 1. An example where this occurs is when there is a dummy regressor which
takes the value 1 for only one observation in the sample.

The maximal leverage value (3.42) will change depending on the choice of regressors. For example,
consider equation (3.14), the wage regression for single Asian men which has n = 268 observations. This
regression has 7 = 0.33. If the squared experience regressor is omitted, the leverage drops to h = 0.10.
If a cubic in experience is added, it increases to k = 0.76. And if a fourth and fifth power are added, it
increases to h = 0.99.

In general, there is no reason to check the leverage values as in general there is no problem if the
leverage values are balanced, unbalanced, or every highly unbalanced. However, the fact that leverage
values can easily be large and close to one suggests that we should take this into consideration when
examining procedures (such as robust covariance matrix estimation and cross-validation) which make
use of leverage values. We will return to these issues later when leverage values arise.

We now prove Theorem 3.6. For part 1 let s; be an 7 x 1 unit vector with a 1 in the i*” place and zeros
elsewhere so that h;; = s} Ps;. Then applying the Quadratic Inequality (B.18) and Theorem 3.3.4,

hi; = S’iPSi =< S;Si/lmax (P)=1

as claimed.
For part 2 partition x; = (l,z’l.)’ . Without loss of generality we can replace z; with the demeaned
values z; = z; —z. Then since z; and the intercept are orthgonal

nooo0 1'1
A A z*

1

hii=(1,z;")

=—+z; (Z*'Z*)_lz*f

1

=

SI—3 |-

For part 3, Z?:l hi; = tr P = k where the second equality is Theorem 3.3.3.

3.20 Leave-One-Out Regression

There are a number of statistical procedures —residual analysis, jackknife variance estimation, cross-
validation, two-step estimation, hold-out sample evaluation — which make use of estimators constructed
on sub-samples. Of particular importance is the case where we exclude a single observation and then
repeat this for all observations. This is called leave-one-out (LOO) regression.
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Specifically, the leave-one-out least-squares estimator of the regression coefficient f is the least-
squares estimator constructed using the full sample excluding a single observation i. This can be written
as

B i= (Z xjx/]')_l (Z ij/j)

j#i j#i
= (XX -x;x) " (X'y—xiy1)
-1
= (X0 X)X oy, (3.43)

Here, X(-; and y_; are the data matrices omitting the i'" row. The notation B(_i) or fi_ ; is commonly
used to denote an estimator with the ;" observation omitted.
There is a leave-one-out estimator for each observation, i = 1, ..., 1, so we have n such estimators.
The leave-one-out predicted value for y; is

Ji=x;B -

This is the predicted value obtained by estimating 8 on the sample without observation i and then using
the covariate vector x; to predict y;. Notice that y; is an authentic prediction as y; is not used to construct
¥i. This is in contrast to the fitted values y; which are functions of y;.

The leave-one-out residual, prediction error, or prediction residual is

€ =Yi—JYi

The prediction errors may be used as estimates of the errors instead of the residuals. The prediction
errors are better estimates than the residuals since the former are based on authentic predictions.

The leave-one-out formula (3.43) gives the unfortunate impression that the leave-one-out coeffi-
cients and errors are computationally cumbersome, requiring n separate regressions. In the context of
linear regression this is fortunately not the case. There are simple linear expressions for [Ai(_,-) and é;.

Theorem 3.7 The leave-one-out least-squares estimator and prediction error
can be calculated as
B y=B-(x'X)"x2 (3.44)
and
g=0-hp e (3.45)

where h;; are the leverage values as defined in (3.41).

We prove Theorem 3.7 at the end of the section.

Equation (3.44) shows that the leave-one-out coefficients can be calculated by a simple linear oper-
ation and do not need to be calculated using n separate regressions. Equation (3.45) for the prediction
error is particularly convenient. It shows that the leave-one-out residuals are a simple scaling of the
standard least-squares residuals.

Equations (3.44) and (3.45) both show the usefulness of the leverage values h;;.

Another interesting feature of equation (3.45) is that the prediction errors €; are a simple scaling
of the residuals e; with the scaling depending on the leverage values h;;. If h;; is small then ¢; = e;.
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However if h;; is large then ¢; can be quite different from €;. Thus the difference between the residuals
and predicted values depends on the leverage values, that is, how unusual x; is relative to the other
observations.

To write (3.45) in vector notation, define

M* = (I,,—diag{hyy, .., Bpn})
=diag{(1-h11) 7", (L= hpn) 0
Then (3.45) is equivalent to
e=M"e. (3.46)

One use of the prediction errors is to estimate the out-of-sample mean squared error. The natural
estimator is i
~
) &=
i=1

This is also known as the sample mean squared prediction error. Its square root & = V2 is the predic-
tion standard error.

We complete the section by presenting a proof of Theorem 3.7. The leave-one-out estimator (3.43)
can be written as

Y a-hi)?e. (3.47)

_ 1
g% = -
ni3

Bi=(X'X—xix)) " (X'y—xiy1). (3.48)
Multiply (3.48) by (X'X) ™" (X'X — x;x’;). We obtain

ﬁ(—i) - (X’X)*l xl'x/iﬁ(—i) = (X/X)il (X'y-xiyi) = B- (X’X)*l XiYi.
Rewriting
= - -1 -~ -~ -1~
B y=B- (X,X) X (J’i _xliﬁ(—i)) =p- (X/X) Xie;
which is (3.44). Premultiplying this expression by x; and using definition (3.41) we obtain

~ ~ -1~ - ~
X By =xB—x;(X'X)" x;8 =x;p— hi;@;.

Using the definitions for €; and €; we obtain €; = €; — h;; ;. Re-writing we obtain (3.45).

3.21 Influential Observations

Another use of the leave-one-out estimator is to investigate the impact of influential observations,
sometimes called outliers. We say that observation i is influential if its omission from the sample induces
a substantial change in a parameter estimate of interest.

For illustration consider Figure 3.4 which shows a scatter plot of random variables (y;, x;). The 25
observations shown with the open circles are generated by x; ~ U[1,10] and y; ~ N(x;,4). The 26" ob-
servation shown with the filled circle is x26 = 9, y26 = 0. (Imagine that y»¢ = 0 was incorrectly recorded
due to a mistaken key entry.) The figure shows both the least-squares fitted line from the full sample
and that obtained after deletion of the 26! observation from the sample. In this example we can see
how the 26" observation (the “outlier”) greatly tilts the least-squares fitted line towards the 26" obser-
vation. In fact, the slope coefficient decreases from 0.97 (which is close to the true value of 1.00) to 0.56,
which is substantially reduced. Neither y,g nor x, are unusual values relative to their marginal distribu-
tions so this outlier would not have been detected from examination of the marginal distributions of the
data. The change in the slope coefficient of —0.41 is meaningful and should raise concern to an applied
economist.
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leave-one-out OLS

Figure 3.4: Impact of an Influential Observation on the Least-Squares Estimator

From (3.44) we know that

1

B-B y=(XX)" x&. (3.49)

By direct calculation of this quantity for each observation i, we can directly discover if a specific obser-
vation i is influential for a coefficient estimate of interest.

For a general assessment, we can focus on the predicted values. The difference between the full-
sample and leave-one-out predicted values is

Vi—yi= x/,'ﬁ - xliﬁ(—i)
-1~
:x;. (X’X) Xie;

= hj;e;

which is a simple function of the leverage values h;; and prediction errors €;. Observation i is influential
for the predicted value if | h;; ;| is large, which requires that both h;; and |¢;| are large.

One way to think about this is that a large leverage value h;; gives the potential for observation i to
be influential. A large h;; means that observation i is unusual in the sense that the regressor x; is far
from its sample mean. We call an observation with large h;; a leverage point. A leverage point is not
necessarily influential as the latter also requires that the prediction error ¢; is large.

To determine if any individual observations are influential in this sense several diagnostics have been
proposed (some names include DFITS, Cook’s Distance, and Welsch Distance). Unfortunately, from a
statistical perspective it is difficult to recommend these diagnostics for applications as they are not based
on statistical theory. Probably the most relevant measure is the change in the coefficient estimates given
in (3.49). The ratio of these changes to the coefficient’s standard error is called its DFBETA, and is a
postestimation diagnostic available in Stata. While there is no magic threshold, the concern is whether
or not an individual observation meaningfully changes an estimated coefficient of interest. A simple
diagnostic for influential observations is to calculate

Influence = max |y; — ;| = max |h;;&;].
1<isn 1<isn



CHAPTER 3. THE ALGEBRA OF LEAST SQUARES 90

This is the largest (absolute) change in the predicted value due to a single observation. If this diagnostic
is large relative to the distribution of y; it may indicate that that observation is influential.

If an observation is determined to be influential what should be done? As a common cause of influ-
ential observations is data entry error, the influential observations should be examined for evidence that
the observation was mis-recorded. Perhaps the observation falls outside of permitted ranges, or some
observables are inconsistent (for example, a person is listed as having a job but receives earnings of $0).
If it is determined that an observation is incorrectly recorded, then the observation is typically deleted
from the sample. This process is often called “cleaning the data”. The decisions made in this process in-
volve a fair amount of individual judgment. [When this is done the proper practice is to retain the source
data in its original form and create a program file which executes all cleaning operations (for example
deletion of individual observations). The cleaned data file can be saved at this point, and then used for
the subsequent statistical analysis. The point of retaining the source data and a specific program file
which cleans the data is twofold: so that all decisions are documented, and so that modifications can
be made in revisions and future research.] It is also possible that an observation is correctly measured,
but unusual and influential. In this case it is unclear how to proceed. Some researchers will try to alter
the specification to properly model the influential observation. Other researchers will delete the obser-
vation from the sample. The motivation for this choice is to prevent the results from being skewed or
determined by individual observations. This latter practice is viewed skeptically by many researchers
who believe it reduces the integrity of reported empirical results.

For an empirical illustration consider the log wage regression (3.14) for single Asian men. This regres-
sion, which has 268 observations, has Influence = 0.29. This means that the most influential observation,
when deleted, changes the predicted (fitted) value of the dependent variable log(wage) by 0.29, or equiv-
alently the average wage by 29%. This is a meaningful change and suggests further investigation. We
examine the influential observation, and find that its leverage h;; is 0.33, which is the maximum in the
sample as described in Section 3.19. It is a rather large leverage value, meaning that the regressor x; is
unusual. Examining further, we find that this individual is 65 years old with 8 years education, so that
his potential experience is 51 years. This is the highest experience in the subsample — the next highest is
41 years. The large leverage is due to his unusual characteristics (very low education and very high expe-
rience) within this sample. Essentially, regression (3.14) is attempting to estimate the conditional mean
at experience= 51 with only one observation. It is not surprising that this observation determines the fit
and is thus influential. A reasonable conclusion is the regression function can only be estimated over
a smaller range of experience. We restrict the sample to individuals with less than 45 years experience,
re-estimate, and obtain the following estimates.

log(ﬂ/a\ge) = 0.144 education +0.043 experience— 0.095 experience’ /100 + 0.531. (3.50)

For this regression, we calculate that Influence = 0.11, which is greatly reduced relative to the regression
(3.14). Comparing (3.50) with (3.14), the slope coefficient for education is essentially unchanged, but the
coefficients in experience and its square have slightly increased.

By eliminating the influential observation equation (3.50) can be viewed as a more robust estimate
of the conditional mean for most levels of experience. Whether to report (3.14) or (3.50) in an application
is largely a matter of judgment.

3.22 CPS Data Set

In this section we describe the data set used in the empirical illustrations.
The Current Population Survey (CPS) is a monthly survey of about 57,000 U.S. households conducted
by the Bureau of the Census of the Bureau of Labor Statistics. The CPS is the primary source of informa-
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tion on the labor force characteristics of the U.S. population. The survey covers employment, earnings,
educational attainment, income, poverty, health insurance coverage, job experience, voting and registra-
tion, computer usage, veteran status, and other variables. Details can be found at www.census.gov/cps
and dataferrett.census.gov.

From the March 2009 survey we extracted the individuals with non-allocated variables who were
full-time employed (defined as those who had worked at least 36 hours per week for at least 48 weeks
the past year), and excluded those in the military. This sample has 50,742 individuals. We extracted
14 variables from the CPS on these individuals and created the data files cpsO9mar.dta (Stata format),
cps09mar . x1sx (Excel format) and cpsO9mar . txt (text format). The variables are described in the file
cpsO9mar_description.pdf All datafiles are available at http://www.ssc.wisc.edu/~bhansen/econometrics/

3.23 Numerical Computation

Modern econometric estimation involves large samples and many covariates. Consequently calcu-
lation of even simple statistics such as the least squares estimator requires a large number (millions)
of arithmetic operations. In practice most economists don’t need to think much about this as it is done
swiftly and effortlessly on our personal computers. Nevertheless it is useful to understand the underlying
calculation methods as occasionally choices can make substantive differences.

While today nearly all statistical computations are made using statistical software running on per-
sonal computers, this was not always the case. In the nineteenth and early twentieth centures, “com-
puter” was a job label for workers who made computations by hand. Computers were employed by
astronomers and statistical laboratories to execute numerical calculations. This fascinating job (and the
fact that most computers employed in laboratories were women) has entered popular culture. For ex-
ample the lives of several computers who worked for the early U.S. space program is described in the
book and popular movie Hidden Figures, and the life of computer/astronomer Henrietta Swan Leavitt is
dramatized in the moving play Silent Sky.

Until programmable electronic computers became available in the 1960s, economics graduate stu-
dents were routinely employed as computers. Sample sizes were considerably smaller than those seen
today, but still the effort required to calculate by hand (for example) a regression with 7z = 100 observa-
tions and k = 5 variables is considerable! If you are a current graduate student, you should feel fortunate
that the profession has moved on from the era of human computers! (Now research assistants do more
elevated tasks such as writing Stata and Matlab code.)

To obtain the least squares estimator B = (X'X) ™" (Xy) we need to either invert X'X or solve a sys-
tem of equations. To be specific, let A = X'X and ¢ = X'y so that the least squares estimator can be
written as either the solution to

Afp=c (3.51)

or as
p=A""c. (3.52)

The equations (3.51) and (3.52) are algebraically identical, but they suggest two distinct numerical ap-
proaches to obtain [Ai (3.51) suggests solving a system of k equations. (3.52) suggests finding A~! and
then multiplying by ¢. While the two expressions are algebraically identical, the implied numerical ap-
proaches are different.

In a nutshell, solving the system of equations (3.51) is numerically preferred to the matrix inversion
problem (3.52). Directly solving (3.51) is faster and produces a solution with a higher degree of numerical
accuracy. Thus (3.51) is generally recommended over (3.52). However, in most practical applications the
choice will not make any practical difference. Contexts where the choice may make a difference is when
the matrix A is ill-conditioned (to be discussed in Section 3.24) or of extremely high dimension.
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Numerical methods to solve the system of equations (3.51) and calculate A~! are discussed in Sec-
tions A.18 and A.19, respectively.

Statistical packages use a variety of matrix to solve (3.51). Stata uses the sweep algorithm which is a
variant of the Gauss-Jordan algorithm discussed in Section A.18. (For the sweep algorithm see Goodnight
(1979).) In R, solve(A,b) uses the QR decomposition. In Matlab, A\b uses the Cholesky decomposition
when A is positive definite and the QR decomposition otherwise.

3.24 Collinearity Errors

For the least squares estimator to be uniquely defined the regressors cannot be linearly dependent.
However, it is quite easy to attempt to calculate a regression with linearly dependent regressors. This can
occur for many reasons, including the following.

1. Including the same regressor twice.

2. Including regressors which are a linear combination of one another, such as education, experience
and age in the CPS data set example (recall, experience is defined as age-education-6).

3. Including a dummy variable and its square.

4. Estimating a regression on a sub-sample for which a dummy variable is either all zeros or all ones.
5. Including a dummy variable interaction which yields all zeros.

6. Including more regressors than observations.

In any of the above cases the regressors are linearly dependent so X’'X is singular and the least
squares estimator is not defined. If you attempt to estimate the regression, you are likely to encounter
an error message. (A possible exception is Matlab using “A\b”, as discussed below.) The message may be
that “system is exactly singular”, “system is computationally singular”, a variable is “omitted because of
collinearity”, or a coefficient is listed as “NA”. In some cases (such as estimation in R using explicit matrix
computation or Matlab using the regress command) the program will stop execution. In other cases
the program will continue to run. In Stata (and in the 1m package in R), a regression will be reported but
one or more variables will be omitted to achieve non-singularity.

If any of these warnings or error messages appear, the correct response is to stop and examine the
regression coding and data. Did you make an unintended mistake? Have you included a linearly de-
pendent regressor? Are you estimating on a subsample for which the variables (in particular dummy
variables) have no variation? If you can determine that one of these scenarios caused the error, the so-
lution is immediately apparent. You need to respecify your model (either sample or regressors) so that
the redundancy is eliminated. All empirical researchers encounter this error in the course of empirical
work. You should not, however, simply accept output if the package has selected variables for omission.
It is the researcher’s job to understand the underlying cause and enact a suitable remedy.

There is also a possibility that the statistical package will not detect and report the matrix singularity.
If you compute in Matlab using explicit matrix operations and use the recommended A\b command to
compute the least squares estimator Matlab may return a numerical solution without an error message
even when the regressors are algebraically dependent. It is therefore recommended that you perform a
numerical check for matrix singularity when using explicit matrix operations in Matlab.

How can we numerically check if a matrix A is singular? A standard diagnostic is the reciprocal

condition number
C= Amin (A)

 Amax(A)
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If C = 0 then A is singular. If C =1 then A is perfectly balanced. If C is extremely small we say that
A is ill-conditioned. The reciprocal condition number can be calculated in Matlab or R by the rcond
command. Unfortunately, there is no accepted tolerance for how small C should be before regarding
A as numerically singular, in part since rcond (A) can return a positive (but small) result even if A is
algebraically singular. However, in double precision (which is typically used for computation) numerical
accuracy is bounded by 2752 ~ 2e-16, suggesting the minimum bound C > 2e-16.

Checking for numerical singularity is complicated by the fact that low values of C can also be caused
by unbalanced or highly correlated regressors.

To illustrate, consider a wage regression using the sample from (3.14) on powers of experience x from
1 through k (e.g. x, x2,x3,..., xK). We calculated the reciprocal condition number C for each k, and found
that C is decreasing as k increases, indicating increasing ill-conditioning. Indeed, for k = 5, we find C =
6e-17, which is lower than double precision accuracy. This means that a regression on (x, x2, %3, x4, x0) is
ill-conditioned. The regressor matrix, however, is not singular. The low value of C is not due to algebraic
singularity but rather is due to a lack of balance and high collinearity.

IlI-conditioned regressors have the potential problem that the numerical results (the reported coef-
ficient estimates) will be inaccurate. It is not a major concern as this only occurs in extreme cases and
because high numerical accuracy is not typically an important goal in econometric estimation. Never-
theless, we should try and avoid ill-conditioned regressions whenever possible.

There are strategies which can reduce or even eliminate ill-conditioning. Often it is sufficient to
rescale the regressors. A simple rescaling which often works for non-negative regressors is to divide each
by its sample mean, thus replace x;; with x;;/x;. In the above example with the powers of experience,
this means replacing x7 with x7/ (n~' X7, x%), etc. Doing so dramatically reduces the ill-conditioning.
With this scaling regressions for k < 11 satisfy C = 1e-15. Another rescaling specific to a regression with
powers is to first rescale the regressor to lie in [—1, 1] before taking powers. With this scaling, regressions
for k < 16 satisfy C = 1e-15. A simpler scaling option is to rescale the regressor to lie in [0, 1] before taking
powers. With this scaling, regressions for k < 9 satisfy C = 1e-15. This is often sufficient for applications.

IlI-conditioning can often be completely eliminated by orthogonalization of the regressors. This is
achieved by sequentially regressing each variable (each column in X) on the preceeding variables (each
preceeding column), taking the residual, and then rescaling to have a unit variance. This will produce
regressors which algebraically satisfy X' X = nI,, and have a condition number of C = 1. If we apply this
method to the above example, we obtain a condition number close to 1 for k < 20.

What this shows is that when a regression has a small condition number it is important to examine
the specification carefully. It is possible that the regressors are linearly dependent in which case one or
more regressors will need to be omitted. It is also possible that the regressors are badly scaled in which
case it may be useful to rescale some of the regressors. It is also possible that the variables are highly
collinear in which case a possible solution is orthogonalization. These choices should be made by the
researcher not by an automated software program.

3.25 Programming

Most packages allow both interactive programming (where you enter commands one-by-one) and
batch programming (where you run a pre-written sequence of commands from a file). Interactive pro-
gramming can be useful for exploratory analysis but eventually all work should be executed in batch
mode. This is the best way to control and document your work.

Batch programs are text files where each line executes a single command. For Stata, this file needs to
have the filename extension “.do”, and for MATLAB “.m”. For R there is no specific naming requirements,
though it is typical to use the extension “.r”. When writing batch files it is useful to include comments for
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documentation and readability. To execute a program file you type a command within the program.

Stata: do chapter3 executes the file chapter3.do
MATLAB: run chapter3 executes the file chapter3.m

R: source (“‘chapter3.r’’) or source(‘chapter3.r’) executes the file chapter3.r
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There are other similarities and differences between the commands used in these packages. For

example:

1

2

3

4

. Different symbols are used to create comments. * in Stata, # in R, and % in Matlab.
. Matlab uses the symbol ; to separate lines. Stata and R use a hard return.

. Stata uses 1n() to compute natural logarithms. R and Matlab use 1og().

. The symbol = is used to define a variable. R prefers <-. Double equality == is used to test equality.

We now illustrate programming files for Stata, R, and MATLAB, which execute a portion of the em-
pirical illustrations from Sections 3.7 and 3.21. For the R and Matlab code we illustrate using explicit
matrix operations. Alternatively, R and Matlab have packages which implement least squares regression
without the need for explicit matrix operations. In R the standard package is 1m. In Matlab the standard
command is regress. The advantage of using explicit matrix operations as shown below is that you
know exactly what computations are done and it is easier to go “out of the box” to execute new proce-
dures. The advantage of using built-in packages and commands is that coding is simplified and you are
much less likely to make a coding error.

Stata do File

*  Clear memory and load the data
clear

use cps09mar.dta

* Generate transformations

gen wage = In(earnings/ (hours*week))
gen experience = age - education - 6
gen exp2 = (experience”2)/100

* Create indicator for subsamples

gen mbf = (race == 2) & (marital <= 2) & (female == 1)

gen mbfl2 = (mbf == 1) & (experience == 12)

gen sam = (race == 4) & (marital == 7) & (female == 0)

* Regressions

reg wage education if mbf12 ==

reg wage education experience exp?2 if sam ==
* Leverage and influence

predict leverage, hat

predict e, residual

gen d=e*leverage/(1-leverage)

summarize d if sam ==1
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R Program File

#  Load the data and create subsamples

dat <- read.table("cps09mar.txt")

experience <- dat[,1]-dat[,4]-6

mbf <- (dat[,11]==2)&(dat[,12]<=2)&(dat[,2]==1)&(experience==12)
sam <- (dat[,11]==4)&(dat[,12]==7)&(dat[,2]==0)
datl <- dat[mbf,]

dat2 <- dat[sam,]

# First regression

y <- as.matrix(log(dat1{,5]/(datl[,6]*dat1[,7])))

x <- cbind(datl[,4],matrix(1,nrow(dat1),1))

XX <- t(X) %*%x

Xy <- t(x)%*%y

beta <- solve(xx,xy)

print(beta)

#  Second regression

y <- as.matrix(log(dat2[,5]/(dat2[,6]*dat2[,7])))
experience <- dat2[,1]-dat2[,4]-6

exp2 <- (experience/2)/100

x <- cbind(dat2[,4],experience,exp2,matrix(1,nrow(dat2),1))
XX <- t(X) %*%x

Xy <- t(x)%*%y

beta <- solve(xx,xy)

print(beta)

#  Create leverage and influence

e <- y-x%*%beta

xxi <- solve(xx)

leverage <- rowSums(x*(x%*%xxi))

r <- e/(1-leverage)

d <- leverage*e/(1-leverage)

print(max(abs(d)))
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MATLAB Program File

% Load the data and create subsamples

dat = load cpsO9mar.txt;

# An alternative to load the data from an excel file is
# dat = xlsread('cps09mar.xlsx’);

experience = dat(:,1)-dat(:,4)-6;

mbf = (dat(;,11)==2)&(dat(;,12)<=2)&(dat(;,2)==1)&(experience==12);
sam = (dat(:,11)==4)&(dat(:,12)==7)&(dat(;,2)==0);
datl = dat(mbf,:);

dat2 = dat(sam,:);

% First regression

y =log(datl(:,5)./ (datl(:,6).*dat1(:,7)));

x = [datl(;,4),ones(length(datl),1)];

XX = X' *x

Xy =X"*y

beta = xx\xy;

display(beta);

% Second regression

v =log(dat2(:,5)./ (dat2(:,6).*dat2(:,7)));

experience = dat2(;,1)-dat2(:,4)-6;

exp2 = (experience.”2)/100;

x = [dat2(;,4),experience,exp2,ones(length(dat2),1)];
XX = X' *x

Xy =X"*y

beta = xx\xy;

display(beta);

% Create leverage and influence

e = y-x*beta;

Xxi = Inv(xx)

leverage = sum((x.*(x*xxi))’)’;

d =leverage.*e./ (1-leverage);

influence = max(abs(d));

display(influence);
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Exercises

Exercise 3.1 Let y be a random variable with = E[y] and o = var[y]. Define

g(ymo®) = ( by _yugzﬂ_ o2 )

~ ~

Let (f1,3%) be the values such that g,,(1,0%) = 0 where g,(m,s) = n ' X" g(yi,m, s). Show that f and
62 are the sample mean and variance.

Exercise 3.2 Consider the OLS regression of the n x 1 vector y on the n x k matrix X. Consider an al-
ternative set of regressors Z = XC, where C is a k x k non-singular matrix. Thus, each column of Z is a
mixture of some of the columns of X. Compare the OLS estimates and residuals from the regression of y
on X to the OLS estimates from the regression of y on Z.

Exercise 3.3 Using matrix algebra, show X'é = 0.
Exercise 3.4 Let € be the OLS residual from a regression of y on X = [X; X]. Find X 'z’é.

Exercise 3.5 Let @ be the OLS residual from a regression of y on X. Find the OLS coefficient from a
regression of ¢ on X.

Exercise 3.6 Let y = X(X'X) ' X'y. Find the OLS coefficient from a regression of y on X.
Exercise 3.7 Show thatif X = [X; X,] then PX; = X; and MX; =0.

Exercise 3.8 Show that M is idempotent: MM = M.

Exercise 3.9 Show thattrM =n—-k.

Exercise 3.10 Show thatif X = [X; X5] and X’ng =0then P = P; + P».

1 —
Exercise 3.11 Show that when X contains a constant, — Y. | j; =y.
L &i=

Exercise 3.12 A dummy variable takes on only the values 0 and 1. It is used for categorical data, such as
an individual’s gender. Let d; and d> be vectors of 1’s and 0’s, with the i’ element of d; equaling 1 and
that of d, equaling 0 if the person is a man, and the reverse if the person is a woman. Suppose that there
are n; men and n, women in the sample. Consider fitting the following three equations by OLS

y=p+dia;+dras+e (3.53)
y=dia;+dras+e (3.54)

Can all three equations (3.53), (3.54), and (3.55) be estimated by OLS? Explain if not.

(a) Compare regressions (3.54) and (3.55). Is one more general than the other? Explain the relationship
between the parameters in (3.54) and (3.55).

(b) Compute 1),d; and 1),d,, where 1, is an n x 1 vector of ones.
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(c) Letting & = (a3 ay)', write equation (3.54) as y = Xa + e. Consider the assumption E(x;e;) = 0. Is
there any content to this assumption in this setting?

Exercise 3.13 Let d; and d; be defined as in the previous exercise.

(@) Inthe OLS regression
y= dl?l + dz’?g + ft,

show that ¥ is the sample mean of the dependent variable among the men of the sample (y;), and
that ¥, is the sample mean among the women (3,).

(b) Let X (n x k) be an additional matrix of regressors. Describe in words the transformations

yi=y-diy,-dzy,
X*=X-d x| - d,x,

where x; and x, are the k x 1 means of the regressors for men and women, respectively.

(c) Compare [~i from the OLS regression

with ii from the OLS regression
y= dlal + dz@g +Xﬁ+@.
Exercise 3.14 Let ﬁn = (X’,LX,Z)_1 X'y, denote the OLS estimate when y,, is nx 1 and X, is n x k. Anew
observation (y,+1,X,+1) becomes available. Prove that the OLS estimate computed using this additional
observation is
—~ ~ 1

Bpi=B,+ L+ (X' X )_1x (X,an)_l Xn+1 (J’n+1 _x,n+12;n)'
nn n+1

n+1

Exercise 3.15 Prove that R? is the square of the sample correlation between y and .
Exercise 3.16 Consider two least-squares regressions
y=X1p,+e

and
y=X1ﬁ1+X2ﬁ2+/é.

Let R% and RS be the R-squared from the two regressions. Show that R? > Rf. Is there a case (explain)
when there is equality Rg = Rf?

Exercise 3.17 For 62 defined in (3.47), show that 62 = 2. Is equality possible?
Exercise 3.18 For which observations will ii (i) = B?

Exercise 3.19 For the intercept-only model y; = 8 + e;, show that the leave-one-out prediction error is

5i=(n’j1)(yi—7)-
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Exercise 3.20 Define the leave-one-out estimator of g2,
1 ~ 2
~2 o
L E Ea— Z (J’J _xjﬁ(—i)) :

This is the estimator obtained from the sample with observation i omitted. Show that

~

~2 no o ¢

TR T e na-ha

Exercise 3.21 Consider the least-squares regression estimators
Yi=x1iP1+ X2 P2+
and the “one regressor at a time” regression estimators
Vi=Pixii+@i  yi=Poxai+e
Under what condition does 51 = 31 and 52 = 52?
Exercise 3.22 You estimate a least-squares regression
Yi= xlliﬁl +Uj
and then regress the residuals on another set of regressors
ﬁi = xéiﬁz + 51'

Does this second regression give you the same estimated coefficients as from estimation of a least-
squares regression on both set of regressors?

I B I B =
Vi=X; P+ x5, B+
In other words, is it true that [~32 = [Aiz? Explain your reasoning.

Exercise 3.23 The data matrixis (y, X) with X = [X1, X»], and consider the transformed regressor matrix
Z = [X1,X,—X1]. Suppose you do a least-squares regression of y on X, and a least-squares regression
of y on Z. Let 6 and &2 denote the residual variance estimates from the two regressions. Give a formula
relating 52 and 22 (Explain your reasoning.)

Exercise 3.24 Use the data set from Section 3.22 and the sub-sample used for equation (3.50) (see Sec-
tion 3.25) for data construction)

(a) Estimate equation (3.50) and compute the equation R? and sum of squared errors.

(b) Re-estimate the slope on education using the residual regression approach. Regress log(wage) on
experience and its square, regress education on experience and its square, and the residuals on the
residuals. Report the estimates from this final regression, along with the equation R? and sum of
squared errors. Does the slope coefficient equal the value in (3.50)? Explain.

(c) Are the R? and sum-of-squared errors from parts (a) and (b) equal? Explain.
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Exercise 3.25 Estimate equation (3.50) as in part (a) of the previous question. Let &; be the OLS residual,
¥; the predicted value from the regression, x;; be education and x»; be experience. Numerically calculate
the following:

@ X, @

(b) X1, %1€
(€ X1, x2i8;
(d) X7, %@
() XiL, x58i
) XL, yiei

® X, e

Are these calculations consistent with the theoretical properties of OLS? Explain.

Exercise 3.26 Use the data set from Section 3.22.

(a) Estimate a log wage regression for the subsample of white male Hispanics. In addition to educa-
tion, experience, and its square, include a set of binary variables for regions and marital status. For
regions, create dummy variables for Northeast, South and West so that Midwest is the excluded
group. For marital status, create variables for married, widowed or divorced, and separated, so that
single (never married) is the excluded group.

(b) Repeat this estimation using a different econometric package. Compare your results. Do they
agree?



Chapter 4

Least Squares Regression

4.1 Introduction

In this chapter we investigate some finite-sample properties of the least-squares estimator in the
linear regression model. In particular we calculate the finite-sample mean and covariance matrix and
propose standard errors for the coefficient estimates.

4.2 Random Sampling

Assumption 3.1 specified that the observations have identical distributions. To derive the finite-
sample properties of the estimators we will need to additionally specify the dependence structure across
the observations.

The simplest context is when the observations are mutually independent in which case we say that
they are independent and identically distributed or i.i.d. It is also common to describe i.i.d. observa-
tions as a random sample. Traditionally, random sampling has been the default assumption in cross-
section (e.g. survey) contexts. It is quite convenient as i.i.d. sampling leads to straightforward expres-
sions for estimation variance. The assumption seems appropriate (meaning that it should be approx-
imately valid) when samples are small and relatively dispersed. That is, if you randomly sample 1000
people from a large country such as the United States it seems reasonable to model their responses as
mutually independent.

Assumption 4.1 The observations {(y1, x1),..., (¥i, Xi), ..., (¥n, X5)} are independent
and identically distributed.

For most of this chapter we will use Assumption 4.1 to derive properties of the OLS estimator.

Assumption 4.1 means that if you take any two individuals i # j in a sample, the values (y;, x;) are in-
dependent of the values (y;, x;) yet have the same distribution. Independence means that the decisions
and choices of individual i do not affect the decisions of individual j and conversely.

This assumption may be violated if individuals in the sample are connected in some way, for example
if they are neighbors, members of the same village, classmates at a school, or even firms within a spe-
cific industry. In this case it seems plausible that decisions may be inter-connected and thus mutually
dependent rather than independent. Allowing for such interactions complicates inference and requires
specialized treatment. A currently popular approach which allows for mutual dependence is known as

101
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clustered dependence which assumes that that observations are grouped into “clusters” (for example,
schools). We will discuss clustering in more detail in Section 4.22.

4.3 Sample Mean

We start with the simplest setting of the intercept-only model

Yi=ute;
Ele;] =0.

which is equivalent to the regression model with k =1 and x; = 1. In the intercept model p = E [ y;] is the
mean of y;. (See Exercise 2.15.) The least-squares estimator ji = ¥ equals the sample mean as shown in
equation (3.9).

We now calculate the mean and variance of the estimator y. Since the sample mean is a linear func-
tion of the observations its expectation is simple to calculate

iIE[J’i]:IJ'

1
E[y]=E !
niz

1 n
;i:ZlJ’i

This shows that the expected value of the least-squares estimator (the sample mean) equals the projec-
tion coefficient (the population mean). An estimator with the property that its expectation equals the
parameter it is estimating is called unbiased.

Definition 4.1 An estimator 0 for 6 is unbiased if E [5] =0.

We next calculate the variance of the estimator ¥ under Assumption 4.1. Making the substitution
V¥i=pu+e; wefind

Then

The second-to-last inequality is because E [e;e j] =o? fori=jyetE[e;e j] =0 for i # j due to indepen-
dence.
We have shown that var [y] = %02. This is the familiar formula for the variance of the sample mean.
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4.4 Linear Regression Model

103

We now consider the linear regression model. Throughout this chapter we maintain the following.

Assumption 4.2 Linear Regression Model

yi=xp+e;
[E[ei le-] =0.

The variables have finite second moments
E [ ylz] < 00,

2
Ellx;l” < oo,

and an invertible design matrix

Q,x =E[x;x}] >0.

The observations (y;, x;) satisfy the linear regression equation

4.1)
(4.2)

We will consider both the general case of heteroskedastic regression where the conditional variance

[E[el? |x;i] = o%(x;) = a?

is unrestricted, and the specialized case of homoskedastic regression where the conditional variance is

constant. In the latter case we add the following assumption.

Assumption 4.3 Homoskedastic Linear Regression Model
In addition to Assumption 4.2

E[e? | x;] = 0%(x;) = 0*

is independent of x;.

(4.3)

4.5 Mean of Least-Squares Estimator

In this section we show that the OLS estimator is unbiased in the linear regression model. This cal-

culation can be done using either summation notation or matrix notation. We will use both.

First take summation notation. Observe that under (4.1)-(4.2)

Elyi| X] =E[yi | %] = x;B.

(4.4)

The first equality states that the conditional expectation of y; given {x1,...,x,} only depends on x; since
the observations are independent across i. The second equality is the assumption of a linear conditional

mean.
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Using definition (3.12), the conditioning theorem (Theorem 2.3), the linearity of expectations, (4.4),
and properties of the matrix inverse,

N n 1y
E[BIX]=E ( x,-x;) ( xiyi)lX
i=1 i=1
n -1 n
=) xx;| E (inyi)lX
i=1 i=1

n 1,

=| X xix;| X Elxiyil X]
' i=1

-1

xE[yi | X]

n
=1

i=1 i

n -1 n
=Y xix| Y xixip
; i=1

I
=

Now let’s show the same result using matrix notation. (4.4) implies
ElylX]=| E[y;|X] |=| =/ |=XB. (4.5)

Similarly

Ele| X]1=| Ele;|X] |=| Eleilx;] |=0.

Using B =(X'x )_1 (X'y), the conditioning theorem, the linearity of expectations, (4.5), and the prop-
erties of the matrix inverse,
E[B1X]=E[(x'X) " X'y X]|
= (x'X)"' X'E[y | X]
= (X'X)"' X'Xp
= ﬂ
At the risk of belaboring the derivation, another way to calculate the same result is as follows. Insert
y = X B + e into the formula for S to obtain
p=(x'X)" (X'(Xp+e))
=(X'X)"'X'XB+(X'X) (X'e)
=p+(X'Xx)"" Xe. (4.6)
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This is a useful linear decomposition of the estimator ii into the true parameter f§ and the stochastic
component (X’ X)_1 X'e. Once again, we can calculate that

1

E[B-B1X]=E|(X'X) " X'e| X|

= (x'X)"' X'E[e| X]
= 0.

Regardless of the method we have shown that E [ | X| = B. We have shown the following theorem.

Theorem 4.1 Mean of Least-Squares Estimator
In the linear regression model (Assumption 4.2) with i.i.d. sampling
(Assumption 4.1)

E[BIX]=8. (4.7)

Equation (4.7) says that the estimator ﬁ is unbiased for f, conditional on X. This means that the
conditional distribution of B is centered at . By “conditional on X” this means that the distribution is
unbiased (centered at ) for any realization of the regressor matrix X. In conditional models we simply
refer to this as saying “fi is unbiased for f”.

4.6 Variance of Least Squares Estimator

In this section we calculate the conditional variance of the OLS estimator.
For any r x 1 random vector Z define the r x r covariance matrix

var(Z] =E[(Z-E[Z])(Z-E[Z])]
=E[ZZ'] - E(Z) E1Z)

and for any pair (Z, X) define the conditional covariance matrix
var[Z | X]=E[(Z-E[Z| X)) (Z-E[Z | X)) | X].

We define

d ~
vy < var[B1X]

as the conditional covariance matrix of the regression coefficient estimates. We now derive its form.
The conditional covariance matrix of the 7 x 1 regression error e is the n x n matrix

var(e| X] =E[ee’ | X] défD.

The i*" diagonal element of D is
Elef | X] =E[ef | xi] =07

while the i j" off-diagonal element of D is

Eleiej | X] =E(e; | x;)E[ej|x;] =0
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where the first equality uses independence of the observations (Assumption 4.1) and the second is (4.2).
Thus D is a diagonal matrix with i’ diagonal element 0?:

o2 0 0
0 o2 --- 0

D=diag(o},..0%)=| . . . | (4.8)
0 0 - o2

In the special case of the linear homoskedastic regression model (4.3), then
Ele?|x;]=0%=0"
and we have the simplification
D=1,0°.

In general, however, D need not necessarily take this simplified form.
For any n x r matrix A = A(X),

var[A'y| X] =var[A'e| X| = A'DA. (4.9)

In particular, we can write p = A’y where A= X (X'X) ™" and thus

Vg =var[B|X]=A'DA=(X'X)" X' DX (X'X)".

It is useful to note that ;
X'DX =) xixio%,
i=1
a weighted version of X'X.
In the special case of the linear homoskedastic regression model, D = I 202,50 X'DX = X'X0?, and
the variance matrix simplifies to

-1
V= (X'X)" 0%

Theorem 4.2 Variance of Least-Squares Estimator
In the linear regression model (Assumption 4.2) with i.i.d. sampling (Assump-
tion 4.1)

v =var[B| X] = (X'x)”" (X'DX) (X'X)"’ (4.10)
where D is defined in (4.8). If in addition the error is homoskedastic (Assump-
tion 4.3) then (4.10) simplifies to

-1
V=0’ (X'X)".




CHAPTER 4. LEAST SQUARES REGRESSION 107

4.7 Unconditional Moments

The previous sections derived the form of the conditional mean and variance of least-squares estima-
tor where we conditioned on the regressor matrix X. What about the unconditional mean and variance?

Another goal is to state conditions under which the unconditional moments of the estimator are
finite. For example, if it determined that E || B|| < co then applying the law of iterated expectations (The-
orem 2.1), we find that the unconditional mean of [Ai is

E[B]=E[E[BIX]]=p

which means that ii is unconditionally unbiased.
A challenge is that f may not have finite moments. Take the case of a single dummy variable regressor
d; with no intercept. Assume P [d; = 1] = p < 1. Then

B\ _ Z::l:l di Vi

im1 di
is well defined if ¥, d; > 0. However, P[Y!, d; =0] = (1 - p)" > 0. This means that with positive (but
small) probability ﬁ does not exist. Consequently B has no finite moments! We ignore this complication
in practice but it does pose a conundrum for theory. This existence problem arises whenever there are
discrete regressors.

A solution can be obtained when the regressors have continuous distributions. A particularly clean
statement was obtained by Kinal (1980) under the assumption of normal regressors and errors.

Theorem 4.3 Kinal (1980)
In the linear regression model with i.i.d. sampling, if in addition (x;,e;) have a
joint normal distribution then for any r, E || ﬁ|| "<ooifand onlyifr<n—-k+1.

This shows that when the errors and regressors are normally distributed that the least-squares esti-
mator possesses all moments up to n— k which includes all moments of practical interest. The normality
assumption is not particularly critical for this result. What is key is the assumption that the regressors
are continuously distributed.

As stated above, Theorem 4.3 shows that if 7 — k > 0 then E||B]| < oo and E[f] = . Furthermore, if
n—k>1thenk | B ? <coand P has a finite unconditional variance. Using Theorem 2.8 we can calculate
explicitly that

var [B] = E [var[B| X]] +var [E[B | X]]
=E|(x'x)" (x'DX) (X'X)"']
the second line since E [ | X] = B has zero variance. In the homoskedastic case this simplifies to
var [B] = o°E [(X’X)_l] )

In both cases the expectation cannot pass through the matrix inverse since this is a non-linear function.
Thus there is not a simple expression for the unconditional variance, other than stating that is it the
mean of the conditional variance.
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4.8 Gauss-Markov Theorem

Now consider the class of estimators of  which are linear functions of the vector y and thus can be

written as
p=Ay

where A is an n x k function of X. As noted before, the least-squares estimator is the special case ob-
tained by setting A = X(X'X )~!. What is the best choice of A? The Gauss-Markov theorem! which we
now present says that the least-squares estimator is the best choice among linear unbiased estimators
when the errors are homoskedastic, in the sense that the least-squares estimator has the smallest vari-
ance among all unbiased linear estimators.

To see this, since E [y | X| = X then for any linear estimator [~3 = A’y we have

E[BIX]=AE[y|X]=AXB,
so B is unbiased if (and only if) A’X = I. Furthermore, we saw in (4.9) that
var[B| X] =var[A'y| X] = ADA= A'Ac*

the last equality using the homoskedasticity assumption D = I,,0 . The “best” unbiased linear estimator
is obtained by finding the matrix Ay satisfying A{X = I} such that AjA, is minimized in the positive
definite sense, which means that for any other matrix A satisfying A’X = I}, then A’A— Aj A is positive
semi-definite.

Theorem 4.4 Gauss-Markov
In the homoskedastic linear regression model (Assumption 4.3) with i.i.d. sam-
pling (Assumption 4.1), if B is a linear unbiased estimator of # then

var[B1 X] = o?(X'X)"".

The Gauss-Markov theorem provides a lower bound on the variance matrix of unbiased linear esti-
mators under the assumption of homoskedasticity. It says that no unbiased linear estimator can have a
variance matrix smaller (in the positive definite sense) than o2 (X’ X)_l. Since the variance of the OLS
estimator is exactly equal to this bound this means that the OLS estimator is efficient in the class of
linear unbiased estimators. This gives rise to the description of OLS as BLUE, standing for “best linear
unbiased estimator”. This is an efficiency justification for the least-squares estimator. The justification is
limited because the class of models is restricted to homoskedastic regressions and the class of potential
estimators is restricted to linear unbiased estimators. This latter restriction is particularly unsatisfactory
as there is no sensible motivation for focusing on linear estimators.

We complete this section with a proof of the Gauss-Markov theorem.

Let A be any n x k function of X such that A’X = I. The estimator A’y is unbiased for § and has
variance A’ Ao?. Since the least-squares estimator is unbiased and has variance (X’ X) ! 02, itis sufficient
to show that the difference in the two variance matrices is positive semi-definite, or

AA-(X'x)"">o0. 4.11)

INamed after the mathematicians Carl Friedrich Gauss and Andrey Markov.
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SetC=A-X (X’X)_1 . Note that X’C = 0. We calculate that

Aa-(x'x)"=(c+x (X’X)_l)’ (c+x(x'x)™)-(x'x)"!

=cc+Cx(x'x)" +(x'x)"'x'C
+(x'x) ' x'x (x'x) - (x'x)7!
=c'c

>0.

The final inequality states that the matrix C’C is positive semi-definite which is a property of quadratic
forms (see Appendix A.10). We have shown (4.11) as requred.

4.9 Generalized Least Squares
Take the linear regression model in matrix format
y=Xp+e. (4.12)

Consider a generalized situation where the observation errors are possibly correlated and/or heteroskedas-
tic. Specifically, suppose that
Ele| X]=0 (4.13)

varle| X]=Q (4.14)

for some n x n covariance matrix €2, possibly a function of X. This includes the i.i.d. sampling framework
where Q = D as defined in (4.8) but allows for non-diagonal covariance matrices as well. As a covariance
matrix, Q is necessarily symmetric and positive semi-definite.
Under these assumptions, by arguments similar to the previous section we can calculate the mean
and variance of the OLS estimator:
E[BIX]=5 (4.15)
var[B] X] = (X'X)”' (X'@X) (x'Xx)"" (4.16)
(see Exercise 4.5).
We have an analog of the Gauss-Markov Theorem.

Theorem 4.5 Generalized Gauss-Markov
In the linear regression model (Assumption 4.2), i.i.d. sampling, and Q >0, if §
is a linear unbiased estimator of f§ then

var[B1X] = (x'Q'x)"".

We leave the proof for Exercise 4.6.

The theorem provides a lower bound on the variance matrix of unbiased linear estimators. The
bound is different from the variance matrix of the OLS estimator as stated in (4.16) except when Q =
I,0°. This suggests that we may be able to improve on the OLS estimator.
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This is indeed the case when Q is known up to scale. That is, suppose that Q = ¢?X where ¢? > 0 is
real and X is n x n and known. Take the linear model (4.12) and pre-multiply by ~1/2. This produces the
equation

y=Xp+e
where =212y, X = 371/2X, and e = Z~!/%e. Consider OLS estimation of § in this equation.
~ AN
Bys = (X X) Xy
-1
_ ((Z—I/ZX)’ (Z—I/ZX)) (Z—I/ZX)’ (Z—I/Zy)
=(x'z7'x) "' x'zy. 4.17)

This is called the Generalized Least Squares (GLS) estimator of # and was introduced by Aitken (1935).
You can calculate that

E|Bys| X| =8 (4.18)
var | Bys | X| = (x'07x)7". (4.19)

This shows that the GLS estimator is unbiased and has a covariance matrix which equals the lower bound
from Theorem 4.5. This shows that the lower bound is sharp when X is known. GLS is thus efficient in
the class of linear unbiased estimators.

In the linear regression model with independent observations and known conditional variances, so
that @ = = = D = diag(0?, ..., 0%), the GLS estimator takes the form

Bgs=(X'D'X)" X'D 'y
n ) -1y )
=) o7 xix;) Y o7 xiJ/i)~
i=1 i=1

The assumption Q > 0 in this case reduces to Uf >0fori=1,...n.

In practice, the covariance matrix € is unknown so the GLS estimator as presented here is not feasi-
ble. However, the form of the GLS estimator motivates feasible versions, effectively by replacing © with
an estimator. We do not pursue this here as it is not common in current applied econometric practice.

4.10 Modern Gauss Markov Theorem

In this section we establish an improved version of the Gauss-Markov Theorem.

Theorem 4.6 Modern Gauss-Markov
In the linear regression model, i.i.d. sampling, and al? >0fori=1,..n,if fis

an unbiased estimator of § then var [ | X] = (X'D™1X) ™.

The proof of Theorem 4.6 is technically advanced so we leave it to Section 4.25. It is a generalization
of Theorem 11.1 from Introduction to Econometrics for the best unbiased estimation of the mean.

The interpretation of Theorem 4.6 is similar to Theorem 4.5. It shows that the GLS covariance ma-
trix (X’ D_lX)_1 is the best possible among all unbiased estimators. When the error is conditionally
homoskedastic the variance bound simplifies to o2 (X’ X)_l, matching that from the classical Gauss-
Markov Theorem. A caveat should be mentioned that in the homoskedastic case the estimator cannot
exploit homoskedasticity — that is the unbiased property needs to hold under heteroskedasticity as well.
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4.11 Residuals

What are some properties of the residuals e; = y; — x'lfi and prediction errors €; = y; — x;ii(_ ;) atleast
in the context of the linear regression model?

Recall from (3.25) that we can write the residuals in vector notation as € = Me where M = I,, —
X(x’ X)_1 X' is the orthogonal projection matrix. Using the properties of conditional expectation

Ele| X]=E[Me| X]=ME[e| X]=0

and

var[e| X] =var[Me| X] = Mvar[e| X]M=MDM (4.20)
where D is defined in (4.8).

We can simplify this expression under the assumption of conditional homoskedasticity
E[e? | x;] =0
In this case (4.20) simplifies to
var[é| X] = Mo”. 4.21)

In particular, for a single observation i we can find the (conditional) variance of &; by taking the i‘"
diagonal element of (4.21). Since the i th diagonal element of M is 1 — k;; as defined in (3.41) we obtain

var[&; | X] =E[é2| X] = (- hij) o°. (4.22)

As this variance is a function of #;; and hence x; the residuals &; are heteroskedastic even if the errors e;
are homoskedastic. Notice as well that (4.22) implies 6? is a biased estimator of 2.

Similarly, recall from (3.46) that the prediction errors €; = (1 — h; )~1é; can be written in vector nota-
tion as e = M*e where M* is a diagonal matrix with i th diagonal element (1 — h,-,-)_1 .Thuse = M*Me.
We can calculate that

E[e|X]=M"ME[e| X]=0

and
var(ée| X]=M*Mvarle| XIMM*=M*"MDMM*

which simplifies under homoskedasticity to
var[¢| X] = M*MMM*o*
=M*MM*o°.
The variance of the ‘" prediction error is then
var[é; | X] =E [ | X]
=(1=hi)” A=hi) A =hi) ™ 0
=(1-hi)'o”.
A residual with constant conditional variance can be obtained by rescaling. The standardized resid-

uals are
ei=(1-hi) '%e;, (4.23)

and in vector notation
é=(e,...en) = M*'?Me. (4.24)
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From our above calculations, under homoskedasticity,
var(é| X] = M*'2MM*1/25?
and
var[é; | X] =E[é?| X] = o

and thus these standardized residuals have the same bias and variance as the original errors when the
latter are homoskedastic.

4.12 Estimation of Error Variance

The error variance 0* = E(e7) can be a parameter of interest even in a heteroskedastic regression or

a projection model. o2 measures the variation in the “unexplained” part of the regression. Its method of
moments estimator (MME) is the sample average of the squared residuals:

In the linear regression model we can calculate the mean of 2. From (3.29) and the properties of the
trace operator observe that

1 1 1
5° = —e'Me=—tr(e'Me) = — tr(Mee').
n n n

Then
E[62 ] X] = %tr([E[Mee’ X))
- %tr(M[E[ee’ X))
= %tr(MD) (4.25)

1 n
=—>Y (I1-hi)o?.
ni=1

The final equality holds since the trace is the sum of the diagonal elements of MD, and since D is diago-
nal the diagonal elements of M D are the product of the diagonal elements of M and D which are 1 - h;;
and 0%, respectively.

Adding the assumption of conditional homoskedasticity E [e? | x,-] =02 so that D = I,,02, then (4.25)
simplifies to

E[GZIX]:%U(MUZ)
(Y

the final equality by (3.23). This calculation shows that 6 is biased towards zero. The order of the bias
depends on k/n, the ratio of the number of estimated coefficients to the sample size.
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Another way to see this is to use (4.22). Note that

hll)U

n—
(%)
the last equality using Theorem 3.6.
Since the bias takes a scale form a classic method to obtain an unbiased estimator is by rescaling the
estimator. Define

1 n
X]= LE[
1 n
a0

= - 4.26
— ; Cr (4.26)
By the above calculation
E[s?| X] =0
and
E[s*] =

Hence the estimator s? is unbiased for 2. Consequently, s? is known as the “bias-corrected estimator”
for 0 and in empirical practice s? is the most widely used estimator for 0.

Interestingly, this is not the only method to construct an unbiased estimator for 2. An estimator
constructed with the standardized residuals é; from (4.23) is

o 1&E 5 1E 12
ol =—Zei=— (1—-hy) e
n .
i=1 i=1
You can show (see Exercise 4.9) that
E[c°| X]=0" 4.27)

and thus o is unbiased for o2 (in the homoskedastic linear regression model).

When k/n is small (typically this occurs when 7 is large) the estimators 62, s*> and 6~ are likely to be
similar to one another. However, if k/n is large then s? and o> are generally preferred to 62. Consequently
it is best to use one of the bias-corrected variance estimators in applications.

4.13 Mean-Square Forecast Error

One use of an estimated regression is to predict out-of-sample values. Consider an out-of-sample
observation (yp+1, X,+1) where x,, is observed but not y,;. Given the coefficient estimator g the stan-
dard point estimator of E (yn+1 | xn+1) = x’n+1ﬁ is Ypt+1 = x'n+1ﬁ. The forecast error is the difference be-
tween the actual value y,.; and the point forecast y,+1. This is the forecast error €,,+1 = V+1 — ¥n+1. The
mean-squared forecast error (MSFE) is its expected squared value

MSFE,, = E[&

I’l+1 *

In the linear regression model &,,41 = ep1 — X, , (B-B) so
MSFE, =E[¢,,] -2 [eny15), (B - )] 429)
+E %1 (B-B) (B-B) %0 .
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The first term in (4.28) is 0. The second term in (4.28) is zero since en+1x’n +1 isindependent of fi -p
and both are mean zero. Using the properties of the trace operator the third term in (4.28) is

([xn+1xn+1 [E[ﬁ ﬁ ﬁ ﬁ)])

_tr( xn+1xn+1 [E[ﬁ ﬁ ﬁ ﬁ |XH)
tr( xn+1xn+1][E[Vﬁ])
e

(tnatiovs)

=F|x (4.29)

n+1Vﬁle+1

where we use the fact that x4, is independent of ﬁ the definition Vg=E [ p-P) ﬁ p) | X ] and the
fact that x4 is independent of Vﬁ. Thus

MSFE,, = 02 +E

n+1Vpxn+1]

Under conditional homoskedasticity this simplifies to

Xn+1 (X,X)_lxn*'l )

A simple estimator for the MSFE is obtained by averaging the squared prediction errors (3.47)

~ 1 &,
—;Z@l

MSFE,, = & (1+[E

where ¢; = y; - x’l.fi(_i) =2;(1 - h;;)~'. Indeed, we can calculate that
£[o%] =E (2]
=L [(ei ~x; (B - ﬁ))z]
=0’ +E [x; (Beiy—B)(Briy— ﬁ),xi] .
By a similar calculation as in (4.29) we find
E[62] =02 +E [x'l- Vﬁ(inxi] — MSFE,,_;.

This is the MSFE based on a sample of size n — 1 rather than size n. The difference arises because the
in-sample prediction errors ¢; for i < n are calculated using an effective sample size of n — 1, while the
out-of sample prediction error €, is calculated from a sample with the full n observations. Unless 7 is
very small we should expect MSFE;,_; (the MSFE based on n — 1 observations) to be close to MSFE,, (the
MSEE based on n observations). Thus &? is a reasonable estimator for MSFE,,.

Theorem 4.7 MSFE
In the linear regression model (Assumption 4.2) and i.i.d. sampling (Assump-
tion 4.1)

MSFE, =E[&,,] =0*+E|x

n+1Vﬁxn+1

where Vﬁ = var [ plX ] Furthermore, G2 defined in (3.47) is an unbiased esti-
mator of MSFE,;,_; :
E[6%] = MSFE,,_;.
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4.14 Covariance Matrix Estimation Under Homoskedasticity

For inference we need an estimator of the covariance matrix V4 of the least-squares estimator. In
this section we consider the homoskedastic regression model (Assumption 4.3).

Under homoskedasticity, the covariance matrix takes the relatively simple form
vi= (x'x)"' o?

which is known up to the unknown scale 2. In Section 4.12 we discussed three estimators of o2. The
most commonly used choice is s? leading to the classic covariance matrix estimator

A(l_

Ve
Since s? is conditionally unbiased for o it is simple to calculate that !7% is conditionally unbiased for
VB under the assumption of homoskedasticity:

(x'x)7" % (4.30)

E|V31X] = (X'X)"E[s*|X]
— (X’X)_IO'Z

= Vﬁ'

This was the dominant covariance matrix estimator in applied econometrics for many years and
is still the default method in most regression packages. For example, Stata uses the covariance matrix
estimator (4.30) by default in linear regression unless an alternative is specified.

If the estimator (4.30) is used but the regression error is heteroskedastic it is possible for V% to be
quite biased for the correct covariance matrix V3 = (X'X)”" (X’DX)(X'X)”". For example, suppose

k=1 and Uf = xf with E[x;] = 0. The ratio of the true variance of the least-squares estimator to the
expectation of the variance estimator is

i=17"i

e[vgix] oThal €]

Ve Tk Elx] e

(Notice that we use the fact that 0 = x? implies 0% = E[0?] = E[x?].) The constant « is the standardized
fourth moment (or kurtosis) of the regressor x; and can be any number greater than one. For example, if
xi ~N(0,0?) then x = 3, so the true variance V is three times larger than the expected homoskedastic
. =0 .
estimator Vﬁ. But x can be much larger. Suppose, for example, that x; ~ 7(% — 1. In this case x = 15 so that
the true variance Vg is fifteen times larger than the expected homoskedastic estimator V2. While this is
an extreme and constructed example the point is that the classic covariance matrix estimator (4.30) may
be quite biased when the homoskedasticity assumption fails.

4.15 Covariance Matrix Estimation Under Heteroskedasticity

In the previous section we showed that that the classic covariance matrix estimator can be highly
biased if homoskedasticity fails. In this section we show how to construct covariance matrix estimators
which do not require homoskedasticity.

Recall that the general form for the covariance matrix is

1

vs=(X'X)" (X'DX)(X'X)"".
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with D defined in (4.8). This depends on the unknown matrix D which we can write as

D = diag (0%,...,0‘3‘1)
=E[ee'| X]
=E[D|X]

where D = diag (e%, . ei). Thus D is a conditionally unbiased estimator for D. If the squared errors e?
were observable, we could construct an unbiased estimator for Vﬁ as

=ideal -1
VA

5 =(X'X) '(x'DX) (X'X)

- |

=

x,-x;ef) (X’X)_1 )

i=1

Indeed,

verifying that Vigeal is unbiased for Vg

. oideal . . .
Since the errors el? are unobserved, Vﬁ is not a feasible estimator. However, we can replace the

errors e; with the least-squares residuals ;. Making this substitution we obtain the estimator

PHO0 _ (yr a1 L 1 v1-1
vy =(X'X) (izzlx,-xial?)(xx) : 4.31)

The label “HC” refers to “heteroskedasticity-consistent”. The label “HCO0” refers to this being the baseline
heteroskedasticity-consistent covariance matrix estimator.

We know, however, that é is biased towards zero (recall equation (4.22)). To estimate the variance o
the unbiased estimator s> scales the moment estimator 62 by n/(n — k) . Making the same adjustment
we obtain the estimator

2

SHC1 n I B
Vi :(n_k)(X’X) l(izzlxix§5?)(X'X) g (4.32)

While the scaling by n/(n — k) is ad hoc, HC1 is often recommended over the unscaled HCO estimator.
Alternatively, we could use the standardized residuals é; or the prediction errors ¢€;, yielding the esti-
mators

M=

L1

=HC2 1
vy T =(X'X) (

x,-x'-é?) (X’X)_1
1

.
Il

™=

i=1

A-hi)™" ,-) (x'x)”" (4.33)

=(x'x)”" (
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and

n
V%CB (x'x)™ (Z x,x,éf)(x x)™
i=1

N

=(x'x)”" (Z 1 -hi~ l.) (x'x)~". (4.34)
i=1
These are often called the “HC2” and “HC3” estimators as labeled.

The four estimators HCO, HC1, HC2 and HC3 are collectively called robust, heteroskedasticity-
consistent, or heteroskedasticity-robust covariance matrix estimators. The HCO estimator was first
developed by Eicker (1963) and introduced to econometrics by White (1980) and is sometimes called
the Eicker-White or White covariance matrix estimator. The degree-of-freedom adjustment in HC1 was
recommended by Hinkley (1977) and is the default robust covariance matrix estimator implemented in
Stata. It is implement by the “,r” option. For example, by a regression executed with the command “reg
y x, r” Inapplied econometrlc practice this is the currently most popular covariance matrix estima-
tor. The HC2 estimator was introduced by Horn, Horn and Duncan (1975) (and is implemented using
the vce (hc2) option in Stata). The HC3 estimator was derived by MacKinnon and White (1985) from the
jackknife principle (see Section 10.3), and by Andrews (1991a) based on the principle of leave-one-out
cross-validation (and is implemented using the vce (hc3) option in Stata).

Since (1 — hj;)"2 > (1 — h;;)~ ! > 1 it s straightforward to show that

~HCO0 ~HC2 ~HC3
Ve <Vp <V -

(See Exercise 4.10.) The inequality A < B when applied to matrices means that the matrix B— A is positive
definite.

In general, the bias of the covariance matrix estimators is quite complicated but they greatly simplify
under the assumption of homoskedasticity (4.3). For example, using (4.22),

(4.35)

E [VHCO X] = (x'x)! (éxix’i[E[?? IX]) (x'x)™

=(x'x)”" (Z xix) (1- hii)az) (x'x)™"!
i=1

n
= (x'x)"'o? - (x'x)7" (Z x,-x'ihii) (x'x)" 0
i=1

This calculation shows that V5 is biased towards zero.

By a similar calculation (again under homoskedasticity) we can calculate that the HC2 estimator is
unbiased

B[V x| = (x'x) " o?. (4.36)

(See Exercise 4.11.)

It might seem rather odd to compare the bias of heteroskedasticity-robust estimators under the as-
sumption of homoskedasticity but it does give us a baseline for comparison.

Another interesting calculation shows that in general (that is, without assuming homoskedasticity)

the HC3 estimator is biased away from zero. Indeed, using the definition of the prediction errors (3.45)

=Yi— xliﬁ(—i) = e; — X; (B(—i) -p)
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ol

~2 2 - - 2

&; = €; —2x; (By— B)ei+ (x; (B~ B))"-
Note that e; and B(_ ;) are functions of non-overlapping observations and are thus independent. Hence
E[(Biy—P)eilX]=0and

E[e}1X] =E[e} 1 X] - 2x[E[ (B~ B) es | X] +E (] (B~ B)) | X]

=02 +E [(x', (Bo-B) | X]

> o2,

It follows that
E[V57 x| = (x'x)” (; ixGE & ])(X’X)‘1
= ()" £ s ()

= Vﬁ'
This means that the HC3 estimator is conservative in the sense that it is weakly larger (in expectation)
than the correct variance for any realization of X.

. . . . . . . . =0
We have introduced five covariance matrix estimators, including the homoskedastic estimator Vﬁ

and the four HC estimators. Which should you use? The classic estimator 17% is typically a poor choice
as it is only valid under the unlikely homoskedasticity restriction. For this reason it is not typically used
in contemporary econometric research. Unfortunately, standard regression packages set their default
choice as V% so users must intentionally select a robust covariance matrix estimator.

Of the four robust estimators HC1 is the most commonly used as it is the default robust covariance
matrix option in Stata. However, HC2 and HC3 are preferred. HC2 is unbiased (under homoskedasticity)
and HC3 is conservative for any X. In most applications HC1, HC2 and HC3 will be very similar so this
choice will not matter. The context where the estimators can differ substantially is when the sample has
a large leverage value h;; for some observation (or multiple large leverage values). You can see this by
comparing the formulas (4.32), (4.33) and (4.34) and noting that the only difference is the scaling by the
leverage values h;;. If there is an observation with h;; close to one, then (1 — h;;)~'and (1 — h;;) 7% will be
large, giving this observation much greater weight for construction of the covariance matrix estimator.

Halbert L. White

Hal White (1950-2012) of the United States was an influential econometrician of
recent years. His 1980 paper on heteroskedasticity-consistent covariance matrix
estimation for many years was the most cited paper in economics. His research
was central to the movement to view econometric models as approximations,
and to the drive for increased mathematical rigor in the discipline. In addition to
being a highly prolific and influential scholar, he also co-founded the economic
consulting firm Bates White.
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4.16 Standard Errors

A variance estimator such as !73 is an estimator of the variance of the distribution of f. A more
easily interpretable measure of spread is its square root — the standard deviation. This is so important
when discussing the distribution of parameter estimators we have a special name for estimates of their
standard deviation.

Definition 4.2 A standard error s(B) for a real-valued estimator f is an esti-
mator of the standard deviation of the distribution of .

When f is a vector with estimator ff# and covariance matrix estimator Vg standard errors for individ-

ual elements are the square roots of the diagonal elements of V That is,

S('B])_\/» V JJ

When the classical covariance matrix estimator (4.30) is used the standard error takes the particularly
simple form
sBp=s/|(xx)7"] . 4.37)
Jji

As we discussed in the previous section there are multiple possible covariance matrix estimators so
standard errors are not unique. It is therefore important to understand what formula and method is used
by an author when studying their work. It is also important to understand that a particular standard error
may be relevant under one set of model assumptions but not under another set of assumptions.

To illustrate, we return to the log wage regression (3.13) of Section 3.7. We calculate that s%=0.160.
Therefore the homoskedastic covariance matrix estimate is

-1
5010 314) 01602( 0.002 —0.031)

72 =
B\ 314 20 -0.031 0.499

We also calculate that
763.26 48.513 )

— ! A2
Z(l hid)”" xix; z‘( 48,513 3.1078

Therefore the HC2 covariance matrix estimate is

Ach_( 5010 314 )‘1( 763.26 48513 )( 5010 314 )‘1

B 314 20 48513 3.1078 || 314 20
0.001 —0.015
"( —0.015  0.243 ) (4.38)

The standard errors are the square roots of the diagonal elements of these matrices. A conventional
format to write the estimated equation with standard errors is

log(wage) = 0.155 education+ 0.698 . (4.39)
(0.031) (0.493)
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Table 4.1: Standard Errors

Education Intercept

Homoskedastic (4.30) 0.045 0.707
HCO (4.31) 0.029 0.461
HC1 (4.32) 0.030 0.486
HC2 (4.33) 0.031 0.493
HC3 (4.34) 0.033 0.527

Alternatively, standard errors could be calculated using the other formulae. We report the different
standard errors in the following table.

The homoskedastic standard errors are noticeably different (larger in this case) than the others. The
robust standard errors are reasonably close to one another though the jackknife standard errors are larger
than the others.

4.17 Covariance Matrix Estimation with Sparse Dummy Variables

The heteroskedasticity-robust covariance matrix estimators can be quite imprecise in some contexts.
One is in the presence of sparse dummy variables — when a dummy variable only takes the value 1 or 0
for very few observations. In these contexts one component of the variance matrix is estimated on just
those few observations and will be imprecise. This is effectively hidden from the user.

To see the problem, let d;; be a dummy variable (takes on the values 1 and 0) and consider the
dummy variable regression

yi=p1d;+ B2 +e;. (4.40)

The number of observations for which d; = 1is n; = Z?:I d;. The number of observations for which
d; =0is ny = n— n;. We say the design is sparse if 7; is small.

To simplify our analysis, we take the most extreme case where n; = 1. The ideas extend to the case of
n1 > 1 but small, though with less dramatic effects.

In the regression model (4.40) we can calculate that the true covariance matrix of the least-squares
estimator for the coefficients under the simplifying assumption of conditional homoskedasticity is

2 / -1_ 2 1 1 _ g n -1
V=0 (X'X) _0(1 n) _n—l(—l 1 )

In particular, the variance of the estimator for the coefficient on the dummy variable is

Essentially, the coefficient f; is estimated from a single observation so its variance is roughly unaffected
by sample size.

Now let’s examine the standard HC1 covariance matrix estimator (4.32). The regression has perfect
fit for the observation for which d; = 1 so the corresponding residual is &; = 0. It follows that d;e; = 0 for
all i (either d; = 0 or ; = 0). Hence



CHAPTER 4. LEAST SQUARES REGRESSION 121

where s2 = (n—-2)"! 2 is the bias-corrected estimator of g2 . Together we find that

ll z
VI:ICI_( n ) 1 ( n -1)(0 0 n -1
b \n—2) -2\ -1 1 0 n-2)s* J{ -1 1

T m-12l -1 1)

In particular, the estimator for V3, is

- n
HC1 _ (2

b (n-12%
It has expectation
VA
E[7HO =2t = ey
(n-1?% n-1 b

VHC]

The variance estimator is extremely biased for VE It is too small by a multiple of n! The reported

variance — and standard error - is misleadingly small. The variance estimate erroneously mis-states the
precision of ,61.
The fact that V;Cl is biased is unlikely to be noticed by the applied researcher. Nothing in the re-
1
ported output will alert a researcher to the problem.
Another way to see the issue is to consider the estimator 8 = §; + 82 for the sum of the coefficients
. . . . . . =HCI
0 = B1 + B». This estimator has true variance o2. The variance estimator, however is V@C =0! (It equals
. =HC1 . w1
the sum of the four elements in V3 ). Clearly, the estimator “0” is biased for the true value o2.
Another insight is to examine the leverage values. For the observation with d; = 1 we can calculate

that
1 no-1)(1
hii= o (1 1)(—1 1 )(1)‘1'

This is an extreme leverage value.
The general solution is to replace the biased covariance matrix estimator

VHCI with the unbiased

1
estimator Vﬁycz (unbiased under homoskedasticity) or the conservative estimator VHC3 | This cannot
1 1

be done in the extreme sparse case n; = 1 (for ﬁ;cz and VHC3 cannot be calculated if h;; = 1 for any
1 1
observation) but applies otherwise. When £;; = 1 for some observation then V¢ and VEHCE' cannot be
1

1
calculated. In this case unbiased covariance matrix estimation appears to be impossible.

4.18 Computation

We illustrate methods to compute standard errors for equation (3.14) extending the code of Section
3.25.
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Stata do File (continued)

* Homoskedastic formula (4.30):

reg wage education experience exp2 if (mnwf == 1)

* HC1 formula (4.32):

reg wage education experience exp2 if (mnwf==1), r

* HC2 formula (4.33):

reg wage education experience exp2 if (mnwf == 1), vce(hc2)
* HC3 formula (4.34):

reg wage education experience exp2 if (mnwf == 1), vce(hc3)

R Program File (continued)

n <- nrow(y)

k <- ncol(x)

a<-n/n-k)

sig2 <- (t(e) %*% e)/ (n-k)

ul <- x*(e%*%matrix(1,1,k))

u2 <-x*((e/sqrt(1-leverage))%*%matrix(1,1,k))
u3 <-x*((e/(1-leverage))%*%matrix(1,1,k))
v0 <- xx*sig2

XX <- solve(t(x)%*%x)

vl <- XX %*% (t(ul)%*%ul) %*% xx
vla<-a*xx %*% (t(ul)%*%ul) %*% xx

V2 <- XX %*% (t(u2)%*%u2) %*% xx

v3 <- XX %*% (t(u3)%*%u3) %*% xx

s0 <- sqrt(diag(v0)) # Homoskedastic formula
sl <- sqrt(diag(vl)) #HCO
sla <- sqrt(diag(vla)) #HC1
s2 <- sqrt(diag(v2)) #HC2

s3 <- sqrt(diag(v3)) #HC3
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MATLAB Program File (continued)

[n,k]=size(x);

a=n/(n-k);

sig2=(e’*e)/ (n-k);
ul=x.*(e*ones(1,k));u2=x.*((e./sqrt(1-leverage))*ones(1,k));
u3=x.*((e./ (1-leverage))*ones(1,k));xx=inv(x'*x);
v0=xx*sig2;

vl=xx*(ul’*ul)*xx;

vla=a*xx*(ul’*ul)*xx;

v2=xx*(u2'*u2)*xx;

v3=xx*(u3’*u3)*xx;

sO=sqrt(diag(v0)); # Homoskedastic formula
sl=sqrt(diag(vl)); # HCO formula
sla=sqrt(diag(vla)); # HC1 formula
s2=sqrt(diag(v2)); # HC2 formula
s3=sqrt(diag(v3)); # HC3 formula

4.19 Measures of Fit

As we described in the previous chapter a commonly reported measure of regression fit is the regres-
sion R? defined as

n 32 ~2
R2—1- =% . 0"
- n —2 52"
i i) y
where 6?, =n! " (i —?)2 . R? can be viewed as an estimator of the population parameter
, var[x;f] o?
prE— 7 =1-—.
var [ yi] o5

However, 6> and 6?, are biased estimators. Theil (1961) proposed replacing these by the unbiased

n

versions s* and 65 = (n— D' X7 (yi ~7)? yielding what is known as R-bar-squared or adjusted R-

squared:

EZZI—S—ZZI— (n—l)Z?:l’e\lz

52 -0, (vi-7)7°

.52, . . .
While R” is an improvement on R? a much better improvement is

n 2 ~2
~ e o
RP=p—— ==l _q_ 2

Z?:l (yi_?)z Uy

where ¢€; are the prediction errors (3.45) and &2 is the MSPE from (3.47). As described in Section (4.13)
&2 is a good estimator of the out-of-sample mean-squared forecast error so R? is a good estimator of the
percentage of the forecast variance which is explained by the regression forecast. In this sense R? is a
good measure of fit.
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. c . . =2 =2 . .
One problem with R? which is partially corrected by R™ and fully corrected by R? is that R? necessarily
increases when regressors are added to a regression model. This occurs because R? is a negative function

of the sum of squared residuals which cannot increase when a regressor is added. In contrast, R and
R? are non-monotonic in the number of regressors. R? can even be negative, which occurs when an
estimated model predicts worse than a constant-only model.

In the statistical literature the MSPE &2 is known as the leave-one-out cross validation criterion
and is popular for model comparison and selection, especially in high-dimensional (non-parametric)
contexts. It is equivalent to use R? or 2 to compare and select models. Models with high R? (or low 62)
are better models in terms of expected out of sample squared error. In contrast, R?> cannot be used for
model selection as it necessarily increases when regressors are added to a regression model. R is also an
inappropriate choice for model selection (it tends to select models with too many parameters) though
a justification of this assertion requires a study of the theory of model selection. Unfortunately, R is

routinely used by some economists, possibly as a hold-over from previous generations.

s . =2 . . = ~
In summary, it is recommended to omit R?> and R". If a measure of fit is desired, report R? or 2.

Henri Theil

. . . —2
Henri Theil (1924-2000) of the Netherlands invented R and two-stage least
squares, both of which are routinely seen in applied econometrics. He also wrote
an early influential advanced textbook on econometrics (Theil, 1971).

4.20 Empirical Example

We again return to our wage equation but use a much larger sample of all individuals with at least
12 years of education. For regressors we include years of education, potential work experience, expe-
rience squared, and dummy variable indicators for the following: female, female union member, male
union member, married female?, married male, formerly married female3, formerly married male, His-
panic, black, American Indian, Asian, and mixed race? . The available sample is 46,943 so the parameter
estimates are quite precise and reported in Table 4.2. For standard errors we use the unbiased Horn-
Horn-Duncan formula.

Table 4.2 displays the parameter estimates in a standard tabular format. Parameter estimates and
standard errors are reported for all coefficients. In addition to the coefficient estimates the table also
reports the estimated error standard deviation and the sample size. These are useful summary measures
of fit which aid readers.

As a general rule it is advisable to always report standard errors along with parameter estimates. This
allows readers to assess the precision of the parameter estimates, and as we will discuss in later chapters,
form confidence intervals and t-tests for individual coefficients if desired.

The results in Table 4.2 confirm our earlier findings that the return to a year of education is approxi-
mately 12%, the return to experience is concave, single women earn approximately 10% less then single
men, and blacks earn about 10% less than whites. In addition, we see that Hispanics earn about 11% less

2Defining “married” as marital code 1, 2, or 3.
3Defining “formerly married” as marital code 4, 5, or 6.
4Race code 6 or higher.
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Table 4.2: OLS Estimates of Linear Equation for log(wage)

B sP
Education 0.117 0.001
Experience 0.033 0.001
Experience?/100 -0.056  0.002
Female -0.098 0.011
Female Union Member 0.023 0.020
Male Union Member 0.095 0.020
Married Female 0.016 0.010
Married Male 0.211 0.010
Formerly Married Female -0.006 0.012
Formerly Married Male 0.083 0.015
Hispanic -0.108 0.008
Black -0.096 0.008
American Indian -0.137 0.027
Asian -0.038 0.013
Mixed Race -0.041 0.021
Intercept 0.909 0.021
I3 0.565
Sample Size 46,943

Standard errors are heteroskedasticity-consistent (Horn-Horn-Duncan formula).

than whites, American Indians 14% less, and Asians and Mixed races about 4% less. We also see there
are wage premiums for men who are members of a labor union (about 10%), married (about 21%) or
formerly married (about 8%), but no similar premiums are apparent for women.

4.21 Multicollinearity

As discussed in Section 3.24, if X'X is singular then (X'X )_1 and [Ai are not defined. This situation
is called strict multicollinearity as the columns of X are linearly dependent, i.e., there is some a # 0
such that Xa = 0. Most commonly this arises when sets of regressors are included which are identically
related. In Section 3.24 we discussed possible causes of strict multicollinearity and discussed the related
problem of ill-conditioning which can cause numerical inaccuracies in severe cases.

A related common situation is near multicollinearity which is often called “multicollinearity” for
brevity. This is the situation when the regressors are highly correlated. An implication of near multi-
collinearity is that individual coefficient estimates will be imprecise. This is not necessarily a problem
for econometric analysis if the reported standard errors are accurate. However, robust standard errors
can be sensitive to large leverage values which can occur under near multicollinearity. This leads to the
undesirable situation where the coefficient estimates are imprecise yet the standard errors are mislead-
ingly small.

We can see the impact of near multicollinearity on precision in a simple homoskedastic linear regres-
sion model with two regressors

Yi=x1if1+x2i 02 + €i,
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and

xx- ( Loe ) .

n p 1
In this case , o )

var[iﬂx]:"—( L e ) T ( Lo-p )
n\lp 1 n(l-p?)\ —p 1

The correlation p indexes collinearity since as p approaches 1 the matrix becomes singular. We can see
the effect of collinearity on precision by observing that the variance of a coefficient estimate o2 [ (1 - p?)]
approaches infinity as p approaches 1. Thus the more “collinear” are the regressors the worse the preci-
sion of the individual coefficient estimates.

What is happening is that when the regressors are highly dependent it is statistically difficult to dis-
entangle the impact of §; from that of ;. As a consequence the precision of individual estimates are
reduced.

Many early-generation textbooks overemphasized multicollinearity. An amusing parody of these
texts appeared in Chapter 23.3 of Goldberger’s A Course in Econometrics (1991), part of which is reprinted
below. To understand his basic point you should notice how the estimation variance o [ (1 — p?)] ! de-
pends equally and symmetrically on the correlation p and the sample size n. Goldberger was pointing
out that the only statistical implication of multicollinearity in the homoskedastic model is a lack of preci-
sion. Small sample sizes have the exact same implication. (What both Goldberger and these other early
texts missed, however, is that multicollinearity increases the bias of robust standard errors as discussed
in Section 4.17.)

-1

Arthur S. Goldberger

Art Goldberger (1930-2009) was one of the most distinguished members of the
Department of Economics at the University of Wisconsin. His Ph.D. thesis devel-
oped a pioneering macroeconometric forecasting model (the Klein-Goldberger
model). Most of his remaining career focused on microeconometric issues. He
was the leading pioneer of what has been called the Wisconsin Tradition of em-
pirical work — a combination of formal econometric theory with a careful critical
analysis of empirical work. Goldberger wrote a series of highly regarded and in-
fluential graduate econometric textbooks, including Econometric Theory (1964),
Topics in Regression Analysis (1968), and A Course in Econometrics (1991).
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Micronumerosity
Arthur S. Goldberger
A Course in Econometrics (1991), Chapter 23.3

Econometrics texts devote many pages to the problem of multicollinearity in mul-
tiple regression, but they say little about the closely analogous problem of small sample
size in estimating a univariate mean. Perhaps that imbalance is attributable to the lack
of an exotic polysyllabic name for “small sample size.” If so, we can remove that imped-
iment by introducing the term micronumerosity.

Suppose an econometrician set out to write a chapter about small sample size in
sampling from a univariate population. Judging from what is now written about multi-
collinearity, the chapter might look like this:

1. Micronumerosity

The extreme case, “exact micronumerosity,” arises when n = 0, in which case the
sample estimate of u is not unique. (Technically, there is a violation of the rank
condition n > 0 : the matrix 0 is singular.) The extreme case is easy enough to
recognize. “Near micronumerosity” is more subtle, and yet very serious. It arises
when the rank condition n > 0 is barely satisfied. Near micronumerosity is very
prevalent in empirical economics.

2. Consequences of micronumerosity

The consequences of micronumerosity are serious. Precision of estimation is
reduced. There are two aspects of this reduction: estimates of 4 may have large
errors, and not only that, but Vj will be large.

Investigators will sometimes be led to accept the hypothesis u = 0 because y/'y
is small, even though the true situation may be not that p = 0 but simply that the
sample data have not enabled us to pick y up.

3. Testing for micronumerosity

Tests for the presence of micronumerosity require the judicious use of various
fingers. Some researchers prefer a single finger, others use their toes, still others
let their thumbs rule.

A generally reliable guide may be obtained by counting the number of observa-
tions. Most of the time in econometric analysis, when 7 is close to zero, it is also
far from infinity.

4. Remedies for micronumerosity

If micronumerosity proves serious in the sense that the estimate of ¢ has an un-
satisfactorily low degree of precision, we are in the statistical position of not being
able to make bricks without straw.




CHAPTER 4. LEAST SQUARES REGRESSION 128

4.22 Clustered Sampling

In Section 4.2 we briefly mentioned clustered sampling as an alternative to the assumption of ran-
dom sampling. We now introduce the framework in more detail and extend the primary results of this
chapter to encompass clustered dependence.

It might be easiest to understand the idea of clusters by considering a concrete example. Duflo,
Dupas and Kremer (2011) investigate the impact of tracking (assigning students based on initial test
score) on educational attainment in a randomized experiment. An extract of their data set is available
on the textbook webpage in the file DDK2011.

In 2005, 140 primary schools in Kenya received funding to hire an extra first grade teacher to reduce
class sizes. In half of the schools (selected randomly) students were assigned to classrooms based on
an initial test score (“tracking”); in the remaining schools the students were randomly assigned to class-
rooms. For their analysis the authors restricted attention to the 121 schools which initially had a single
first-grade class.

The key regression® in the paper is

TestScorejg = —0.071+0.138 Tmckingg +eig (4.41)

where TestScore;g is the standardized test score (normalized to have mean 0 and variance 1) of student i
in school g, and Trackingg is a dummy equal to 1 if school g was tracking. The OLS estimates indicate
that schools which tracked the students had an overall increase in test scores by about 0.14 standard
deviations, which is quite meaningful. More general versions of this regression are estimated, many of
which take the form

TestScorejg = a + mickingg + x;. ¢ B+eig (4.42)

where x; is a set of controls specific to the student (including age, gender and initial test score).

A difficulty with applying the classical regression framework is that student achievement is likely
to be correlated within a given school. Student achievement may be affected by local demographics,
individual teachers, and classmates, all of which imply dependence. These concerns, however, do not
suggest that achievement will be correlated across schools, so it seems reasonable to model achievement
across schools as mutually independent.

In clustering contexts it is convenient to double index the observations as (y;g, x;g) where g =1,...,G
indexes the cluster and i = 1,...,ng indexes the individual within the gth cluster. The number of ob-
servations per cluster ng may vary across clusters. The number of clusters is G. The total number of
observations is n = Zgzl ng. In the Kenyan schooling example the number of clusters (schools) in the
estimation sample is G = 121, the number of students per school varies from 19 to 62, and the total
number of observations is n = 5795.

While it is typical to write the observations using the double index notation (y;g, X;g) it is also useful
to use cluster-level notation. Let y, = (V1gs - ¥ngg) and Xg = (¥14, ..., Xn,g)" denote the ng x 1 vector of
dependent variables and ng x k matrix of regressors for the g'" cluster. A linear regression model can be
written for the individual observations as

— ! .
Yig = xigﬁ+ €ig

and using cluster notation as
Yo=X¢P+eg (4.43)

5Table 2, column (1). Duflo, Dupas and Kremer (2011) report a coefficient estimate of 0.139, perhaps due to a slightly different
calculation to standardize the test score.
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where eg = (e; g1 €ny g)’ is a ng x 1 error vector. We can also stack the observations into full sample
matrices and write the model as
y=Xp+e.

Using this notation we can write the sums over the observations using the double sum Zgzl Zlnj 1
This is the sum across clusters of the sum across observations within each cluster. The OLS estimator
can be written as

n

-1 G ng
/
Xighig 2. D XigVig
i=1 g=li=1

oq

=)
I
—_——
Mo

g=1li=
G 1/¢
= (Z Xﬁng) (Z ngyg) (4.44)
g=1 g=1
= (x'x)"" (X'y).

The OLS residuals are ;g = yig — X gfi in individual level notation and €g = y, — X gfi in cluster level
notation.

The standard clustering assumption is that the clusters are known to the researcher and that the
observations are independent across clusters.

Assumption 4.4 The clusters (y, X¢) are mutually independent across clusters g.

In our example clusters are schools. In other common applications cluster dependence has been
assumed within individual classrooms, families, villages, regions, and within larger units such as indus-
tries and states. This choice is up to the researcher though the justification will depend on the context,
the nature of the data, and will reflect information and assumptions on the dependence structure across
observations.

The model is a linear regression under the assumption

Eleg | Xg] =0. (4.45)
This is the same as assuming that the individual errors are conditionally mean zero
Eleigl Xg] =0

or that the conditional mean of Vg given Xy is linear. As in the independent case equation (4.45) means
that the linear regression model is correctly specified. In the clustered regression model this requires that
all all interaction effects within clusters have been accounted for in the specification of the individual
regressors X;g.

In the regression (4.41) the conditional mean is necessarily linear and satisfies (4.45) since the regres-
sor Trackingg is a dummy variable at the cluster level. In the regression (4.42) with individual controls
(4.45) requires that the achievement of any student is unaffected by the individual controls (e.g. age,
gender and initial test score) of other students within the same school.

Given (4.45) we can calculate the mean of the OLS estimator. Substituting (4.43) into (4.44) we find

R G e
B-p= (Z ng,xg) (lejgeg).
2=

g=1
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The mean of ﬁ — P conditioning on all the regressors is

E[B-B|X]
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The first equality holds by linearity, the second by Assumption 4.4, and the third by (4.45).
This shows that OLS is unbiased under clustering if the conditional mean is linear.

Theorem 4.8 In the clustered linear regression model (Assumption 4.4
and (4.45))

E[BIX]=8.

Now consider the covariance matrix of fi Let
3g =E|egel | X]

denote the ng x ng conditional covariance matrix of the errors within the g'" cluster. Since the observa-
tions are independent across clusters,

G
> Xgeg|IX
g=1

G
var = Zvar[X;,engg]
g=1
G ! /
= Y XE|egel | X, X,
g=1
& !
=) X ZX,
g=1
d
“Ia,. (4.46)
It follows that
V= var (B1X]
=(x'x)",(x'x)"". (4.47)

This differs from the formula in the independent case due to the correlation between observations
within clusters. The magnitude of the difference depends on the degree of correlation between observa-
tions within clusters and the number of observations within clusters. To see this, suppose that all clusters
have the same number of observations ng = N, E [e?g | xg] = g2, [E[eigegg | xg] = 02p for i # ¢, and the
regressors x;¢ do not vary within a cluster. In this case the exact variance of the OLS estimator equals®
(after some calculations)

Vs=(X'X)"o*(1+p(N-1). (4.48)

6This formula is due to Moulton (1990).
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If p > 0 the exact variance is appropriately a multiple p N of the conventional formula. In the Kenyan
school example the average cluster size is 48. If p = 0.25 this means the exact variance exceeds the con-
ventional formula by a factor of about twelve. In this case the correct standard errors (the square root of
the variance) are a multiple of about three times the conventional formula. This is a substantial differ-
ence and should not be neglected.

Arellano (1987) proposed a cluster-robust covariance matrix estimator which is an extension of the
White estimator. Recall that the insight of the White covariance estimator is that the squared error
e? is unbiased for E [e? |xi] = 0'?. Similarly with cluster dependence the matrix ege;, is unbiased for
E [ege’g | X g] = 2. This means that an unbiased estimator for (4.46) is Q,, = Zgzl Xgege X, Thisisnot
feasible, but we can replace the unknown errors by the OLS residuals to obtain Arellano’s estimator

[
Mo

A N
Q, Xgegeng

oQ
Il
—

[
Mo

ng I’lg

/PPN
DY XigXpo€igllg
li=1/¢=1

8

G [ ng g !
2 (Z xig?ig) (Z xegéeg) . (4.49)
g=1\i=1

/=1

The three expressions in (4.49) give three equivalent formulae which could be used to calculate Q,,. The
final expression writes ©,, in terms of the cluster sums ZZi | X¢g€rg which is the basis for our example R
and MATLAB codes shown below.

Given the expressions (4.46)-(4.47) a natural cluster covariance matrix estimator takes the form

Vs=a,(X'X)"' @, (x'x)" (4.50)

where a, is a possible finite-sample adjustment. The Stata cluster command uses

w=(ille)
"\n-kJ\G-1)
The factor G/(G—1) was derived by Chris Hansen (2007) in the context of equal-sized clusters to improve
performance when the number of clusters G is small. The factor (n—1)/(n—k) is an ad hoc generalization
which nests the adjustment used in (4.32) since G = n implies the simplification a,, = n/(n— k).

Alternative cluster-robust covariance matrix estimators can be constructed using cluster-level pre-
diction errors such as

eg =Yg~ XgBg

where B(_ g 1s the least-squares estimator omitting cluster g. Similarly as in Section 3.20, we can show
that

&g =1, — Xg (X’X)_lX:g)_l’ég (4.51)
and
B(—g) = B - (X,X)_l X;;rég- (4.52)
We then have the robust covariance matrix estimator
SCR3 (-1 oo -1
vy =(X'X) (gzl Xgegegxg) (xX'x)". (4.53)

The label “CR” refers to “cluster-robust” and “CR3” refers to the analogous formula for the HC3 estimator.
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Similarly to the heteroskedastic-robust case you can show that CR3 is a conservative estimator for
VB in the sense that the conditional expectation of V5% exceeds fo‘ This covariance matrix estimator
may be more cumbersome to implement, however, as the cluster-level prediction errors (4.51) cannot be
calculated in a simple linear operation and appear to require a loop (across clusters) to calculate.

To illustrate in the context of the Kenyan schooling example we present the regression of student test
scores on the school-level tracking dummy with two standard errors displayed. The first (in parenthesis)
is the conventional robust standard error. The second [in square brackets] is the clustered standard error
where clustering is at the level of the school.

TestScorejg = — 0.071 + 0.138 Tmckingg +ejg. (4.54)
(0.019) (0.026)
[0.054] [0.078]

We can see that the cluster-robust standard errors are roughly three times the conventional robust
standard errors. Consequently, confidence intervals for the coefficients are greatly affected by the choice.

For illustration, we list here the commands needed to produce the regression results with clustered
standard errors in Stata, R, and MATLAB.

Stata do File

* Load data:

use "DDK2011.dta"

* Standard the test score variable to have mean zero and unit variance:
egen testscore = std(totalscore)

*  Regression with standard errors clustered at the school level:

reg testscore tracking, cluster(schoolid)

You can see that clustered standard errors are simple to calculate in Stata.
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R Program File

# Load the data and create variables

data <- read.table("DDK2011.txt",header=TRUE,sep="\ t")
y <- scale(as.matrix(data$totalscore))

n <- nrow(y)

x <- cbind(as.matrix(data$tracking), matrix(1,n,1))
schoolid <- as.matrix(data$schoolid)

k <- ncol(x)

XX <- t(X) %*%x

invx <- solve(xx)

beta <- solve(xx,t(x)%*%y)

xe <- x*rep(y-x%*%beta,times=k)

# Clustered robust standard error

Xe_sum <- rowsum (xe,schoolid)

G <- nrow(xe_sum)

omega <- t(xe_sum)%*%xe_sum

scale <- G/(G-1)*(n-1)/(n-k)

V_clustered <- scale*invx%*%omega%*%invx
se_clustered <- sqrt(diag(V_clustered))
print(beta)

print(se_clustered)

Programming clustered standard errors in R is also relatively easy due to the convenient rowsum com-
mand which sums variables within clusters.
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MATLAB Program File

% Load the data and create variables
data = xlsread('DDK2011.xlsx");

schoolid = data(;,2);

tracking = data(:,7);

totalscore = data(:,62);

y = (totalscore - mean(totalscore))./std(totalscore);
x = [tracking,ones(size(y,1),1)];

[n,k] = size(x);

XX = X' *X;

invx = inv(xx);

beta = xx\

e =y - x*beta;

% Clustered robust standard error
[schools,~,schoolidx] = unique(schoolid);
G = size(schools,1);

cluster_sums = zeros(G,k);

forj=1:k
cluster_sums(:,j) = accumarray(schoolidx,x(:,j).*e);
end

omega = cluster_sums’*cluster_sums;
scale = G/(G-1)*(n-1)/(n-k);
V_clustered = scale*invx*omega*invx;
se_clustered = sqrt(diag(V_clustered));
display(beta);

display(se_clustered);

Here we see that programming clustered standard errors in MATLAB is less convenient than the other
packages but still can be executed with just a few lines of code. This example uses the accumarray
command which is similar to the rowsum command in R but only can be applied to vectors (hence the
loop across the regressors) and works best if the clusterid variable are indices (which is why the original
schoolid variable is transformed into indices in schoolidx. Application of these commands requires care
and attention.

4.23 Inference with Clustered Samples

In this section we give some cautionary remarks and general advice about cluster-robust inference
in econometric practice. There has been remarkably little theoretical research about the properties of
cluster-robust methods — until quite recently — so these remarks may become dated rather quickly.

In many respects cluster-robust inference should be viewed similarly to heteroskedaticity-robust in-
ference where a “cluster” in the cluster-robust case is interpreted similarly to an “observation” in the
heteroskedasticity-robust case. In particular, the effective sample size should be viewed as the number
of clusters not the “sample size” n. This is because the cluster-robust covariance matrix estimator ef-
fectively treats each cluster as a single observation and estimates the covariance matrix based on the
variation across cluster means. Hence if there are only G = 50 clusters inference should be viewed as
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(at best) similar to heteroskedasticity-robust inference with 7 = 50 observations. This is a bit unsettling
for if the number of regressors is large (say k = 20), then the covariance matrix will be estimated quite
imprecisely.

Furthermore, most cluster-robust theory (for example, the work of Chris Hansen (2007)) assumes
that the clusters are homogeneous including the assumption that the cluster sizes are all identical. This
turns out to be a very important simplication. When this is violated — when, for example, cluster sizes are
highly heterogeneous - the regression should be viewed as roughly equivalent to the heteroskedasticity-
robust case with an extremely high degree of heteroskedasticity. Cluster sums have variances which are
proportional to the cluster sizes so if the latter is heterogeneous so will be the variances of the clus-
ter sums. This also has a large effect on finite sample inference. When clusters are heterogeneous then
cluster-robust inference is similar to heteroskedasticity-robust inference with highly heteroskedastic ob-
servations.

Put together, if the number of clusters G is small and the number of observations per cluster is highly
varied then we should interpret inferential statements with a great degree of caution. Unfortunately,
small G with heterogeneous cluster sizes is commonplace. Many empirical studies on U.S. data cluster
at the “state” level meaning that there are 50 or 51 clusters (the District of Columbia is typically treated
as a state). The number of observations vary considerably across states since the populations are highly
unequal. Thus when you read empirical papers with individual-level data but clustered at the “state”
level you should be cautious and recognize that this is equivalent to inference with a small number of
extremely heterogeneous observations.

A further complication occurs when we are interested in treatment as in the tracking example given
in the previous section. In many cases (including Duflo, Dupas and Kremer (2011)) the interest is in the
effect of a treatment applied at the cluster level (e.g., schools). In many cases (not, however, Duflo, Dupas
and Kremer (2011)), the number of treated clusters is small relative to the total number of clusters; in an
extreme case there is just a single treated cluster. Based on the reasoning given above these applications
should be interpreted as equivalent to heteroskedasticity-robust inference with a sparse dummy variable
as discussed in Section 4.17. As discussed there, standard error estimates can be erroneously small.
In the extreme of a single treated cluster (in the example, if only a single school was tracked) then the
estimated coefficient on tracking will be very imprecisely estimated yet will have a misleadingly small
cluster standard error. In general, reported standard errors will greatly understate the imprecision of
parameter estimates.

4.24 At What Level to Cluster?

A practical question which arises in the context of cluster-robust inference is “At what level should
we cluster?” In some examples you could cluster at a very fine level, such as families or classrooms, or
at higher levels of aggregation, such as neighborhoods, schools, towns, counties, or states. What is the
correct level at which to cluster? Rules of thumb have been advocated by practitioners but at present
there is little formal analysis to provide useful guidance. What do we know?

First, suppose cluster dependence is ignored or imposed at too fine a level (e.g. clustering by house-
holds instead of villages). Then variance estimators will be biased as they will omit covariance terms. As
correlation is typically positive, this suggests that standard errors will be too small giving rise to spurious
indications of significance and precision.

Second, suppose cluster dependence is imposed at too aggregate a measure (e.g. clustering by states
rather than villages). This does not cause bias. But the variance estimators will contain many extra
components so the precision of the covariance matrix estimator will be poor. This means that reported
standard errors will be imprecise — more random - than if clustering had been less aggregate.
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These considerations show that there is a trade-off between bias and variance in the estimation of the
covariance matrix by cluster-robust methods. It is not at all clear — based on current theory — what to do.
I state this emphatically. We really do not know what is the “correct” level at which to do cluster-robust
inference. This is a very interesting question and should certainly be explored by econometric research.

One challenge is that in empirical practice many people have observed: “Clustering is important.
Standard errors change a lot whether or not we properly cluster. Therefore we should only report clus-
tered standard errors.” The flaw in this reasoning is that we do not know why in a specific empirical
example the standard errors change under clustering. One possibility is that clustering reduces bias and
thus is more accurate. The other possibility is that clustering adds sampling noise and is thus less accu-
rate. In reality it is likely that both factors are present.

In any event a researcher should be aware of the number of clusters used in the reported calculations
and should treat the number of clusters as the effective sample size for assessing inference. If the number
of clusters is, say, G = 20, this should be treated as a very small sample.

To illustrate the thought experiment consider the empirical example of Duflo, Dupas and Kremer
(2011). They reported standard errors clustered at the school level and the application uses 111 schools.
Thus G = 111 is the effective sample size. The number of observations (students) ranges from 19 to 62,
which is reasonably homogeneous. This seems like a well balanced application of clustered variance
estimation. However, one could imagine clustering at a different level of aggregation. We might consider
clustering at a less aggregate level such as the classroom level, but this cannot be done in this particular
application as there was only one classroom per school. Clustering at a more aggregate level could be
done in this application at the level of the “zone”. However, there are only 9 zones. Thus if we cluster by
zone, G =9 is the effective sample size which would lead to imprecise standard errors. In this particular
example clustering at the school level (as done by the authors) is indeed the prudent choice.
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4.25 Technical Proofs*

Proof of Theorem 4.6 The proof technique is to calculate the Cramér-Rao bound from a carefully crafted
parametric model. (For the Cramér-Rao Theorem, see, for example, Chapter 10 of Introduction to Econo-
metrics.) We use a conditional version of the Cramér-Rao Theorem: If f (y | x,0) is a correctly specified
probability model which depends on a finite dimensional parameter @ € @, the support of y does not
depend on 8, @ lies in the interior of ®, and if 0 is an unbiased estimator of 8 based on a sample of size
n, then var [0 | X| = (X, Fp(x;))”" where . (x) is the information matrix for model f (y | x,8).

For ease of exposition we focus on the case where e; has a conditional density f (e| x). (The same
argument applies to the discrete case using instead the probability mass function.)

The idea is as follows. The Cramér-Rao Theorem shows that within a parametric model an unbi-
ased estimator cannot have lower variance than the inverse information matrix. This is true for any
correctly-specified parametric model — which means any parametric model which includes the true dis-
tribution as a special case. Thus any correctly-specified parametric model produces a valid variance
lower bound. The best bound is the supremum across these variance lower bounds. Rather than com-
puting that directly we recognize that our goal is to produce a model with the specific variance lower
bound (X’D~'X)~". This is achieved if the information matrix equals X'D~' X, which is achieved if the
model has the likelihood score xieiai’z. This suggests the parametric model for the error e;

0'xe
f(elx,B)—f(elx)(1+02—(x))
where f (e | x) is the true conditional density. This model does not quite work, however, since this den-
sity is not necessarily non-negative. Consequently we use a technically more detailed argument using
trimming to ensure a non-negative density.
For some 0 < ¢ < oo define
72 (x) =E[e?1 (le;] < ¢/2) | x; = x]

and o2 = °(x;). Notice that as ¢ — oo, 72 — o7 for each i. Set § > 0. Pick ¢ sufficiently large so that
5? =0 foralli. Let M = max;<, || x;|l.
Define the trimmed error

ui=e;l(lej|<c/2)—-Ele;l(lejl <c/2)| xi].

Notice that u; satisfies |u;| < ¢, E[u; | x;] =0, and E? =Ele;u; | x; = x].
Consider the parametric model for e given x

!
f(elx,0)=f(e|x)(1+ 0’(‘”))

o (x

where the parameter 0 € R* takes values in the set

{nons%}.

This model for e implies that y has the parameteric density f (y - x'f | x,0).
The assumed bounds imply that

0'x;u; Ol llx; | |u;
iU <|| NEAN z|<1

0

72 (x;)
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This implies
0<sf(elx,0)<2f(e|x).
We calculate that
0'x 0'x

u
de=1+
72 (%) 72 (%)

ff(elx,ﬂ)dysz(e|x)de+ff(e|x) Elulx]=1.
the last equality since E [u | x] = 0. Together, these facts imply that f (y | x,8) is a valid conditional density
function.

The bound f(e|x,0) < 2f (e| x) means that any moment which is finite under f (e[ x) is also finite
under f (e | x,0). In particular, using the notation Eg [- | x] to denote expectation under the conditional
density f (e| x,0) and Eg [-] under the the unconditional distribution, this implies that

Eg €71 x;] <2E[e? | x;] <oo0

and thus
Eg [€?] =E[Eg [€7 | x;]] < 2E[E[e? | x;]] = 2E [e?] <o

so the model f (e| x,0) has a finite second moment.
The conditional mean of y; in this model is

oly13] = [ yf(y-x'B1x.6)dy

=x'ﬁ+fef(e|x)de+_zx feuf(elx)de
o°(x)
—x'(f+9).

Thus the conditional mean is linear in x, and f + 8 corresponds to the regression coefficient.

When 6 =0, f(e|x,0) = f (e| x) equals the true conditional density of e. Thus f (e | x,0) is a correctly
specified model with true parameter value @ = 0.

Together, we have shown that the parametric model f (e| x,0) satisfies the conditions of the stated
theorem as well as the Cramér-Rao Theorem. Suppose we have an estimator B which is unbiased for .
Set @ = f— B. This is unbiased for @, and @ and f have the same variance. Since 8 is unbiased its variance
is bounded below by the inverse Fisher information. Consequently ii has the same variance bound.

We now calculate the Fisher information. The score is

0 xulc?(x) _
S=—logf(el|x0) = =xuoc “(x).
56 %87 -0 1+0'xu/5°(®) |,y

The information matrix for the i’ observation is

——2 f——4_2
Fo(x;) =var(S;) = var(x;u;0; | x;) = X;x,0,; V;

where v = E [u7 | x;]. That for the full sample is
n n
Y Fpxp) =) xixiT;vi.
i=1 i=1
By the Cramér-Rao theorem,

-1
- - n
var[fB| X| =var[0 | X] = (Z xix;Ei_‘lv?) )
i=1
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This holds for any c. As ¢ — co we have 5;4 vf - al._z. We deduce

var [ | X] = (i )_ =(x'p7'x)"".

This is the stated bound. [ ]
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Exercises

Exercise 4.1 For some integer k, set yj = E[ yk].

(a) Construct an estimator iy for p.
(b) Show that fij is unbiased for p.
(c) Calculate the variance of fix, say var [fix]. What assumption is needed for var [fix| to be finite?

(d) Propose an estimator of var [fi].

Exercise 4.2 Calculate E [(? - u)s], the skewness of y. Under what condition is it zero?

1yn

Exercise 4.3 Explain the difference between y and p. Explain the difference between n™" 37",

E[xix}].

x;x; and

Exercise 4.4 True or False. If y; = x; B+e;, x; €R, E[e; | x;] =0, and &; is the OLS residual from the regres-

sion of y; on x;, then Y.7" | x?éi =0.

Exercise 4.5 Prove (4.15) and (4.16)
Exercise 4.6 Prove Theorem 4.5.

Exercise 4.7 Let [~5 be the GLS estimator (4.17) under the assumptions (4.13) and (4.14). Assume that
Q = ¢?Z with T known and ¢? unknown. Define the residual vector € = y — X, and an estimator for c?

(@) Show (4.18).

(b) Show (4.19).

(c) Prove that@=M;e, where M; = I- X (X'Z1X) "' xX'=L.
(d) Prove that M=~ "M, =21 -2 1x(x'=1x) ' X'z,
(e) FindE[¢*| X].

(f) Is ¢ a reasonable estimator for ¢>?

Exercise 4.8 Let (y;,x;) be a random sample with E [y | X] = X . Consider the Weighted Least Squares
(WLS) estimator of

= -1

Puis=(X'WX) " (X'Wy)

where W = diag(wy, ..., w,) and w; = x]Tl.z , where x;; is one of the x;.

(a) In which contexts would Iiwls be a good estimator?

(b) Using your intuition, in which situations do you expect Ewls to perform better than OLS?

Exercise 4.9 Show (4.27) in the homoskedastic regression model.
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Exercise 4.10 Prove (4.35).

Exercise 4.11 Show (4.36) in the homoskedastic regression model.

Exercise 4.12 Let u=E[y;], 0% =E [(yi - ,u)z] and 3 =E [(yi - p)s] and consider the sample mean y =
Ly yi.FindE [(?— u)g] as a function of y, 02, u3 and n.

Exercise 4.13 Take the simple regression model y; = x; f + e;, x; € R, E[e; | x;] = 0. Define 0'? =E [e? | xi]
and p3; =E[€? | x;] and consider the OLS coefficient f. Find E [(E— [3)3 | X] .

Exercise 4.14 Take a regression model with i.i.d. observations (y;, x;) and scalar x;

Vi=xif+e;
Ele; | x;]1=0.

The parameter of interest is @ = 2. Consider the OLS estimates E and 8 = ,32
(a) Find E[6 | X] using our knowledge of E[B | X| and V5 =var [B1X].]Is 8 biased for 62
(b) Suggest an (approximate) biased-corrected estimator * using an estimator VB for V3.
(c) For* to be potentially unbiased, which estimator of VE is most appropriate?
Under which conditions is §* unbiased?

Exercise 4.15 Consider ani.i.d. sample {y;, x;} i = 1,...,n where x; is k x 1. Assume the linear conditional
expectation model

yi=xp+e;
Ele; | x;]=0

Assume that n~ X' X = I (orthonormal regressors). Consider the OLS estimator f for f.
(a) Find Vif = var [ f]
(b) In general, are ,3 j and Bg for j # ¢ correlated or uncorrelated?
(c) Find a sufficient condition so that E jand ,3[ for j # ¢ are uncorrelated.

Exercise 4.16 Take the linear homoskedastic CEF
yi =x;B+e (4.55)

Ele;|x;]1=0

E[e?|x;] =0?
and suppose that y; is measured with error. Instead of y;, we observe y; which satisfies

Vi=Vyitu
where u; is measurement error. Suppose that e; and u; are independent and
Elu;|x;1=0

Eluf | xi] = 07 x1)
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(a) Derive an equation for y; as a function of x;. Be explicit to write the error term as a function of the
structural errors e; and u;. What is the effect of this measurement error on the model (4.55)2

(b) Describe the effect of this measurement error on OLS estimation of § in the feasible regression of
the observed y; on x;.

(c) Describe the effect (if any) of this measurement error on standard error calculation for p.

Exercise 4.17 Suppose that for a pair of observables (y;, x;) with x; > 0 that an economic model implies

)1/2

Elyilxi]=(y+6x; (4.56)

A friend suggests that (given an iid sample) you estimate y and 6 by the linear regression of yl? on x;, that
is, to estimate the equation
y? =a+Bx;+e;. (4.57)

(a) Investigate your friend’s suggestion. Define u; = y;—(y + (9)61-)1/2 .Show that E[u; | x;] = 0is implied
by (4.56).

(b) Usey;=(y+0x;) Y24 u; to calculate E [¥7 | x;]. What does this tell you about the implied equation
(4.57)2

(c) Canyou recover either y and/or 6 from estimation of (4.57)? Are additional assumptions required?
(d) Isthis areasonable suggestion?

Exercise 4.18 Take the model

Yi= xlliﬁl + xlzl'ﬁz te;
Ele; [x;]1=0
Ele? | x;]=0"
where x; = (x1;,%;), with x1; k1 x 1 and x»; k» x 1. Consider the short regression
yi= % By +a
and define the error variance estimator

Sz=

1 n
e

1
n_kll 1

Find E [s* | X].

Exercise 4.19 Let ybe nx 1, X be n x k, and X* = XC where C is k x k and full-rank. Let f be the least-
squares estimator from the regression of y on X, and let V be the estimate of its asymptotic covariance
matrix. Let B~ and V" be those from the regression of y on X*. Derive an expression for V" as a function
of V.

Exercise 4.20 Take the model

y=Xpf+e
Ele| X]1=0
Elee' | X] = Q.
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Assume for simplicity that € is known. Consider the OLS and GLS estimators B = (X'X) ™" (Xy) and
p=(x'Q7'x )_1 (X'Q"'y). Compute the (conditional) covariance between f and f:

E[(B-B)(B-B)1X]
Find the (conditional) covariance matrix for [Ai - 75 :

E[(B-B)(B-B) 1X|.
Exercise 4.21 The modelis

yi=x;p+e
Ele; | x;1=0
E[e?|x;] =0?
Q = diag{o?, ..., 02}
The parameter § is estimated both by OLS f = (X’X)_IX’y and GLS p = (X’Q_IX)_1 X'Q7ly. Let

¢=y—Xpand &= y— X denote the residuals. Let R =1-¢'¢/(y*'y*) and R =1 - &'¢/(y*'y*) denote
the equation R?> where y* = y — 7. If the error e; is truly heteroskedastic will R? or R? be smaller?

Exercise 4.22 An economist friend tells you that the assumption that the observations (y;, x;) are i.i.d.
implies that the regression y; = xf + e; is homoskedastic. Do you agree with your friend? How would
you explain your position?

Exercise 4.23 Take the linear regression model with E [y | X| = X . Define the ridge regression estimator
B=(X'X+1,0)"' Xy

where A > 0 is a fixed constant. Find E [B| X]. Is f biased for 2

Exercise 4.24 Continue the empirical analysis in Exercise 3.24.

(a) Calculate standard errors using the homoskedasticity formula and using the four covariance ma-
trices from Section 4.15.

(b) Repeatin your second programming language. Are they identical?

Exercise 4.25 Continue the empirical analysis in Exercise 3.26. Calculate standard errors using the HC3
method. Repeat in your second programming language. Are they identical?

Exercise 4.26 Extend the empirical analysis reported in Section 4.22. Do a regression of standardized
test score (totalscore normalized to have zero mean and variance 1) on tracking, age, gender, being as-
signed to the contract teacher, and student’s percentile in the initial distribution. (The sample size will
be smaller as some observations have missing variables.) Calculate standard errors using both the con-
ventional robust formula, and clustering based on the school.

(a) Compare the two sets of standard errors. Which standard error changes the most by clustering?
Which changes the least?

(b) How does the coefficient on tracking change by inclusion of the individual controls (in compari-
son to the results from (4.54))?



Chapter 5

Normal Regression

5.1 Introduction

This chapter introduces the normal regression model, which is a special case of the linear regression
model. It is important as normality allows precise distributional characterizations and sharp inferences.
It also provides a baseline for comparison with alternative inference methods, such as asymptotic ap-
proximations and the bootstrap.

The normal regression model is a fully parametric setting where maximum likelihood estimation
is appropriate. Therefore in this chapter we introduce likelihood methods. The method of maximum
likelihood is a powerful statistical method for parametric models (such as the normal regression model)
and is widely used in econometric practice.

We start the chapter with a review of the definition and properties of the normal distribution. For
detail and mathematical proofs see Chapter 5 of Introduction to Econometrics.

5.2 The Normal Distribution

We say that a random variable Z has the standard normal distribution, or Gaussian, written Z ~

N (0, 1), if it has the density

Z2

(,b(z)ziexp(——), —00 < Z < 00.

V2 2

The standard normal density is typically written with the symbol ¢p(z) and the corresponding distribution
function by ®(z). Plots of the standard normal density function ¢(z) and distribution function ®(z) are
displayed in Figure 5.1.

144
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(a) Normal Density (b) Normal Distribution

Figure 5.1: Standard Normal Density and Distribution

Theorem 5.1 If Z ~N(0,1) then

1. All integer moments of Z are finite.
2. All odd moments of Z equal 0.

3. For any positive integer m

E[Z2%"] = @m-1l= @m—1)x @m—3) x - x L.

4. Foranyr >0

[E|Z|V—2r/2r(r+1)
Cym o\ 2

whereI'(¢) = f0°° ulte “duis the gamma function.

If Z~N(0,1) and X = p+0Z for p € R and 0 = 0 then X has the univariate normal distribution,
written X ~ N (i, 02). By change-of-variables X has the density

exp(_ (x-p)°

202

fx) =

, —00 < X < 00.
2no?

The mean and variance of X are u and o2, respectively.

The normal distribution and its relatives (the chi-square, student t, F non-central chi-square and F)
are frequently used for inference to calculate critical values and p-values. This involves evaluating the
normal cdf ®(x) and its inverse. Since the cdf ®(x) is not available in closed form statistical textbooks
have traditionally provided tables for this purpose. Such tables are not used currently as now these cal-
culations are embedded in statistical software. For convenience, we list the appropriate commands in
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MATLAB, R, and Stata to compute the cumulative distribution function of commonly used statistical
distributions.

Numerical Cumulative Distribution Function
To calculate P(Z < x) for given x

MATLAB R Stata
N(0,1) normcdf(x) pnorm(x) normal (x)
x? chi2cdf (x,r) pchisq(x,r) chi2(r,x)
ty tedf (x,r) pt(x,r) 1-ttail(r,x)
Fri fcdf (x,r,k) pf(x,r,k) F(r,k,x)

)(f(d) ncx2cdf (x,r,d) pchisq(x,r,d) nchi2(r,d,x)
F.x(d) ncfcdf(x,r,k,d) pf(x,r,k,d) 1-nFtail(r,k,d,x)

Here we list the appropriate commands to compute the inverse probabilities (quantiles) of the same
distributions.

Numerical Quantile Function
To calculate x which solves p =P(Z < x) for given p

MATLAB R Stata
N(0,1) norminv(p) qnorm(p) invnormal (p)
x2 chi2inv(p,r) gchisq(p,r) invchi2(r,p)
I tinv(p,r) qt(p,r) invttail(r,1-p)
Frk finv(p,r,k) qf (p,r,k) invF(r,k,p)

¥2(d)  ncx2inv(p,r,d) gchisq(p,r,d) invnchi2(r,d,p)
F.x(d) ncfinv(p,r,k,d) qf(p,r,k,d) invnFtail(r,k,d,1-p)

5.3 Multivariate Normal Distribution

We say that the k-vector Z has a multivariate standard normal distribution, written Z ~ N (0, I), if

it has the joint density
/

1 zZ'z k
f()_ )k/2 p(—T), zeR".

The mean and covariance matrix of Z are 0 and I, respectively. Since this joint density factors, you can
check that the elements of Z are independent standard normal random variables.

If Z~N(0,1;) and X = p+ BZ then the k-vector X has a multivariate normal distribution, written
X ~N(p, Z) where = = BB’ > 0. By change-of-variables X has the joint density function

(_(x Pz (x M)),

x e RF,

1
flx)= exp

@mk’2det(z)1/2 2
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The mean and covariance matrix of X are u and Z, respectively. By setting k = 1 you can check that the

multivariate normal simplifies to the univariate normal.

An important property of normal random vectors is that affine functions are multivariate normal.

Theorem 5.2 If X ~N(p,2)and Y =a+BX, then Y ~N(a+Bu,BZB').

One simple implication of Theorem 5.2 is that if X is multivariate normal then each component of X

is univariate normal.

Another useful property of the multivariate normal distribution is that uncorrelatedness is the same
as independence. That is, if a vector is multivariate normal, subsets of variables are independent if and

only if they are uncorrelated.

1.

Theorem 5.3 Properties of the Multivariate Normal Distribution

The mean and covariance matrix of X ~ N(p,X) are E[X] = g and

var (X) = 2.

. If (X, Y) are multivariate normal, X and Y are uncorrelated if and only if

they are independent.

.IfX~N(g,Z)and Y =a+BX, thenY ~N(a+Bu, BZB').
. If X ~N(0,I;) then X'X ~ )(i, chi-square with k degrees of freedom.
. If X ~N(0,%) with £ > 0 then X'27'X ~ y% where k = dim (X).
If X ~N(g, A) with A> 0, r x r, then X’A™1 X ~ y2(1) where A = p'A" ' .

. IfZ~N(0,1) and Q ~ )ﬁc are independent then Z/,/Q/K ~ ti, student t

with k degrees of freedom.

If (Y, X) are multivariate normal
L) s 5 )
X ey )\ Zxy Zxx
with Zyy > 0 and Zxx > 0 then the conditional distributions are

Y| X ~N(py +ZyxZxy (X - #x), Zyy - ZyxZxx Zxy)
X|Y~N(px+ZxvZyy (Y- py), Zxx - ZxvZyy Zvx) -
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5.4 Joint Normality and Linear Regression

Suppose the variables (y, x) are jointly normally distributed. Consider the best linear predictor of y
given x
y=x'f+a+e.

By the properties of the best linear predictor, E[xe] =0 and E[e] = 0, so x and e are uncorrelated. Since
(e, x) is an affine transformation of the normal vector (y, x) it follows that (e, x) is jointly normal (Theorem
5.2). Since (e, x) is jointly normal and uncorrelated they are independent (Theorem 5.3). Independence
implies that

Ele|lx]=E[e] =0

and
E[e? | x] =E[e?] = 0?

which are properties of a homoskedastic linear CEE
We have shown that when (y, x) are jointly normally distributed they satisfy a normal linear CEF

y=x'B+a+e

where
e ~N(0,0?%)

is independent of x. This result can also be deduced from Theorem 5.3.7.
This is a classical motivation for the linear regression model.

5.5 Normal Regression Model
The normal regression model is the linear regression model with an independent normal error

y=x'f+e (5.1)
e ~N(0,0?).

As we learned in Section 5.4 the normal regression model holds when (y,x) are jointly normally dis-
tributed. Normal regression, however, does not require joint normality. All that is required is that the
conditional distribution of y given x is normal (the marginal distribution of x is unrestricted). In this
sense the normal regression model is broader than joint normality. Notice that for notational conve-
nience we have written (5.1) so that x contains the intercept.

Normal regression is a parametric model where likelihood methods can be used for estimation, test-
ing, and distribution theory. The likelihood is the name for the joint probability density of the data,
evaluated at the observed sample, and viewed as a function of the parameters. The maximum likelihood
estimator is the value which maximizes this likelihood function. Let us now derive the likelihood of the
normal regression model.

First, observe that model (5.1) is equivalent to the statement that the conditional density of y given
x takes the form

f(ylx)=;1,zexp (v-x'B)*|.

(2m0?)

202
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Under the assumption that the observations are mutually independent this implies that the conditional
density of (y1, ..., yn) given (x1,...,X5) is

F(1 e Yn X1, %p) = Hf (il %)

n 1 )
H 21/2 p(_ﬁ(yi_x,i ) )

z:1 27m

~.
—

5 (-0

(27!02)”/2 oP (_ﬁ i=1
d
& Lo

and is called the likelihood function.
For convenience it is typical to work with the natural logarithm

n 1 &
logL,(B,0%) = =) log(2n0?) — 357 l; (i

“y.Bo (5.2)

which is called the log-likelihood function.

The maximum likelihood estimator (MLE) ( ﬁmle, = 1¢) is the value which maximizes the log-likelihood.
(Itis equivalent to maximize the likelihood or the log-likelihood. See Exercise 5.4.) We can write the max-
imization problem as

(Bunies Fomge) = argmax £,,(f,0%). (5.3)
BERF, 62>0
In most applications of maximum likelihood the MLE must be found by numerical methods. However in
the case of the normal regression model we can find an explicit expression for f,;, and 2 as functions
of the data.

The maximizers (B, 52.,.) of (5.3) jointly solve the first-order conditions (FOC)

mle
0 L '
0= g’ - = —— 2 %i (Vi ~ % Bpie) (5.4)
B=Be0%=5%, O mle i=1
0 n 1 & Y
3.2 R =T o2 ~ Z (yi _x'ﬁmle) : (5.5)
6 ﬁ:ﬂmle'02:6?nle 2o-mle 2U?nle i=1 l

The first FOC (5.4) is proportional to the first-order conditions for the least-squares minimization prob-
lem of Section 3.6. It follows that the MLE satisfies

Proe = (Zxx) |

That is, the MLE for f is algebraically identical to the OLS estimator.
Solving the second FOC (5.5) for 6121116 we find

n o~
Z xiyi) = ﬁols'
i=1

mle

i ( —X; ﬁols)2 =

:I>—‘

Xj:( —X; ﬁmle) -

1
n

Thus the MLE for ¢ is identical to the OLS/moment estimator from (3.27).
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Since the OLS estimator and MLE under normality are equivalent, Ti is described by some authors as
the maximum likelihood estimator, and by other authors as the least-squares estimator. It is important
to remember, however, that Ti is only the MLE when the error e has a known normal distribution and not
otherwise.

Plugging the estimators into (5.2) we obtain the maximized log-likelihood

~ - n R n
ln (ﬁmle’arznle) = _E log (2”U§nle) - E (5.6)

The log-likelihood is typically reported as a measure of fit.

It may seem surprising that the MLE iimle is numerically equal to the OLS estimator despite emerging
from quite different motivations. It is not completely accidental. The least-squares estimator minimizes
a particular sample loss function — the sum of squared error criterion — and most loss functions are equiv-
alent to the likelihood of a specific parametric distribution, in this case the normal regression model. In
this sense it is not surprising that the least-squares estimator can be motivated as either the minimizer
of a sample loss function or as the maximizer of a likelihood function.

Carl Friedrich Gauss

The mathematician Carl Friedrich Gauss (1777-1855) proposed the normal re-
gression model, and derived the least squares estimator as the maximum like-
lihood estimator for this model. He claimed to have discovered the method in
1795 at the age of eighteen but did not publish the result until 1809. Interest
in Gauss’s approach was reinforced by Laplace’s simultaneous discovery of the
central limit theorem, which provided a justification for viewing random distur-
bances as approximately normal.

5.6 Distribution of OLS Coefficient Vector

In the normal linear regression model we can derive exact sampling distributions for the OLS/MLE
estimator, residuals, and variance estimator. In this section we derive the distribution of the OLS coeffi-
cient estimator.

The normality assumption e; | x; ~ N (0,02) combined with independence of the observations has
the multivariate implication

el X~N(0,I,0%).

That is, the error vector e is independent of X and is normally distributed.
Recall that the OLS estimator satisfies

B-b=(x'X)"X'e

which is a linear function of e. Since linear functions of normals are also normal (Theorem 5.2) this
implies that conditional on X,

B-B1X~(X'X)" X'N(0,1,0°)
~N(0,0%(x'x) " x'x (X'X) ")

=N(0,0%(x'x) ™).



CHAPTER 5. NORMAL REGRESSION 151

An alternative way of writing this is
BIX~N(po*(x'x)7").

This shows that under the assumption of normal errors the OLS estimator has an exact normal dis-
tribution.

Theorem 5.4 In the linear regression model,

BIx~N(go*(x'x)").

Theorems 5.2 and 5.4 imply that any affine function of the OLS estimator is also normally distributed
including individual components. Letting 8; and f; denote the j* h elements of B and B, we have

B; |X~N(ﬁj,02 [(X’X)_l]jj). (5.7)

Theorem 5.4 is a statement about the conditional distribution. What about the unconditional distri-
bution? In Section 4.7 we presented Kinal’s theorem about the existence of moments for the joint normal
regression model. We re-state the result here.

Theorem 5.5 Kinal (1980)
Assume y,x are jointly normal. For any r, E Hﬁ || " <ooifand onlyifr<n—k+1.

5.7 Distribution of OLS Residual Vector

Consider the OLS residual vector. Recall from (3.25) that € = Me where M = I,,— X (X’ X)_1 X'. This
shows that € is linear in e. So conditional on X
é=Me|X ~N(0,0°MM) =N (0,0°M)

the final equality since M is idempotent (see Section 3.12). This shows that the residual vector has an
exact normal distribution.

Furthermore, it is useful to understand the joint distribution of f and e. This is easiest done by
writing the two as a stacked linear function of the error e. Indeed,
( B-p ) _ ( (X'X) ' Xe ) _ ( (x'x)"' x’ )e

e Me M

which is is a linear function of e. The vector thus has a joint normal distribution with covariance matrix

(UZ(X'X)_I 0 )

0 oM

The off-diagonal block is zero because X’ M = 0 from (3.22). Since this is zero it follows that f and @ are
statistically independent (Theorem 5.3.2).
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Theorem 5.6 In the linear regression model @ | X ~ N (0,02 M) and is indepen-
dent of .

The fact that ii and e are independent implies that [Ai is independent of any function of the residual
vector including individual residuals &; and the variance estimate s? and 2.

5.8 Distribution of Variance Estimator

Next, consider the variance estimator s? from (4.26). Using (3.29) it satisfies (n— k) s*> = @'¢ = e’ Me.
The spectral decomposition of M (see equation (A.4)) is M = HAH' where H'H = I, and A is diagonal
with the eigenvalues of M on the diagonal. Since M is idempotent with rank n — k (see Section 3.12) it
has n — k eigenvalues equalling 1 and k eigenvalues equalling 0, so

Ii.x ©

A=
0 o

Letu=H'e ~N(0,1,0?) (see Exercise 5.2) and partition u = (u}, u},)’ where u; ~N (0, I,,_0?). Then

(n—k)s*>=e'Me

/
2.2
~0 Xn_k.

We see that in the normal regression model the exact distribution of s? is a scaled chi-square.
Since @ is independent of B it follows that s? is independent of f as well.

Theorem 5.7 In the linear regression model,

(n—k) s 2

o2 Xn-k
and is independent of ﬁ
5.9 t-statistic
An alternative way of writing (5.7) is
Pi—Pi ~NO.1).
o2|(x'x)]

1]
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This is sometimes called a standardized statistic as the distribution is the standard normal.
Now take the standardized statistic and replace the unknown variance o2 with its estimator s>. We
call this a t-ratio or t-statistic

ro_ PBi-Bi  _PBi-b
Dok s(B)
| (x'x) ]jj j

where s(f j) is the classical (homoskedastic) standard error for B j from (4.37). We will sometimes write
the t-statistic as T(6;) to explicitly indicate its dependence on the parameter value §;, and sometimes
will simplify notation and write the t-statistic as T when the dependence is clear from the context.

By some algebraic re-scaling we can write the t-statistic as the ratio of the standardized statistic and
the square root of the scaled variance estimator. Since the distributions of these two components are
normal and chi-square, respectively, and independent, we can deduce that the t-statistic has the distri-

bution
B._AR. A
T Bj—Bj /\/(ﬂ IZC)S /(n—k)
o2 |(x'x)"| 7

ji
N(0,1)
V Xo_ i/ (n=1k)
~In—k

a student ¢ distribution with n — k degrees of freedom.

This derivation shows that the t-ratio has a sampling distribution which depends only on the quantity
n— k. The distribution does not depend on any other features of the data. In this context, we say that the
distribution of the t-ratio is pivotal, meaning that it does not depend on unknowns.

The trick behind this result is scaling the centered coefficient by its standard error, and recognizing
that each depends on the unknown o only through scale. Thus the ratio of the two does not depend on
o. This trick (scaling to eliminate dependence on unknowns) is known as studentization.

Theorem 5.8 In the normal regression model, T ~ ,,_k.

An important caveat about Theorem 5.8 is that it only applies to the t-statistic constructed with the
homoskedastic (old-fashioned) standard error estimator. It does not apply to a t-statistic constructed
with any of the robust standard error estimators. In fact, the robust t-statistics can have finite sample
distributions which deviate considerably from ¢,_j even when the regression errors are independent
N(0,02). Thus the distributional result in Theorem 5.8 and the use of the t distribution in finite samples
should only be applied to classical t-statistics.

5.10 Confidence Intervals for Regression Coefficients

The OLS estimator B is a point estimator for a coefficient . A broader concept is a set or interval
estimator which takes the form C = [L, U]. The goal of an interval estimator C is to contain the true
value, e.g. B € C, with high probability.

The interval estimator C is a function of the data and hence is random.
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An interval estimator C is called a 1 - a confidence interval when P [Be C] = 1-a for a selected value
of a. The value 1 — « is called the coverage probability. Typical choices for the coverage probability 1 —«
are 0.95 or 0.90.

The probability calculation P [ € 6] is easily mis-interpreted as treating f as random and C as fixed.
(The probability that f is in C.) This is not the appropriate interpretation. Instead, the correct inter-
pretation is that the probability P [ € C | treats the point § as fixed and the set C as random. It is the
probability that the random set C covers (or contains) the fixed true coefficient f.

There is not a unique method to construct confidence intervals. For example, one simple (yet silly)
interval is

Eo { with probability 1 — «
B with probability a

If B has a continuous distribution, then by construction P [8 € C] = 1 - a, so this confidence interval has
perfect coverage. However, C is uninformative about ,6 and is therefore not useful.

Instead, a good choice for a confidence interval for the regression coefficient § is obtained by adding
and subtracting from the estimator E a fixed multiple of its standard error:

C=[B-c-s(B), B+c-s(P)] (5.8)

where ¢ > 0 is a pre-specified constant. This confidence interval is symmetric about the point estimator
E and its length is proportional to the standard error s(ﬁ).

Equivalently, C is the set of parameter values for  such that the t-statistic T'(f) is smaller (in absolute
value) than c, that is

~ ﬁ—ﬁ
C=B:|1TP)|scg=4P:—c=——=<c.
{ | ( )| c} { c B c}

The coverage probability of this confidence interval is

P(BeC|=P[|T(B)|=c]
=P[-c< TP =c]. (5.9)

Since the t-statistic T(f) has the t,_j distribution (5.9) equals F(c) — F(—c), where F(u) is the student ¢
distribution function with n— k degrees of freedom. Since F(—c) = 1—F(c) (see Exercise 5.8) we can write
(5.9) as

P[BeC]=2F(c)-1.

This is the coverage probability of the interval C, and only depends on the constant c.

As we mentioned before, a confidence interval has the coverage probability 1 — a. This requires se-
lecting the constant c so that F(c) = 1 — a/2. This holds if c equals the 1 — a/2 quantile of the ¢, distri-
bution. As there is no closed form expression for these quantiles we compute their values numerically.
For example, by tinv(1-alpha/2,n-k) in MATLAB. With this choice the confidence interval (5.8) has
exact coverage probability 1 — a. By default, Stata reports 95% confidence intervals C for each estimated
regression coefficient using the same formula.

Theorem 5.9 In the normal regression model, (5.8) with ¢ = F 11 - a/2) has
coverage probability P [ e C] =1-a.
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When the degree of freedom is large the distinction between the student ¢ and the normal distribu-
tion is negligible. In particular, for n — k = 61 we have ¢ < 2.00 for a 95% interval. Using this value we
obtain the most commonly used confidence interval in applied econometric practice:

C=[B-2sB), B+2s(P)]. (5.10)

This is a useful rule-of-thumb. This 95% confidence interval C is simple to compute and can be easily
calculated from coefficient estimates and standard errors.

Theorem 5.10 In the normal regression model, if n — k = 61 then (5.10) has
coverage probability P [ € C| = 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When reading
a set of empirical results look at the estimated coefficient estimates and the standard errors. For a pa-
rameter of interest compute the confidence interval C and consider the meaning of the spread of the
suggested values. If the range of values in the confidence interval are too wide to learn about § then do
not jump to a conclusion about § based on the point estimate alone.

5.11 Confidence Intervals for Error Variance

We can also construct a confidence interval for the regression error variance o>

distribution of s? from Theorem 5.7. This states that in the normal regression model

using the sampling

(n-ks*

5 Xoicr (5.11)

o
Let F(u) denote the y2_, distribution function and for some a set ¢; = F~'(a@/2) and ¢; = F' (1 - a/2)
(the @/2 and 1 — a/2 quantiles of the 7527 k distribution). Equation (5.11) implies that

(n—k)s?

Plaos—s—=<c
g

=F(cp)-F(c))=1—-a.
Rewriting the inequalities we find

— 2 _ 2
P MSUzsm]zl_a

C2 C1

This shows that an exact 1 — a confidence interval for o2 is

Co (n—k) s (n—k)sz].

(5.12)

’

C2 C1

Theorem 5.11 In the normal regression model (5.12) has coverage probability
Plo?eC]=1-a.

The confidence interval (5.12) for o2 is asymmetric about the point estimate s2 due to the latter’s
asymmetric sampling distribution.
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5.12 tTest

A typical goal in an econometric exercise is to assess whether or not a coefficient § equals a specific
value fy. Often the specific value to be tested is By = 0 but this is not essential. This is called hypothesis
testing, a subject which will be explored in detail in Chapter 9. In this section and the following we give
a short introduction specific to the normal regression model.

For simplicity write the coefficient to be tested as . The null hypothesis is

Ho : ,6 = ,50. (5.13)

This states that the hypothesis is that the true value of § equals the hypothesized value .
The alternative hypothesis is the complement of Hy, and is written as

H11ﬁ¢ﬁ0.

This states that the true value of § does not equal the hypothesized value.

We are interested in testing Hy against H;. The method is to design a statistic which is informative
about H;. If the observed value of the statistic is consistent with random variation under the assumption
that Hy is true, then we deduce that there is no evidence against Hy and consequently do not reject Hyp.
However, if the statistic takes a value which is unlikely to occur under the assumption that Hy is true,
then we deduce that there is evidence against Hy and consequently we reject Hy in favor of H;. The main
steps are to design a test statistic and to characterize its sampling distribution.

The standard statistic to test Hy against H; is the absolute value of the t-statistic

B - Bo
s(B)
If Hy is true then we expect |T| to be small, but if H; is true then we would expect | T| to be large. Hence

the standard rule is to reject Hyp in favor of H; for large values of the t-statistic | 7| and otherwise fail to
reject Hp. Thus the hypothesis test takes the form

IT|= . (5.14)

Reject Hy if | T'| > c.

The constant ¢ which appears in the statement of the test is called the critical value. Its value is
selected to control the probability of false rejections. When the null hypothesis is true | T| has an exact
student ¢ distribution (with n — k degrees of freedom) in the normal regression model. Thus for a given
value of ¢ the probability of false rejection is

P [Reject Ho | Ho| =P [IT| > ¢ | Hol
=P[T>c|Hp] +P[T < —c|Hp]
=1-F(c)+F(-c)
=2(1-F(c)

where F (u) is the £, distribution function. This is the probability of false rejection and is decreasing
in the critical value c. We select the value ¢ so that this probability equals a pre-selected value called the
significance level which is typically written as a. It is conventional to set @ = 0.05, though this is not a
hard rule. We then select ¢ so that F(c) = 1 — a/2, which means that c is the 1 — a/2 quantile (inverse
CDF) of the t,,_j distribution, the same as used for confidence intervals. With this choice the decision
rule “Reject Hy if | T| > ¢” has a significance level (false rejection probability) of a.
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Theorem 5.12 In the normal regression model if the null hypothesis (5.13) is
true, then for |T| defined in (5.14) |T| ~ t,,_k. If c is set so that P[|£,,_i| = ¢] =
athen the test “Reject Hy in favor of H; if | 7| > ¢” has significance level a.

To report the result of a hypothesis test we need to pre-determine the significance level a in order to
calculate the critical value c¢. This can be inconvenient and arbitrary. A simplification is to report what
is known as the p-value of the test. In general, when a test takes the form “Reject Hy if S > ¢” and S has
null distribution G(u) then the p-value of the test is p = 1 — G(S). A test with significance level a can
be restated as “Reject Hy if p < a”. It is sufficient to report the p-value p and we can interpret the value
of p as indexing the test’s strength of rejection of the null hypothesis. Thus a p-value of 0.07 might be
interpreted as “nearly significant”, 0.05 as “borderline significant”, and 0.001 as “highly significant”. In
the context of the normal regression model the p-value of a t-statistic | T| is p = 2(1 — F;,—¢(IT)) where
F,_i is the CDF of the student ¢ with n— k degrees of freedom. For example, in MATLAB the calculation is
2% (1-tcdf (abs(t) ,n-k)). In Stata, the default is that for any estimated regression, t-statistics for each
estimated coefficient are reported along with their p-values calculated using this same formula. These
t-statistics test the hypotheses that each coefficient is zero.

A p-value reports the strength of evidence against Hy but is not itself a probability. A common mis-
understanding is that the p-value is the “probability that the null hypothesis is true”. This is an incorrect
interpretation. It is a statistic, and is random, and is a measure of the evidence against Hy, nothing more.

5.13 Likelihood Ratio Test

In the previous section we described the t-test as the standard method to test a hypothesis on a
single coefficient in a regression. In many contexts, however, we want to simultaneously assess a set of
coefficients. In the normal regression model, this can be done by an F test which can be derived from
the likelihood ratio test.

Partition the regressors as x; = (x;, x,;) and similarly partition the coefficient vector as f = B, B
Then the regression model can be written as

Vi =x1;By+ %5+ ei. (5.15)

Let k = dim(x;), k; = dim(x;;), and g = dim(x»;), so that k = k; + g. Partition the variables so that the
hypothesis is that the second set of coefficients are zero, or

Ho: B, =0. (5.16)
IfHp is true then the regressors x,; can be omitted from the regression. In this case we can write (5.15) as
yi=x\;B; +e;. (5.17)

We call (5.17) the null model. The alternative hypothesis is that at least one element of 8, is non-zero
and is written as

Hy : B, #0.

When models are estimated by maximum likelihood a well-accepted testing procedure is to reject
Ho in favor of H, for large values of the Likelihood Ratio — the ratio of the maximized likelihood function
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under H; and Hp, respectively. We now construct this statistic in the normal regression model. Recall
from (5.6) that the maximized log-likelihood equals

£0(B,6%) = =% log(2757) - 5

We similarly need to calculate the maximized log-likelihood for the constrained model (5.17). By the
same steps for derivation of the unconstrained MLE we can find that the MLE for (5.17) is OLS of y; on

Xx1;. We can write this estimator as
1

31 = (XIIXI)_ X,Iy

with residual

and error variance estimate

We use the tildes “~” rather than the hats “A” above the constrained estimates to distinguish them from
the unconstrained estimates. You can calculate similar to (5.6) that the maximized constrained log-
likelihood is
52 n ~2
0n(By,0°) = —Elog(Zna )— =

A classic testing procedure is to reject Hy for large values of the ratio of the maximized likelihoods.
Equivalently the test rejects Hy for large values of twice the difference in the log-likelihood functions.
(Multiplying the likelihood difference by two turns out to be a useful scaling.) This equals

LR=2(¢(B,5°) ~ n(By,5”))
(( g (276?) —E)—(—glog(Znﬁz)—g))
:nlog(;—z). (5.18)

The likelihood ratio test rejects for large values of LR, or equivalently (see Exercise 5.10) for large values
of
_(@-3%1q
 &2/(n-k)

This is known as the F statistic for the test of hypothesis Hy against H;.

To develop an appropriate critical value we need the null distribution of F. Recall from (3.29) that
né? = ¢ Me where M = I,,— P with P = X(X’X)_IX’. Similarly, under Hy, né? = e'M;e where M =
I, - P, with P, = X; (X’le)_IX’I. You can calculate that M; — M = P — P; is idempotent with rank q.
Furthermore, (M; — M) M = 0. It follows that ¢’ (M; — M) e ~ Xz and is independent of ¢’ Me. Hence

(5.19)

¢ (M -Melq x5l4q v
- eMel(n-k)  x% In-k "

-k

an exact F distribution with degrees of freedom g and n — k, respectively. Thus under Hy, the F statistic
has an exact F distribution.

The critical values are selected from the upper tail of the F distribution. For a given significance level
a (typically a = 0.05) we select the critical value ¢ so that P [Fq, nek = c] = a. (For example, in MATLAB
the expression is finv(1l-a,q,n-k).) The test rejects Hy in favor of H; if F > ¢ and does not reject Hy
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otherwise. The p-value of the testis p = 1-G - (F) where G ,,— (1) is the F, ;i distribution function.
(In MATLAB, the p-value is computed as 1-fcdf (£ ,q,n-k).) Itis equivalent to reject Hy if F > cor p < a.

In Stata, the command to test multiple coefficients takes the form ‘test X1 X2’ where X1 and X2 are the
names of the variables whose coefficients are tested. Stata then reports the F statistic for the hypothesis
that the coefficients are jointly zero along with the p-value calculated using the F distribution.

Theorem 5.13 In the normal regression model if the null hypothesis (5.16) is
true then for F defined in (5.19) F ~ Fy k. If cis set so that P[F ,_r = ¢| = a
then the test “Reject Hy in favor of H; if F > ¢” has significance level a.

Theorem 5.13 justifies the F test in the normal regression model with critical values taken from the F
distribution.

5.14 Information Bound for Normal Regression

This section requires a familiarity with the theory of Cramér-Rao Lower Bound. See Chapter 10 of
Statistical Theory for Econometricians.
The likelihood scores for the normal regression model are

0 10(Br0?) =23 xi(yi—x.P)
% n(B,o —?iZle Yi—X;
1 n
=— ) Xxie
O_zl:1 %1
and
g2 B0 =50 557 L vi-%if)
1

It follows that the information matrix is

¥ =var

20(B,0?) LxX'x o
0 ' X|=| ¢ 5.20
Lepor | ( 0o 5 ) (5:20)

(see Exercise 5.11). The Cramér-Rao Lower Bound is

o [ 2xx)t o
j 1 = ( 0 E .
n

This shows that the lower bound for estimation of § is 02 (X'X )_1 and the lower bound for g is 20/ n.
Since in the homoskedastic linear regression model the OLS estimator is unbiased and has variance
o?(X'X )_1 it follows that the OLS coefficient estimator is Cramér-Rao efficient in the normal regression
model. Cramér-Rao efficiency means that no unbiased estimator has a lower variance matrix. This ex-
pands on the Gauss-Markov theorem which stated that no linear unbiased estimator has a lower variance
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matrix in the homoskedastic regression model. Notice that that the results are complementary. Gauss-
Markov efficiency concerns a more narrow class of estimators (linear) but allows a broader model class
(linear homoskedastic rather than normal regression). The Cramér-Rao efficiency result is more power-
ful in that it does not restrict the class of estimators (beyond unbiasedness) but is more restrictive in the
class of models allowed (normal regression).

In contrast, the unbiased estimator s of o2 has variance 20/ (n— k) (see Exercise 5.12) which is larger
than the Cramér-Rao lower bound 20#/n. Thus in contrast to the coefficient estimator, the variance
estimator is not Cramér-Rao efficient.
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Exercises

Exercise 5.1 Show that if Q ~ 2, then E[Q] = r and var [Q] = 2r.
Hint: Use the representation Q = Z;.’zl Zl.2 with Z; independent N (0,1).

Exercise 5.2 Show thatif e ~N(0,1,0%)and HH=1I, thenu= H'e~N(0,1,07).
Exercise 5.3 Show thatife ~N(0,X) and X = AA thenu=A"1e~N(0,1I,).
Exercise 5.4 Show that 8 = argmaxg.g ¢, (0) = argmaxg.g L, (6).

Exercise 5.5 For the regression in-sample predicted values y; show that j; | X ~N (x'l B o? hii) where h;;
are the leverage values (3.41).

Exercise 5.6 In the normal regression model show that the leave-one out prediction errors ¢; and the
standardized residuals é; are independent of 8, conditional on X.
Hint: Use (3.46) and (4.24).

. . . . ~HCO0 «HC1
Exercise 5.7 In the normal regression model show that the robust covariance matrices Vﬁ , Vi;

V%Gz, and V%KB are independent of the OLS estimator B, conditional on X.

Exercise 5.8 Let F(u) be the distribution function of a random variable X whose density is symmetric
about zero. (This includes the standard normal and the student t.) Show that F(—u) =1— F(u).

Exercise 5.9 Let Cg = [L, U] be a1—a confidence interval for §, and consider the transformation 6 = g(f)
where g(-) is monotonically increasing. Consider the confidence interval Cg = [g(L), g(U)] for 6. Show
that P[0 € Cy] =P [B € Cg] . Use this result to develop a confidence interval for o.

Exercise 5.10 Show that the test “Reject Hy if LR = ¢;” for LR defined in (5.18), and the test “Reject Hy if
F = ¢,” for F defined in (5.19), yield the same decisions if ¢, = (exp(clln) — 1) (n—k)/q. Does this mean
that the two tests are equivalent?

Exercise 5.11 Show (5.20).

Exercise 5.12 In the normal regression model let s*> be the unbiased estimator of the error variance o2

from (4.26).

(a) Show that var [s?| =20*/(n- k).

(b) Show that var [s?] is strictly larger than the Cramér-Rao Lower Bound for 2.
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Chapter 6

A Review of Large Sample Asymptotics

6.1 Introduction

The most widely-used tool in sampling theory is large sample asymptotics. By “asymptotics” we
mean approximating a finite-sample sampling distribution by taking its limit as the sample size diverges
to infinite. In this chapter we provide a brief review of the main results of large sample asymptotics. It
is meant as a reference, not as a teaching guide. Asymptotic theory is covered in detail in Chapters 7-9
of Introduction to Econometrics. If you have not previous studied asymptotic theory in detail you should
study these chapters before proceeding.

6.2 Modes of Convergence

Definition 6.1 A random variable z, € R converges in probability to z as n —
oo, denoted z,, — z or alternatively plim,,_. .z, = z, ifforall 6 > 0,
p

nli_r)rolo[P’[Izn—z|55]=1. (6.1)

We call z the probability limit (or plim) of z,,.

Definition 6.2 Let z,, be a random vector with distribution F;,(#) =P [z, < u].
We say that z,, converges in distribution to z as n — oo, denoted z, — % if

for all u at which F(u) = P [z < u] is continuous, F,,(#) — F(u) as n — oo. We
refer to z and its distribution F(u) as the asymptotic distribution, large sample
distribution, or limit distribution of z,,.
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6.3 Weak Law of Large Numbers

Theorem 6.1 Weak Law of Large Numbers (WLLN)
If y, areii.d. andE ||y|| < oo, then as n — oo,

n

1
y== —E[y].
V= Vi Bl

164

The WLLN shows that the sample mean y converges in probability to the true population mean p.

The result applies to any transformation of a random vector with a finite mean.

E[h(y)] as n — oo.

Theorem 6.2 If y; are iid. and E|h(y)| <oco, thenfi=1¥" h(y;)

SHe

In general, an estimator which converges in probability to the population value is called consistent.

Definition 6.3 An estimator 0 of 0 is consistent if § 7 6 as n — oo.

6.4 Central Limit Theorem

y; €RFareiid. and E K2 ||2 < oo, thenas n— oo

ViR —NOV)

where = [y] and V =E|(y- ) (y- p)'|.

Theorem 6.3 Multivariate Lindeberg-Lévy Central Limit Theorem (CLT). If

The central limit theorem shows that the distribution of the sample mean is approximately normal

in large samples. The following two generalizations allow for heterogeneous random variables.
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Theorem 6.4 Multivariate Lindeberg CLT. Suppose thatforalln, y,; € R i=
1,...,ry, are independent but not necessarily identically distributed with mean
E[y,;] = 0and variance matrices V,; =E[y,; .| .Set V,; = ¥, V ;. Suppose
v2 = Amin(V ) > 0 and for all € > 0

1 &
lim — > E
VR i

1yuil 1 (|7 = ev2)] =o0. 6.2)

Then as n — oo

—1/2
V, "> Vi —d»N(O,Ik).
i=1

Theorem 6.5 Suppose y,,; € R* are independent but not necessarily iden-
tically distributed with means E[y,;] = 0 and variance matrices V,; =
E[y,¥,;]- Suppose
1 n
=Y Vu—V>0
i=1

and for some 6 > 0

||2+5 <

SupE ||y, oo. (6.3)
n,i

Then as n — oo
\/ﬁyTN(o,V).

6.5 Continuous Mapping Theorem and Delta Method

Continuous functions are limit-preserving. There are two forms of the continuous mapping theorem,
for convergence in probability and convergence in distribution.

Theorem 6.6 Continuous Mapping Theorem (CMT). If z,, - cas n — ooand

g (u) is continuous at ¢ then g(z,) —p» g(c) as n — oo.

Theorem 6.7 Continuous Mapping Theorem
If z, — z as n — oo and g : R” — R has the set of discontinuity points Dy

such that P [z € Dg] = 0 then g(z,) — g(z) as n — oo.
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Differentiable functions of asymptotically normal random estimators are also asymptotically nor-
mal.

Theorem 6.8 Delta Method
If Vi(fi—p) — &, where g(u) is continuously differentiable in a neighbor-

hood of u, then as n — co

Vn(g(B)-gw)—G'¢ (6.4)

where G(u) = %g(u)’ and G = G(p). In particular, if & ~ N (0, V) then as n — oo

V(g (&) - gw) —N(0,6'VG). 65

6.6 Smooth Function Model

The smooth function model is

p=E[h(y)]
0=g(u

where g (p) is smooth in a suitable sense. The parameter of interest  is a smooth function of a popula-
tion mean p.

The parameter 6 = g (p) is not a population moment so it does not have a direct moment estimator.
Instead, it is common to use a plug-in estimator formed by replacing the unknown p with its point
estimator fI and then “plugging” this into the expression for . The first step is the sample mean

1
p=—

1

n
h(y;).
=1
The second step is the transformation
0=g(n).
The hat “A” indicates that  is a sample estimator of 8. The smooth function model includes a broad
class of estimators including sample variances and the least-squares estimator.

Theorem 6.9 If y; are i.i.d., E ||h(y) || < 00, and g (u) is continuous at yu, then
(7] - 0 as n — oco.
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Theorem 6.10 If y; are i.i.d., E|h(y) H?‘ < oo, and G (u) = %g(u)’ is continu-

ous in a neighborhood of u, then as n — oo

\/5(6—0)7N(0,V9)

where Vo = G'VG, V =E |(h(y) - p) (h(y) - p)' |, and G = G ().

Theorem 6.9 establishes the consistency of 8 for @ and Theorem 6.10 establishes its asymptotic nor-
mality. It is instructive to compare the conditions required for these results. Consistency requires that
h(y) have a finite mean while asymptotic normality requires that k (y) has a finite variance. Consistency
requires that g(u) be continuous asymptotic normality requires that g(u) is continuously differentiable.

6.7 Best Unbiased Estimation

This section presents efficiency bounds for the mean and the smooth function model. The results
are finite-sample rather than asymptotic, but are convenient to introduce at this point since the bounds
are identical to the asymptotic variance matrices.

Our first result is for the mean.

Theorem 6.11 Suppose y; are i.i.d., p = E[h(y)], and E|k(y) ||2 <oo. If f1is
unbiased for g then
var [fi] = n”'V

where V =E[(k(y) - ) (h () - )|

The second result is for the smooth function model.

Theorem 6.12 Suppose y; are iid., p=E[h(y)], 0 = g(n), E|k(y) ||2 < o0,

0 ~
and G (u) = P g (w)' is continuous in a neighborhood of . If @ is unbiased for

0 then N
var[0] = n"'Vy

where Vo = G'VG, V =E|(h(y) - ) (k(y) - 1)'| and 6 = G (u).

For details and proofs see Section 11.6 of Introduction to Econometrics. Theorems 6.11 and 6.12 are
analogs and extensions of the Cramér-Rao lower bound theory to semiparametric estimation. The re-
sults show that the asymptotic variances from Theorems 6.3 and 6.10 are the best possible in any finite
sample among unbiased estimators. Theorem 6.11 is sharp, since the sample mean has the finite sample
variance n~'V.
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6.8 Stochastic Order Symbols

It is convenient to have simple symbols for random variables and vectors which converge in prob-
ability to zero or are stochastically bounded. In this section we introduce some of the most commonly
found notation.

Let z, and a,, n =1,2,... be sequences of random variables. (In most applications a; is non-random.)
The notation

Zn= 0,,(1)

(“small oh-P-one”) means that z,, — 0 as n — oo. We also write
p

zp = 0plan)

if a,,'zn = 0, (1).
Similarly, the notation z, = O, (1) (“big oh-P-one”) means that z, is bounded in probability. Precisely,
for any € > 0 there is a constant M, < oo such that

limsupP[|z,| > M,] <e.
n—oo
Furthermore, we write
Zp = Op(an)

if a,'zn = O, (1).

O, (1) is weaker than 0, (1) in the sense that z, = 0, (1) implies z,, = O, (1) but not the reverse. How-
ever, if z, = Op(ay) then z,, = 0,(by,) for any b, such that a,,/b, — 0.

A random sequence with a bounded moment is stochastically bounded.

Theorem 6.13 If z,, is a random vector which satisfies
Ellzal® = O(an)

for some sequence a, and 6 > 0, then

zZy= Op(a,lq/‘s).

Similarly, E [z, ° = 0 (a,) implies z, = 0, (a}/®).

There are many simple rules for manipulating 0,(1) and O,(1) sequences which can be deduced
from the continuous mapping theorem. For example,

op(1) +0p,(1) = 0,(1)

0p(1)+0,(1) = 0p(1)

0p(1)+0,(1) = 0,(1)
op(Dop(1) =0p(1)
0p(1)0p(1) = 0p(1)
0,(1)0p(1) = 0p(1).
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6.9 Convergence of Moments

We give a sufficient condition for the existence of the mean of the asymptotic distribution, define
uniform integrability, provide a primitive condition for uniform integrability, and show that uniform
integrability is the key condition under which E [z,] converges to E [z].

Theorem 6.14 If z, 7 zandE|z,ll <Cthenk|z| <C.

Definition 6.4 The random vector z, is uniformly integrable as n — oo if

lim limsupE[|lz,ll 1 (llz,ll > M)] =0.

M—o0 n—oo

Theorem 6.15 If for some 6 >0, E |Izn||1+5 < C < oo, then z, is uniformly inte-
grable.

Theorem 6.16 If z, —d» z and z, is uniformly integrable then E [z,,] — E[z].

6.10 Uniform Stochastic Bounds

Theorem 6.17 If | Vi | " is uniformly integrable, then as 1 — oo

n~ " max |y —-0. 6.6)

l<i<n

Equation (6.6) says that if y has r finite moments then the largest observation will diverge at a rate
slower than n'/". The higher the moments, the slower the rate of divergence.



Chapter 7

Asymptotic Theory for Least Squares

7.1 Introduction

It turns out that the asymptotic theory of least-squares estimation applies equally to the projection
model and the linear CEF model. Therefore the results in this chapter will be stated for the broader
projection model described in Section 2.18. Recall that the model is

yi=xp+e;
for i =1,..., n, where the linear projection coefficient g is
B = (E[xix}]) " E[xiyi].

Maintained assumptions in this chapter will be random sampling (Assumption 1.2) and finite second
moments (Assumption 2.1). We restate these conditions here for clarity.

Assumption 7.1
1. The observations (y;, x;), i = 1,..., n, are i.i.d.
2. E[y?] <oo.
3. Ellx]* < co.

4. Qux =E[xx'] is positive definite.

The distributional results will require a strengthening of these assumptions to finite fourth moments.
We discuss the specific conditions in Section 7.3.

7.2 Consistency of Least-Squares Estimator

In this section we use the weak law of large numbers (WLLN, Theorem 6.1 and Theorem 6.2) and con-
tinuous mapping theorem (CMT, Theorem 6.6) to show that the least-squares estimator f is consistent
for the projection coefficient S.
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This derivation is based on three key components. First, the OLS estimator can be written as a con-
tinuous function of a set of sample moments. Second, the WLLN shows that sample moments converge
in probability to population moments. And third, the CMT states that continuous functions preserve
convergence in probability. We now explain each step in brief and then in greater detail.

First, observe that the OLS estimator

Sof1e N e 06
B= (;inxi) (zzxi.}’i) = QyxQyy
i=1 i=1

is a function of the sample moments axx = %Z?zl x;x; and axy = %Z;’Zl XiYi.

Second, by an application of the WLLN these sample moments converge in probability to the popu-
lation moments. Specifically, the fact that (y;, x;) are mutually i.i.d. implies that any function of (y;, x;)
is i.i.d., including xix;. and x;y;. These variables also have finite expectations under Assumption 7.1.
Under these conditions, the WLLN (Theorem 6.2) implies that as n — oo,

—~ 12
Qux=—)_ xix, —E[x;x] = Qyy (7.1)
no p
and
~ 1 &
Qxy == Xiyi — E[xiyi] = Qyy.
no p

Third, the CMT (Theorem 6.6) allows us to combine these equations to show that fi converges in
probability to B. Specifically, as n — oo,

ﬁ = a;}:axy - Q;chQxy =B. (7.2)
p

We have shown that B - P as n — oco. In words, the OLS estimator converges in probability to the

projection coefficient vector f as the sample size n gets large.
To fully understand the application of the CMT we walk through it in detail. We can write

B = g(axx’ axy)
where g (A, b) = A~ b is a function of A and b. The function g (4, b) is a continuous function of A and b
at all values of the arguments such that A~! exists. Assumption 7.1 specifies that Q,, is positive definite,
which means that Q. exists. Thus g (A, b) is continuous at A = Q.. This justifies the application of the
CMT in (7.2).
For a slightly different demonstration of (7.2) recall that (4.6) implies that

_~ ~—]
B-p= Q. Qxe (7.3)
where
~ 12
Que=— Z Xiée;.
nis

The WLLN and (2.24) imply
Qxe —p> [E[x,-e,-] =0.

Therefore .
5 515 -1
ﬁ_ﬁ:QxexeT xx0=0

which is the same as B — p.
p
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Theorem 7.1 Consistency of Least-Squares
X ~ A ~—1 1A
Under Assumption 7.1, Q,;, - Qux» Quy r Qi) Qux - Qxr, Qe — 0, and

37ﬂasn—>oo.

Theorem 7.1 states that the OLS estimator ii converges in probability to f as n increases and thus ii
is consistent for B. In the stochastic order notation, Theorem 7.1 can be equivalently written as

B=p+o,D). (7.4)

To illustrate the effect of sample size on the least-squares estimator consider the least-squares re-
gression
log(wage;) = p1education; + Boexperience; + 3 experience? + B4 +e;.

We use the sample of 24,344 white men from the March 2009 CPS. We randomly sorted the observations
and sequentially estimated the model by least-squares starting with the first 5 observations and contin-
uing until the full sample is used. The sequence of estimates are displayed in Figure 7.1. You can see
how the least-squares estimate changes with the sample size. As the number of observations increases it
settles down to the full-sample estimate B, = 0.114.

0.125

0.120

0.115

0.110

T T T T
5000 10000 15000 20000

Number of Observations

Figure 7.1: The Least-Squares Estimator Bl as a Function of Sample Size n

7.3 Asymptotic Normality

We started this chapter discussing the need for an approximation to the distribution of the OLS esti-
mator B In Section 7.2 we showed that ﬁ converges in probability to B. Consistency is a good first step,
but in itself does not describe the distribution of the estimator. In this section we derive an approxima-
tion typically called the asymptotic distribution.
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The derivation starts by writing the estimator as a function of sample moments. One of the moments
must be written as a sum of zero-mean random vectors and normalized so that the central limit theorem
can be applied. The steps are as follows.

Take equation (7.3) and multiply it by /7. This yields the expression

n -1 n
\/ﬁ(fi—ﬁ)=(%2xix’,-) (% xiei). (7.5)
i=1 i=1

This shows that the normalized and centered estimator \/n (B — B) is a function of the sample average
%Z;‘:l x,-x’l. and the normalized sample average \/Lﬁ Z?zl x;e;. Furthermore, the latter has mean zero so
the central limit theorem (Theorem 6.3) applies.

The product x;e; isi.i.d. (since the observations (y;,x;) are i.i.d.) and mean zero (since E [x;e;] = 0).

Define the k x k covariance matrix
Q=E[x;x}e7].

The CLT requires the elements of Q to be finite, written < co. This requires a strengthing of Assumption
7.1. We state the required conditions here.

Assumption 7.2
1. The observations (y;, x;), i = 1,..., n, are i.i.d..
2. E[y*] <oo.
3. Ellx|* < oo.

4. Qux =E(xx') is positive definite.

Assumption 7.2 implies that Q < co. To see this, take the j¢ th element of Q, E [x j,-xg,-e?]. By the
expectation inequality (B.30) the j¢!" element of Q is bounded by

|E[xjixeie;]| <E|xjixeies| =E[|xji|1xeil €3]
By two applications of the Cauchy-Schwarz inequality (B.32) this is smaller than
1/2 1/2 1/4 1/4 1/2
E[Sect]) €l = (E[h]) " €Lt ELef) " <00

where the finiteness holds under Assumption 7.2.2 and 7.2.3. Thus Q < co.
An alternative way to show that the elements of Q are finite is by using a matrix norm ||-|| (See Ap-
pendix A.23). Then by the expectation inequality, the Cauchy-Schwarz inequality, and Assumption 7.2

190 < E||xix;e?] = E[Ix12 2] < Ellxi1*) " (E[e?]) " < o0.

This is a more compact argument (often described as more elegant) but such manipulations should not
be done without understanding the notation and the applicability of each step of the argument.

Regardless, the finiteness of the covariance matrix means that we can then apply the multivariate
CLT (Theorem 6.3).
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Theorem 7.2 Under Assumption 7.2,
Q <oo (7.6)
and
1 n
— ) x;e;, —N(0,Q) (7.7
\/ﬁ lzzl v d
as n — oo.

Putting together (7.1), (7.5), and (7.7),
Vi (B-pB) — QN O,Q)
=N(0,Q:;2Q5;)

as n — oo. The final equality follows from the property that linear combinations of normal vectors are
also normal (Theorem 5.2).

We have derived the asymptotic normal approximation to the distribution of the least-squares esti-
mator.

Theorem 7.3 Asymptotic Normality of Least-Squares Estimator
Under Assumption 7.2, as n — co

\/ﬁ(ﬁ—ﬁ)—d’N(O,Vﬁ)

where
Vp=Q:0Q%, (7.8)

Qux=E[x;x], and @ =E [x;x)e7].

In the stochastic order notation, Theorem 7.3 implies that

which is stronger than (7.4).

The matrix Vg = Q,.0Q;] is the variance of the asymptotic distribution of /7 (B — B). Consequently,
V g is often referred to as the asymptotic covariance matrix of [Ai The expression Vg = Q,.0Q;1 is called
a sandwich form as the matrix Q is sandwiched between two copies of Q..

It is useful to compare the variance of the asymptotic distribution given in (7.8) and the finite-sample
conditional variance in the CEF model as given in (4.10):

Vg =var[B|X] = (X'X)”" (X'DX) (X'X)"".

(7.9)
Notice that V' is the exact conditional variance of B and Vg is the asymptotic variance of /7 (fi -B).
Thus Vg should be (roughly) n times as large as VB’ or Vg = nVB. Indeed, multiplying (7.9) by n and

distributing we find

]‘ ! ! 1 ! ]‘ !/ -l

”Vi; =|1-XX —X'DX|[—-X'X
n n n
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which looks like an estimator of V. Indeed, as n — oo

nVB 7 VI;.

The expression Vs is useful for practical inference (such as computation of standard errors and tests)

since it is the variance of the estimator ii , while V g is useful for asymptotic theory as it is well defined in
the limit as 7z goes to infinity. We will make use of both symbols and it will be advisable to adhere to this
convention.

There is a special case where Q and V g simplify. Suppose that

cov(x;x},e?) =0. (7.10)

Condition (7.10) holds in the homoskedastic linear regression model, but is somewhat broader. Under
(7.10) the asymptotic variance formulae simplify as

Q =E[x;x}|E[€}] = Qux0”
Vp=QxQ2Q; = Qr0° = V. (7.11)

In (7.11) we define Voﬁ = Q;10° whether (7.10) is true or false. When (7.10) is true then Vg = V9, other-

wise Vg # Voﬁ. We call V2 the homoskedastic asymptotic covariance matrix.

Theorem 7.3 states that the sampling distribution of the least-squares estimator, after rescaling, is
approximately normal when the sample size n is sufficiently large. This holds true for all joint distribu-
tions of (y;, x;) which satisfy the conditions of Assumption 7.2. Consequently, asymptotic normality is
routinely used to approximate the finite sample distribution of /n (Ti -p).

A difficulty is that for any fixed n the sampling distribution of fi can be arbitrarily far from the normal
distribution. The normal approximation improves as n increases, but how large should 7 be in order for
the approximation to be useful? Unfortunately, there is no simple answer to this reasonable question.
The trouble is that no matter how large is the sample size the normal approximation is arbitrarily poor
for some data distribution satisfying the assumptions. We illustrate this problem using a simulation.
Let y; = B1x; + B2 + e; where x; is N(0,1) and e; is independent of x; with the Double Pareto density
fle) = %Iel‘“‘l, le| = 1. If @ > 2 the error e; has zero mean and variance a/(a —2). As a approaches 2,
however, its variance diverges to infinity. In this context the normalized least-squares slope estimator

\/n“T‘z (,31 — 1) has the N(0,1) asymptotic distribution for any @ > 2. In Figure 7.2(a) we display the

finite sample densities of the normalized estimator \/n“T_z (31 —B1), setting n = 100 and varying the
parameter a. For a = 3.0 the density is very close to the N(0,1) density. As @ diminishes the density
changes significantly, concentrating most of the probability mass around zero.

Another example is shown in Figure 7.2(b). Here the model is y; = f + e; where

u' —Efu’
e; = at (7.12)

(E[uz'] - (E[u])?)

and u; ~ N(0,1). We show the sampling distribution of v/n (B— pB) for n =100, varying r = 1, 4, 6 and 8. As
r increases, the sampling distribution becomes highly skewed and non-normal. The lesson from Figure
7.2 is that the N(0, 1) asymptotic approximation is never guaranteed to be accurate.
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(a) Double Pareto Error (b) Error Process (<ref>euk</ref>)

Figure 7.2: Density of Normalized OLS Estimator

7.4 Joint Distribution

Theorem 7.3 gives the joint asymptotic distribution of the coefficient estimators. We can use the
result to study the covariance between the coefficient estimators. For simplicity, take the case of two
regressors, no intercept, and homoskedastic error. Assume the regressors are mean zero, variance one,
with correlation p. Then using the formula for inversion of a 2 x 2 matrix,

2
0_ 2p4-1_ O 1 —p
Vﬁ—U Qxx_l_pz[_p 1

Thus if x;; and xy; are positively correlated (p > 0) then El and ,32 are negatively correlated (and vice-
versa).

For illustration, Figure 7.3(a) displays the probability contours of the joint asymptotic distribution of
,31 — f1 and 32 — B2 when B, = B2 = 0 and p = 0.5. The coefficient estimators are negatively correlated
since the regressors are positively correlated. This means that if Bl is unusually negative, it is likely that
B> is unusually positive, or conversely. It is also unlikely that we will observe both §; and B, unusually
large and of the same sign.

This finding that the correlation of the regressors is of opposite sign of the correlation of the coeffi-
cient estimates is sensitive to the assumption of homoskedasticity. If the errors are heteroskedastic then
this relationship is not guaranteed.

This can be seen through a simple constructed example. Suppose that x;; and xp; only take the
values {—1, +1}, symmetrically, with P [x); = x2; = 1] = P[x1; = X2; =—1]1 =3/8,and P [x}; = 1,Xxp; = 1] =
P[x1; = —1,x2; = 1] = 1/8. You can check that the regressors are mean zero, unit variance and correlation
0.5, which is identical with the setting displayed in Figure 7.3(a).

. . . 5
Now suppose that the error is heteroskedastic. Specifically, suppose that E [e? | X1 = X24] = 1 and
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-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
B B4
(a) Homoskedastic Case (b) Heteroskedastic Case

Figure 7.3: Contours of Joint Distribution of (Bl,iiz)

1 7
E[e? | x1; # X2i] = Z.You can check thatE [e7] = 1,E [x],e7] =E[x3,e?] = 1and E [x1;x;€7 | = 3 Therefore

Vg =Q510Q,,

—_
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—_
>N NI
— 00|
[\

== =
— ]

Thus the coefficient estimators EI and Eg are positively correlated (their correlation is 1/4.) The joint
probability contours of their asymptotic distribution is displayed in Figure 7.3(b). We can see how the
two estimators are positively associated.

What we found through this example is that in the presence of heteroskedasticity there is no simple
relationship between the correlation of the regressors and the correlation of the parameter estimators.

We can extend the above analysis to study the covariance between coefficient sub-vectors. For ex-
ample, partitioning x’. = (x};,x,,) and g’ = (B}, B,), we can write the general model as

/ /
Yi=%; Py +x3,B,+ei

and the coefficient estimates as Ti, = ([Aill,ii/z) . Make the partitions

Q1 Qi [ Q1 Q2 ]
= y Q: .
Qxx Q Qo Q21 Q2
From (2.42)
-1 -1 -1
Q;;: _?11.2 i _011.2_0112022 ]
_sz.lQZIQll QZZ-I
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where Qy1.5 = Q11 — Q12Q5, Q2 and Q.1 = Qo — Q1 Q1 Q1. Thus when the error is homoskedastic

cov (B, B,) = —0%Q11,Q1,Q5r

which is a matrix generalization of the two-regressor case.
In general you can show that (Exercise 7.5)

Vi Viz ]
Vg= (7.13)
b [ Vor Vo
where
V1= Q1 (@11 - Q12Q5 Q21 — ©12Q55 Q2 + Q12Q5, ©22Q5, Q21) Q7 (7.14)
Va1 = Qs (@21 — Q21Q11 Q11 — 922Q5) Qz1 + Q21 Q11 Q12Q5, Q21) Q11 (7.15)
Voo = Q331 (D22 — Q21 Q1 Q12— 921Q71 Q12 + Q2 Q11 211Q1 Q1) Q344 (7.16)

Unfortunately, these expressions are not easily interpretable.

7.5 Consistency of Error Variance Estimators

Using the methods of Section 7.2 we can show that the estimators 52 = + MR e? and s? — k Yr.e
are consistent for 2.
The trick is to write the residual é; as equal to the error e; plus a deviation

ei=yi—-x;p
=e;i+x,p—- x;B
=e;—x;(p-P).
Thus the squared residual equals the squared error plus a deviation
=2 —2¢;x,(B- )+ (B-B) x:ix,(B-B). (7.17)

So when we take the average of the squared residuals we obtain the average of the squared errors, plus
two terms which are (hopefully) asymptotically negligible.

Az_l & 2_ l L 4 "\_
7= n~:1ei z(n.ze’xi) (B-B) (7.18)

Indeed, the WLLN shows that

Ly
nim o
]' & / /
- Zle,-xl- —E [eixi] =0
i=
]' 2 / /
; Z XiX; 7 E [xixi] = Qyyx-

~
Il
—
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Theorem 7.1 shows that ﬁ - B. Hence (7.18) converges in probability to o2 as desired.

Finally, since n/(n— k) — 1 as n — oo it follows that

n ~
szz( )02—>02.
n—-k p

Thus both estimators are consistent.

2

Theorem 7.4 Under Assumption 7.1, 52 - 0? and s? —otasn—oco.

7.6 Homoskedastic Covariance Matrix Estimation

Theorem 7.3 shows that \/n (B — p) is asymptotically normal with asymptotic covariance matrix V g.
For asymptotic inference (confidence intervals and tests) we need a consistent estimator of V. Under
homoskedasticity V g simplifies to V% = Q;.0? and in this section we consider the simplified problem of
estimating Voﬁ.

. LA . . 1. Al

The standard moment estimator of Q,, is Q. defined in (7.1) and thus an estimator for Qy. is Q -
Also, the standard estimator of o is the unbiased estimator s defined in (4.26). Thus a natural plug-in

. 1 2. 50 sl
estimator for V% = Q0% is V= Qyy 5.

. =0 . . N
Consistency of Vg for V% follows from consistency of the moment estimators Q,, and s*> and an

application of the continuous mapping theorem. Specifically, Theorem 7.1 established that Q r Qxxr

and Theorem 7.4 established s> — . The function V%, = Q102 is a continuous function of Q,,, and o

p B xx
so long as Q,., > 0, which holds true under Assumption 7.1.4. It follows by the CMT that

o0 _ /12 -1 2 0
Vg =0Qxs —p»Qxxa :Vﬁ

so that 17% is consistent for V% as desired.

Theorem 7.5 Under Assumption 7.1, Voﬁ —p» Vop as 711 — oo.

Itis instructive to notice that Theorem 7.5 does not require the assumption of homoskedasticity. That

.50 . . . L . .
is, Vg is consistent for Voﬁ regardless if the regression is homoskedastic or heteroskedastic. However,

Vo = Vg = avar(ﬁ) only under homoskedasticity. Thus in the general case floﬁ is consistent for a well-
defined but non-useful object.
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7.7 Heteroskedastic Covariance Matrix Estimation

Theorems 7.3 established that the asymptotic covariance matrix of v/72 (- B) is V5 = Qz1QQ5L. We
now consider estimation of this covariance matrix without imposing homoskedasticity. The standard
approach is to use a plug-in estimator which replaces the unknowns with sample moments.

As described in the previous section a natural estimator for Q. is a;;, where Q,, defined in (7.1).

The moment estimator for Q is

SHCO ~-laa-1
Vﬁ =0Q,,Q0,,. (7.19)
You can check that VI;CO IA/g where f/ﬁ is the HCO covariance matrix estimator introduced in

(4.31).
As shown in Theorem 7.1, a;}c - Q.., so we just need to verify the consistency of Q. The key is to

replace the squared residual él? with the squared error e?, and then show that the difference is asymptot-
ically negligible.
Specifically, observe that

xe

St — Zxx( e?).

The first term is an average of the i.i.d. random variables x;x’ el., and therefore by the WLLN converges
in probability to its expectation, namely,

:I'—' :I'—'

1 n
- Zixix'ie? — E[x;x;ei] =Q
i=

Technically, this requires that Q has finite elements, which was shown in (7.6).
So to establish that Q is consistent for Q it remains to show that

n
% Z x;x); (65 - e?) —0. (7.20)

There are multiple ways to do this. A reasonable straightforward yet slightly tedious derivation is to start
by applying the triangle inequality (B.16) using a matrix norm:

1 1
EIEIC Y] B B
i=
1 n
EZ EANGETAR (7.21)

Then recalling the expression for the squared residual (7.17), apply the triangle inequality (B.1) and then
the Schwarz inequality (B.12) twice

|62 - ¢f| <2e;x; (B— B)| + (B B) x:x} (B~ B)
! (P I / 2
=2le;1|x; (B~ B)|+| (B~ B) x|
<2le;lIxill | B - B| +Ix:% | B- B (7.22)
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Combining (7.21) and (7.22), we find

1 ¢ ! (52 2
W Zixixi (€ —e7)
i=

S P [ S Pt [ B
nl'zl ni:l
= 0, (D). (7.23)

The expression is 0,(1) because“iﬁ - ﬁ|| - 0 and both averages in parenthesis are averages of random

variables with finite mean under Assumption 7.2 (and are thus O,(1)). Indeed, by Holder’s inequality
(B.31)

3/4
E (il lerl] =< (E[(12:1%)°]) (E[e])"
= [Elx:1)™" E[e}])"* < o0
We have established (7.20) as desired.

Theorem 7.6 Under Assumption 7.2, as n — oo, Q 7 Q and VII;ICO —p» Vg.

For an alternative proof of this result, see Section 7.21.

7.8 Summary of Covariance Matrix Notation

The notation we have intAroduced may be somewhat confusing so it is helpful to write it down in one
place. The exact variance of § (under the assumptions of the linear regression model) and the asymptotic
variance of \/n (fi — B) (under the more general assumptions of the linear projection model) are

Vg =var(B1X) = (X'X)"" (X'DX)(X'X)"
Vi =avar(vn(B - ) = Qur@Qy-
The HCO estimators of these two covariance matrices are

~HCO -1 -1
v =(X'x) (i_zlxix;al?) (X'X)

SHCO  A-la~-]
Vﬁ = QxeQxx
and satisfy the simple relationship V?CO =5,

Similarly, under the assumption of homoskedasticity the exact and asymptotic variances simplify to
V= (x'x)"' o?
0 -1.2
|4 p=Qxx0"
Their standard estimators are

=0 -1
Vp=(X'x)"§

50  ~-1 o
Vg =

xxS

. . . PN =0 .
which also satisfy the relationship Vg = nV3. The exact formula and estimators are useful when con-
structing test statistics and standard errors. However, for theoretical purposes the asymptotic formula
(variances and their estimates) are more useful as these retain non-generate limits as the sample sizes
diverge. That is why both sets of notation are useful.
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7.9 Alternative Covariance Matrix Estimators*

. . ~HCO . ~HCO . . ~HCO
In Section 7.7 we introduced Vﬁ as an estimator of Vg. Vﬁ is a scaled version of Vﬁ from
Section 4.15, where we also introduced the alternative HC1, HC2 and HC3 heteroskedasticity-robust
covariance matrix estimators. We now discuss the consistency properties of these estimators.

To do so we introduce their scaled versions, e.g. IA/I;C1 = ‘711—31(:1 VII_,ICZ VI’;;ICZ and Vgcs !71;
These are (alternative) estimators of the asymptotic covariance matrix Vg.
. . ~HC1 . ~HC pHCL _ _p oHCO ~HCO .
First, consider Vg . Notice that Vﬁ = nVﬁ Vg where Vg~ was defined in (7.19) and

shown consistent for Vg in Theorem 7.6. If k is fixed as n — oo, then ﬁ — 1 and thus

Vo =1+ o) V,° ﬁv,,.

Thus V?Cl is consistent for Vg.
The alternative estimators ‘711—31(:2 and V;Icg take the form (7.19) but with Q replaced by

n
Q= Z hi) 2 xx e

1
n;

and

—

< //\2
;Z 1 hll) l l’

respectively. To show that these estimators also consistent for Vg given Q — Q it is sufficient to show
p

that the differences © — Q and Q@ — © converge in probability to zero as n — co.
The trick is to use the fact that the leverage values are asymptotically negligible:

h = max h;j; = 0p(1). (7.24)

1<i<n

(See Theorem 7.19 in Section 7.22.) Then using the triangle inequality (B.16)

Ja-a] <2 $ el a—no 1

1& ol
< (— Y ||xl-||2é§) |(-n;)7" 1]
ni=1
The sum in parenthesis can be shown to be O, (1) under Assumption 7.2 by the same argument as in in

the proof of Theorem 7.6. (In fact, it can be shown to converge in probability to E [||x;[|* 7] .) The term in
absolute values is 0, (1) by (7.24). Thus the product is 0, (1) which means that 0=0+ 0p(1) - Q.

Similarly,

~ A 12
|0-0] =7 % |l &0 - hin™ 1|

(%i Ix; |2A2)| (1-n;) 7% 1]
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Theorem 7.7 Under Assumption 7.2, as n — oo, Q 7 Q, Q 7 Q, VI;CI —p»

~HC2 ~HC3
Vg, V — Vg,and V — V.
pVp P b [ij P [}

Theorem 7.7 shows that the alternative covariance matrix estimators are also consistent for the asymp-
totic covariance matrix.

To simplify notation, for the remainder of the chapter we will use the notation Vﬁ and 173 to refer
to any of the heteroskedasticity-consistent covariance matrix estimators HC0, HC1, HC2 and HC3, since
they all have the same asymptotic limits.

7.10 Functions of Parameters

In most serious applications the researcher is actually interested in a specific transformation of the
coefficient vector § = (f1, ..., B). For example, the researcher may be interested in a single coefficient 3 ;
or aratio §;/ ;. More generally, interest may focus on a quantity such as consumer surplus which could
be a complicated function of the coefficients. In any of these cases we can write the parameter of interest
0 as a function of the coefficients, e.g. @ = r(p) for some function r : R* — R, The estimate of  is

0=rp).

By the continuous mapping theorem (Theorem 6.6) and the fact ii - p we can deduce that 0 is

consistent for @ (if the function r(-) is continuous).

Theorem 7.8 Under Assumption 7.1, if r(f) is continuous at the true value of
ﬁ,thenasn—»oo,BTO.

Furthermore, if the transformation is sufficiently smooth, by the Delta Method (Theorem 6.8) we can
show that 0 is asymptotically normal.

Assumption 7.3 r(f) : R* — R is continuously differentiable at the true value

of fand R = %r([i)’ has rank g.

Theorem 7.9 Asymptotic Distribution of Functions of Parameters
Under Assumptions 7.2 and 7.3, as n — oo,

vn(6-8) —N(0,Vp) (7.25)

where Vg = R'VgR.
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In many cases the function r () is linear:
r(B)=R'B

for some k x g matrix R. In particular if R is a “selector matrix”

w=[o)
then we can partition § = (8}, )’ so that R’ = g, for p = (B}, p,)'. Then
Vo=(1 0 )V,;( é ):Vu,
the upper-left sub-matrix of V1; given in (7.14). In this case (7.25) states that
vn(B,-B,) - N(0,Vy1).
That is, subsets of f are approximately normal with variances given by the conformable subcomponents

of V.
To illustrate the case of a nonlinear transformation take the example 6 = §;/; for j # I. Then

a5 (Bj1B1) 0
5 ap; (BilB) 1B,
R= %r(ﬂ) = : = : (7.26)
a5 (Bl B1) B! B}
a5 (Bj/B1) 0

SO
Vo= ij/ﬁ%+V”ﬁ‘i/ﬁzll—Zleﬁj/ﬁ?

where V ,;, denotes the ab'” element of V.

For inference we need an estimator of the asymptotic variance matrix Vo = R'VgR. For this it is
typical to use the plug-in estimator

R= %r(ﬁ)’. (7.27)

The derivative in (7.27) may be calculated analytically or numerically. By analytically, we mean working
out for the formula for the derivative and replacing the unknowns by point estimates. For example, if
0 = p;/p; then %r(ﬁ) is (7.26). However in some cases the function r(f) may be extremely complicated
and a formula for the analytic derivative may not be easily available. In this case calculation by numerical
differentiation may be preferable. Let §; = (0 --- 1 --- 0)’ be the unit vector with the “1” in the I*" place.
Then the jI'" element of a numerical derivative R is

B riB+6:8)-r;(P

i1
/ €

for some small €.
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The estimator of Vg is
Vo=RVgR. (7.28)

Alternatively, the homoskedastic covariance matrix estimator could be used leading to a homoskedastic
covariance matrix estimator for 6.
Vo=RV4R=RQ, Rs. (7.29)
Given (7.27), (7.28) and (7.29) are simple to calculate using matrix operations.
As the primary justification for Vg is the asymptotic approximation (7.25), Vg is often called an
asymptotic covariance matrix estimator.
The estimator Vg is consistent for Vi under the conditions of Theorem 7.9 since !7,; 7 Vg by The-

orem 7.6 and
R=2rp) — 2
B op p Op

since p - P and the function %r(ﬁ)’ is continuous in f.

r(B) =R

Theorem 7.10 Under Assumptions 7.2 and 7.3, as n — oo

Vo — Vp.
P

Theorem 7.10 shows that Vg is consistent for V¢ and thus may be used for asymptotic inference. In
practice we may set

~

Vag=R'VzR=n"RVsR (7.30)

as an estimator of the variance of 6.

7.11 Best Unbiased Estimation

In Sections 4.8-4.10 we presented three versions of the Gauss-Markov theorem, producing lower
bounds on the conditional variance of estimation in the linear regression model. In this section we
introduce a lower bound on the unconditional finite sample variance of estimation in the projection
model. These results are complementary. The results presented here also are extended to functions of
the regression coefficients.

Theorem 7.11 Under Assumption 7.2,if B is unbiased for f then

var[B] = n"' Q1 QQx1
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Theorem 7.12 Under Assumptions 7.2 and 7.3, if 8 is unbiased for 8 then

var[0] = n'R'Q;LQQ iR

The results show that the asymptotic variances from Theorems 7.3 and 7.9 are the best possible in
any finite sample, when we restrict estimation to unbiased estimators.

7.12 Asymptotic Standard Errors

As described in Section 4.16 a standard error is an estimator of the standard deviation of the distri-
bution of an estimator. Thus if Vs is an estimator of the covariance matrix of § then standard errors are
the square roots of the diagonal elements of this matrix. These take the form

S(Ej): \/V>Bj: \/ [Vﬁ]jj'

Standard errors for 8 are constructed similarly. Supposing that 8 = h(f) is real-valued then the standard
error for 0 is the square root of (7.30)

/

s =\ [RV;R= /' RV4R.

WheAn the Ajustiﬁcation is based on asymptotic theory we call s(ﬁ j)or s(0) an asymptotic standard error
for f; or 6. When reporting your results it is good practice to report standard errors for each reported
estimate and this includes functions and transformations of your parameter estimates. This helps users
of the work (including yourself) assess the estimation precision.

We illustrate using the log wage regression

log(wage) = B education+ B, experience+ B3 experience® /100 + 4 + e.
Consider the following three parameters of interest.

1. Percentage return to education:
0, =1000;

(100 times the partial derivative of the conditional expectation of log(wage) with respect to educa-
tion.)

2. Percentage return to experience for individuals with 10 years of experience:

0, =1008, + 2083

(100 times the partial derivative of the conditional expectation of log wages with respect to experi-
ence, evaluated at experience= 10.)

3. Experience level which maximizes expected log wages:

03 = -5082/p3

(The level of experience at which the partial derivative of the conditional expectation of log(wage)
with respect to experience equals 0.)
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The 4 x 1 vector R for these three parameters is

100 0 0
r=| © 100 ~50/B3
1 o | 20 |’ 5062165 |’
0 0 0

respectively.
We use the subsample of married black women (all experience levels) which has 982 observations.
The point estimates and standard errors are

loMe)z 0.118 education+ 0.016 experience— 0.022 experiencez/100+ 0.947 . (7.31)
(0.008) (0.006) (0.012) (0.157)

The standard errors are the square roots of the Horn-Horn-Duncan covariance matrix estimate

0632 0.131 -0.143 -11.1
0131 0390 -0.731 —-6.25 )
= 1074, 32
B=| —0143 -0731 148 943 |19 (7.32)

-11.1 -6.25 9.43 246

v

We calculate that
6, =1008, =100x0.118=11.8

s(01) = V1002 x 0.632 x 10~4 = 0.8
6, = 1008, + 2085 = 100 x 0.016 — 20 x 0.022 = 1.16

~ 0.390 -0.731 100
s =100 20)( S0 0T (0] poeo5s

03 = —50B,/ 5 = 50 x 0.016/0.022 = 35.2

. _ _ 0.390 —0.731 \( —50/B;
3(93)=\/( ~50/B5 508215 )( ~0.731  1.48 )( 5082/ B2

The calculations show that the estimate of the percentage return to education (for married black
women) is 12% per year with a standard error of 0.8. The estimate of the percentage return to experience
for those with 10 years of experience is 1.2% per year with a standard error of 0.6. The estimate of the
experience level which maximizes expected log wages is 35 years with a standard error of 7.

In Stata the nlcom command can be used after estimation to perform the same calculations. To illus-
trate, after estimation of (7.31) use the commands given below. In each case, Stata reports the coefficient
estimate, asymptotic standard error and 95% confidence interval.

) x 1074 =7.0.

Stata Commands

nlcom 100*_b[education]
nlcom 100*_b[experience]+20*_b[exp2]
nlcom -50*_b[experience]/_b[exp2]
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7.13 t-statistic

Let 6 = r(B) : R¥ — R be a parameter of interest, 0 its estimator and s(8) its asymptotic standard error.
Consider the statistic N
0-6
TO)=——. (7.33)
s(0)
Different writers have called (7.33) a t-statistic, a t-ratio, a z-statistic or a studentized statistic, some-
times using the different labels to distinguish between finite-sample and asymptotic inference. As the
statistics themselves are always (7.33) we won't make this distinction and will simply refer to T(8) as a
t-statistic or a t-ratio. We also often suppress the parameter dependence, writing it as T. The t-statistic is
a function of the estimator, its standard error, and the parameter.

By Theorems 7.9 and 7.10, \/ﬁ@— 0) — N (0, Vp) and Vj — Vp. Thus

=7Z~N(0,1).

The last equality is the property that affine functions of normal variables are normal (Theorem 5.2).

This calculation also requires that Vp > 0, otherwise the continuous mapping theorem cannot be
employed. In practice this is an innocuous requirement as it only excludes degenerate sampling distri-
butions. Formally we add the following assumption.

Assumption 7.4 Vg =R'VgR > 0.

Assumption 7.4 states that Vg is positive definite. Since R is full rank under Assumption 7.3 a suffi-
cient condition is that Vg > 0. Since Qy, > 0 a sufficient condition is Q > 0. Thus Assumption 7.4 could
be replaced by the assumption € > 0. Assumption 7.4 is weaker so this is what we use.

Thus the asymptotic distribution of the t-ratio T'(0) is standard normal. Since this distribution does
not depend on the parameters we say that T(0) is asymptotically pivotal. In finite samples 7'(0) is not
necessarily pivotal but the property means that the dependence on unknowns diminishes as n increases.

As we will see in the next section it is also useful to consider the distribution of the absolute t-ratio
|T(0)]. Since T(0) — Z the continuous mapping theorem yields | T(0)] — |Z|. Letting ®(u) = P[Z < u]

denote the standard normal distribution function we can calculate that the distribution function of |Z| is

PlliZlsul=P[-usZ<uj
=PZ<ul-P[Z<-u]
= O (u) - O(~u)
=2d(u) - 1. (7.34)
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Theorem 7.13 Under Assumptions 7.2, 7.3 and 7.4, T(0) 7 Z ~N(0,1) and
|1, (0)] - 1Z].

The asymptotic normality of Theorem 7.13 is used to justify confidence intervals and tests for the
parameters.

7.14 Confidence Intervals

The estimator 8 is a point estimator for @ meaning that Bisa single value in R9. A broader concept
is a set estimator C which is a collection of values in R7. When the parameter @ is real-valued then it is
common to focus on sets of the form C = [f, U] which is called an interval estimator for 6.

An interval estimate C is a function of the data and hence is random. The coverage probability
of the interval C = [L, U] is P(® € C). The randomness comes from C as the parameter 6 is treated as
fixed. In Section 5.10 we introduced confidence intervals for the normal regression model which used
the finite sample distribution of the t-statistic to construct exact confidence intervals for the regression
coefficients. When we are outside the normal regression model we cannot rely on the exact normal distri-
bution theory but instead use asymptotic approximations. A benefit is that we can construct confidence
intervals for general parameters of interest 0 not just regression coefficients.

An interval estimator C is called a confidence interval when the goal is to set the coverage prob-
ability to equal a pre-specified target such as 90% or 95%. C is called a 1 — & confidence interval if
1nfg[FD9 [HEC] =l-a

When @ is asymptotlcally normal with standard error s(§) the conventional confidence interval for 0
takes the form

=[6-cxs@), 0+cxs@)] (7.35)

where ¢ equals the 1 — a quantile of the distribution of |Z|. Using (7.34) we calculate that c is equivalently
the 1 — a/2 quantile of the standard normal distribution. Thus, c solves

20(c)-1=1-a

This can be computed by, for example norminv(1-a/2) in MATLAB. The confidence interval (7.35) is
symmetric about the point estimator 0 and its length is proportional to the standard error s(@).

Equivalently, (7.35) is the set of parameter values for 6 such that the t-statistic T'(8) is smaller (in
absolute value) than c, that is

:{H:IT(H)ISC}:{ —c<8_6 sc}.
s(6)

The coverage probability of this confidence interval is
P0eC]=PIT®)<cl—P[ZI<cl=1-a

where the limit is taken as n — oo, and holds since T'(6) is asymptotically |Z| by Theorem 7.13. We call
the limit the asymptotic coverage probability and call C an asymptotic 1 — a% confidence interval for
0. Since the t-ratio is asymptotically pivotal the asymptotic coverage probability is independent of the
parameter 0.
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It is useful to contrast the confidence interval (7.35) with (5.8) for the normal regression model. They
are similar but there are differences. The normal regression interval (5.8) only applies to regression co-
efficients 8 not to functions 6 of the coefficients. The normal interval (5.8) also is constructed with the
homoskedastic standard error, while (7.35) can be constructed with a heteroskedastic-robust standard
error. Furthermore, the constants c in (5.8) are calculated using the student ¢ distribution, while ¢ in
(7.35) are calculated using the normal distribution. The difference between the student ¢ and normal
values are typically small in practice (since sample sizes are large in typical economic applications).
However, since the student ¢ values are larger it results in slightly larger confidence intervals which is
reasonable. (A practical rule of thumb is that if the sample sizes are sufficiently small that it makes a
difference then neither (5.8) nor (7.35) should be trusted.) Despite these differences the coincidence of
the intervals means that inference on regression coefficients is generally robust to using either the exact
normal sampling assumption or the asymptotic large sample approximation, at least in large samples.

In Stata, by default the program reports 95% confidence intervals for each coefficient where the crit-
ical values c are calculated using the f,_j distribution. This is done for all standard error methods even
though it is only exact for homoskedastic standard errors and under normality.

The standard coverage probability for confidence intervals is 95%, leading to the choice ¢ = 1.96 for
the constant in (7.35). Rounding 1.96 to 2, we obtain what might be the most commonly used confidence
interval in applied econometric practice

C=[0-256), 6+250)].

This is a useful rule-of thumb. This asymptotic 95% confidence interval C is simple to compute and
can be roughly calculated from tables of coefficient estimates and standard errors. (Technically, it is an
asymptotic 95.4% interval due to the substitution of 2.0 for 1.96 but this distinction is overly precise.)

Theorem 7.14 Under Assumptions 7.2, 7.3 and 7.4, for C defined in (7.35) with
c=®1(1-a/2),P[0eC]—~1-a.Forc=1.96,P[0 e C] — 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When reading
a set of empirical results look at the estimated coefficient estimates and the standard errors. For a pa-
rameter of interest compute the confidence interval C,, and consider the meaning of the spread of the
suggested values. If the range of values in the confidence interval are too wide to learn about 8 then do
not jump to a conclusion about 8 based on the point estimate alone.

For illustration, consider the three examples presented in Section 7.12 based on the log wage regres-
sion for married black women.

Percentage return to education. A 95% asymptotic confidence interval is 11.8 +1.96 x 0.8 = [10.2,
13.3].

Percentage return to experience for individuals with 10 years experience. A 90% asymptotic confi-
dence interval is 1.1 + 1.645 x 0.4 = [0.5, 1.8].

Experience level which maximizes expected log wages. An 80% asymptotic confidence interval is
35+1.28 x 7 =[26, 44].

7.15 Regression Intervals

In the linear regression model the conditional mean of y; given x; = x is

m(x) =E[y; | x; =x] =x'B.
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In some cases we want to estimate m(x) at a particular point x. Notice that this is a linear function of
. Letting r(B) = x'B and 0 = r(f) we see that 7i(x) =0 = x'p and R = x so s(@) = ,/x’Vﬁx. Thus an
asymptotic 95% confidence interval for m(x) is

[x'fi +1.96, /x’VBx] )
It is interesting to observe that if this is viewed as a function of x the width of the confidence interval is
dependent on x.
To illustrate we return to the log wage regression (3.13) of Section 3.7. The estimated regression
equation is
log(wage) = x'B = 0.155x +0.698

where x =education. The covariance matrix estimate from (4.38) is

0.001
—-0.015

-0.015

V= 0.243

ﬁ_

Thus the 95% confidence interval for the regression is

0.155x+0.698 + 1.96\/0.001x2 —0.030x +0.243.

The estimated regression and 95% intervals are shown in Figure 7.4(a). Notice that the confidence
bands take a hyperbolic shape. This means that the regression line is less precisely estimated for very
large and very small values of education.

log(wage)

9 10 11 12 13 14 15 16 17 18 19 20

Education

log(wage)

2.8

27

26

25

2.4

23

22

5 10 15 20 25 30 35 40 45 50 55 60

Experience

(a) Wage on Education (b) Wage on Experience

Figure 7.4: Wage on Education Regression Intervals

Plots of the estimated regression line and confidence intervals are especially useful when the re-
gression includes nonlinear terms. To illustrate consider the log wage regression (7.31) which includes
experience and its square and covariance matrix estimate (7.32). We are interested in plotting the re-
gression estimate and regression intervals as a function of experience. Since the regression also includes
education, to plot the estimates in a simple graph we need to fix education at a specific value. We select
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education=12. This only affects the level of the estimated regression since education enters without an
interaction. Define the points of evaluation

where x =experience.
Thus the 95% regression interval for education=12 as a function of x =experience is

0.118 x 12 +0.016 x —0.022 x*/100 + 0.947

0.632 0.131 -0.143 -11.1
0.131 0390 -0.731 -6.25
-0.143 -0.731 1.48 9.43
-11.1 -6.25 9.43 246

+1.96 |z(x) z(x) x 1074

=0.016 x—.00022 x*> +2.36

+0.01961/70.608 — 9.356 x +0.54428 x2 —0.01462 x3 +0.000148 x*.

The estimated regression and 95% intervals are shown in Figure 7.4(b). The regression interval widens
greatly for small and large values of experience indicating considerable uncertainty about the effect of
experience on mean wages for this population. The confidence bands take a more complicated shape
than in Figure 7.4(a) due to the nonlinear specification.

7.16 Forecast Intervals

Suppose we are given a value of the regressor vector x,; for an individual outside the sample and
we want to forecast (guess) y,+1 for this individual. This is equivalent to forecasting y,+1 given x,,+1 = x
which will generally be a function of x. A reasonable forecasting rule is the conditional mean m(x) as it
is the mean-square-minimizing forecast. A point forecast is the estimated conditional mean 77 (x) = x’ B
We would also like a measure of uncertainty for the forecast.

The forecast error is €,11 = Yp+1 — M(X) = e — X (B - ﬁ). As the out-of-sample error e, is inde-
pendent of the in-sample estimate [Ai this has conditional variance

e121+1 —2x' (i} - ﬁ) eni1+x (B - ﬁ) (B - ﬁ),x|xn+1 = x]
=E [}y | X1 = x] + XE[ (B~ ) (B-B) | x

=o%(x)+ x'VBx. (7.36)

E (€1 1%ne1 =x] =E

Under homoskedasticity E [efl w1l xn+1] = ¢2. In this case a simple estimator of (7.36) is 02+ x' lA/Bx so a

standard error for the forecast is 5(x) = , /62 +x' Vﬁx. Notice that this is different from the standard error

for the conditional mean.
The conventional 95% forecast interval for y,+; uses a normal approximation and sets

[%B +25()].
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It is difficult, however, to fully justify this choice. It would be correct if we have a normal approximation

to the ratio R
€n+l1 — x' (ﬁ - ﬁ)
Sx)

The difficulty is that the equation error e, is generally non-normal and asymptotic theory cannot be
applied to a single observation. The only special exception is the case where e, has the exact distribu-
tion N(0, o2) which is generally invalid.

To get an accurate forecast interval we need to estimate the conditional distribution of e;;; given
Xn+1 = X, which is a more difficult task. Perhaps due to this difficulty many applied forecasters use the
simple approximate interval [x’ [Ai +25(x)] despite the lack of a convincing justification.

7.17 Wald Statistic

Let @ = r(B) : R¥ — R7 be any parameter vector of interest, 0 its estimator, and 175 its covariance
matrix estimator. Consider the quadratic form

W) =0-6)V, (0-0)=n(@-0)V, (6-6). (7.37)
where !79 = nIA/a. When g =1, then W(@) = T(6)? is the square of the t-ratio. When g > 1, W(6) is typically
called a Wald statistic as it was proposed by Wald (1943). We are interested in its sampling distribution.

The asymptotic distribution of W () is simple to derive given Theorem 7.9 and Theorem 7.10. They
show that
vn(0-0) —Z~N(0,Vp)

and
‘79 — V.
p
It follows that
W) =vn(6-6)V, vn(0-6) —7Vy'Z

a quadratic in the normal random vector Z. As shown in Theorem 5.3.5 the distribution of this quadratic
form is X%, a chi-square random variable with g degrees of freedom.

Theorem 7.15 Under Assumptions 7.2, 7.3 and 7.4, as n — oo,

2
W®O) — -

Theorem 7.15 is used to justify multivariate confidence regions and multivariate hypothesis tests.

7.18 Homoskedastic Wald Statistic

2

Under the conditional homoskedasticity assumption E [e7 | x;] = 0 we can construct the Wald statis-

tic using the homoskedastic covariance matrix estimator 173 defined in (7.29). This yields a homoskedas-

tic Wald statistic » »
w©)=(0-6) (Vg (0-0)=n(0-6) (Vo) (8-0). (7.38)
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Under the additional assumption of conditional homoskedasticity it has the same asymptotic distri-
bution as W(0).

Theorem 7.16 Under Assumptions 7.2, 7.3, and E [e? |xi] =0?>0,as n— oo,

0 2
W) — i

7.19 Confidence Regions

A confidence region C is a set estimator for @ € R7 when g > 1. A confidence region C is a set in R?
intended to cover the true parameter value with a pre-selected probability 1 —«. Thus an ideal confidence
region has the coverage probability P [6 € 6] =1-a. In practice it is typically not possible to construct a
region with exact coverage but we can calculate its asymptotic coverage.

When the parameter estimator satisfies the conditions of Theorem 7.15 a good choice for a confi-
dence region is the ellipse

C={0:W@O) <ci_q}
with ¢;_4 the 1 — @ quantile of the )(f, distribution. (Thus F4(c1-¢) = 1 - a.) It can be computed by, for
example, chi2inv(1-a,q)in MATLAB.

Theorem 7.15 implies

P[@eC] —»P[xéscl_a] =l-a

which shows that C has asymptotic coverage 1 - a.
To illustrate the construction of a confidence region, consider the estimated regression (7.31) of

IOMQ) = f1 education+ P, experience+ B3 experience’ 1100 + f4.

Suppose that the two parameters of interest are the percentage return to education 6; = 1008, and the
percentage return to experience for individuals with 10 years experience 8, = 1008, +2083. These two
parameters are a linear transformation of the regression parameters with point estimates

~ 100 O 0 0\ 11.8
0‘( 0 100 20 o)ﬁ_( 1.2 )
and have the covariance matrix estimate

0 0
N 0 100 0 0 - | 100 ©
V‘?_(o 0 100 20)Vﬁ 0 100

0 20

_( 0.632 0.103
~1 0.103 0.157

with inverse
s-1_( 177 -1.16
06 |\ -116 7.13
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Thus the Wald statistic is
we =(0-6)v, (0-6)
([ 11.8-6, \'( 177 -1.16)( 11.8-6,
|l 1.2-6 -1.16 7.13 1.2-6,
=1.77(11.8-01)* —2.32(11.8 - 01) (1.2 — 0) + 7.13 (1.2 - 0,)°.

The 90% quantile of the X% distribution is 4.605 (we use the )(% distribution as the dimension of 0 is
two) so an asymptotic 90% confidence region for the two parameters is the interior of the ellipse W (0) =
4.605 which is displayed in Figure 7.5. Since the estimated correlation of the two coefficient estimates is
modest (about 0.3) the region is modestly elliptical.

1.0 1.5 2.0 25
1 |

Return to Experience (%)
.
>

0.5
1

0.0

Return to Education (%)

Figure 7.5: Confidence Region for Return to Experience and Return to Education

7.20 Edgeworth Expansion*

Theorem 7.13 showed that the t-ratio T(8) is asymptotically normal. In practice this means that
we use the normal distribution to approximate the finite sample distribution of T. How good is this
approximation? Some insight into the accuracy of the normal approximation can be obtained by an
Edgeworth expansion which is a higher-order approximation to the distribution of T. The following
result is an application of Theorem 9.11 of Introduction to Econometrics.
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Theorem 7.17 Under Assumptions 7.2, 7.3, @ > 0, E|ell'® < oo, E[x['6 <
oo, g(B) has five continuous derivatives in a neighborhood of B, and
Elexp(z(lel*+lxl*))]<B<1,asn—o0

PIT®O) < x]1=®(x)+n 2 p1(x)px) + n  pa(0)p(x) +0(n?)

uniformly in x, where p;(x) is an even polynomial of order 2 and p»(x) is an
odd polynomial of degree 5 with coefficients depending on the moments of e
and x up to order 16.

Theorem 7.17 shows that the finite sample distribution of the t-ratio can be approximated up to
o(n 1 by the sum of three terms, the first being the standard normal distribution, the second a O (n_l/ 2)
adjustment, and the third a O (n™!) adjustment.

Consider a one-sided confidence interval C = [§ - zl_as(g),oo) where z,_ is the 1 — a'" quantile of
Z~N(0,1), thus ®(z;_4) — 1 — a. Then

POeCl=P[T©) < z1-q4]
=®0(z1-) + 1" pi(z@1-)pz1-0) +O(n )
=1-a+0(n"?).
This means that the actual coverage is within O (n_” %) of the desired 1 - a level.
Now consider a two-sided interval C = [9 —Z1_a/2800),0 + zl_a/gs(e)]. It has coverage
POeCI=PTO) <z1-qs2]
=20(21-g/2) — 1+ 1 12p2(21-0/2)P(21-as2) + 0 (n71)
=1-a+0(n").
This means that the actual coverage is within O (n™!) of the desired 1 — a level. The accuracy is better

than the one-sided interval because the O (n_” ?) term in the Edgeworth expansion has offsetting effects
in the two tails of the distribution.

7.21 Uniformly Consistent Residuals*

It seems natural to view the residuals €; as estimators of the unknown errors e;. Are they consistent?
In this section we develop an appropriate convergence result. This is not a widely-used technique and
can safely be skipped by most readers.

Notice that we can write the residual as

ei=yi—x,p
=ei+x,p-x,p
=e;i—x;(B-B). (7.39)

Since f— p — it seems reasonable to guess that &; will be close to e; if 7 is large.

P
We can bound the difference in (7.39) using the Schwarz inequality (B.12) to find

& —eil = |x; (B B)| < llx:1l | B- B - (7.40)
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To bound (7.40) we can use || [Ai -p || =0y (n~Y2) from Theorem 7.3 but we also need to bound the random
variable || x;||. If the regressor is bounded, that is, | x;|| < B < oo, then |&; — e;| < B ||3 - B| = 0p(n~12).
However if the regressor does not have bounded support then we have to be more careful.

The key is Theorem 6.17 which shows that E || x;[|" < co implies x; = 0, (n”’) uniformly in i, or

n V" max ||x;]| — O.
1<i<n p

Applied to (7.40) we obtain

max le; —ei| < max [l ||IA3—ﬁ||
1<i<n 1<i=n

— Op(n—1/2+1/r)_

We have shown the following.

Theorem 7.18 Under Assumption 7.2 and E || x;||” < oo, then

max |é; — e;| =op(n_1/2+”r). (7.41)
1<i<n

The rate of convergence in (7.41) depends on r. Assumption 7.2 requires r = 4 so the rate of conver-
gence is at least op(n‘” %). As r increases the rate improves.

We mentioned in Section 7.7 that there are multiple ways to prove the consistency of the covariance
matrix estimator . We now show that Theorem 7.18 provides one simple method to establish (7.23) and
thus Theorem 7.6. Let g, = max;<;<, |€; — e;| = op(n_1/4). Since

2 2 = = 2
e;—ei=2e;(e;—e)+ (e —e)",
then
12 ;] (=2 2 1 Z | |22 2
= xix; (& —ej)| = — X [xixi] [e] - e
ni;:; niz
2 ¢ 2 1 ¢ 2 2
<= lxill®leille; —eil + = ) llxll* 1€ — el
niz iz
2 2 2 1 2 2
<= lxil*leilgn+ =) llxill* gy,
ni=1 niz1
~1/4
<op(n~""7).

7.22 Asymptotic Leverage*

Recall the definition of leverage from (3.41)
hii = x'i (X’X)_l X;.

These are the diagonal elements of the projection matrix P and appear in the formula for leave-one-
out prediction errors and HC2 and HC3 covariance matrix estimators. We can show that under i.i.d.
sampling the leverage values are uniformly asymptotically small.
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Let Amin(A) and Amax(A) denote the smallest and largest eigenvalues of a symmetric square matrix A
and note that Amax(A™1) = (Amin(A) L.
Since + X'X — Q. > 0, by the CMT Apin (£ X'X) — Amin (Qxx) > 0. (The latter is positive since Q.

is positive definite and thus all its eigenvalues are positive.) Then by the Quadratic Inequality (B.18)

hii = x’i (X’X)_l X

< Amax ((X'X) ") (] 1)
_ (amm (%x’x))_l ~lwl?

1
< (Amin (Qux) + 0p (1)) — max |lx; > (7.42)

-11
n

2
Theorem 6.17 shows that E|x;||” < co implies 1max lx; 1% = (lmax IIinI) = 0p (nz”) and thus (7.42) is
<i<n <Ii<n

0p (n2/r—1).

Theorem 7.19 If x; is i.i.d., Q,, > 0, and E|x;||" < oo for some r = 2, then

lrgla;; hii =0y (n2/r—l) .

For any r = 2 then h;; = 0j, (1) (uniformly in i < n). Larger r implies a stronger rate of convergence.
For example r = 4 implies h;; = 0, (n7/?).

Theorem (7.19) implies that under random sampling with finite variances and large samples no indi-
vidual observation should have a large leverage value. Consequently individual observations should not
be influential unless one of these conditions is violated.
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Exercises

Exercise 7.1 Take the model y; = x|, 8, + x,, B, + e; with E[x;e;] = 0. Suppose that B, is estimated by
regressing y; on x1; only. Find the probability limit of this estimator. In general, is it consistent for ,? If
not, under what conditions is this estimator consistent for f§,?

Exercise 7.2 Let ybe nx 1, X be n x k (rank k). y = X + e with E(x;e;) = 0. Define the ridge regression
estimator

i=1

n Tin
ﬁ:(inx'i+/llk) (inyi) (7.43)
i=1
here A > 0 is a fixed constant. Find the probability limit of fi asn—oo.Is ii consistent for f#?

Exercise 7.3 For the ridge regression estimator (7.43), set A = cn where ¢ > 0 is fixed as n — co. Find the
probability limit of  as n — oo.

Exercise 7.4 Verify some of the calculations reported in Section 7.4. Specifically, suppose that x;; and
xo; only take the values {—1, +1}, symmetrically, with

Plx1; =x2; =1] =P [x1; = x2; = —1] =3/8
Plx1;=1,%;=-11=Plx;; =-1,x;=1]1=1/8

Elef | x1; = x2] = Z
[E[el? | X1 # X2i] = i
Verify the following:
@ E[x1;1=0
(b) E[x};]=1
(@) Elx1ix2i] = :
2
d) E[e?]=1
(e) E[x%,ef]=1
() E[x1ix2:€2] = g
Exercise 7.5 Show (7.13)-(7.16).
Exercise 7.6 The model is
yi=x;p+e
E[x;e;]=0

Q=E[x;x}e?].

Find the method of moments estimators (8, Q) for (B,Q).
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(a) In this model, are (B, Q) efficient estimators of (B,Q)?

(b) Ifso, in what sense are they efficient?

Exercise 7.7 Of the variables (y;, y;, x;) only the pair (y;, x;) are observed. In this case we say that y; is
a latent variable. Suppose

yi=xip+e
[E[xie,-] =0
Yi= J’}k + U

where u; is a measurement error satisfying

[E[xiul-]=0
E[y; u;i] =0.

Let ii denote the OLS coefficient from the regression of y; on x;.

(@) Is B the coefficient from the linear projection of y; on x;?
(b) Is ii consistent for  as n — co?

(c) Find the asymptotic distribution of y/7 (B — B) as n — co.
Exercise 7.8 Find the asymptotic distribution of /71 (6% — 0%) as n — oo.

Exercise 7.9 The modelis

Yi=xif+e;
Elei|xi]=0
where x; € R. Consider the two estimators
B _ Z?:l XiYi
- n x2
i=1"
p=—> T

(a) Under the stated assumptions are both estimators consistent for 5?2

(b) Are there conditions under which either estimator is efficient?

Exercise 7.10 In the homoskedastic regression model y = X + e with E[e; | x;] =0 and E [elg | xi] = 0?
suppose ii is the OLS estimator of f with covariance matrix estimator 173 based on a sample of size n.

Let 62 be the estimator of 0. You wish to forecast an out-of-sample value of y, ;1 given that x,,1 = x.
Thus the available information is the sample (y, X), the estimates (f, Vﬁﬁz), the residuals ¢, and the
out-of-sample value of the regressors x,.

(a) Find a point forecast of y;.

(b) Find an estimator of the variance of this forecast.
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Exercise 7.11 Take a regression model with i.i.d. observations (y;, x;) and scalar x;

yi=xif+e;
Efei | x;1=0
Q=E[x?e?].

Let E be the OLS estimator of § with residuals €; = y; — x; E Consider the estimators of Q

n

Y xie
i=1

n

2 xe

i=1

S|I= I~
~ N

Q
Q

(a) Find the asymptotic distribution of /7 ((~2 -Q)asn— oo.
(b) Find the asymptotic distribution of y/71 (Q — Q) as n — oco.

(c) How do you use the regression assumption E [e; | x;] = 0 in your answer to (b)?

Exercise 7.12 Consider the model

yi=a+px;+e;
Elei] =0
[E[xiei]ZO

with both y; and x; scalar. Assuming a > 0 and 8 < 0 suppose the parameter of interest is the area under

the regression curve (e.g. consumer surplus), which is A = —a?/2p.
Let 8 = (@, )’ be the least-squares estimators of 8 = (&, )’ so that /71(8 —0) — 4 N(0,Vg) and let Vg

be a standard consistent estimator for V.

(a) Given the above describe an estimator of A.

(b) Construct an asymptotic (1 —n) confidence interval for A.

Exercise 7.13 Consider ani.i.d. sample {y;, x;} i = 1,..., n where y; and x; are scalar. Consider the reverse

projection model
Xi=Yiy + Ui
E[yiui] =0

and define the parameter of interestas 8 = 1/y.

(a) Propose an estimator y of y.
(b) Propose an estimator 0 of 0.
(c) Find the asymptotic distribution of 0.

(d) Find an asymptotic standard error for 0.
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Exercise 7.14 Take the model

Vi=x1if1+x2i P2 +e;
[E[xie,-] =0

with both §; e Rand f, € R, and define the parameter

60 = p1pe.
(a) Whatis the appropriate estimator 6 for 62
(b) Find the asymptotic distribution of & under standard regularity conditions.

(c) Show how to calculate an asymptotic 95% confidence interval for 6.
Exercise 7.15 Take the linear model

yi=Xxif+e;
Ele; | x;]=0

with n observations and x; is scalar (real-valued). Consider the estimator

B\ Zzl 1yl
x4.

zli

Find the asymptotic distribution of /72 (B - ) as n — oo.

Exercise 7.16 From an i.i.d. sample (y;,x;) of size n you randomly take half the observations. You esti-
mate a least-squares regression of y; on x; using only this sub-sample. Is the estimated slope coefficient
P consistent for the population projection coefficient? Explain your reasoning.

Exercise 7.17 An economist reports a set of parameter estimates, including the coefficient estimates
B1 = 1.0, B2 = 0.8, and standard errors s(1) = 0.07 and s(fB2) = 0.07. The author writes “The estimates
show that (3 is larger than §,.”

(a) Write down the formula for an asymptotic 95% confidence interval for 0 = 5, — B2, expressed asa
function of ﬁl, ﬂz, s(ﬁl), s(ﬁg) and p, where p is the estimated correlation between ﬁl and ﬁg

(b) Can p be calculated from the reported information?

(c) Isthe author correct? Does the reported information support the author’s claim?
Exercise 7.18 Suppose an economic model suggests
g0 =E[yi | x; = x] = fo+ f1x + fox’
where x; € R. You have a random sample (y;,x;), i =1,...,n

(a) Describe how to estimate g(x) at a given value x.

(b) Describe (be specific) an appropriate confidence interval for g(x).
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Exercise 7.19 Take the model
yi=x;B+e;
E [x,-e,-] =0

and suppose you have observations i = 1,...,2n. (The number of observations is 2x.) You randomly split
the sample in half, (each has n observations), calculate §, by least-squares on the first sample, and S,
by least-squares on the second sample. What is the asymptotic distribution of v/72 (8, — B,)?

Exercise 7.20 The data {y;, x;, w;} is from a random sample, i = 1,..., n. The parameter § is estimated by
minimizing the criterion function

SP) =Y wi(yi—xip)°
i=1
That is ii = argming S(f).

(a) Find an explicit expression for [Ai

(b) What population parameter f§ is ii estimating? (Be explicit about any assumptions you need to
impose. But don’t make more assumptions than necessary.)

(c) Find the probability limit for f§ as 1 — oo.

(d) Find the asymptotic distribution of /72 (B — B) as n — co.
Exercise 7.21 Take the model

yi=x;B+e
Ele; [x;]1=0
2 2 !
Ele; |xi] =07 =2y
where z; is a (vector) function of x;. The sample is i = 1,...,n with i.i.d. observations. For simplicity,
assume that z’l.y > 0 for all z;. Suppose you are interested in forecasting y, ;1 given x,.1 =xand z,,+; =z

for some out-of-sample observation n + 1. Describe how you would construct a point forecast and a
forecast interval for ;1.

Exercise 7.22 Take the model

yi=x;p+e;
Elei |x;1=0

zi = (x;B)y+u;
Eluilxi]=0

Your goal is to estimate y. (Note that y is scalar.) You use a two-step estimator:

* Estimate [Ai by least-squares of y; on x;.
. ~ . IR
* Estimate ¥ by least-squares of z; on x; .

(a) Show that ¥ is consistent for .
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(b) Find the asymptotic distribution of ¥ when y = 0.

Exercise 7.23 The model is

Yi=xip+e;
Ele; | x;]1=0
where x; € R. Consider the the estimator
1 i Vi
n o1 Xi

Find conditions under which ,B is consistent for § as n — co.
Exercise 7.24 The parameter f is defined in the model

yi=x;B+e;
where e; is independent ofx Ele;1=0, E [ez] = 0. The observables are (yi, x;) where
Xi = x;‘ Vi

and v; > 0 is random measurement error. Assume that v; is independent of xl?‘ and e;. Also assume that
x; and x; are non-negative and real-valued. Consider the least-squares estimator § for §.

(a) Find the plim of B expressed in terms of § and moments of (x;, v;, e;).

(b) Can you find a non-trivial condition under which B is consisent for 2 (By non-trivial we mean
something other than v; =1.)

Exercise 7.25 Take the standard model
yi=x;B+e
Elxie;] =0

For a positive function w(x) let w; = w(x;). Consider the estimator

. n 1y

B=|Y wixix;| |) wixiyi.

i=1 i=1

Find the probability limit (as n — oo) of B. Do you need to add an assumption?) Is P consistent for f2 If
not, under what assumption is f§ consistent for f?

Exercise 7.26 Take the regression model

yi=x.p+e;
Ele; | x;]=0
2

[E[ezg“‘i]:ai

with x; € RF. Assume that P [e; = 0] = 0. Consider the infeasible estimator

-2 1 -2

- ! .

> e;°x;x; Y e °xiyi|.
i=1 i=1

This is a WLS estimator using the weights el.‘z.
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(@
(b)

Find the asymptotic distribution of ﬁ

Contrast your result with the asymptotic distribution of infeasible GLS.

Exercise 7.27 The modelis

yi=x;B+e;
[E[ei le-] =0.

An econometrician is worried about the impact of some unusually large values of the regressors. The
model is thus estimated on the subsample for which |x;| < ¢ for some fixed c. Let f denote the OLS
estimator on this subsample. It equals

(@

(b)

" n “Lin
B= (Z xx; 1 (x| < c)) (Z xiyil(1xi| < c)).

i=1 i=1

Show that - B.

Find the asymptotic distribution of /72 (- B).

Exercise 7.28 As in Exercise 3.26, use the CPS dataset and the subsample of white male Hispanics. Esti-
mate the regression

(@)

(b)

(c)

(d)

(e)

(9

loMe) = B education+ B, experience+ B3 experience’ /100 + fBs.

Report the coefficient estimates and robust standard errors.

Let 8 be the ratio of the return to one year of education to the return to one year of experience.
Write 0 as a function of the regression coefficients and variables. Compute 6 from the estimated
model.

Write out the formula for the asymptotic standard error for 0 as a function of the covariance matrix
for B. Compute s(0) from the estimated model.

Construct a 90% asymptotic confidence interval for 6 from the estimated model.

Compute the regression function at education= 12 and experience= 20. Compute a 95% confidence
interval for the regression function at this point.

Consider an out-of-sample individual with 16 years of education and 5 years experience. Construct
an 80% forecast interval for their log wage and wage. [To obtain the forecast interval for the wage,
apply the exponential function to both endpoints.]



Chapter 8

Restricted Estimation

8.1 Introduction
In the linear projection model

yi=x;p+e
[E[xie,-] =0

a common task is to impose a constraint on the coefficient vector . For example, partitioning x; =
(x},,x);) and B’ = (B, B5) a typical constraint is an exclusion restriction of the form g, = 0. In this case
the constrained model is

Yi= xlliﬁl te;
[E[x,-e,'] =0.

At first glance this appears the same as the linear projection model but there is one important difference:
the error e; is uncorrelated with the entire regressor vector x/; = (x’h., x’zl.) not just the included regressor
X1i.

In general, a set of g linear constraints on f takes the form
R'f=c (8.1)

where R is k x g, rank(R) = g < k, and c is g x 1. The assumption that R is full rank means that the con-
straints are linearly independent (there are no redundant or contradictory constraints). We can define
the restricted parameter space Bp as the set of values of  which satisfy (8.1), that is

Br={Bp:R'B=c}.

Sometimes we will call (8.1) a constraint and sometimes a restriction. They are the same thing.
Similarly sometimes we will call estimators which satisfy (8.1) constrained estimators and sometimes
restricted estimators. They mean the same thing.

The constraint ff, = 0 discussed above is a special case of the constraint (8.1) with

0
R—( I, ), (8.2)

a selector matrix, and ¢ = 0.

206
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Another common restriction is that a set of coefficients sum to a known constant, i.e. f; + 2 = 1.
For example, this constraint arises in a constant-return-to-scale production function. Other common
restrictions include the equality of coefficients ; = §,, and equal and offsetting coefficients §; = — .

A typical reason to impose a constraint is that we believe (or have information) that the constraint
is true. By imposing the constraint we hope to improve estimation efficiency. The goal is to obtain
consistent estimates with reduced variance relative to the unconstrained estimator.

The questions then arise: How should we estimate the coefficient vector f imposing the linear re-
striction (8.1)? If we impose such constraints what is the sampling distribution of the resulting estimator?
How should we calculate standard errors? These are the questions explored in this chapter.

8.2 Constrained Least Squares

An intuitively appealing method to estimate a constrained linear projection is to minimize the least-
squares criterion subject to the constraint R’ = c.
The constrained least-squares estimator is

B = argmin SSE(B) (8.3)
R'B=c
where \
SSE(B) =Y (vi-%;B)’ =y'y-2y'XB+ B X'Xp. (8.4)

The estimator Ecls minimizes the sum of squared errors over all § such that § € Bp, or equivalently such
that the restriction (8.1) holds. We call Iids the constrained least- -squares (CLS) estimator. We follow
the convention of using a tilde “~” rather than a hat “A” to indicate that B is a restricted estimator in
contrast to the unrestricted least-squares estimator B and write it as ﬁcls to be clear that the estimation
method is CLS.

One method to find the solution to (8.3) uses the technique of Lagrange multipliers. The problem
(8.3) is equivalent to the minimization of the Lagrangian

ZLB,A) = %SSE(ﬂ) +A (R'B-c) (8.5)

over (B, A) where A is an s x 1 vector of Lagrange multipliers. The first-order conditions for minimization

of (8.5) are
0

@55(7%13, Ads) = —X'y+ X' XBys+ RAgs = 0 (8.6)
and 5
ﬁf(ﬁds,ads) =R'f-c=0. 8.7)

Premultiplying (8.6) by R’ (X'X) ™" we obtain
~R'B+RPy+R (X'X) ' RAgs=0

where ii =(X'X) ¢ y is the unrestricted least-squares estimator. Imposing R’ ﬁcls —c=0from (8.7) and
solving for A5 we find

~ IR PN

Aas=|R'(X'X)"'R|  (R'B-c).
Notice that (X’ X)_1 > 0 and R full rank imply that R’ (X'X )_1 R > 0 and is hence invertible. (See Section
A.10.)
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Substituting this expression into (8.6) and solving for iids we find the solution to the constrained
minimization problem (8.3)

Bos = Bois— (XX) ' R[R (X'X) ' R| " (RBys—0). 8.8)

(See Exercise 8.5 to verify that (8.8) satisfies (8.1).)
This is a general formula for the CLS estimator. It also can be written as

~ ~ ~— ~— -1 ~
ﬁcls = ﬁols - Qx.wlcR (R,QxylcR) (R,ﬁols - C) . (8.9)

The CLS residuals are
e = Vi _x,ipcls
and the n x 1 vector of residuals are written in vector notation as e.

To illustrate we generated a random sample of 100 observations for the variables (y;, x1;, x2;) and
calculated the sum of squared errors function for the regression of y; on x;; and x»;. Figure 8.1 displays
contour plots of the sum of squared errors function. The center of the contour plots is the least squares
minimizer Tiols = (0.33,0.26)". Suppose it is desired to estimate the coefficients subject to the constraint
B1 + B2 = 1. This constraint is displayed in the figure by the straight line. The constrained least squares
estimator is the point on this straight line which yields the smallest sum of squared errors. This is the
point which intersects with the lowest contour plot. The solution is the point where a contour plot is
tangent to the constraint line and is marked as B, = (0.52,0.48)’.

1.0

0.8
Il

0.6

~

Bcls

B2

0.4
L

0.2
Il

0.0

0.0 0.2 0.4 0.6 0.8 1.0

B
Figure 8.1: Imposing a Constraint on the Least Squares Criterion

In Stata constrained least squares is implemented using the cnsreg command.

8.3 Exclusion Restriction

While (8.8) is a general formula for the CLS estimator in most cases the estimator can be found by
applying least-squares to a reparameterized equation. To illustrate let us return to the first example
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presented at the beginning of the chapter — a simple exclusion restriction. Recall that the unconstrained
model is
Vi =Xy Py + %8, +ei, (8.10)

the exclusion restriction is §, = 0, and the constrained equation is
yi=xy;B, +ei. 8.11)

In this setting the CLS estimator is OLS of y; on x,;. (See Exercise 8.1.) We can write this as
. n -1y
By=| 2 xuixy;| | X xiyil- 8.12)
i=1 i=1
The CLS estimator of the entire vector ' = (B, ;) is
= _( B
p= ( 0 | (8.13)

It is not immediately obvious but (8.8) and (8.13) are algebraically identical. To see this the first compo-
nent of (8.8) with (8.2) is

0

- 0| )00 m@a( 2 )] (o nd)

Using (3.40) this equals
31 = Bl - 612 (622)_1 Bz
=B, + 61_11.2 Q1 a;zl Q2215
~ 01 (01~ 0120 @)
+ 61_11261262_21 6224@;21.1 (azy - 621611161”
= Q112 (Q1y - 01202 2101, Q)
= 61_11-2 (611 - 612?2;21 621) 61_11@13/
= @ilaly
which is (8.13) as originally claimed.
8.4 Finite Sample Properties

In this section we explore some of the properties of the CLS estimator in the linear regression model

yi=x;B+e; (8.14)
[E(ei | xi) =0. (8.15)

First, it is useful to write the estimator and the residuals as linear functions of the error vector. These
are algebraic relationships and do not rely on the linear regression assumptions.



CHAPTER 8. RESTRICTED ESTIMATION 210

1

Theorem 8.1 Define P =X (X'X)  X'and

A=(X'X)"'R(R (X’X)_IR)_lR' (x'x)7".
Then
1. Rp-c=R (X'X) ' X'e
2. Bas—B=((X'X)"" X'~ AX')e

3. e=(I-P+XAX')e
4. I,- P+ X AX'is symmetric and idempotent

5. tr(In,—P+XAX')=n-k+gq.

For a proof see Exercise 8.6.
Given the linearity of Theorem 8.1.2 it is not hard to show that the CLS estimator is unbiased for f.

Theorem 8.2 In the linear regression model (8.14)-(8.15) under (8.1),

E[Ecls | X] = ﬁ

For a proof see Exercise 8.7.
Given the linearity we can also calculate the variance matrix of . For this we will add the assump-
tion of conditional homoskedasticity to simplify the expression.

Theorem 8.3 In the homoskedastic linear regression model (8.14)-(8.15) with
E[e? | x;] = 0% under (8.1),

V% =var (Bcls | X)

=|(xx) " - (xXx) " R(R (x'x) R)fl R (X’X)_l) o,

For a proof see Exercise 8.8.
We use the VY notation to emphasize that this is the variance matrix under the assumption of con-

ditional homoskedasticity.
For inference we need an estimate of V%. A natural estimator is

~0
Vii cls

=|(xx) " - (xX'x) ' R(R (X'x) ! R)_l R (X’X)_l) §2
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where

n
Siis = 7 k+q Z & (8.16)

is a biased-corrected estimator of g2. Standard errors for the components of f are then found by taking
the squares roots of the diagonal elements of VB, for example

s(Bj) = [V%]jj.

The estimator (8.16) has the property that it is unbiased for o> under conditional homoskedasticity.
To see this, using the properties of Theorem 8.1,

(n-k+q)si,=¢¢e
=e'(I,-P+XAX')(I,-P+XAX')e
=eé'(I,-P+XAX)e. (8.17)

We defer the remainder of the proof to Exercise 8.9.

Theorem 8.4 In the homoskedastic linear regression model (8.14)-(8.15) with
0
[} %] = 0% under (8.1), E[s%, | X] = o? and E | V5 | X| = V5.

Now consider the distributional properties in the normal regression model

yi=x;p+ei
~N(0,0?).

By the linearity of Theorem 8.1.2, conditional on X, B — B is normal. Given Theorems 8.2 and 8.3 we
deduce that g, ~ N(S, V%).

Similarly, from Exericise 8.1 we know é = (I, — P+ X AX') e is linear in e so is also conditionally nor-
mal. Furthermore, since (I,— P+ XAX') (X (X’X)_l

independent. Thus sgls and ifds are independent.
From (8.17) and the fact that I, — P + X AX’ is idempotent with rank n — k + ¢ it follows that

-X A) =0, e and iicls are uncorrelated and thus

(%ls = Uz}dz—lﬁq/ (I’l —k+ q) :

It follows that the t-statistic has the exact distribution

N

a student ¢ distribution with n — k + q degrees of freedom.
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The relevance of this calculation is that the “degrees of freedom” for a CLS regression problem equal
n—k+ q rather than n— k as in the OLS regression problem. Essentially the model has k— g free parame-
ters instead of k. Another way of thinking about this is that estimation of a model with k coefficients and
q restrictions is equivalent to estimation with k — g coefficients.

We summarize the properties of the normal regression model.

Theorem 8.5 In the normal linear regression model (8.14)-(8.15), with con-
straint (8.1),

Bcls ~ N(ﬁ’ V%)

2
(n-k+q)s;,
o2 ~ Xn-k+q
T~ In—k+q-

An interesting relationship is that in the homoskedastic regression model (X (X'X )_1 -X A)

COV(Z\;ols - Ecls’i;cls | X) =k [(Bols - ﬁcls) (ﬁcls - ﬁ)/ | X]
=E|AX'ee’ (X (X'X) "' - X 4] | X|

= Ax'(x(x'x)"!

-x4)o*=0.
This means that [Aiols —iids and Bds are conditionally uncorrelated and hence independent. One corollary
is

Cov(ﬁols’ﬁcls | X) =var [ﬁcls | X] :

A second corollary is

var [Bols - Bcls | X] =var [ﬁols | X] —var [Bcls | X] (8.18)

=(x'x)"'R(R (x'x)"! R)_l R (X'X) 0%

This also shows us the difference between the CLS and OLS variances matrices

var [3013 | X] —var [Bcls | X] = (X/X)_IR(R, (X’X)_l

R) "R(x'X) 0?20
the final equality meaning positive semi-definite. It follows that var [ B, | X] = var B | X] in the posi-
tive definite sense, and thus CLS is more efficient than OLS. Both estimators are unbiased (in the linear
regression model) and CLS has a lower variance matrix (in the linear homoskedastic regression model).
The relationship (8.18) is rather interesting and will appear again. The expression says that the vari-
ance of the difference between the estimators is equal to the difference between the variances. This is
rather special. It occurs (generically) when we are comparing an efficient and an inefficient estimator.
We call (8.18) the Hausman Equality as it was first pointed out in econometrics by Hausman (1978).
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8.5 Minimum Distance

The previous section explored the finite sample distribution theory under the assumptions of the
linear regression model, homoskedastic regression model, and normal regression model. We now return
to the general projection model where we do not impose linearity, homoskedasticity, nor normality. We
are interested in the question: Can we do better than CLS in this setting?

A minimum distance estimator tries to find a parameter value which satisfies the constraint which is
as close as possible to the unconstrained estimate. Let B be the unconstrained least-squares estimator,
and for some k x k positive definite weight matrix W > 0 define the quadratic criterion function

J(B)=n(B-B)W(B-B). 8.19)

This is a (squared) weighted Euclidean distance between ﬁ and B. J () is small if B is close to fi, and is
minimized at zero only if = [3 A minimum distance estimator ﬂmd for p minimizes J () subject to
the constraint (8.1), that is,

Brnq = argmin J ().
R'B=c

The CLS estimator is the special case when W = Q.. and we write this criterion function as

J°(B)=n(B-B) Qux(B-B). (8.20)

To see the equality of CLS and minimum distance rewrite the least-squares criterion as follows. Substi-
tute the unconstrained least-squares fitted equation y; = x; § + €; into SSE(f) to obtain

SSE(B) = 3 (i~ x})°
- (B ei-xip)

z +(ﬁ—ﬁ)'(§x:~x§-)(ﬁ—ﬁ)
né* +J°(B) (8.21)

where the third equality uses the fact that Y. | x;&; = 0, and the last line uses Y.I'_, x;x; = nQ,,. The ex-
pression (8.21) only depends on § through J 0 (B) . Thus minimization of SSE(f) and J° (ﬁ) are equivalent,
and hence B, 4 = ﬁds when W = Q.

We can solve for ﬁmd explicitly by the method of Lagrange multipliers. The Lagrangian is

1
Z(P,A) = Ef(ﬁ, W) +A (R’ﬁ — c)
which is minimized over (f, A). The solution is
Ama=n(RW 'R) (RB-c) (8.22)
~ P o~ -1 ~
Boa=B-W 'R (R’W 1R) (RB-¢). 8.23)

(See Exercise 8.10.) Comparing (8.23) with (8.9) we can see that ﬁmd specializes to ﬁcls when we set
W=0Q,. R

An obvious question is which weight matrix W is best. We will address this question after we derive
the asymptotic distribution for a general weight matrix.
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8.6 Asymptotic Distribution

We first show that the class of minimum distance estimators are consistent for the population pa-
rameters when the constraints are valid.

Assumption 8.1 R’ = c where R is k x g with rank(R) = q.

Assumption 8.2 W - W >0.

Theorem 8.6 Consistency
Under Assumptions 7.1, 8.1, and 8.2, 4 - p as n— oo.

For a proof see Exercise 8.11.

Theorem 8.6 shows that consistency holds for any weight matrix with a positive definite limit so the
result includes the CLS estimator.

Similarly, the constrained estimators are asymptotically normally distributed.

Theorem 8.7 Asymptotic Normality
Under Assumptions 7.2, 8.1, and 8.2,

V7 (Bra—B) —N(0,V (W)
as n — oo, where
VW) =Vs-WR(RW 'R RV
~VsR(RW 'R Rw™!
+W'R(RW™'R) " RVsR(RW'R) ' Rw™ (8.24)

and Vg = Q;10Q;1.

For a proof see Exercise 8.12.

Theorem 8.7 shows that the minimum distance estimator is asymptotically normal for all positive
definite weight matrices. The asymptotic variance depends on W. The theorem includes the CLS esti-
mator as a special case by setting W = Q,,.
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Theorem 8.8 Asymptotic Distribution of CLS Estimator
Under Assumptions 7.2 and 8.1, as n — oo

\/ﬁ (Ecls - ﬁ) 7 N(0, V)
where
_ — -1
Vs = Vﬁ - Qx;R (R,QxiR) R,Vﬁ
_ -1 —
~VpR(R'Q:xR)  R'Qy;
_ 11 11 _

+Q:R(R'Q5:R)  R'VER(R'QR) R Q.

For a proof see Exercise 8.13.

8.7 Variance Estimation and Standard Errors

Earlier we introduced the covariance matrix estimator under the assumption of conditional homoskedas-
ticity. We now introduce an estimator which does not impose homoskedasticity.

The asymptotic covariance matrix Vs may be estimated by replacing V g with a consistent estima-
tor such as Vg. A more efficient estimator can be obtained by using the restricted coefficient estimator
which we now show. Given the constrained least-squares squares residuals &; = y; — X f;; we can esti-
mate the matrix @ = E [x;xe?] by

n
O ! =2
=————) Xxix.¢;.
n-k+qgsm
Notice that we have used an adjusted degrees of freedom. This is an ad hoc adjustment designed to
mimic that used for estimation of the error variance o2. The moment estimator of Vpgis

Al ~~—1

Vp =000
and that for Vg is
Vas = Vg~ QuR(RQR) RV
~VpR(RQR) RQ
+QuR(RQR) RV,R(RQR) RO,
We can calculate standard errors for any linear combination 4 Bds such that k does not lie in the
range space of R. A standard error for k' is

s(WBag) = (n™ 1 Vash)'™.

8.8 Efficient Minimum Distance Estimator

Theorem 8.7 shows that minimum distance estimators, which include CLS as a special case, are
asymptotically normal with an asymptotic covariance matrix which depends on the weight matrix W.
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The asymptotically optimal weight matrix is the one which minimizes the asymptotic variance V g(W).
This turns outto be W = Vl_il as is shown in Theorem 8.9 below. Since VBl is unknown this weight matrix

. . 1 . . ~—1
cannot be used for a feasible estimator but we can replace V! with a consistent estimate Vg and the
asymptotic distribution (and efficiency) are unchanged. We call the minimum distance estimator with
7 _ o1 . . e . .

W =V the efficient minimum distance estimator and takes the form

Bema=B-VsR(R'V4R) " (RB-c). (8.25)

The asymptotic distribution of (8.25) can be deduced from Theorem 8.7. (See Exercises 8.14 and 8.15,
and the proofin Section 8.16.)

Theorem 8.9 Efficient Minimum Distance Estimator
Under Assumptions 7.2 and 8.1,

V1 (Bema— B) — N(0,Vpema)
as n — oo, where
Vpemd=Vp—VsR(RVER) " R'Vp. (8.26)

Since
Vgemd=Vp (8.27)

the estimator (8.25) has lower asymptotic variance than the unrestricted esti-
mator. Furthermore, for any W,

Vpemd < Vp(W) (8.28)

so (8.25) is asymptotically efficient in the class of minimum distance estima-
tors.

Theorem 8.9 shows that the minimum distance estimator with the smallest asymptotic variance is
(8.25). One implication is that the constrained least squares estimator is generally inefficient. The inter-
esting exception is the case of conditional homoskedasticity in which case the optimal weight matrix is

W= Voﬁ ' so in this case CLS is an efficient minimum distance estimator. Otherwise when the error
is conditionally heteroskedastic there are asymptotic efficiency gains by using minimum distance rather
than least squares.

The fact that CLS is generally inefficient is counter-intuitive and requires some reflection to under-
stand. Standard intuition suggests to apply the same estimation method (least squares) to the uncon-
strained and constrained models and this is the most common empirical practice. But Theorem 8.9
shows that this is not the efficient estimation method. Instead, the efficient minimum distance estima-
tor has a smaller asymptotic variance. Why? The reason is that the least-squares estimator does not
make use of the regressor x»;. It ignores the information E [x»;e;] = 0. This information is relevant when
the error is heteroskedastic and the excluded regressors are correlated with the included regressors.

Inequality (8.27) shows that the efficient minimum distance estimator B, 4 has a smaller asymptotic
variance than the unrestricted least squares estimator ii This means that efficient estimation is attained
by imposing correct restrictions when we use the minimum distance method.
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8.9 Exclusion Restriction Revisited

We return to the example of estimation with a simple exclusion restriction. The model is
Vi = X1 By + X5, B, + e

with the exclusion restriction f, = 0. We have introduced three estimators of ;. The first is uncon-
strained least-squares applied to (8.10) which can be written as

IA51 = 61_11.261;/2-
From Theorem 7.25 and equation (7.14) its asymptotic variance is
avar[B,] = Qi1 (@11 - Q12Q2 Q21 — 212Q5; Qa1 + Q12Q5) @22Q5; Q21) Q1.
The second estimator of B, is CLS, which can be written as
Bl = @If 61 y:

Its asymptotic variance can be deduced from Theorem 8.8, but it is simpler to apply the CLT directly to
show that

avar[B,] = Q1 Q11 Q;7 . (8.29)

The third estimator of §, is efficient minimum distance. Applying (8.25), it equals
p— o~ ~ ~ _1 o~
By=PB,-Vi2Vy B, (8.30)
where we have partitioned

o Vi Vi ]
Vg=1| ~ ~ .
[ Vor Vo

From Theorem 8.9 its asymptotic variance is
avar B, | = Vi1~ V12 V3 Var. (8.31)

See Exercise 8.16 to verify equations (8.29), (8.30), and (8.31).

In general the three estimators are different and they have different asymptotic variances. It is in-
structive to compare the variances to assess whether or not the constrained estimator is more efficient
than the unconstrained estimator.

First, assume conditional homoskedasticity. In this case the two covariance matrices simplify to

a1 201
avar[B,] =0°Qy;.,
and
7 2m-1
avar (] =0°Qy; .
If Q;, =0 (so x;; and xy; are orthogonal) then these two variance matrices are equal and the two estima-

tors have equal asymptotic efficiency. Otherwise, since Q;» ngl Q,;=0,thenQ;; =2Q;;-Q1» ngl Q,; and
consequently

-1_2 -1 -1 2

Q1,0°<(Q11-Q12Q, Q) 0.
This means that under conditional homoskedasticity 751 has a lower asymptotic variance matrix than iil.
Therefore in this context constrained least-squares is more efficient than unconstrained least-squares.
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This is consistent with our intuition that imposing a correct restriction (excluding an irrelevant regressor)
improves estimation efficiency.

However, in the general case of conditional heteroskedasticity this ranking is not guaranteed. In fact
what is really amazing is that the variance ranking can be reversed. The CLS estimator can have a larger
asymptotic variance than the unconstrained least squares estimator.

To see this let’s use the simple heteroskedastic example from Section 7.4. In that example, Q;; =

7 3
Q2=1,Q12= X Q11=Qsr=1,and Q1o = 3 We can calculate (see Exercise 8.17) that Q1.2 = 1 and

avar [B,] = g (8.32)
avar[B,] =1 (8.33)
avar [El] = g (8.34)

Thus the restricted least-squares estimator [~il has a larger variance than the unrestricted least-squares
estimator 31! The minimum distance estimator has the smallest variance of the three, as expected.

What we have found is that when the estimation method is least-squares, deleting the irrelevant
variable x»; can actually increase estimation variance, or equivalently, adding an irrelevant variable can
decrease the estimation variance.

To repeat this unexpected finding, we have shown in a very simple example that it is possible for least-
squares applied to the short regression (8.11) to be less efficient for estimation of §, than least-squares
applied to the long regression (8.10) even though the constraint , = 0 is valid! This result is strongly
counter-intuitive. It seems to contradict our initial motivation for pursuing constrained estimation — to
improve estimation efficiency.

It turns out that a more refined answer is appropriate. Constrained estimation is desirable but not
constrained least-squares estimation. While least-squares is asymptotically efficient for estimation of
the unconstrained projection model it is not an efficient estimator of the constrained projection model.

8.10 Variance and Standard Error Estimation

We have discussed covariance matrix estimation for CLS but not yet for the EMD estimator.

The asymptotic covariance matrix (8.26) may be estimated by replacing V g with a consistent esti-
mate. It is best to construct the variance estimate using f,,q. The EMD residuals are &; = y; — X B4-
Using these we can estimate the matrix @ = E [x;x}e?] by

n
1 2
it

o=— ¢
n-k+qi3

xXix;e

Following the formula for CLS we recommend an adjusted degrees of freedom. Given Q the moment
estimator of Vg is

~ P P
Vﬁ = Qyx Qi
Given this, we construct the variance estimator
Vpema=Vp-VR(RVgR) ' RVp. (8.35)

A standard error for b’ Ii is then
)1/2

s(h'B)=(n""WVgemah (8.36)
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8.11 Hausman Equality

Form (8.25) we have

\/E(BOIS - Bemd) = VﬁR (R,VﬂR)_l \/E(R,Bols - C)
—N(0.V4R(R'VsR) " RV).

It follows that the asymptotic variances of the estimators satisfy the relationship

avar [Bols - ﬁemd] =avar [Bols] —avar [ﬁemd] : (8.37)

We call (8.37) the Hausman Equality: the asymptotic variance of the difference between an efficient and
another estimator is the difference in the asymptotic variances.

8.12 Example: Mankiw, Romer and Weil (1992)

We illustrate the methods by replicating some of the estimates reported in a well-known paper by
Mankiw, Romer, and Weil (1992). The paper investigates the implications of the Solow growth model
using cross-country regressions. A key equation in their paper regresses the change between 1960 and
1985 in log GDP per capita on (1) log GDP in 1960, (2) the log of the ratio of aggregate investment to
GDP (3) the log of the sum of the population growth rate n, the technological growth rate g, and the rate
of depreciation §, and (4) the log of the percentage of the working-age population that is in secondary
school (School), the latter a proxy for human-capital accumulation.

Table 8.1: Estimates of Solow Growth Model

,Bols ﬁcls ﬁemd

log GDP1g60 —029  —-030  -0.30
0.05)  (0.05)  (0.05)

log 555 0.52 0.50 0.46
(0.11)  (0.09)  (0.08)

log(n+g+6) -051  —0.74  —-0.71
(0.24)  (0.08)  (0.07)

logSchool 0.23 0.24 0.25
(0.07) (0.07) (0.06)

Intercept 3.02 2.46 2.48
(0.74) (0.44) (0.44)

Standard errors are heteroskedasticity-consistent

The data is available on the textbook webpage in the file MRW1992.
The sample is 98 non-oil-producing countries and the data was reported in the published paper.
As g and 6 were unknown the authors set g +6 = 0.05. We report least-squares estimates in the first
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column of Table 8.1. The estimates are consistent with the Solow theory due to the positive coefficients
on investment and human capital and negative coefficient for population growth. The estimates are
also consistent with the convergence hypothesis (that income levels tend towards a common mean over
time) as the coefficient on intial GDP is negative.

The authors show that in the Solow model the 2”4, 37 and 4'" coefficients sum to zero. They rees-
timated the equation imposing this contraint. We present constrained least-squares estimates in the
second column of Table 8.1 and efficient minimum distance estimates in the third column. Most of the
coefficients and standard errors only exhibit small changes by imposing the constraint. The one excep-
tion is the coefficient on log population growth which increases in magnitude and its standard error
decreases substantially. The differences between the CLS and EMD estimates are modest.

We now present Stata, R and MATLAB code which implements these estimates.

You may notice that the Stata code has a section which uses the Mata matrix programming language.
This is used because Stata does not implement the efficient minimum distance estimator, so needs to be
separately programmed. As illustrated here, the Mata language allows a Stata user to implement methods
using commands which are quite similar to MATLAB.
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Stata do File

use "MRW1992.dta", clear
gen IndY =1og(Y85)-log(Y60)
gen InY60 = log(Y60)
gen Inl = log(invest/100)
gen InG = log(pop_growth/100+0.05)
gen InS =log(school/100)
* Unrestricted regression
reg IndY InY60 InI InG InS if N==1, r
* Store result for efficient minimum distance
matb =e(b)’
scalar k = e(rank)
matV=e(V)
* Constrained regression
constraint define 1 Inl+InG+InS=0
cnsreg IndY InY60 Inl InG InS if N==1, constraints(1) r
* Efficient minimum distance
mataf
data = st_data(,,("InY60","InI","InG","InS","IndY","N"))
data_select = select(data,datal.,6]:==1)
y = data_select][.,5]
n =rows(y)
x = (data_select].,1..4],J(n,1,1))
k = cols(x)
invx = invsym (x"*x)
b_ols = st_matrix("b")
V_ols = st_matrix("V")
R=0\1\1\1\0)
b_emd =b_ols-V_ols*R*invsym(R'*V_ols*R)*R*b_ols
e_emd =J(1,k,y-x*b_emd)
xe_emd = x:*e_emd
xe_emd’*xe_emd
V2 = (n/ (n-k+1))*invx*(xe_emd *xe_emd)*invx
V_emd = V2 - V2*R*invsym (R'*V2*R)*R'*V2
se_emd = diagonal(sqrt(V_emd))
st_matrix("b_emd",b_emd)
st_matrix("se_emd",se_emd)}
matlistb_emd
mat list se_emd
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R Program File

data <- read.table("MRW1992.txt",header=TRUE)

N <- matrix(data$N,ncol=1)

IndY <- matrix(log(data$Y85)-log(data$Y60),ncol=1)

InY60 <- matrix(log(data$Y60),ncol=1)

Inl <- matrix(log(data$invest/100),ncol=1)

InG <- matrix(log(data$pop_growth/100+0.05),ncol=1)

InS <- matrix(log(data$school/100),ncol=1)

xx <- as.matrix(cbind(InY60,InI,InG,InS,matrix(1,nrow(IndY),1)))
X <- xx[N==1,]

y <- IndY[N==1]

n <- nrow(x)

k <- ncol(x)

# Unrestricted regression

invx <-solve(t(x) %*%x)

b_ols <- solve((t(x)%*%x), (t(x)%*%y))

e_ols <- rep((y-x%*%beta_ols),times=k)

xe_ols <- x*e_ols

V_ols <- (n/(n-k))*invx%*% (t(xe_ols) %*%xe_ols) %*%invx
se_ols <- sqrt(diag(V_ols))

print(beta_ols)

print(se_ols)

# Constrained regression

R <-¢(0,1,1,1,0)

iR <- invx%*%R%*%solve (t(R) %*%invx%*%R) %*%t(R)

b_cls <- b_ols - iR%*%b_ols

e_cls <- rep((y-x%*%b_cls),times=k)

xe_cls <- x*e_cls

V_tilde <- (n/(n-k+1))*invx%*% (t(xe_cls)%*%xe_cls) %*%invx
V_cls <- V_tilde - iR%*%V_tilde - V_tilde%*%t(iR) +iR%*%V_tilde%*%t(iR)
print(b_cls)print(se_cls)

# Efficient minimum distance

Vi <- V_ols%*%R%*%solve(t(R) %*%V_ols%*%R) %*%t(R)
b_emd <- b_ols - Vir%*%b_ols

e_emd <- rep((y-x%*%b_emd),times=k)

xe_emd <- x*e_emd

V2 <- (n/(n-k+1))*invx%*% (t(xe_emd) %*%xe_emd) %*%invx
V_emd <- V2 - V2%*%R%*%solve (t(R) %*%V2%*%R) %* %t (R) %* % V2
se_emd <- sqrt(diag(V_emd))
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MATLAB Program File

data = xlsread(MRW1992.xIsx’);

N =data(;,1);

Y60 = data(:,4);

Y85 = data(:,5);

pop_growth = data(:,7);

invest = data(:,8);

school = data(:,9);

IndY = log(Y85)-log(Y60);

InY60 =1og(Y60);

InI =log(invest/100);

InG =log(pop_growth/100+0.05);

InS =log(school/100);

xx = [InY60,InL,InG,InS,ones(size(IndY,1),1)];
X =xx(N==1,3);

y =IndY(N==1);

[n,k] = size(x);

% Unrestricted regression

invx = inv(x'*x);

beta_ols = (x'*x)\ (x'*y);

e_ols = repmat((y-x*beta_ols),1,k);

xe_ols = x.*e_ols;

V_ols = (n/(n-k)) *invx* (xe_ols’*xe_ols)*invx;
se_ols = sqrt(diag(V_ols));
display(beta_ols);

display(se_ols);

% Constrained regression

R =1[0;1;1;1;0];

iR = invx*R*inv(R *invx*R)*R’;

beta_cls = beta_ols - iR*beta_ols;

e_cls = repmat((y-x*beta_cls),1,k);

xe_cls =x.*e_cls;

V_tilde = (n/ (n-k+1))*invx* (xe_cls'*xe_cls)*invx;
V_cls =V _tilde - iR*V _tilde - V_tilde*(iR’)...
+iR*V_tilde*(iR’);

se_cls = sqrt(diag(V_cls));

display(beta_cls);

display(se_cls);

% Efficient minimum distance

beta_emd = beta_ols-V_ols*R*inv(R'*V_ols*R)*R’*beta_ols;
e_emd = repmat((y-x*beta_emd),1,k);
xe_emd = x.*e_emd;

V2 = (n/(n-k+1))*invx*(xe_emd *xe_emd)*invx;
V_emd = V2 - V2*R*inv(R'*V2*R)*R’*V2;
se_emd = sqrt(diag(V_emd));
display(beta_emd);

display(se_emd);
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8.13 Misspecification

What are the consequences for a constrained estimator f if the constraint (8.1) is incorrect? To be

specific suppose that the truth is
RB=c*
where ¢* is not necessarily equal to c.

This situation is a generalization of the analysis of “omitted variable bias” from Section 2.24 where
we found that the short regression (e.g. (8.12)) is estimating a different projection coefficient than the
long regression (e.g. (8.10)).

One mechanical answer is that we can use the formula (8.23) for the minimum distance estimator to
find that

Brna — Proa =B~ WI'R(RW'R) " (¢* - ). (8.38)

The second term, W™1R (R’ W’lR)_1 (¢* — ¢), shows that imposing an incorrect constraint leads to in-
consistency — an asymptotic bias. We can call the limiting value B, ; the minimum-distance projection
coefficient or the pseudo-true value implied by the restriction.

However, we can say more.

For example, we can describe some characteristics of the approximating projections. The CLS esti-
mator projection coefficient has the representation

B3y, = argmin€ | (yi - x{8)°],
R'B=c

the best linear predictor subject to the constraint (8.1). The minimum distance estimator converges in
probability to

B..q = argmin (B — B,)' W (B - B,)

R B=c

where B, is the true coefficient. That is, B, ; is the coefficient vector satisfying (8.1) closest to the true
value in the weighted Euclidean norm. These calculations show that the constrained estimators are still
reasonable in the sense that they produce good approximations to the true coefficient conditional on
being required to satisfy the constraint.

We can also show that [~3md has an asymptotic normal distribution. The trick is to define the pseudo-
true value

Bo=p-W 'R(RW'R)" (c"~c). (8.39)
(Note that (8.38) and (8.39) are different!) Then
~ _~ o~ o~ -1 ~
Vi (Bua—B;)=vn(B-B)-W 'R(RW 'R) Vn(RB-c")
_ (I—W_IR(R’/W_IR)_IR’) Va(B-B)
- S -1

— (1-w'R(RW 'R RN (0,V)
=N(0,Vg(W)). (8.40)

In particular
Vit (Bema -~ B) — N(0,V).

This means that even when the constraint (8.1) is misspecified the conventional covariance matrix es-
timator (8.35) and standard errors (8.36) are appropriate measures of the sampling variance though the
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distributions are centered at the pseudo-true values (projections) B, rather than f. The fact that the
estimators are biased is an unavoidable consequence of misspecification.

An alternative approach to the asymptotic distribution theory under misspecification uses the con-
cept of local alternatives. It is a technical device which might seem a bit artificial but it is a powerful
method to derive useful distributional approximations in a wide variety of contexts. The idea is to index
the true coefficient 8, by n via the relationship

RB,=c+én ' (8.41)

Equation (8.41) specifies that 8, violates (8.1) and thus the constraint is misspecified. However, the
constraint is “close” to correct as the difference R'§,, — ¢ = §n~'/? is “small” in the sense that it decreases
with the sample size n. We call (8.41) local misspecification.

The asymptotic theory is derived as n — oo under the sequence of probability distributions with the
coefficients f,. The way to think about this is that the true value of the parameter is §,, and it is “close”
to satisfying (8.1). The reason why the deviation is proportional to n~1/? is because this is the only choice
under which the localizing parameter § appears in the asymptotic distribution but does not dominate it.
The best way to see this is to work through the asymptotic approximation.

Since B, is the true coefficient value, then y; = x;,, + e; and we have the standard representation for
the unconstrained estimator, namely

-1
! Xn:x-x’ LY e N(0,Vg) (8.42)
=T vz a e '
There is no difference under fixed (classical) or local asymptotics since the right-hand-side is indepen-
dent of the coefficient §,,.

A difference arises for the constrained estimator. Using (8.41), c = R’ B,-o6 n12 g0

¢ﬁ@—ﬁa=(

RB-c=R (B-p,)+on""
and
“R) (RB-o)
(R’W_lR)_l R (p-p,)+W 'R (R’T/V‘IR)_1 sn'2,
It follows that
Vii(Ba~B,) = [1-W ' R(RW'R) RV (B-,)
+W_1R(R’W_1R)_16.

The first term is asymptotically normal (from 8.42)). The second term converges in probability to a con-
stant. This is because the n~!/2 local scaling in (8.41) is exactly balanced by the /7 scaling of the estima-
tor. No alternative rate would have produced this result.

Consequently we find that the asymptotic distribution equals

V1 (B~ Br) — N(0,Vg)+ W 'R(RW'R) " 6 =N(6%, V(W) (8.43)

where 6* =W 'R(RW™'R) ™' &.
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The asymptotic distribution (8.43) is an approximation of the sampling distribution of the restricted
estimator under misspecification. The distribution (8.43) contains an asymptotic bias component §*.
The approximation is not fundamentally different from (8.40) — they both have the same asymptotic
variances and both reflect the bias due to misspecification. The difference is that (8.40) puts the bias on
the left-side of the convergence arrow while (8.43) has the bias on the right-side. There is no substantive
difference between the two. However, (8.43) is more convenient for some purposes such as the analysis
of the power of tests as we will explore in the next chapter.

8.14 Nonlinear Constraints

In some cases it is desirable to impose nonlinear constraints on the parameter vector 8. They can be
written as
r()=0 (8.44)

where r : R — RY. This includes the linear constraints (8.1) as a special case. An example of (8.44) which
cannot be written as (8.1) is 81 82 = 1, which is (8.44) with r () = 182 — 1.

The constrained least-squares and minimum distance estimators of 8 subject to (8.44) solve the min-
imization problems

B = argmin SSE(p) (8.45)
r(p)=0
Prna = argmin J (B) (8.46)
r(f)=0

where SSE(B) and J(B) are defined in (8.4) and (8.19), respectively. The solutions minimize the La-
grangians

LPA) = %SSE(ﬁ) +A'r(p)

or
1
ZL(PB,A) = >/ (B)+A'r(B) (8.47)

over (B, ).

Computationally there is no general closed-form solution for the estimator so they must be found
numerically. Algorithms to numerically solve (8.45) and (8.46) are known as constrained optimization
methods and are available in programming languages including MATLAB, GAUSS and R. See Chapter 12
of Introduction to Econometrics.

Assumption 8.3

1. r(B) =0, r(P) is continuously differentiable at the true f.

2. rank(R) = g, where R = %r(ﬁ)’.

The asymptotic distribution is a simple generalization of the case of a linear constraint but the proof
is more delicate.
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Theorem 8.10 Under Assumptions 7.2, 8.2, and 8.3, for f = [~3md and f = iicls
defined in (8.45) and (8.46),

Vn(p-B)—N(0, VW)

as n — oo where V(W) is defined in (8.24). For BCIS, W =Q,, and V(W) =
Vs as defined in Theorem 8.8. V(W) is minimized with W = VBI in which
case the asymptotic variance is

Vi=Vs-VgR(R'VR) RV,

The asymptotic variance matrix for the efficient minimum distance estimator can be estimated by
% EN PP PPt PUPN
Vs=V-VsR(RV4R) RV
where

I R
R=~ ﬁr(ﬁmd). (8.48)

Standard errors for the elements of iimd are the square roots of the diagonal elements of f/;; =n! IA/;;.
8.15 Inequality Restrictions
Inequality constraints on the parameter vector f§ take the form
r(p)=0 (8.49)
for some function r : R¥ — RY. The most common example is a non-negative constraint

[3120.

The constrained least-squares and minimum distance estimators can be written as

B = argmin SSE(f) (8.50)
r(f)=0
and
B g = argmin J(B). (8.51)
r(f)=0

Except in special cases the constrained estimators do not have simple algebraic solutions. An impor-
tant exception is when there is a single non-negativity constraint, e.g. f; = 0 with g = 1. In this case the
constrained estimator can be found by the following approach. Compute the uncontrained estimator B
If ,31 =0 then ii = B Otherwise if ,31 < 0 then impose f; = 0 (eliminate the regressor X;) and re-estimate.
This method yields the constrained least-squares estimator. While this method works when there is a
single non-negativity constraint, it does not immediately generalize to other contexts.

The computational problems (8.50) and (8.51) are examples of quadratic programming problems.
Quick and easy computer algorithms are available in programming languages including MATLAB, GAUSS
and R.
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Inference on inequality-constrained estimators is unfortunately quite challenging. The conventional
asymptotic theory gives rise to the following dichotomy. If the true parameter satisfies the strict in-
equality r(f) > 0 then asymptotically the estimator is not subject to the constraint and the inequality-
constrained estimator has an asymptotic distribution equal to the unconstrained case. However if the
true parameter is on the boundary, e.g. r(f) = 0, then the estimator has a truncated structure. This is
easiest to see in the one-dimensional case. If we have an estimator ﬁ which satisfies \/n (B -p) — Z=

N0, Vg) and B = 0, then the constrained estimator g = max[,g,O] will have the asymptotic distribution
vnp 7 max|[Z,0], a “half-normal” distribution.
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8.16 Technical Proofs*

229

Proof of Theorem 8.9, equation (8.28) Let R be a full rank k x (k — ¢) matrix satisfying R\ VgR=0and

then set C = [R, R ] which is full rank and invertible. Then we can calculate that

R'VER PR'VgR
cvic=| o B P =[° , 9
R\ V;R R\ ViR, 0 R\ VgR,
and
C'Vg(W)C
R’V;;(W)R R’V};(W)RL
| RLV;W)R RV (W)RL
|0 0
“| 0 R VR, +R WR(RWR)'RVsR(RWR)'RWR,
Thus

c'(vpmw)-vj)c

=C'VgW)C-C'VzC

0 0

0 R WR(RWR) 'RVZR(RWR)'RWR,

=0

Since C is invertible it follows that V(W) - V;‘3 > 0 which is (8.28). [ ]

Proof of Theorem 8.10 We show the result for the minimum distance estimator f§ = iimd as the proof

for the constrained least-squares estimator is similar. For simplicity we assume that the constrained

estimator is consistent f — B. This can be shown with more effort, but requires a deeper treatment
p

than appropriate for this textbook.

For each element r;(B) of the g-vector r(f), by the mean value theorem there exists a ﬁ; on the line

segment joining B and B such that
0

r](ii) = rj(ﬁ)+ ap

"j(ﬁ;),(ﬁ—ﬁ)-
Let R}, be the k x g matrix

R = ﬁrl(ﬁl) ﬁrz(ﬂz) ﬁrq(ﬁq) .

Since - B it follows that [i; - B, and by the CMT, R* - R. Stacking the (8.52), we obtain
r()=r(p)+R" (B-p).
Since r ([~3) = 0 by construction and r(f) = 0 by Assumption 8.1 this implies

0=R"(B-p).

(8.52)

(8.53)
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The first-order condition for (8.47) is
W (B-p) = RA.

where R is defined in (8.48).
Premultiplying by R*’ W_l, inverting, and using (8.53), we find

A= (R @ R) R (B-B)- (R R R (B-p).
Thus
pp=(1-W'R(ry W 'R) &) (B-p). 5
From Theorem 7.3 and Theorem 7.6 we find
Vi(B-p)=1-W 'R(R;W'R) " B} Vi (B-p)
— (1-w'R(RW™'R)" R|N(0,V)

d
=N(0,Vg(W)).
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Exercises

Exercise 8.1 In the model y = X 8, + X2, + e, show directly from definition (8.3) that the CLS estimate
of B = (B;, B,) subject to the constraint that , = 0 is the OLS regression of y on X;.

Exercise 8.2 In the model y = X §, + X, 3, + e, show directly from definition (8.3) that the CLS estimate
of p = (B,, B,) subject to the constraint that §, = ¢ (where ¢ is some given vector) is the OLS regression
of y— X con X5.

Exercise 8.3 In the model y = X, + X2, + e, with X; and X, each n x k, find the CLS estimate of
B = (B;, B,) subject to the constraint that , = —f,.

Exercise 8.4 In the linear projection model y; = a + ' + e; consider the restriction f§ = 0.

(a) Find the constrained least-squares (CLS) estimator of ¢ under the restriction = 0.

(b) Find an expression for the efficient minimum distance estimator of a under the restriction = 0.
Exercise 8.5 Verify that for B defined in (8.8) that R’ B, = c.
Exercise 8.6 Prove Theorem 8.1.

Exercise 8.7 Prove Theorem 8.2, that is, E [iicls | X ] = f, under the assumptions of the linear regression
regression model and (8.1).
Hint: Use Theorem 8.1.

Exercise 8.8 Prove Theorem 8.3.

Exercise 8.9 Prove Theorem 8.4. Thatis, showE [s3 | X] = 0® under the assumptions of the homoskedas-
tic regression model and (8.1).

Exercise 8.10 Verify (8.22), (8.23), and that the minimum distance estimator iimd with W = Q +x €equals
the CLS estimator.

Exercise 8.11 Prove Theorem 8.6.

Exercise 8.12 Prove Theorem 8.7.

Exercise 8.13 Prove Theorem 8.8. (Hint: Use that CLS is a special case of Theorem 8.7.)
Exercise 8.14 Verify that (8.26) is V g(W) with W = V.
Exercise 8.15 Prove (8.27). Hint: Use (8.26).

Exercise 8.16 Verify (8.29), (8.30) and (8.31).

Exercise 8.17 Verify (8.32), (8.33), and (8.34).
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Exercise 8.18 Suppose you have two independent samples

Nni= xlliﬂl tey;
and

Voi = Xy, By + €2
both of sample size n, and both x;; and x;; are k x 1. You estimate 8, and f, by OLS on each sample,
P, and B,, say, with asymptotic covariance matrix estimators !7,;1 and Vg, (which are consistent for the

asymptotic covariance matrices Vg, and Vg,). Consider efficient minimum distance estimation under
the restriction ; = f,.

(a) Find the estimator [~i of f=p,=5,.
(b) Find the asymptotic distribution of 73
(c) How would you approach the problem if the sample sizes are different, say n; and n,?

Exercise 8.19 As in Exercise 7.28 and 3.26, use the CPS dataset and the subsample of white male His-
panics.

(a) Estimate the regression

IMe) = f1 education+ o experience+ B3 experience’ 1100 + By married,

+ Bsmarried, + Bgmarrieds + B; widowed + Bgdivorced + Bgseparated + B1o

where married;, married,, and marrieds are the first three marital status codes listed in Section
3.22.

(b) Estimate the equation using constrained least-squares, imposing the constraints f, = 7 and g =
B9, and report the estimates and standard errors.

(c) Estimate the equation using efficient minimum distance imposing the same constraints. Report
the estimates and standard errors.

(d) Under what constraint on the coefficients is the wage equation non-decreasing in experience for
experience up to 50?

(e) Estimate the equation imposing 84 = 7, Bs = B9, and the inequality from part (d).
Exercise 8.20 Take the model

yi=m(xi) +e;
m(x) = Bo + Prx+ Pox*+ -+ + fxP
E[z;e;] =0

zZi = (l,xi,...,xlp)

/

(x) d (x)

x)=—m(x

§ dx

with i.i.d. observations (y;, x;), i = 1,..., n. The order of the polynomial p is known.

(a) How should we interpret the function m(x) given the projection assumption? How should we in-
terpret g(x)? (Briefly)
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(b) Describe an estimator g(x) of g(x).

(c) Find the asymptotic distribution of /7 (g(x) — g(x)) as n — oco.

(d) Show how to construct an asymptotic 95% confidence interval for g(x) (for a single x).

(e) Assume p = 2. Describe how to estimate g(x) imposing the constraint that m(x) is concave.

(f) Assume p = 2. Describe how to estimate g(x) imposing the constraint that m(u) is increasing on
the region u € [xz, xy].

Exercise 8.21 Take the linear model with restrictions

yi=x;B+e;
[E[xie,-] =0
R'f=c

with n observations. Consider three estimators for

« B the unconstrained least squares estimator
* p the constrained least squares estimator
e P the constrained efficient minimum distance estimator

For each estimator define the residuals é; = y; — x'B, &; = y; — x,p, e; = y; — X/, and variance esti-

o 1 9 o 1 _ _, 1 _
mators 52 =—Y " &%, 62==Y" &, and g’ = =, e
n = 1 n 1= 1 n 1=

2

(a) As p is the most efficient estimator and B the least, do you expect that o2 < 52 < 62 in large sam-

ples?
(b) Consider the statistic
n
T,=6"2)Y (e —-e)°.
i=1
Find the asymptotic distribution for T, when R’ = c is true.
(c) Does the result of the previous question simplify when the error e; is homoskedastic?

Exercise 8.22 Take the linear model

Vi=x1iP1+ X2, P2 + e
[E[x,-ei] =0

with n observations. Consider the restriction
B _
B2
(a) Find an explicit expression for the constrained least-squares (CLS) estimator ﬁ = (,51, 52) of f =

(B1, B2) under the restriction. Your answer should be specific to the restriction. It should not be a
generic formula for an abstract general restriction.

2.

(b) Derive the asymptotic distribution of §; under the assumption that the restriction is true.



Chapter 9

Hypothesis Testing

In Chapter 5 we briefly introduced hypothesis testing in the context of the normal regression model.
In this chapter we explore hypothesis testing in greater detail, with a particular emphasis on asymptotic
inference. For more detail on the foundations see Chapter 13 of Introduction to Econometrics.

9.1 Hypotheses

In Chapter 8 we discussed estimation subject to restrictions, including linear restrictions (8.1), non-
linear restrictions (8.44), and inequality restrictions (8.49). In this chapter we discuss tests of such re-
strictions.

Hypothesis tests attempt to assess whether there is evidence to contradict a proposed parametric
restriction. Let

0=r(p)

be a g x 1 parameter of interest where r : R¥ — © c RY is some transformation. For example, 8 may be a
single coefficient, e.g. 6 = §;, the difference between two coefficients, e.g. 8 = §; — B, or the ratio of two
coefficients, e.g. 0 = 5;/f,.

A point hypothesis concerning 0 is a proposed restriction such as

0=0, 9.1)

where 0y is a hypothesized (known) value.

More generally, letting € B c R be the parameter space, a hypothesis is a restriction € By where
By is a proper subset of B. This specializes to (9.1) by setting By = {ﬁ eEB:r(f) = 00} .

In this chapter we will focus exclusively on point hypotheses of the form (9.1) as they are the most
common and relatively simple to handle.

The hypothesis to be tested is called the null hypothesis.

Definition 9.1 The null hypothesis, written Hy, is the restriction 8 = 8¢ or f €
By.

We often write the null hypothesis asHy: 0 = 8 or Hy : r(f) = 0.
The complement of the null hypothesis (the collection of parameter values which do not satisfy the
null hypothesis) is called the alternative hypothesis.

234
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Definition 9.2 The alternative hypothesis, written H;, is the set
{0€®:0+£0por{feB:f¢By}.

We often write the alternative hypothesis as H; : 8 # 8¢ or H; : r () # . For simplicity, we often refer
to the hypotheses as “the null” and “the alternative”. Figure 9.1(a) illustrates the division of the parameter
space into null and alternative hypotheses.

(a) Null and Alternative Hypotheses (b) Acceptance and Rejection Regions

Figure 9.1: Hypothesis Testing

In hypothesis testing, we assume that there is a true (but unknown) value of @ and this value either
satisfies Hy or does not satisfy Hy. The goal of hypothesis testing is to assess whether or not Hj is true, by
asking if Hy is consistent with the observed data.

To be specific, take our example of wage determination and consider the question: Does union mem-
bership affect wages? We can turn this into a hypothesis test by specifying the null as the restriction that
a coefficient on union membership is zero in a wage regression. Consider, for example, the estimates
reported in Table 4.1. The coefficient for “Male Union Member” is 0.095 (a wage premium of 9.5%) and
the coefficient for “Female Union Member” is 0.022 (a wage premium of 2.2%). These are estimates,
not the true values. The question is: Are the true coefficients zero? To answer this question, the testing
method asks the question: Are the observed estimates compatible with the hypothesis, in the sense that
the deviation from the hypothesis can be reasonably explained by stochastic variation? Or are the ob-
served estimates incompatible with the hypothesis, in the sense that that the observed estimates would
be highly unlikely if the hypothesis were true?

9.2 Acceptance and Rejection

A hypothesis test either accepts the null hypothesis or rejects the null hypothesis in favor of the alter-
native hypothesis. We can describe these two decisions as “Accept Hp” and “Reject Hyp”. In the example
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given in the previous section, the decision would be either to accept the hypothesis that union member-
ship does not affect wages, or to reject the hypothesis in favor of the alternative that union membership
does affect wages.

The decision is based on the data, and so is a mapping from the sample space to the decision set.
This splits the sample space into two regions Sy and S; such that if the observed sample falls into Sy we
accept Ho, while if the sample falls into S; we reject Hy. The set Sy is called the acceptance region and
the set S the rejection or critical region.

It is convenient to express this mapping as a real-valued function called a test statistic

T=T ((yl,xl) yeees (yn,xn))

relative to a critical value c. The hypothesis test then consists of the decision rule

1. AcceptHpif T <c.

2. RejectHpif T > c.

Figure 9.1(b) illustrates the division of the sample space into acceptance and rejection regions.

A test statistic T should be designed so that small values are likely when Hy is true and large values
are likely when H; is true. There is a well developed statistical theory concerning the design of optimal
tests. We will not review that theory here, but instead refer the reader to Lehmann and Romano (2005).
In this chapter we will summarize the main approaches to the design of test statistics.

The most commonly used test statistic is the absolute value of the t-statistic

T =Tyl 9.2)
where ~
6-0
TO)=—— 9.3)
s(@)

is the t-statistic from (7.33), 8 is a point estimate, and s(0) its standard error. T is an appropriate statistic
when testing hypotheses on individual coefficients or real-valued parameters 8 = h(f) and 6y is the hy-
pothesized value. Quite typically, 8y = 0, as interest focuses on whether or not a coefficient equals zero,
but this is not the only possibility. For example, interest may focus on whether an elasticity 6 equals 1, in
which case we may wish to test Hy : 0 = 1.

9.3 TypelError

A false rejection of the null hypothesis Hy (rejecting Hyp when Hy is true) is called a Type I error. The
probability of a Type I error is called the size of the test.

P [Reject Ho | Ho true] =P [T > ¢ | Hy true]. (9.4)

The uniform size of the test is the supremum of (9.4) across all data distributions which satisfy Hgy. A
primary goal of test construction is to limit the incidence of Type I error by bounding the size of the test.

For the reasons discussed in Chapter 7, in typical econometric models the exact sampling distribu-
tions of estimators and test statistics are unknown and hence we cannot explicitly calculate (9.4). In-
stead, we typically rely on asymptotic approximations. Suppose that the test statistic has an asymptotic
distribution under Hy. That is, when Hy, is true

T —d»f (9.5)
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as n — oo for some continuously-distributed random variable ¢. This is not a substantive restriction as
most conventional econometric tests satisfy (9.5). Let G(u) = P[¢ < u] denote the distribution of £. We
call ¢ (or G) the asymptotic null distribution.

It is generally desirable to design test statistics T whose asymptotic null distribution G is known
and does not depend on unknown parameters. In this case we say that the statistic T is asymptotically
pivotal.

For example, if the test statistic equals the absolute t-statistic from (9.2), then we know from Theorem
7.13 that if 8 = 0 (that is, the null hypothesis holds), then T 7 |Z| as n — oo where Z ~ N(0,1). This

means that G(u) = P[|Z] < u] = 2®(u) — 1, the distribution of the absolute value of the standard normal
as shown in (7.34). This distribution does not depend on unknowns and is pivotal.
We define the asymptotic size of the test as the asymptotic probability of a Type I error:
lim P[T >c|Hptrue] =P (€ >¢) =1- G(c).

n—oo

We see that the asymptotic size of the test is a simple function of the asymptotic null distribution G and
the critical value c. For example, the asymptotic size of a test based on the absolute t-statistic with critical
value cis 2 (1 - ®(c)).

In the dominant approach to hypothesis testing, the researcher pre-selects a significance level a €
(0,1) and then selects c so that the (asymptotic) size is no larger than a. When the asymptotic null distri-
bution G is pivotal, we can accomplish this by setting ¢ equal to the 1 — @ quantile of the distribution G.
(If the distribution G is not pivotal, more complicated methods must be used, pointing out the great con-
venience of using asymptotically pivotal test statistics.) We call ¢ the asymptotic critical value because
it has been selected from the asymptotic null distribution. For example, since 2 (1 —®(1.96)) = 0.05, it
follows that the 5% asymptotic critical value for the absolute t-statistic is ¢ = 1.96. Calculation of nor-
mal critical values is done numerically in statistical software. For example, in MATLAB the command is
norminv(1l-a/2).

9.4 ttests

As we mentioned earlier, the most common test of the one-dimensional hypothesis
|]'[|() 0= 0()

against the alternative
H 1- 9 75 90

is the absolute value of the t-statistic (9.3). We now formally state its asymptotic null distribution, which
is a simple application of Theorem 7.13.

Theorem 9.1 Under Assumptions 7.2, 7.3, and Hy : 6 = 6,
T(0y) — Z.
(6o) y
For ¢ satisfying a =2 (1 - ®(¢)),
PITO0)|>cl|Ho] — «,

and the test “Reject Hy if | T(60)| > ¢” has asymptotic size a.
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The theorem shows that asymptotic critical values can be taken from the normal distribution. As in
our discussion of asymptotic confidence intervals (Section 7.14), the critical value could alternatively be
taken from the student ¢ distribution, which would be the exact test in the normal regression model (Sec-
tion 5.12). Indeed, ¢ critical values are the default in packages such as Stata. Since the critical values from
the student ¢ distribution are (slightly) larger than those from the normal distribution, using student ¢
critical values decreases the rejection probability of the test. In practical applications the difference is
typically unimportant unless the sample size is quite small (in which case the asymptotic approximation
should be questioned as well).

The alternative hypothesis 8 # 8 is sometimes called a “two-sided” alternative. In contrast, some-
times we are interested in testing for one-sided alternatives such as

|H|119>00

or
H, 29<90.

Tests of 6 = 0 against 6 > 6y or 8 < 0y are based on the signed t-statistic T = T(0y). The hypothesis
0 = 0, is rejected in favor of 8 > 0 if T > ¢ where c satisfies @ = 1 — ®(c). Negative values of T are not
taken as evidence against Hy, as point estimates 6 less than 6, do not point to 8 > 6. Since the critical
values are taken from the single tail of the normal distribution, they are smaller than for two-sided tests.
Specifically, the asymptotic 5% critical value is ¢ = 1.645. Thus, we reject 8 = 6 in favor of 6 > 6 if
T > 1.645.

Conversely, tests of 8 = 6 against 8 < 0y reject Hy for negative t-statistics, e.g. if T < —c. For this
alternative large positive values of T are not evidence against Hy. An asymptotic 5% test rejects if T <
—1.645.

There seems to be an ambiguity. Should we use the two-sided critical value 1.96 or the one-sided
critical value 1.645? The answer is that in most cases the two-sided critical value is appropriate. We
should use the one-sided critical values only when the parameter space is known to satisfy a one-sided
restriction such as 8 = 6. This is when the test of 8 = 6y against 8 > 6y makes sense. If the restriction
0 = 0y is not known a priori, then imposing this restriction to test 8 = 8, against 8 > 6 does not makes
sense. Since linear regression coefficients typically do not have a priori sign restrictions, the standard
convention is to use two-sided critical values.

This may seem contrary to the way testing is presented in statistical textbooks, which often focus on
one-sided alternative hypotheses. The latter focus is primarily for pedagogy, as the one-sided theoretical
problem is cleaner and easier to understand.

9.5 Typell Error and Power

A false acceptance of the null hypothesis Hy (accepting Hy when H; is true) is called a Type II error.
The rejection probability under the alternative hypothesis is called the power of the test, and equals 1
minus the probability of a Type II error:

n(0) =P [Reject Ho | H true] =P [T > ¢ | H; true].

We call 7(0) the power function and is written as a function of @ to indicate its dependence on the true
value of the parameter .

In the dominant approach to hypothesis testing, the goal of test construction is to have high power
subject to the constraint that the size of the test is lower than the pre-specified significance level. Gen-
erally, the power of a test depends on the true value of the parameter 8, and for a well behaved test the
power is increasing both as 8 moves away from the null hypothesis 8y and as the sample size n increases.
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Given the two possible states of the world (Hy or H;) and the two possible decisions (Accept Hy or
Reject Hyp), there are four possible pairings of states and decisions as is depicted in Table 9.1.

Table 9.1: Hypothesis Testing Decisions

Accept Hy Reject Hy
Hp true | Correct Decision Type I Error
H; true Type II Error Correct Decision

Given a test statistic T, increasing the critical value c¢ increases the acceptance region Sy while de-
creasing the rejection region S;. This decreases the likelihood of a Type I error (decreases the size) but
increases the likelihood of a Type II error (decreases the power). Thus the choice of ¢ involves a trade-off
between size and the power. This is why the significance level a of the test cannot be set arbitrarily small.
(Otherwise the test will not have meaningful power.)

It is important to consider the power of a test when interpreting hypothesis tests, as an overly narrow
focus on size can lead to poor decisions. For example, it is easy to design a test which has perfect size
yet has trivial power. Specifically, for any hypothesis we can use the following test: Generate a random
variable U ~ U|[0,1] and reject Hy if U < a. This test has exact size of a. Yet the test also has power
precisely equal to a. When the power of a test equals the size, we say that the test has trivial power.
Nothing is learned from such a test.

9.6 Statistical Significance

Testing requires a pre-selected choice of significance level a, yet there is no objective scientific basis
for choice of @. Nevertheless the common practice is to set @ = 0.05 (5%). Alternative values are a = 0.10
(10%) and a = 0.01 (1%). These choices are somewhat the by-product of traditional tables of critical
values and statistical software.

The informal reasoning behind the choice of a 5% critical value is to ensure that Type I errors should
be relatively unlikely — that the decision “Reject Hy” has scientific strength — yet the test retains power
against reasonable alternatives. The decision “Reject Hy” means that the evidence is inconsistent with
the null hypothesis, in the sense that it is relatively unlikely (1 in 20) that data generated by the null
hypothesis would yield the observed test result.

In contrast, the decision “Accept Hy” is not a strong statement. It does not mean that the evidence
supports Hy, only that there is insufficient evidence to reject Hy. Because of this, it is more accurate to
use the label “Do not Reject Hy” instead of “Accept Hy”.

When a test rejects Hp at the 5% significance level it is common to say that the statistic is statistically
significant and if the test accepts Hy it is common to say that the statistic is not statistically significant
or that it is statistically insignificant. It is helpful to remember that this is simply a compact way of
saying “Using the statistic T, the hypothesis Hy can [cannot] be rejected at the asymptotic 5% level.”
Furthermore, when the null hypothesis Hy : 8 = 0 is rejected it is common to say that the coefficient 6 is
statistically significant, because the test has rejected the hypothesis that the coefficient is equal to zero.

Let us return to the example about the union wage premium as measured in Table 4.1. The absolute
t-statistic for the coefficient on “Male Union Member” is 0.095/0.020 = 4.7, which is greater than the 5%
asymptotic critical value of 1.96. Therefore we reject the hypothesis that union membership does not
affect wages for men. In this case, we can say that union membership is statistically significant for men.
However, the absolute t-statistic for the coefficient on “Female Union Member” is 0.023/0.020 = 1.2,
which is less than 1.96 and therefore we do not reject the hypothesis that union membership does not
affect wages for women. In this case we find that membership for women is not statistically significant.
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When a test accepts a null hypothesis (when a test is not statistically significant) a common misin-
terpretation is that this is evidence that the null hypothesis is true. This is incorrect. Failure to reject is
by itself not evidence. Without an analysis of power, we do not know the likelihood of making a Type II
error, and thus are uncertain. In our wage example, it would be a mistake to write that “the regression
finds that female union membership has no effect on wages”. This is an incorrect and most unfortunate
interpretation. The test has failed to reject the hypothesis that the coefficient is zero, but that does not
mean that the coefficient is actually zero.

When a test rejects a null hypothesis (when a test is statistically significant) it is strong evidence
against the hypothesis (since if the hypothesis were true then rejection is an unlikely event). Rejection
should be taken as evidence against the null hypothesis. However, we can never conclude that the null
hypothesis is indeed false, as we cannot exclude the possibility that we are making a Type I error.

Perhaps more importantly, there is an important distinction between statistical and economic sig-
nificance. If we correctly reject the hypothesis Hy : 6 = 0 it means that the true value of 8 is non-zero.
This includes the possibility that & may be non-zero but close to zero in magnitude. This only makes
sense if we interpret the parameters in the context of their relevant models. In our wage regression ex-
ample, we might consider wage effects of 1% magnitude or less as being “close to zero”. In a log wage
regression this corresponds to a dummy variable with a coefficient less than 0.01. If the standard error
is sufficiently small (less than 0.005) then a coefficient estimate of 0.01 will be statistically significant but
not economically significant. This occurs frequently in applications with very large sample sizes where
standard errors can be quite small.

The solution is to focus whenever possible on confidence intervals and the economic meaning of the
coefficients. For example, if the coefficient estimate is 0.005 with a standard error of 0.002 then a 95%
confidence interval would be [0.001, 0.009] indicating that the true effect is likely between 0% and 1%,
and hence is slightly positive but small. This is much more informative than the misleading statement
“the effect is statistically positive”.

9.7 P-Values

Continuing with the wage regression estimates reported in Table 4.1, consider another question:
Does marriage status affect wages? To test the hypothesis that marriage status has no effect on wages,
we examine the t-statistics for the coefficients on “Married Male” and “Married Female” in Table 4.1,
which are 0.211/0.010 =22 and 0.016/0.010 = 1.7, respectively. The first exceeds the asymptotic 5% criti-
cal value of 1.96, so we reject the hypothesis for men. The second is smaller than 1.96, so we fail to reject
the hypothesis for women. Taking a second look at the statistics, we see that the statistic for men (22)
is exceptionally high, and that for women (1.7) is only slightly below the critical value. Suppose that the
t-statistic for women were slightly increased to 2.0. This is larger than the critical value so would lead to
the decision “Reject Hy” rather than “Accept Hp”. Should we really be making a different decision if the
t-statistic is 2.0 rather than 1.7? The difference in values is small, shouldn’t the difference in the decision
be also small? Thinking through these examples it seems unsatisfactory to simply report “Accept Hy” or
“Reject Hp”. These two decisions do not summarize the evidence. Instead, the magnitude of the statistic
T suggests a “degree of evidence” against Hy. How can we take this into account?

The answer is to report what is known as the asymptotic p-value

p=1-G(T).

Since the distribution function G is monotonically increasing, the p-value is a monotonically decreasing
function of T and is an equivalent test statistic. Instead of rejecting Hy at the significance level a if T > c,
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we canreject Hy if p < a. Thus it is sufficient to report p, and let the reader decide. In practice, the p-value
is calculated numerically. For example, in MATLAB the command is 2* (1-normalcdf (abs(t))).

In is instructive to interpret p as the marginal significance level: the smallest value of a for which
the test T “rejects” the null hypothesis. That is, p = 0.11 means that T rejects Hy for all significance levels
greater than 0.11, but fails to reject Hy for significance levels less than 0.11.

Furthermore, the asymptotic p-value has a very convenient asymptotic null distribution. Since T —

¢ under Hy, then p=1-G(T) - 1 - G(¢é), which has the distribution

P1-GE)=sul=P[1-u=sG(@)]
=1-P[¢<G1-w)]
=1-G(G'1-w)
=1-(1-u)

=u,

which is the uniform distribution on [0,1]. (This calculation assumes that G(u) is strictly increasing
which is true for conventional asymptotic distributions such as the normal.) Thus p — Ul0,1]. This

means that the “unusualness” of p is easier to interpret than the “unusualness” of T.

An important caveat is that the p-value p should not be interpreted as the probability that either
hypothesis is true. A common mis-interpretation is that p is the probability “that the null hypothesis
is true.” This is incorrect. Rather, p is the marginal significance level — a measure of the strength of
information against the null hypothesis.

For a t-statistic, the p-value can be calculated either using the normal distribution or the student ¢
distribution, the latter presented in Section 5.12. p-values calculated using the student ¢ will be slightly
larger, though the difference is small when the sample size is large.

Returning to our empirical example, for the test that the coefficient on “Married Male” is zero, the p-
value is 0.000. This means that it would be nearly impossible to observe a t-statistic as large as 22 when
the true value of the coefficient is zero. When presented with such evidence we can say that we “strongly
reject” the null hypothesis, that the test is “highly significant”, or that “the test rejects at any conventional
critical value”. In contrast, the p-value for the coefficient on “Married Female” is 0.094. In this context it
is typical to say that the test is “close to significant”, meaning that the p-value is larger than 0.05, but not
too much larger.

A related (but inferior) empirical practice is to append asterisks (*) to coefficient estimates or test
statistics to indicate the level of significance. A common practice to to append a single asterisk (*) for an
estimate or test statistic which exceeds the 10% critical value (i.e., is significant at the 10% level), append
a double asterisk (**) for a test which exceeds the 5% critical value, and append a triple asterisk (***) for
a test which exceeds the 1% critical value. Such a practice can be better than a table of raw test statistics
as the asterisks permit a quick interpretation of significance. On the other hand, asterisks are inferior to
p-values, which are also easy and quick to interpret. The goal is essentially the same; it seems wiser to
report p-values whenever possible and avoid the use of asterisks.

Our recommendation is that the best empirical practice is to compute and report the asymptotic p-
value p rather than simply the test statistic 7, the binary decision Accept/Reject, or appending asterisks.
The p-value is a simple statistic, easy to interpret, and contains more information than the other choices.

We now summarize the main features of hypothesis testing.

1. Select a significance level a.

2. Select a test statistic T with asymptotic distribution T 7 ¢ under Hy.
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w

. Set the asymptotic critical value c so that 1 — G(c) = @, where G is the distribution function of ¢.

4. Calculate the asymptotic p-value p =1— G(T).

o

. RejectHy if T > ¢, or equivalently p < a.

o]

. AcceptHy if T < ¢, or equivalently p = a.

~

. Report p to summarize the evidence concerning Hy versus Hj.

9.8 t-ratios and the Abuse of Testing

In Section 4.20, we argued that a good applied practice is to report coefficient estimates 0 and stan-
dard errors s(@) for all coefficients of interest in estimated models. With 8 and s(é) the reader can easily
construct confidence intervals [§ + 25(8)] and t-statistics (6 —6p) /(@) for hypotheses of interest.

Some applied papers (especially older ones) report t-ratios T = 6/5(0) instead of standard errors.
This is poor econometric practice. While the same information is being reported (you can back out
standard errors by division, e.g. s = 0/T), standard errors are generally more helpful to readers than
t-ratios. Standard errors help the reader focus on the estimation precision and confidence intervals,
while t-ratios focus attention on statistical significance. While statistical significance is important, it
is less important that the parameter estimates themselves and their confidence intervals. The focus
should be on the meaning of the parameter estimates, their magnitudes, and their interpretation, not
on listing which variables have significant (e.g. non-zero) coefficients. In many modern applications,
sample sizes are very large so standard errors can be very small. Consequently t-ratios can be large
even if the coefficient estimates are economically small. In such contexts it may not be interesting to
announce “The coefficient is non-zero!” Instead, what is interesting to announce is that “The coefficient
estimate is economically interesting!”

In particular, some applied papers report coefficient estimates and t-ratios, and limit their discussion
of the results to describing which variables are “significant” (meaning that their t-ratios exceed 2) and the
signs of the coefficient estimates. This is very poor empirical work, and should be studiously avoided. It
is also a recipe for banishment of your work to lower tier economics journals.

Fundamentally, the common t-ratio is a test for the hypothesis that a coefficient equals zero. This
should be reported and discussed when this is an interesting economic hypothesis of interest. But if this
is not the case, it is distracting.

One problem is that standard packages, such as Stata, by default report t-statistics and p-values for
every estimated coefficient. While this can be useful (as a user doesn’t need to explicitly ask to test a
desired coefficient) it can be misleading as it may unintentionally suggest that the entire list of t-statistics
and p-values are important. Instead, a user should focus on tests of scientifically motivated hypotheses.

In general, when a coefficient 8 is of interest, it is constructive to focus on the point estimate, its
standard error, and its confidence interval. The point estimate gives our “best guess” for the value. The
standard error is a measure of precision. The confidence interval gives us the range of values consistent
with the data. If the standard error is large then the point estimate is not a good summary about 8. The
endpoints of the confidence interval describe the bounds on the likely possibilities. If the confidence
interval embraces too broad a set of values for 0, then the dataset is not sufficiently informative to ren-
der useful inferences about 6. On the other hand if the confidence interval is tight, then the data have
produced an accurate estimate, and the focus should be on the value and interpretation of this estimate.
In contrast, the statement “the t-ratio is highly significant” has little interpretive value.
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The above discussion requires that the researcher knows what the coefficient § means (in terms of
the economic problem) and can interpret values and magnitudes, not just signs. This is critical for good
applied econometric practice.

For example, consider the question about the effect of marriage status on mean log wages. We had
found that the effect is “highly significant” for men and “close to significant” for women. Now, let’s con-
struct asymptotic 95% confidence intervals for the coefficients. The one for men is [0.19, 0.23] and that
for women is [-0.00, 0.03]. This shows that average wages for married men are about 19-23% higher than
for unmarried men, which is substantial, while the difference for women is about 0-3%, which is small.
These magnitudes are more informative than the results of the hypothesis tests.

9.9 Wald Tests

The t-test is appropriate when the null hypothesis is a real-valued restriction. More generally, there
may be multiple restrictions on the coefficient vector . Suppose that we have g > 1 restrictions which
can be written in the form (9.1). It is natural to estimate 8 = r(f) by the plug-in estimator O=r (ii) .To
test Hp : @ = 8¢ against H, : 8 # 8y one approach is to measure the magnitude of the discrepancy 0-0,.
As this is a vector, there is more than one measure of its length. One simple measure is the weighted

quadratic form known as the Wald statistic. This is (7.37) evaluated at the null hypothesis

~ A_l o~
W =W@) = (6-80) 7, (8-860) 9.6)
=~ P S . sy 6 o/ . . .
where V5 = R ffR is an estimator of Vi and R = @ r(pB)’. Notice that we can write W alternatively as

W=n(0-6,)V,' (6-80)

using the asymptotic variance estimator Vg, or we can write it directly as a function of g as

~

W = (r(B)-0o) (ﬁ’f/ﬁR)_l (r(B)-80).

Also, when r(f) = R’ is a linear function of 8, then the Wald statistic simplifies to

W=(R'B-80) (RVR) "(RB-00).

The Wald statistic W is a weighted Euclidean measure of the length of the vector 0-60,. When g =1
then W = T?, the square of the t-statistic, so hypothesis tests based on W and |T| are equivalent. The
Wald statistic (9.6) is a generalization of the t-statistic to the case of multiple restrictions. As the Wald
statistic is symmetric in the argument 0 - 0, it treats positive and negative alternatives symmetrically.
Thus the inherent alternative is always two-sided.

As shown in Theorem 7.15, when f satisfies r(f) = 8y then W 7 )(‘z‘,, a chi-square random variable

with g degrees of freedom. Let G4(u) denote the Xfi distribution function. For a given significance level
@, the asymptotic critical value c satisfies « = 1 — G,4(c). For example, the 5% critical values for g = 1,
g =2, and q = 3 are 3.84, 5.99, and 7.82, respectively, and in general the level a critical value can be
calculated in MATLAB as chi2inv(1-a,q). An asymptotic test rejects Hy in favor of H; if W > c. As with
t-tests, it is conventional to describe a Wald test as “significant” if W exceeds the 5% asymptotic critical
value.
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Theorem 9.2 Under Assumptions 7.2, 7.3, 7.4, and Hy : @ = 8, then
2
W e
and for ¢ satisfying a = 1 - G4(¢),
P(W >c|Hy) — a

so the test “Reject Hy if W > ¢” has asymptotic size a.

Notice that the asymptotic distribution in Theorem 9.2 depends solely on g, the number of restric-
tions being tested. It does not depend on k, the number of parameters estimated.

The asymptotic p-value for W is p = 1 - G4(W), and this is particularly useful when testing multiple
restrictions. For example, if you write that a Wald test on eight restrictions (g = 8) has the value W =
11.2, it is difficult for a reader to assess the magnitude of this statistic unless they have quick access to a
statistical table or software. Instead, if you write that the p-value is p = 0.19 (as is the case for W = 11.2
and g = 8) then it is simple for a reader to interpret its magnitude as “insignificant”. To calculate the
asymptotic p-value for a Wald statistic in MATLAB, use the command 1-chi2cdf (w,q).

Some packages (including Stata) and papers report F versions of Wald statistics. That is, for any Wald
statistic W which tests a g-dimensional restriction, the F version of the test is

F=Wl/q.

When F isreported, it is conventional to use Fy, , critical values and p-values rather than )(Z values. The
connection between Wald and F statistics is demonstrated in Section 9.14 we show that when Wald statis-
tics are calculated using a homoskedastic covariance matrix, then F = W/q is identicial to the F statistic
of (5.19). While there is no formal justification to using the F ;. distribution for non-homoskedastic
covariance matrices, the F, ,_i distribution provides continuity with the exact distribution theory under
normality and is a bit more conservative than the xz distribution. (Furthermore, the difference is small
when n — k is moderately large.)

To implement a test of zero restrictions in Stata, an easy method is to use the command “test X1
X2” where X1 and X2 are the names of the variables whose coefficients are hypothesized to equal zero.
This command should be executed after executing a regression command. The F version of the Wald
statistic is reported, using the covariance matrix calculated using the method specified in the regression
command. A p-value is reported, calculated using the F ,_ distribution.

To illustrate, consider the empirical results presented in Table 4.1. The hypothesis “Union mem-
bership does not affect wages” is the joint restriction that both coefficients on “Male Union Member”
and “Female Union Member” are zero. We calculate the Wald statistic for this joint hypothesis and find
W =23 (or F = 12.5) with a p-value of p = 0.000. Thus we reject the null hypothesis in favor of the al-
ternative that at least one of the coefficients is non-zero. This does not mean that both coefficients are
non-zero, just that one of the two is non-zero. Therefore examining both the joint Wald statistic and the
individual t-statistics is useful for interpretation.

As a second example from the same regression, take the hypothesis that married status has no effect
on mean wages for women. This is the joint restriction that the coefficients on “Married Female” and
“Formerly Married Female” are zero. The Wald statistic for this hypothesis is W = 6.4 (F = 3.2) with a
p-value of 0.04. Such a p-value is typically called “marginally significant”, in the sense that it is slightly
smaller than 0.05.

The Wald statistic was proposed by Wald (1943).
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Abraham Wald

The Hungarian mathematician/statistician/econometrician Abraham Wald
(1902-1950) developed an optimality property for the Wald test in terms of
weighted average power. He also developed the field of sequential testing and
the design of experiments.

9.10 Homoskedastic Wald Tests

If the error is known to be homoskedastic, then it is appropnate to use the homoskedastic Wald
statistic (7.38) which replaces Vo with the homoskedastic estimator V‘9 This statistic equals

= (0-00)'(V3) (0-0,)
=(r®-00) (R (XX)'R) (r(B)-00) /5"

In the case of linear hypotheses Hy : R’ = 8 we can write this as

WO =(R'B-6,) (R (X'X)"'R)  (RB-00)/5" 9.7)

We call either a homoskedastic Wald statistic as it is an appropriate test when the errors are conditionally
homoskedastic.

As for W, when g = 1 then W° = T?, the square of the t-statistic where the latter is computed with a
homoskedastic standard error.

Theorem 9.3 Under Assumptions 7.2 and 7.3, E [e? |x;] =0%>0,andH: 0 =
0y, then
0 2
W e

and for c satisfying @ =1 - G4(¢),
PW>c|Hy] — @

so the test “Reject Hy if W > ¢” has asymptotic size a.

9.11 Criterion-Based Tests

The Wald statistic is based on the length of the vector 0-0y: the discrepancy between the estimate
0 = r(P) and the hypothesized value 8. An alternative class of tests is based on the discrepancy between
the criterion function minimized with and without the restriction.

Criterion-based testing applies when we have a criterion function, say J(f) with § € B, which is
minimized for estimation, and the goal is to test Hy : § € By versus Hj : ¢ By where By < B. Minimizing
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the criterion function over B and B, we obtain the unrestricted and restricted estimators

p = argmin 7 (B)
peB

B = argmin J (B).

BeB,
The criterion-based statistic for Hy versus H; is proportional to
J = min J(f) - min ] (f)
=J(B)-J(B).
The criterion-based statistic J is sometimes called a distance statistic, a minimum-distance statistic,
or a likelihood-ratio-like statistic.

Since By is asubset of B, J() = J ([Ai) and thus J = 0. The statistic / measures the cost (on the criterion)
of imposing the null restriction g € By.

9.12 Minimum Distance Tests

The minimum distance test is a criterion-based test where J (ﬁ) is the minimum distance criterion
(8.19)

~ |~

J(B)=n(B-B) W(B-B) 9.8)
with B the unrestricted (LS) estimator. The restricted estimator Bmd minimizes (9.8) subject to f € By.
Observing that J(f) = 0, the minimum distance statistic simplifies to

J=TBrna) = (B~ PBrma) W (B~ PBrma)- 9.9)

The efficient minimum distance estimator Bemd is obtained by setting W= !7; in (9.8) and (9.9).
The efficient minimum distance statistic for Hy : 8 € By is therefore

~ ~ I ~—1,2 ~

J*=n(B~PBema) Vg (B~ Pema)- (9.10)

Consider the class of linear hypotheses Hy : R’ = 6. In this case we know from (8.25) that the effi-
cient minimum distance estimator 4 subject to the constraint R'ff = 6y is

~ o~ ~ —~ _1 o~
Bema=B-VpR(R'VgR) (R'p-06o)
and thus
B—PBema=VpR(R'VgR) (R'p-0o).
Substituting into (9.10) we find
J*=n(R'B-80) (RVsR) 'RVV; VsR(RVR) " (R'B-60)
=n(R'B-6,) (RVsR)" (R B-0)
=W,
which is the Wald statistic (9.6).
Thus for linear hypotheses Hy : R'f = 6y, the efficient minimum distance statistic J* is identical to
the Wald statistic (9.6). For non-linear hypotheses, however, the Wald and minimum distance statistics
are different.

Newey and West (1987a) established the asymptotic null distribution of J* for linear and non-linear
hypotheses.
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Theorem 9.4 Under Assumptions 7.2, 7.3, 7.4, and Hy : @ = 6, then J* — )(3.

Testing using the minimum distance statistic J* is similar to testing using the Wald statistic W. Criti-
cal values and p-values are computed using the Xf, distribution. Hy is rejected in favor of H; if J* exceeds
the level «a critical value, which can be calculated in MATLAB as chi2inv(1-a,q). The asymptotic p-
valueis p=1-Gy, (J*). In MATLAB, use the command 1-chi2cdf (J,q).

We now demonstrate Theorem 9.4. The conditions of Theorem 8.10 hold, since Hy implies Assump-
tion 8.1. From (8.54) with w= !7,;, we see that

VI (B~ Bema) = VR (R} VsR) " R\ (B~ p)
— VpR(R'VgR) " R'N(O,Vp) = VgRZ

where Z ~N(0, (R'VgR)™"). Thus
. = = N _
J =n(B=PBema) Vg (B~ PBema) — ZR'VpV5'VRZ=Z (R'VsR) 2=,

as claimed.

9.13 Minimum Distance Tests Under Homoskedasticity

If we set W = Qxx/ s2 in (9.8) we obtain the criterion (8.20)
o~ ] ~ o~
]O(ﬁ) = n(ﬁ_ﬂ) Qxx(ﬁ_ﬂ)/sz'
A minimum distance statistic for Hy : § € By is
0_ .« 10
= min I (B).
Equation (8.21) showed that
SSE(B) = n6* +s°J° (B)

and so the minimizers of SSE(f) and J°(p) are identical. Thus the constrained minimizer of J° (B) is
constrained least-squares

iicls = argmin J° (B) = argmin SSE(B) 9.11)
BB BeB

and therefore
]2 = ](r)z(i;cls) =n (ﬁ - Ecls)/ axx (3 - ﬁcls) /s,
In the special case of linear hypotheses Hy : R’ = 6, the constrained least-squares estimator subject
to R'B = 0 has the solution (8.9)

Bus=PB- QiR (RQLR)  (R'B-6))
and solving we find
J=n(RB-0,) (R’Q;}CR)_I (RB-00)/s>=W".
This is the homoskedastic Wald statistic (9.7). Thus for testing linear hypotheses, homoskedastic mini-

mum distance and Wald statistics agree.
For nonlinear hypotheses they disagree, but have the same null asymptotic distribution.
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Theorem 9.5 Under Assumptions 7.2 and 7.3, E[e? | x;] = 0® > 0, and Ho : 0 =
6o, then J° 7 X%,-

9.14 FTests

In Section 5.13 we introduced the F test for exclusion restrictions in the normal regression model.
More generally, the F statistic for testing Ho : § € By is

(62-5)/q
) 6-12)
where
L, 1
Uz:;Z( i—x; )

and ﬁ are the unconstrained estimators of  and o

i‘. ( —X; ﬁcls)

1
n
and iicls are the constrained least-squares estimators from (9.11), g is the number of restrictions, and k
is the number of unconstrained coefficients.

We can alternatively write N
SSE(Bs) — SSE(p)

qs®

F= (9.13)

where
n

SSEB) =Y (yi—x,B)°

i=1
is the sum-of-squared errors. Thus F is a criterion-based statistic. Using (8.21) we can also write

F=]%q,

so the F statistic is identical to the homoskedastic minimum distance statistic divided by the number of
restrictions q.

As we discussed in the previous section, in the special case of linear hypotheses Hy : R'f = 6,
JO = WY, It follows that in this case F = Wo/q. Thus for linear restrictions the F statistic equals the
homoskedastic Wald statistic divided by q. It follows that they are equivalent tests for Hy against H;.

Theorem 9.6 For tests of linear hypotheses Hy : R’ = 0,
F=wW%gq

the F statistic equals the homoskedastic Wald statistic divided by the degrees
of freedom. Thus under 7.2, E[e? | x;] = 0> >0, and Hy : @ = 8y, then

F—Xq!4.
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When using an F statistic, it is conventional to use the Fy i distribution for critical values and p-
values. Critical values are given in MATLAB by finv(1-a,q,n-k), and p-values by 1-fcdf (F,q,n-k).
Alternatively, the )(%,/q distribution can be used, using chi2inv(1-a,q)/q and 1-chi2cdf (Fx*q,q), re-
spectively. Using the F, ,_\ distribution is a prudent small sample adjustment which yields exact an-
swers if the errors are normal, and otherwise slightly increasing the critical values and p-values relative
to the asymptotic approximation. Once again, if the sample size is small enough that the choice makes a
difference, then probably we shouldn’t be trusting the asymptotic approximation anyway!

An elegant feature about (9.12) or (9.13) is that they are directly computable from the standard output
from two simple OLS regressions, as the sum of squared errors (or regression variance) is a typical printed
output from statistical packages, and is often reported in applied tables. Thus F can be calculated by
hand from standard reported statistics even if you don’t have the original data (or if you are sitting in a
seminar and listening to a presentation!).

If you are presented with an F statistic (or a Wald statistic, as you can just divide by g) but don’t have
access to critical values, a useful rule of thumb is to know that for large n, the 5% asymptotic critical value
is decreasing as g increases, and is less than 2 for g = 7.

Aword of warning: In many statistical packages, when an OLS regression is estimated an “F-statistic”
is automatically reported, even though no hypothesis test was requested. What the package is reporting
is an F statistic of the hypothesis that all slope coefficients! are zero. This was a popular statistic in the
early days of econometric reporting when sample sizes were very small and researchers wanted to know
if there was “any explanatory power” to their regression. This is rarely an issue today, as sample sizes are
typically sufficiently large that this F statistic is nearly always highly significant. While there are special
cases where this F statistic is useful, these cases are not typical. As a general rule, there is no reason to
report this F statistic.

9.15 Hausman Tests

Hausman (1978) introduced a general idea about how to test a hypothesis Hy. If you have two estima-
tors, one which is efficient under Hy but inconsistent under H;, and another which is consistent under
H;, then construct a test as a quadratic form in the differences of the estimators. In the case of testing a
hypothesis Hg : () = 6 let Bols denote the unconstrained least-squares estimator and let B, 4 denote
the efficient minimum distance estimator which imposes r(f) = 8. Both estimators are consistent un-
der Ho, but B4 is asymptotically efficient. Under Hy, fiols is consistent for § but B, 4 is inconsistent.
The difference has the asymptotic distribution

B B -1
\/ﬁ(ﬁols_ﬁemd) 7 N(O» VﬁR (R/VpR) R,Vﬁ).
Let A™ denote the Moore-Penrose generalized inverse. The Hausman statistic for Hy is

H= (Bols - Bemd),ﬁ(ﬁols - ﬁemd)_ (Eols - Bemd)

~ ~ N O RT DU A ~
:n(ﬁols_ﬁemd) (VﬁR(R/VﬁR) R/Vﬁ) (ﬁols_ﬁemd)'

LAll coefficients except the intercept.
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A2 (ot YL ara
The matrix V;/ZR (R'V,;R) R'Vllg/2 idempotent so its generalized inverse is itself. (See Section A.11.) It
follows that

~ Y s-12(s125(a5 ) s
Vﬁ) =V, (Vﬁ R(R'V4R) R

1251725 (a1 =)L ars1/24-1/2
=V, V' R(R'VGR) RVGV;
PSP N
=R(RV4R) R

Thus the Hausman statistic is
~ ~ ' -1, ~
H=n (ﬁols - ﬁemd) R (R VﬁR) R (ﬁols - ﬁemd) .
In the context of linear restrictions, R = R and R’ = 8 so the statistic takes the form
~ I~ ~ -1 ~
H=n (R,ﬁols - 00) R (R,VﬁR) (R,ﬁols - 00) ’

which is precisely the Wald statistic. With nonlinear restrictions W and H can differ.

In either case we see that that the asymptotic null distribution of the Hausman statistic H is X%,, so
the appropriate test is to reject Hp in favor of H; if H > ¢ where c is a critical value taken from the )(é
distribution.

Theorem 9.7 For general hypotheses the Hausman test statistic is

~ ~ I~ (Al =~ -1 ~1 1 ~
=n (ﬁols - ﬁemd) R (R VﬁR) R (ﬁols - ﬁemd) .
Under Assumptions 7.2, 7.3, 7.4, and Hy : r(B) = 0,

2
M X

9.16 Score Tests

Score tests are traditionally derived in likelihood analysis, but can more generally be constructed
from first-order conditions evaluated at restricted estimates. We focus on the likelihood derivation.

Given the log likelihood function log L(f, o), a restriction Hp : r () = 0, and restricted estimators p
and &2, the score statistic for Hy is defined as

d / o
logL ———logL(B,0
5= (35108155 ( 5050 (55
The idea is that if the restriction is true, then the restricted estimators should be close to the maximum
of the log-likelihood where the derivative is zero. However if the restriction is false then the restricted
estimators should be distant from the maximum and the derivative should be large. Hence small values
of S are expected under Hy and large values under H; . Tests of Hy reject for large values of S.

logL(ﬁ o ))
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We explore the score statistic in the context of the normal regression model and linear hypotheses
r (B) = R'B. Recall that in the normal regression log-likelihood function is

n 1 &
log L(B,0?) = —~ log2mo?) - — ¥ (vi - %, B)%.
2 20° 3
The constrained MLE under linear hypotheses is constrained least squares
- _ 111
B=B-(xX'X)"R[R'(X'X)"'R| (RB-¢)
=Yi— x;B
o L&
==&
niz1
We can calculate that the derivative and Hessian are

9 —logL(B,5%) = = Zx, ~-xp) = —X’~

Gﬂ
1
— loglL = — xh = —X/X
aﬁaﬁ ogL(p,0%) = 2 ,.:le’x’ &2
Since @ = y — X p we can further calculate that
aaﬁ logL(B,5°) = = L (x'x) (%) x'y - (x'x) " x'XB|

| P
== (x'x) (B~ B)
- %R |” (x'x)™" R]_l (RB-c).
Together we find that
=(R'B-c) (R’ (x'x)”" R)_l (R'B-¢)/5°.

This is identical to the homoskedastic Wald statistic, with s? replaced by 6. We can also write S as a
monotonic transformation of the F statistic, since

(62-5?) &2 1
S:n—:n(l—a—):n 1-——

The test “Reject Hy for large values of S” is identical to the test “Reject Hy for large values of F”, so they
are identical tests. Since for the normal regression model the exact distribution of F is known, it is better
to use the F statistic with F p-values.

In more complicated settings a potential advantage of score tests is that they are calculated using the
restricted parameter estimates ﬁ rather than the unrestricted estimates ﬁ Thus when g is relatively easy
to calculate there can be a preference for score statistics. This is not a concern for linear restrictions.

More generally, score and score-like statistics can be constructed from first-order conditions evalu-
ated at restricted parameter estimates. Also, when test statistics are constructed using covariance ma-
trix estimators which are calculated using restricted parameter estimates (e.g. restricted residuals) then
these are often described as score tests.

An example of the latter is the Wald-type statistic

= (r(B)-6o)’ (E/Vﬁﬁ)_l (r(B) - 8o)

where the covariance matrix estimate Vﬁ is calculated using the restricted residuals €; = y; — x’lﬁ This

may be done when f and 0 are high-dimensional, so there is worry that the estimator 173 is imprecise.



CHAPTER 9. HYPOTHESIS TESTING 252

9.17 Problems with Tests of Nonlinear Hypotheses

While the ¢ and Wald tests work well when the hypothesis is a linear restriction on f, they can work
quite poorly when the restrictions are nonlinear. This can be seen by a simple example introduced by
Lafontaine and White (1986). Take the model

yi=p+e;
e; ~N(0,0%)
and consider the hypothesis
|H|0 . ﬁ =1.
Let B and 62 be the sample mean and variance of y;. The standard Wald test for Hy is
Y
-1
W=n (ﬁ = ) .
52

Now notice that Hy is equivalent to the hypothesis
Ho(s): B° =1

for any positive integer s. Letting r(8) = 8°, and noting R = s3°~!, we find that the standard Wald test for
HO (S) is

(B~ 1)’
W(s)=n = .
G252 52
While the hypothesis ° = 1 is unaffected by the choice of s, the statistic W(s) varies with s. This is an
unfortunate feature of the Wald statistic.

To demonstrate this effect, we have plotted in Figure 9.2 the Wald statistic W (s) as a function of s,
setting n/G% = 10. The increasing solid line is for the case ,3 = 0.8. The decreasing dashed line is for the
case B = 1.6. It is easy to see that in each case there are values of s for which the test statistic is signifi-
cant relative to asymptotic critical values, while there are other values of s for which the test statistic is
insignificant. This is distressing since the choice of s is arbitrary and irrelevant to the actual hypothesis.

Our first-order asymptotic theory is not useful to help pick s, as W (s) - ﬁ under Hy for any s. This

is a context where Monte Carlo simulation can be quite useful as a tool to study and compare the exact
distributions of statistical procedures in finite samples. The method uses random simulation to create
artificial datasets, to which we apply the statistical tools of interest. This produces random draws from
the statistic’s sampling distribution. Through repetition, features of this distribution can be calculated.

In the present context of the Wald statistic, one feature of importance is the Type I error of the test
using the asymptotic 5% critical value 3.84 — the probability of a false rejection, P (W(s) >3.84| f=1).
Given the simplicity of the model, this probability depends only on s, n, and . In Table 9.2 we report
the results of a Monte Carlo simulation where we vary these three parameters. The value of s is varied
from 1 to 10, n is varied among 20, 100 and 500, and o is varied among 1 and 3. The Table reports the
simulation estimate of the Type I error probability from 50,000 random samples. Each row of the table
corresponds to a different value of s — and thus corresponds to a particular choice of test statistic. The
second through seventh columns contain the Type I error probabilities for different combinations of n
and o. These probabilities are calculated as the percentage of the 50,000 simulated Wald statistics W (s)
which are larger than 3.84. The null hypothesis 3° = 1 is true, so these probabilities are Type I error.

To interpret the table, remember that the ideal Type I error probability is 5% (.05) with deviations
indicating distortion. Type I error rates between 3% and 8% are considered reasonable. Error rates above
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Figure 9.2: Wald Statistic as a Function of s

10% are considered excessive. Rates above 20% are unacceptable. When comparing statistical proce-
dures, we compare the rates row by row, looking for tests for which rejection rates are close to 5% and
rarely fall outside of the 3%-8% range. For this particular example the only test which meets this criterion
is the conventional W = W(1) test. Any other choice of s leads to a test with unacceptable Type I error
probabilities.

Table 9.2: Type I Error Probability of Asymptotic 5% W (s) Test

s o=1 o=3
n=20 n=100 n=>500 n=20 n=100 n=>500
1 0.05 0.05 0.05 0.05 0.05 0.05
2 0.07 0.06 0.05 0.14 0.08 0.06
3 0.09 0.06 0.05 0.21 0.12 0.07
4 0.12 0.07 0.05 0.25 0.15 0.08
5 0.14 0.08 0.06 0.27 0.18 0.10
6 0.16 0.09 0.06 0.30 0.20 0.12
7 0.18 0.10 0.06 0.32 0.22 0.13
8 0.20 0.12 0.07 0.33 0.24 0.14
9 0.21 0.13 0.07 0.34 0.25 0.16
10 0.23 0.14 0.08 0.35 0.26 0.17

Rejection frequencies from 50,000 simulated random samples.

In Table 9.2 you can also see the impact of variation in sample size. In each case, the Type I error
probability improves towards 5% as the sample size n increases. There is, however, no magic choice of
n for which all tests perform uniformly well. Test performance deteriorates as s increases, which is not
surprising given the dependence of W (s) on s as shown in Figure 9.2.

In this example it is not surprising that the choice s = 1 yields the best test statistic. Other choices are
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arbitrary and would not be used in practice. While this is clear in this particular example, in other exam-
ples natural choices are not always obvious and the best choices may in fact appear counter-intuitive at
first.

This point can be illustrated through another example which is similar to one developed in Gregory
and Veall (1985). Take the model

Vi =Po+x1if1+ X2 P2+ e (9.14)
El[x;e;]=0
and the hypothesis
|H]0 . % = 90

where 6 is a known constant. Equivalently, define 6 = 81/, so the hypothesis can be stated as Hy : 6 =
0o.
Let B = (Bo, B1, B2) be the least-squares estimator of (9.14), let !73 be an estimator of the covariance

matrix for fi and set 0 = 31 / Bg. Define
0

55)
Il
Nm)l p—

b
[

~ ~ . 1/2
so that the standard error for 6 is s(0) = (Rll Vﬁ 1) . In this case a t-statistic for Hy is

s
An alternative statistic can be constructed through reformulating the null hypothesis as
Ho : f1—00B2 =0.

A t-statistic based on this formulation of the hypothesis is

1—00p2
(RZ VﬁRz)
where
0
R=| 1
—0,

To compare T; and T, we perform another simple Monte Carlo simulation. We let x;; and x; be
mutually independent N(0, 1) variables, e; be an independent N(0,0?) draw with ¢ = 3, and normalize
Bo =0and B; = 1. This leaves 3, as a free parameter, along with sample size n. We vary 8, among .1, .25,
.50, .75, and 1.0 and n among 100 and 500.

The one-sided Type I error probabilities P [T < —1.645] and P [T > 1.645] are calculated from 50,000
simulated samples. The results are presented in Table 9.3. Ideally, the entries in the table should be
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Table 9.3: Type I Error Probability of Asymptotic 5% t-tests

B> n=100 n =500
P (T < —-1.645) P (T > 1.645) P(T < —-1.645) P (T > 1.645)
Th T Ty T T T Th T
0.10 0.47 0.05 0.00 0.05 0.28 0.05 0.00 0.05
0.25 0.27 0.05 0.00 0.05 0.16 0.05 0.00 0.05
0.50 0.14 0.05 0.00 0.05 0.12 0.05 0.00 0.05
0.75 0.03 0.05 0.00 0.05 0.08 0.05 0.01  0.05
1.00 0.00 0.05 0.00 0.05 0.03 0.05 0.03 0.05

Rejection frequencies from 50,000 simulated random samples.

0.05. However, the rejection rates for the T statistic diverge greatly from this value, especially for small
values of (3,. The left tail probabilities [’ [T} < —1.645] greatly exceed 5%, while the right tail probabilities
P[T; > 1.645] are close to zero in most cases. In contrast, the rejection rates for the linear 7> statistic are
invariant to the value of ,, and equal 5% for both sample sizes. The implication of Table 9.3 is that the
two t-ratios have dramatically different sampling behavior.

The common message from both examples is that Wald statistics are sensitive to the algebraic for-
mulation of the null hypothesis.

A simple solution is to use the minimum distance statistic J, which equals W with r =1 in the first
example, and |T»| in the second example. The minimum distance statistic is invariant to the algebraic
formulation of the null hypothesis, so is immune to this problem. Whenever possible, the Wald statistic
should not be used to test nonlinear hypotheses.

Theoretical investigations of these issues include Park and Phillips (1988) and Dufour (1997).

9.18 Monte Carlo Simulation

In Section 9.17 we introduced the method of Monte Carlo simulation to illustrate the small sample
problems with tests of nonlinear hypotheses. In this section we describe the method in more detail.

Recall, our data consist of observations (y;, x;) which are random draws from a population distribu-
tion F. Let @ be a parameter and let T = T ((y1,%1), ..., (¥n, Xn),0) be a statistic of interest, for example an
estimator 0 or a t-statistic (§ -0)/ s(@). The exact distribution of T is

Gu,F)=P[T =u|F].

While the asymptotic distribution of T might be known, the exact (finite sample) distribution G is gen-
erally unknown.

Monte Carlo simulation uses numerical simulation to compute G(u, F) for selected choices of F. This
is useful to investigate the performance of the statistic T in reasonable situations and sample sizes.
The basic idea is that for any given F, the distribution function G(u, F) can be calculated numerically
through simulation. The name Monte Carlo derives from the famous Mediterranean gambling resort
where games of chance are played.

The method of Monte Carlo is quite simple to describe. The researcher chooses F (the distribution
of the data) and the sample size n. A “true” value of @ is implied by this choice, or equivalently the value
0 is selected directly by the researcher which implies restrictions on F.

Then the following experiment is conducted by computer simulation:
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1. nindependent random pairs (yl* , x:‘) ,i=1,...,n, are drawn from the distribution F using the com-
puter’s random number generator.

2. The statistic T = T ((y;,x}),-... (¥, %) ,0) is calculated on this pseudo data.

For step 1, computer packages have built-in random number procedures including U[0, 1] and N(0, 1).
From these most random variables can be constructed. (For example, a chi-square can be generated by
sums of squares of normals.)

For step 2, it is important that the statistic be evaluated at the “true” value of 8 corresponding to the
choice of F.

The above experiment creates one random draw from the distribution G(u, F). This is one obser-
vation from an unknown distribution. Clearly, from one observation very little can be said. So the re-
searcher repeats the experiment B times, where B is a large number. Typically, we set B = 1000 or
B =5000. We will discuss this choice later.

Notationally, let the b’ experiment result in the draw T}, b = 1,..., B. These results are stored. After
all B experiments have been calculated, these results constitute a random sample of size B from the
distribution of G(u, F) =P [T, <u]l =P[T < u| F].

From a random sample, we can estimate any feature of interest using (typically) a method of mo-
ments estimator. We now describe some specific examples.

Suppose we are interested in the bias, mean-squared error (MSE), and/or variance of the distribution
of § — 0. We then set T = 8 — 6, run the above experiment, and calculate

=~ 1 & 13 -
bias[ =~ 3 Tp==3 8,6
ias| g Bzgi b B;; b
=~ 1& , 18 - 2
mse[ ==Y (Tp)°==) (0,-6)
B3 B3

2

var[ §=mse| §- (bias [AQ)
Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided t-test. We

would then set T = |§ -0|/ s(0) and calculate

1

p-l
B

M=

1(T, =1.96), (9.15)

1

the percentage of the simulated t-ratios which exceed the asymptotic 5% critical value.

Suppose we are interested in the 5% and 95% quantile of T = GorT = (é -0)/ s(0). We then compute
the 5% and 95% sample quantiles of the sample {T}}. For details on quantile estimation see Section 11.13
of Introduction to Econometrics.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure in realistic settings. Generally, the performance will depend on 7 and F. In many cases, an
estimator or test may perform wonderfully for some values, and poorly for others. It is therefore useful
to conduct a variety of experiments, for a selection of choices of n and F.

As discussed above, the researcher must select the number of experiments, B. Often this is called
the number of replications. Quite simply, a larger B results in more precise estimates of the features
of interest of G, but requires more computational time. In practice, therefore, the choice of B is often
guided by the computational demands of the statistical procedure. Since the results of a Monte Carlo
experiment are estimates computed from a random sample of size B, it is straightforward to calculate
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standard errors for any quantity of interest. If the standard error is too large to make a reliable inference,
then B will have to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical tests, such
as the percentage estimate reported in (9.15). The random variable 1 (T}, = 1.96) isi.i.d. Bernoulli, equalling
1 with probability p = E[1 (T} = 1.96)]. The average (9.15) is therefore an unbiased estimator of p with

standard error s(p) = \/p(1—p)/B. As p is unknown, this may be approximated by replacing p with
p or with an hypothesized value. For example, if we are assessing an asymptotic 5% test, then we can

set s(p) = V(.05 (.95) /B =~ .22/ vB. Hence, standard errors for B = 100, 1000, and 5000, are, respectively,
s(p) =.022,.007, and .003.

Most papers in econometric methods and some empirical papers include the results of Monte Carlo
simulations to illustrate the performance of their methods. When extending existing results, it is good
practice to start by replicating existing (published) results. This is not exactly possible in the case of
simulation results, as they are inherently random. For example suppose a paper investigates a statistical
test, and reports a simulated rejection probability of 0.07 based on a simulation with B = 100 replications.
Suppose you attempt to replicate this result, and find a rejection probability of 0.03 (again using B = 100
simulation replications). Should you conclude that you have failed in your attempt? Absolutely not!
Under the hypothesis that both simulations are identical, you have two independent estimates, p; = 0.07
and p, = 0.03, of a common probability p. The asymptotic (as B — oo) distribution of their difference is
VB (p1 - P2) — N(0,2p(1 — p)), so a standard error for p; — pp = 0.04 is $= /2p(1 - p)/B =~ 0.03, using
the estimate p = (p1 + p2)/2. Since the t-ratio 0.04/0.03 = 1.3 is not statistically significant, it is incorrect
to reject the null hypothesis that the two simulations are identical. The difference between the results
p1=0.07 and p» = 0.03 is consistent with random variation.

What should be done? The first mistake was to copy the previous paper’s choice of B = 100. Instead,
suppose you set B = 10,000. Suppose you now obtain p» = 0.04. Then p; — p» = 0.03 and a standard error
is §=/p(1-p)(1/100+1/10000) = 0.02. Still we cannot reject the hypothesis that the two simulations
are different. Even though the estimates (0.07 and 0.04) appear to be quite different, the difficulty is that
the original simulation used a very small number of replications (B = 100) so the reported estimate is
quite imprecise. In this case, it is appropriate to conclude that your results “replicate” the previous study,
as there is no statistical evidence to reject the hypothesis that they are equivalent.

Most journals have policies requiring authors to make available their data sets and computer pro-
grams required for empirical results. They do not have similar policies regarding simulations. Never-
theless, it is good professional practice to make your simulations available. The best practice is to post
your simulation code on your webpage. This invites others to build on and use your results, leading to
possible collaboration, citation, and/or advancement.

9.19 Confidence Intervals by Test Inversion

There is a close relationship between hypothesis tests and confidence intervals. We observed in Sec-
tion 7.14 that the standard 95% asymptotic confidence interval for a parameter 6 is

C=[0-1.96xs@), 0+1.96xs0)] (9.16)
={0:1T(0)] <1.96}.

That is, we can describe C as “The point estimate plus or minus 2 standard errors” or “The set of param-
eter values not rejected by a two-sided t-test.” The second definition, known as test statistic inversion,
is a general method for finding confidence intervals, and typically produces confidence intervals with
excellent properties.
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Given a test statistic T'(8) and critical value c, the acceptance region “Accept if T'(0) < ¢” is identical
to the confidence interval C = {8 : T(0) < c}. Since the regions are identical, the probability of coverage
P[0 € C] equals the probability of correct acceptance P (Accept|) which is exactly 1 minus the Type I
error probability. Thus inverting a test with good Type I error probabilities yields a confidence interval
with good coverage probabilities.

Now suppose that the parameter of interest 6 = r(f) is a nonlinear function of the coefficient vector
B. In this case the standard confidence interval for 0 is the set C as in (9.16) where 8 = r(B) is the point

estimator and s(0) = ,/IAI'VBﬁ is the delta method standard error. This confidence interval is inverting
the t-test based on the nonlinear hypothesis r(f) = 8. The trouble is that in Section 9.17 we learned that
there is no unique t-statistic for tests of nonlinear hypotheses and that the choice of parameterization
matters greatly.
For example, if 0 = 51/, then the coverage probability of the standard interval (9.16) is 1 minus the
probability of the Type I error, which as shown in Table 8.2 can be far from the nominal 5%.
In this example a good solution is the same as discussed in Section 9.17 — to rewrite the hypothesis as
alinear restriction. The hypothesis 6 = 8,/ is the same as 6 8> = 1. The t-statistic for this restriction is
1= f20
o= PP

Vs

r=[ L)

and V3 is the covariance matrix for (El Eg). A 95% confidence interval for 8 = /- is the set of values of
0 such that |T'(0)| < 1.96. Since T'(0) is a non-linear function of 8 one method to find the confidence set
is by grid search over 6.

For example, in the wage equation

where

log(wage) = B, experience + ,B% experience’ /100 + - --

the highest expected wage occurs at experience= —508; /2. From Table 4.1 we have the point estimate
® = 29.8 and we can calculate the standard error s(@) = 0.022 for a 95% confidence interval [29.8, 29.9].
However, if we instead invert the linear form of the test we can numerically find the interval [29.1, 30.6]
which is much larger. From the evidence presented in Section 9.17 we know the first interval can be quite
inaccurate and the second interval is greatly preferred.

9.20 Multiple Tests and Bonferroni Corrections

In most applications, economists examine a large number of estimates, test statistics, and p-values.
What does it mean (or does it mean anything) if one statistic appears to be “significant” after examining
alarge number of statistics? This is known as the problem of multiple testing or multiple comparisons.

To be specific, suppose we examine a set of k coefficients, standard errors and t-ratios, and consider
the “significance” of each statistic. Based on conventional reasoning, for each coefficient we would reject
the hypothesis that the coefficient is zero with asymptotic size « if the absolute t-statistic exceeds the
1 — « critical value of the normal distribution, or equivalently if the p-value for the t-statistic is smaller
than a. If we observe that one of the k statistics is “significant” based on this criteria, that means that
one of the p-values is smaller than a, or equivalently, that the smallest p-value is smaller than a. We
can then rephrase the question: Under the joint hypothesis that a set of k hypotheses are all true, what
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is the probability that the smallest p-value is smaller than a? In general, we cannot provide a precise
answer to this quesion, but the Bonferroni correction bounds this probability by ak. The Bonferroni
method furthermore suggests that if we want the familywise error probability (the probability that one
of the tests falsely rejects) to be bounded below a, then an appropriate rule is to reject only if the smallest
p-value is smaller than a/k. Equivalently, the Bonferroni familywise p-value is kmin ;< p;.

Formally, suppose we have k hypotheses H;, j = 1,..., k. For each we have a test and associated p-
value p; with the property that when Hj is true lim,, .. P [pj < @| = @. We then observe that among the
k tests, one of the k will appear “significant” if min ;< p; < @. This event can be written as

k
{minpj <a}: U {pj<al.
jsk j=1

k

U4;

j=1

Boole’s inequality states that for any k events A;, P

< zle P[Ag]. Thus

k
<) Plpj<al—ka
=1

P

minp;<a
jsk P]

as stated. This demonstates that the familywise rejection probability is at most k times the individual
rejection probability.
Furthermore,

P

) a k a

1}151£pj<E st:llP[pj<E] —a.

This demonstrates that the family rejection probability can be controlled (bounded below «) if each
individual test is subjected to the stricter standard that a p-value must be smaller than a/k to be labeled
as “significant.”

To illustrate, suppose we have two coefficient estimates, with individual p-values 0.04 and 0.15.
Based on a conventional 5% level, the standard individual tests would suggest that the first coefficient
estimate is “significant” but not the second. A Bonferroni 5% test, however, does not reject as it would re-
quire that the smallest p-value be smaller than 0.025, which is not the case in this example. Alternatively,
the Bonferroni familywise p-value is 0.08, which is not significant at the 5% level.

In contrast, if the two p-values are 0.01 and 0.15, then the Bonferroni familywise p-value is 0.02,
which is significant at the 5% level.

9.21 Power and Test Consistency

The power of a test is the probability of rejecting Hy when H; is true.
For simplicity suppose that y; isi.i.d. N(0,0?) with 0 known, consider the t-statistic T(0) = v/n (- 0) /o,
and tests of Hyp : 8 = 0 against H; : 8 > 0. We reject Hy if T = T'(0) > ¢. Note that

T=T@®)+vVnblo

and T'(0) has an exact N(0, 1) distribution. This is because T'(0) is centered at the true mean 0, while the
test statistic T'(0) is centered at the (false) hypothesized mean of 0.
The power of the test is

PIT>c|01=P[Z+vVnblo>c]=1-®(c-vnblo).
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This function is monotonically increasing in ¢ and n, and decreasing in o and c.

Notice that for any ¢ and 0 # 0, the power increases to 1 as n — co. This means that for 6 € H,, the
test will reject Hy with probability approaching 1 as the sample size gets large. We call this property test
consistency.

Definition 9.3 A test of Hy : 8 € @ is consistent against fixed alternatives if
forall@ € ©;, P [RejectHy | 0] — 1 as n — oo.

For tests of the form “Reject Hy if T > ¢”, a sufficient condition for test consistency is that the T
diverges to positive infinity with probability one for all @ € ©;.

Definition 9.4 We say that T - asn—ooifforall M <oo, P[T=<M]—0
as n — oo. Similarly, we say that T 7 —oo as n — oo if for all M < oo,
P[T=-M]— 0asn— oo.

In general, t-tests and Wald tests are consistent against fixed alternatives. Take a t-statistic for a test
of [H]o 10 = 90
0069

T= —
s(0)

where 6 is a known value and s(@) =y/n! \79 . Note that

-6 6-6
=229, Vn( 0) '
s(@) v/ Vi
The first term on the right-hand-side converges in distribution to N(0, 1). The second term on the right-
hand-side equals zero if 8 = 6y, converges in probability to +oco if 6 > 8, and converges in probability

to —oo if 6 < 8y. Thus the two-sided t-test is consistent against H; : 8 # 6y, and one-sided t-tests are
consistent against the alternatives for which they are designed.

Theorem 9.8 Under Assumptions 7.2,7.3,and 7.4, for@ = r(f) #0pand g =1,
then |T| 7 oo, so for any ¢ < oo the test “Reject Hy if |T| > ¢” is consistent

against fixed alternatives.

The Wald statistic for Hy : 8 = r () = 8y against H; : @ # 0 is
W=n(@-600)Vy' (6-60).

Under Hy, 6 — 0 #0,. Thus (5 - 00)/ 17;1 (6 -0o) — @-06y V;l (@ —6y) > 0. Hence under H;, W —

oo. Again, this implies that Wald tests are consistent tests.
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Theorem 9.9 Under Assumptions 7.2, 7.3, and 7.4, for 8 = r(f) # 0y, then
w > so for any ¢ < oo the test “Reject Hy if W > ¢” is consistent against

fixed alternatives.

9.22 Asymptotic Local Power

Consistency is a good property for a test, but does not give a useful approximation to the power of a
test. To approximate the power function we need a distributional approximation.

The standard asymptotic method for power analysis uses what are called local alternatives. This is
similar to our analysis of restriction estimation under misspecification (Section 8.13). The technique is
to index the parameter by sample size so that the asymptotic distribution of the statistic is continuous
in a localizing parameter. In this section we consider t-tests on real-valued parameters and in the next
section consider Wald tests. Specifically, we consider parameter vectors f8,, which are indexed by sample
size n and satisfy the real-valued relationship

0,=r(B,) =00+n"""2n 9.17)

where the scalar £ is called a localizing parameter. We index f,, and 0,, by sample size to indicate their
dependence on n. The way to think of (9.17) is that the true value of the parameters are f8,, and 0,,. The
parameter 8, is close to the hypothesized value 8y, with deviation n~12p.

The specification (9.17) states that for any fixed £, 8,, approaches 8 as n gets large. Thus 8, is “close”
or “local” to 8. The concept of a localizing sequence (9.17) might seem odd since in the actual world the
sample size cannot mechanically affect the value of the parameter. Thus (9.17) should not be interpreted
literally. Instead, it should be interpreted as a technical device which allows the asymptotic distribution
to be continuous in the alternative hypothesis.

To evaluate the asymptotic distribution of the test statistic we start by examining the scaled estimate
centered at the hypothesized value 6. Breaking it into a term centered at the true value 8, and a remain-
der we find

V(6 —60) = vn(6-6,)+Vn(0,-60)
=Vn(0-6,)+h
where the second equality is (9.17). The first term is asymptotically normal:
v (6-6,) — VVeZ
where Z ~ N(0, 1). Therefore
Vn(6-6) — vV VoZ+ h ~N(h, Vp).

This asymptotic distribution depends continuously on the localizing parameter h.
Applied to the t statistic we find

_é\—go \/ng+h
s@ 4 Vg

where 6 = h/+/Vp. This generalizes Theorem 9.1 (which assumes Hy is true) to allow for local alternatives
of the form (9.17).

Z+6 (9.18)
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Consider a t-test of Hy against the one-sided alternative H; : 8 > 8y which rejects Hy for T > ¢ where
®(c) = 1 - a. The asymptotic local power of this test is the limit (as the sample size diverges) of the
rejection probability under the local alternative (9.17)

lim P [Reject Ho] = lim P[T > c]
=P[Z+0 > c]
=1-®(c-6)
=®[0—-0)
© @),

We call () the asymptotic local power function.

In Figure 9.3(a) we plot the local power function 7 (6) as a function of § € [—1, 4] for tests of asymptotic
size @ = 0.10, a = 0.05, and a = 0.01. = 0 corresponds to the null hypothesis so 7(6) = @. The power
functions are monotonically increasing in §. Note that the power is lower than a for § < 0 due to the
one-sided nature of the test.

Power
Power

(a) One-Sided t Test (b) Varying q

Figure 9.3: Asymptotic Local Power Function

We can see that the three power functions are ranked by a so that the test with & = 0.10 has higher
power than the test with a = 0.01. This is the inherent trade-off between size and power. Decreasing size
induces a decrease in power, and conversely.

The coefficient 6 can be interpreted as the parameter deviation measured as a multiple of the stan-

dard error s(8). To see this, recall that s@) = n~1/21/ Uy = n~'/2,/Vj and then note that

h n'?h_ 60,-6
Ve s®  s@
Thus 6 approximately equals the deviation 6,, -6, expressed as multiples of the standard error s(8). Thus
as we examine Figure 9.3(a), we can interpret the power function at 6 = 1 (e.g. 26% for a 5% size test) as

o=




CHAPTER 9. HYPOTHESIS TESTING 263

the power when the parameter 8,, is one standard error above the hypothesized value. For example, from
Table 4.1 the standard error for the coefficient on “Married Female” is 0.010. Thus in this example, 6 =1
corresponds to 8, = 0.010 or an 1.0% wage premium for married females. Our calculations show that the
asymptotic power of a one-sided 5% test against this alternative is about 26%.

The difference between power functions can be measured either vertically or horizontally. For ex-
ample, in Figure 9.3(a) there is a vertical dotted line at § = 1, showing that the asymptotic local power
function 7(6) equals 39% for a = 0.10, equals 26% for a = 0.05 and equals 9% for @ = 0.01. This is the
difference in power across tests of differing size, holding fixed the parameter in the alternative.

A horizontal comparison can also be illuminating. To illustrate, in Figure 9.3(a) there is a horizontal
dotted line at 50% power. 50% power is a useful benchmark, as it is the point where the test has equal
odds of rejection and acceptance. The dotted line crosses the three power curves at § = 1.29 (a = 0.10),
6 = 1.65 (a = 0.05), and 6 = 2.33 (a = 0.01). This means that the parameter § must be at least 1.65
standard errors above the hypothesized value for a one-sided 5% test to have 50% (approximate) power.

The ratio of these values (e.g. 1.65/1.29 = 1.28 for the asymptotic 5% versus 10% tests) measures the
relative parameter magnitude needed to achieve the same power. (Thus, for a 5% size test to achieve 50%
power, the parameter must be 28% larger than for a 10% size test.) Even more interesting, the square of
this ratio (e.g. (1.65/ 1.29)2 = 1.64) is the increase in sample size needed to achieve the same power under
fixed parameters. That is, to achieve 50% power, a 5% size test needs 64% more observations than a
10% size test. This interpretation follows by the following informal argument. By definition and (9.17)
6=nh/ \/7 =vn @, -0y /\/79. Thus holding 6 and Vy fixed, 62 is proportional to 7.

The analysis of a two-sided t test is similar. (9.18) implies that

6-0,

s(6)

— |Z + 0]
d

and thus the local power of a two-sided t test is

lim P [Reject Ho] :,}illgoP[T>c] =P[Z+6|>c]=DPOb—-c)+P(-—0)

n—o0

which is monotonically increasing in |5].

Theorem 9.10 Under Assumptions 7.2, 7.3, 7.4, and 0, = r(f,) = 1o + n12p,

then R
6-6
TO)) = —2 —7+6
s@ d

where Z ~N(0,1) and 6§ = h/+/Vy. For ¢ such that ®(c) =1 —«,
P[TOy) >c] — PO —c).
Furthermore, for ¢ such that ®(¢c) =1-a/2,

PTOp|>c] — @B -c)+P(-6—c).
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9.23 Asymptotic Local Power, Vector Case

In this section we extend the local power analysis of the previous section to the case of vector-valued
alternatives. We generalize (9.17) to vector-valued 8. The local parameterization is

0,=r(B,)=00+n""?h (9.19)

where his g x 1.
Under (9.19),
Vn(0-6) = \/ﬁ(ﬂ—ﬂn)+h7zh~N(h,Vg),

anormal random vector with mean h and variance matrix Vg.
Applied to the Wald statistic we find

W=n(0-6,)V,' (6-60) — 2V Zn ~ 5 9.20)

where A = W'V~ 'h. )(f, (A) is a non-central chi-square random variable with non-centrality parameter A.
(Theorem 5.3.6.)
The convergence (9.20) shows that under the local alternatives (9.19), W — )(f, (A). This generalizes

the null asymptotic distribution which obtains as the special case A = 0. We can use this result to obtain
a continuous asymptotic approximation to the power function. For any significance level a > 0 set the

asymptotic critical value c so that P [ )(2 > c] =a.Thenas n — oo,

PIW >l —P 3> c| Yz,

The asymptotic local power function 7(1) depends only on a, g, and A.

Theorem 9.11 Under Assumptions 7.2,7.3,7.4,and 0, =r(f,) =09 + n~Y2p,
then
2
W W

where A = h'V ' h. Furthermore, for ¢ such that P [ 1G> C] =a,

P[W>c]—»uﬂ>[;(§,m)>c].

Figure 9.3(b) plots m(A) as a function of A for g =1, g =2, and g = 3, and a = 0.05. The asymptotic
power functions are monotonically increasing in A and asymptote to one.

Figure 9.3(b) also shows the power loss for fixed non-centrality parameter A as the dimensionality of
the test increases. The power curves shift to the right as g increases, resulting in a decrease in power.
This is illustrated by the dotted line at 50% power. The dotted line crosses the three power curves at
A=385(g=1),A=496 (g =2),and A =5.77 (q = 3). The ratio of these A values correspond to the
relative sample sizes needed to obtain the same power. Thus increasing the dimension of the test from
g =1 to g = 2 requires a 28% increase in sample size, or an increase from g =1 to g = 3 requires a 50%
increase in sample size, to obtain a test with 50% power.
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Exercises

. .. . . . =2, .
Exercise 9.1 Prove thatif an additional regressor X ; is added to X, Theil’s adjusted R increases if and
only if | Ty11| > 1, where Tiy1 = Br+1/5(Br+1) is the t-ratio for Bx.1 and

sBren) = (LUK X0 psr )

is the homoskedasticity-formula standard error.

Exercise 9.2 You have two independent samples (y;,X1) and (y,, X») which satisfy y, = X; , + e; and
¥, = X2 B, + ez, where E[x1;e1;] = 0 and E[x;;e2;] =0, and both X; and X, have k columns. Let [Ail and
fiz be the OLS estimates of , and fB,. For simplicity, you may assume that both samples have the same
number of observations 7.

(a) Find the asymptotic distribution of \/72 ((B, — B;) — (B, — B,)) as n — co.
(b) Find an appropriate test statistic for Hy : 8, = ;.

(c) Find the asymptotic distribution of this statistic under Hy.

Exercise 9.3 Let T be a t-statistic for Hy : 6 = 0 versus H; : 0 # 0. Since |T| —4 |Z]| under Hy, someone
suggests the test “Reject Hy if | T| < ¢; or | T| > c», where c; is the a/2 quantile of | Z] and ¢, is the 1 — a/2
quantile of | Z|.

(a) Show that the asymptotic size of the test is a.
(b) Isthis a good test of Hy versus H;? Why or why not?

Exercise 9.4 Let W be a Wald statistic for Hp : @ = 0 versus H; : 8 # 0, where 0 is g x 1. Since W 7 7(%

under Hy, someone suggests the test “Reject Hg if W < ¢; or W > ¢,, where ¢; is the a/2 quantile of X%
and ¢ is the 1 — a/2 quantile of )(f,.

(a) Show that the asymptotic size of the test is a.

(b) Isthis a good test of Hy versus H;? Why or why not?
Exercise 9.5 Take the linear model

yi=x1;P, "‘x’zl'ﬁz +e;
El[x;e;]=0

where both x;; and x,; are g x 1. Show how to test the hypotheses Hy : §;, = B, against H; : B, # B,.

Exercise 9.6 Suppose a researcher wants to know which of a set of 20 regressors has an effect on a vari-
able testscore. He regresses testscore on the 20 regressors and reports the results. One of the 20 regressors
(studytime) has a large t-ratio (about 2.5), while other t-ratios are insignificant (smaller than 2 in absolute
value). He argues that the data show that studytime is the key predictor for festscore. Do you agree with
this conclusion? Is there a deficiency in his reasoning?
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Exercise 9.7 Take the model

Vi =xiP1+X: P+ e
Ele; | xi]=0

where y; is wages (dollars per hour) and x; is age. Describe how you would test the hypothesis that the
expected wage for a 40-year-old worker is $20 an hour.

Exercise 9.8 You want to test Hp : f, = 0 against H; : §, # 0 in the model
Vi=x\ B+ x5, +e;
E [xiei] =0.
You read a paper which estimates model
PN I~ ~
Yi=x;Y1+ (X2 —X1) Yo+ €
and reports a test of Hy : y, = 0 against Hj : y, # 0. Is this related to the test you wanted to conduct?

Exercise 9.9 Suppose a researcher uses one dataset to test a specific hypothesis Hy against H;, and finds
that he can reject Hyp. A second researcher gathers a similar but independent dataset, uses similar meth-
ods and finds that she cannot reject Hy. How should we (as interested professionals) interpret these
mixed results?

Exercise 9.10 In Exercise 7.8, you showed that /n (62 - 02) —4N(0,V) as n — oo for some V. Let V be
an estimator of V.

(a) Using this result, construct a t-statistic for Hy : 0% = 1 against H; : 02 # 1.
(b) Using the Delta Method, find the asymptotic distribution of /7 (G — o).
(c) Use the previous result to construct a t-statistic for Hy : 0 = 1 against H; : o # 1.

(d) Are the null hypotheses in (a) and (c) the same or are they different? Are the tests in (a) and (c) the
same or are they different? If they are different, describe a context in which the two tests would
give contradictory results.

Exercise 9.11 Consider a regression such as Table 4.1 where both experience and its square are included.
A researcher wants to test the hypothesis that experience does not affect mean wages, and does this by
computing the t-statistic for experience. Is this the correct approach? If not, what is the appropriate
testing method?

Exercise 9.12 A researcher estimates a regression and computes a test of Hy against H; and finds a p-
value of p = 0.08, or “not significant”. She says “I need more data. If I had a larger sample the test will
have more power and then the test will reject.” Is this interpretation correct?

Exercise 9.13 A common view is that “If the sample size is large enough, any hypothesis will be rejected.”
What does this mean? Interpret and comment.
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Exercise 9.14 Take the model

yi=x;p+e
[E[x,-e,-] =0

with parameter of interest = R’ with R k x 1. Let fi be the least-squares estimator and Vﬁ its variance
estimator.

(a) Write down C, the 95% asymptotic confidence interval for 6, in terms of Zi, !73, R, and z =1.96 (the
97.5% quantile of N(0, 1)).

(b) Show that the decision “Reject Hy if O ¢ C” isan asymptotic 5% test of Hy : 0 = 6.

Exercise 9.15 You are at a seminar where a colleague presents a simulation study of a test of a hypothesis
Ho with nominal size 5%. Based on B = 100 simulation replications under Hy the estimated size is 7%.
Your colleague says: “Unfortunately the test over-rejects.”

(a) Do you agree or disagree with your colleague? Explain. Hint: Use an asymptotic (large B) approxi-
mation.

(b) Suppose the number of simulation replications were B = 1000 yet the estimated size is still 7%.
Does your answer change?

Exercise 9.16 You have ni.i.d. observations (y;, x1;, X»;), and consider two alternative regression models

yi=x;p, +en 9.21)
Elxi;e1;]1=0

Vi =%y, + e (9.22)
Elx2;e2] =0

where x;; and x,; have at least some different regressors. (For example, (9.21) is a wage regression on
geographic variables and (2) is a wage regression on personal appearance measurements.) You want to
know if model (9.21) or model (9.22) fits the data better. Define 0% =F [efi] and 0'% =F [egi]. You decide
that the model with the smaller variance fit (e.g., model (9.21) fits better if af < ag.) You decide to test for
this by testing the hypothesis of equal fit Hy : 05 = 05 against the alternative of unequal fit Hy : 0% # o3.

For simplicity, suppose that e;; and e,; are observed.

2
2-

(a) Construct an estimator 8 of 0 = 0% -0
(b) Find the asymptotic distribution of /7 (8 —8) as n — oo.
(c) Find an estimator of the asymptotic variance of 0.

(d) Propose a test of asymptotic size a of Hy against H; .

(e) Suppose the test accepts Hy. Briefly, what is your interpretation?
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Exercise 9.17 You have two regressors x; and x,, and estimate a regression with all quadratic terms
2 2
Vi=a+Prx1;+ Paxz; + P3x7; + Paxy; + PsX1iX2; + €.

One of your advisors asks: Can we exclude the variable x,; from this regression?
How do you translate this question into a statistical test? When answering these questions, be spe-
cific, not general.

(a) What is the relevant null and alternative hypotheses?

(b) What is an appropriate test statistic? Be specific.

(c) What is the appropriate asymptotic distribution for the statistic? Be specific.
(d) What is the rule for acceptance/rejection of the null hypothesis?

Exercise 9.18 The observed datais{y;,x;,z;} € Rx R¥xR’, k>1and ¢ >1,i=1,..., n. An econometrician
first estimates
Vi=x;B+¢
by least squares. The econometrician next regresses the residual &; on z;, which can be written as
é\i = Z/l? + ﬁ,‘.
(a) Define the population parameter y being estimated in this second regression.

(b) Find the probability limit for .

(c) Suppose the econometrician constructs a Wald statistic W, for Hp : ¥ = 0 from the second regres-
sion, ignoring the regression. Write down the formula for W,,.

(d) AssumingE [z,-x;.] =0, find the asymptotic distribution for W,, under Hy : y = 0.
(e) IfE[z;x}] # 0 will your answer to (d) change?

Exercise 9.19 An economist estimates y; = x1; 1 + x2; B2 + e; by least-squares and tests the hypothesis
Ho : B2 = 0 against H; : B2 # 0. She obtains a Wald statistic W}, = 0.34. The sample size is n = 500.

(a) What is the correct degrees of freedom for the y? distribution to evaluate the significance of the
Wald statistic?

(b) The Wald statistic W,, is very small. Indeed, is it less than the 1% quantile of the appropriate y?
distribution? If so, should you reject Hyp? Explain your reasoning.

Exercise 9.20 You are reading a paper, and it reports the results from two nested OLS regressions:
gapap p g
Yi= x'll- ﬁl + 5,'
Vi =Xy ;P +x5, B, +¢;.

Some summary statistics are reported:

Short Regression Long Regression
R*>=.20 R®>=.26

? & =106 ?, e =100
# of coefficients=5 # of coefficients=8

n=>50 n=>50
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You are curious if the estimate ﬁz is statistically different from the zero vector. Is there a way to determine
an answer from this information? Do you have to make any assumptions (beyond the standard regularity
conditions) to justify your answer?

Exercise 9.21 Take the model

Vi =x1iP1+x2i P2 + X3 B3 + X4; P + €;
[E[xiei] =0

Describe how you would test

Bi_Ba
Ho'ﬁz Ba
against
P bs
e B

Exercise 9.22 You have a random sample from the model
Vi =xiP1+X: P+ e

Ele; | x;]=0

where y; is wages (dollars per hour) and x; is age. Describe how you would test the hypothesis that the
expected wage for a 40-year-old worker is $20 an hour.

Exercise 9.23 Let T, be a test statistic such that under Hy, T}, 7 )(% Since P()(% > 7.815) = 0.05, an

asymptotic 5% test of Hy rejects when T, > 7.815. An econometrician is interested in the Type I error of
this test when n = 100 and the data structure is well specified. She performs the following Monte Carlo
experiment.

e B =200 samples of size n = 100 are generated from a distribution satisfying Hp.
* On each sample, the test statistic T, is calculated.
* She calculates p = %Zgzl 1(T,,p >7.815) =0.070

* The econometrician concludes that the test T}, is oversized in this context — it rejects too frequently
under Hy.

Is her conclusion correct, incorrect, or incomplete? Be specific in your answer.
Exercise 9.24 Do a Monte Carlo simulation. Take the model
yi=a+xif+e
E [xiei] =0

where the parameter of interest is 8 = exp(f). Your data generating process (DGP) for the simulation is: x;
is U[0,1], e; is independent of x; and N(0, 1), n = 50. Set @ = 0 and 8 = 1. Generate B = 1000 independent
samples with a. On each, estimate the regression by least-squares, calculate the covariance matrix using
a standard (heteroskedasticity-robust) formula, and similarly estimate 6 and its standard error. For each
replication, store B, 0, tg= (,3— B) /S(B), and ty = (5—0) /s(é)
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(a) Does the value of @ matter? Explain why the described statistics are invariant to « and thus setting
a =0 isirrelevant.

(b) From the 1000 replications estimate [E [ ] and E [6]. Discuss if you see evidence if either estimator
is biased or unbiased.

(c) From the 1000 replications estimate P[5 > 1.645] and P [£y > 1.645]. What does asymptotic theory
predict these probabilities should be in large samples? What do your simulation results indicate?

Exercise 9.25 The data set Invest1993 on the textbook website contains data on 1962 U.S. firms ex-
tracted from Compustat and assembled by Bronwyn Hall. This particular dataset was used in Hall and
Hall (1993).

The variables we use in this exercise are

year | year of the observation

inva | Investment to Capital Ratio

vala Total Market Value to Asset Ratio (Tobin’s Q)
cfa Cash Flow to Asset Ratio

debta | Long Term Debt to Asset Ratio

The flow variables are annual sums. The stock variables are beginning of year.

(a) Extract the sub-sample of observations for 1987. There should be 1028 observations. Estimate a
linear regression of I (investment to capital ratio) on the other variables. Calculate appropriate
standard errors.

(b) Calculate asymptotic confidence intervals for the coefficients.

(c) Thisregression is related to Tobin’s g theory of investment, which suggests that investment should
be predicted solely by Q (Tobin’s Q). This theory predicts that the coefficient on Q should be pos-
itive and the others should be zero. Test the joint hypothesis that the coefficients on cash flow
(C) and debt (D) are zero. Test the hypothesis that the coefficient on Q is zero. Are the results
consistent with the predictions of the theory?

(d) Now try a non-linear (quadratic) specification. Regress I on Q, C, D, Q?, C? D? QC, QD, CD. Test
the joint hypothesis that the six interaction and quadratic coefficients are zero.

Exercise 9.26 In a paper in 1963, Marc Nerlove analyzed a cost function for 145 American electric com-
panies. His data set Nerlove1963 is on the textbook website. The variables are

C | Total Cost

Q | Output

PL | Unit price of labor
PK | Unit price of capital
PF | Unit price of fuel

Nerlov was interested in estimating a cost function: C = f(Q, PL, PF, PK).
(a) First estimate an unrestricted Cobb-Douglass specification
logC; = B1 + B2logQ; + Bslog PL; + B4log PK; + Bslog PF; +e;. (9.23)

Report parameter estimates and standard errors.
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(b) What is the economic meaning of the restriction Hp : B3 + 4 + f5 = 12

(c) Estimate (9.23) by constrained least-squares imposing 3 + B4 + B5 = 1. Report your parameter
estimates and standard errors.

(d) Estimate (9.23) by efficient minimum distance imposing 3 + 84 + B5 = 1. Report your parameter
estimates and standard errors.

(e) TestHp: B3+ Bs+ B5 =1 using a Wald statistic.

(f) TestHp: B3+ Bs+ B5 =1 using a minimum distance statistic.

Exercise 9.27 In Section 8.12 we report estimates from Mankiw, Romer and Weil (1992). We reported
estimation both by unrestricted least-squares and by constrained estimation, imposing the constraint
that three coefficients (24, 3"% and 4*" coefficients) sum to zero, as implied by the Solow growth theory.
Using the same dataset MRW1992 estimate the unrestricted model and test the hypothesis that the three
coefficients sum to zero.

Exercise 9.28 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2), test the
hypothesis that marriage status does not affect mean wages.

(a) Take the regression reported in Table 4.1. Which variables will need to be omitted to estimate a
regression for the subsample of blacks?

(b) Express the hypothesis “marriage status does not affect mean wages” as a restriction on the coeffi-
cients. How many restrictions is this?

(c) Find the Wald (or F) statistic for this hypothesis. What is the appropriate distribution for the test
statistic? Calculate the p-value of the test.

(d) What do you conclude?

Exercise 9.29 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2) and
whites (race code = 1), test the hypothesis that the returns to education is common across groups.

(a) Allow the return to education to vary across the four groups (white male, white female, black male,
black female) by interacting dummy variables with education. Estimate an appropriate version of
the regression reported in Table 4.1.

(b) Find the Wald (or F) statistic for this hypothessis. What is the appropriate distribution for the test
statistic? Calculate the p-value of the test.

(c) What do you conclude?



Chapter 10

Resampling Methods

10.1 Introduction

So far in this textbook we have discussed two approaches to inference: exact and asymptotic. Both
have their strengths and weaknesses. In this chapter we introduce a set of alternative approximation
methods which are based around the concept of resampling — which means using sampling information
extracted from the empirical distribution of the data. These are powerful methods, widely applicable,
and often more accurate than exact or asymptotic approximations. Two disadvantages, however, are
(1) resampling methods typically require more computation power; and (2) the theory is considerably
more challenging. A consequence of the computation requirement is that most empirical researchers use
asymptotic approximations for routine calculations, while resampling approximations are more typically
used for final reporting.

We will discuss two categories of resampling methods used in statistical and econometric practice:
jackknife and bootstrap. Most of our attention will be given to the bootstrap as it is the most commonly
used resampling method in econometric practice.

The jackknife is the distribution obtained from the n leave-one-out estimators (see Section 3.20).
The jackknife is most commonly used for variance estimation.

The bootstrap is the distribution obtained by estimation on samples created by i.i.d. sampling with
replacement from the dataset. (There are other variants of bootstrap sampling, including parametric
sampling and residual sampling.) The bootstrap is commonly used for variance estimation, confidence
interval construction, and hypothesis testing.

There is a third category of resampling methods known as sub-sampling which we will not cover in
this textbook. Sub-sampling is the distribution obtained by estimation on sub-samples (sampling with-
out replacement) of the dataset. Sub-sampling can be used for most of same purposes as the bootstrap.
See the excellent monograph by Politis, Romano and Wolf (1999).

10.2 Example

To motivate our discussion we focus on the application presented in Section 3.7, which is a bivariate
regression applied to the CPS subsample of married black female wage earners with 12 years potential
work experience and displayed in Table 3.1. The regression equation is

log(wage) = B education+ B, + e.

272
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The estimates as reported in (4.39) are

log(wage) = 0.155 education+ 0.698 +ée

(0.031) (0.493)
%= 0.144
(0.043)
n=20.

We focus on four estimates constructed from this regression. The first two are the coefficient esti-
mates ,31 and 52. The third is the variance estimate 2. The fourth is an estimate of the expected level of
wages for an individual with 16 years of education (a college graduate), which turns out to be a nonlinear
function of the parameters. Under the simplifying assumption that the error e is independent of the level
of education we find that the expected level of wages is

u =E[wage| education = 16]
=E[exp (1681 + 2 +e)]
— exp (1681 + ) E [exp(@)]
=exp (1661 + B2 +0°/2).

The final equality holds under the further simplifying assumption that e ~ N (0,02). (In this case, E [exp(e)] =
exp (02/2) can be obtained from the moment generating function.) The parameter y is a nonlinear func-
tion of the coefficients. The natural estimate of u replaces the unknowns by the point estimates. Thus

fi=exp(16f, + Bo+52/2) = 25.80
(2.29)

The standard error for fi can be found by extending Exercise 7.8 to find the joint asymptotic distribution
of 52 and the slope estimates, and then applying the delta method.

We are interested in calculating standard errors for the four estimates described above and construct-
ing confidence intervals for the parameters. We are interested in going beyond exact and asymptotic
approximations, especially given the small sample, the use of robust covariance matrix estimates, and
the non-linear transformations. One of the challenges is that standard packages, such as Stata, provide
standard errors for the coefficient estimates ﬁ 1 and 32 and smooth nonlinear functions of the coefficient
estimates, but not for the variance estimate > nor functionals of it such as fi.

10.3 Jackknife Estimation of Variance

The jackknife estimates moments of estimators using the distribution of the leave-one-out estima-
tors. The jackknife estimator of bias was introduced by Quenouille (1949) and extended by Tukey (1958)
to the jackknife estimator of variance. The idea was expanded further in the monographs of Efron (1982)
and Shao and Tu (1995).

Let 8 be any estimator of a vector-valued parameter 8 which is a function of a random sample of size
n. Let Vg = var [6] be the variance of 8. Define the leave-one-out estimators 6(_ ;) which are computed
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using the formula for 0 except that observation i is deleted. Tukey’s jackknife estimator for Vi is defined
as a scale of the sample variance of the leave-one-out estimators:

sjack N — 1 (A =/
Ve Z (65 -8)(0c0-0) (10.1)
where @ is the sample mean of the leave-one-out estimators
n —~
Z 0.
For scalar estimators 8 the jackknife standard error is the square root of (10.1).

:1ck ijck
0 \/ 0

A convenient feature of the jackknife estimator Vlg  is that the formula (10.1) is quite general and
does not require any technical (exact or asymptotic) calculations. A downside is that can require » sepa-
rate estimations, which in some cases can be computationally costly.

In most cases ¥ will be similar to a robust asymptotic variance matrix estimator. The main attrac-
tions of the jackknife estimator are that it can be used when an explicit asymptotic variance formula is
not available and that it can be used as a check on the reliability of an asymptotic formula.

The formula (10.1) is not immediately intuitive, so may benefit from some motivation. We start by
examining the sample mean y = % Y, ¥;- The leave-one-out estimator is

Vi = ]Z#J'J — ﬁyi. (10.2)
The sample mean of the leave-one-out estimators is
1 & _ n _ 1 _ _
E;J’(—i) B IS TANEEE At g
The difference is )
Yen—¥= n l(y_yi)

The jackknife estimate of variance (10.1) is then

ﬁjack_ n-— li
7 =

1:1(” 1)2(7—%') (?—J/i),

o Pt DAl AP 103)

n\n-1J)i3

This is identical to the conventional estimator for the variance of y. Indeed, Tukey proposed the (n—1)/n
scaling in (10.1) so that ?J;Ck precisely equals the conventional estimator. This calculation shows that for
the sample mean, the jackknife estimate of variance is identical to the conventional estimator.

We next examine the case of least-squares regression coefficient estimates. Recall from (3.44) that
the leave-one-out OLS estimator equals

B y=B-(X'X)"x¢; (10.4)
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where &; = (1 - h;;)"' &; and h;; = x’l. (X’X)_1 x;. The sample mean of the leave-one-out estimators is

B=p-(XX)"F
where i =n"'Y" | x;&;. Thus
By-B=- (X’X)_l (xiei — ).

o~

The jackknife estimate of variance for g is

~iack Nn—1& ~ —\/
V= Z(ﬁ( ) ﬁ) (ﬁ(—i)_ﬂ)
n-1 v\ 1 1 <2 ~~ v\ —1
-— (X'X) (;xixiei - npp ) (xX'X)
- ”n LpHS oy (%) i (XX) (10.5)

where V%Gg is the HC3 covariance estimator (4.34) based on prediction errors. The second term in (10.5)

is typically quite small since i is typically small in magnitude. Thus V]i;l ko ‘73‘ Indeed (4.34) was origi-
nally motivated as a simplification of the jackknife estimator. This shows that for regression coefficients
the jackknife estimator of variance is similar to a conventional robust estimator. This is accomplished
without the user “knowing” the form of the asymptotic covariance matrix. This is further confirmation
that the jackknife is making a reasonable calculation.

Third, we examine the jackknife estimator for a function 0= r(ii) of a least-squares estimator. The
leave-one-out estimator of 8 is

0-i=rB_y
r(B-(x

~ A~

~0-R (X’X)_lxi'éi,

-1_ ~
xiei)

The second equality is (10.4). The final approximation is obtained by a mean-value expans1on using
r(p) = 0 and setting R = (0/0B) r(ﬁ)’ This approximation holds in large samples since ﬁ( ;) are uni-
formly consistent for B. The jackknife variance estimator for 0 thus equals

S0l
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The final line equals a delta-method estimator for the variance of 0 constructed with the covariance
estimator (4.34). This shows that the jackknife estimator of variance for 8 is approximately an asymptotic
delta-method estimator. While this is an asymptotic approximation, it again shows that the jackknife
produces an estimator which is asymptotically similar to one produced by asymptotic methods. This

is despite the fact that the jackknife estimator is calculated without reference to asymptotic theory and
does not require calculation of the derivatives of r(f).
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This argument extends directly to any “smooth function” estimator. Most of the estimators discussed
so far in this textbook take the form 8 = g(ﬁ) where w = n~! Z?:l w; and w; is some vector-valued
function of the data. For any such estimator 8, the leave-one-out estimator equals 5(_” = g(wy) and
its jackknife estimator of variance is (10.1). Using (10.2) and a mean-value expansion, we have the large-

sample approximation

0-i=g(w p)
f— n I 1 .
LT
__ 1 __
=g (@)~ — G(w)' w,
where G (w) = (0/0w) g (w)'. Thus
N — 1 .
0(_i)—0=—n_lG(w)'(wl—w)

and the jackknife estimator of the variance of 0 approximately equals

—

n—

~iack ~ ~ ~ ~
vy = — 2 (0-n=00) (0 -0)’
i=1

1=

S
—

I

600 | 2 X (wi-) (w0 | 6 (@)

= G(w) V%G (w)

where ?j%':k as defined in (10.3) is the conventional (and jackknife) estimator for the variance of w. Thus

jack . . . . . . .

Vgl “is approximately the delta-method estimator. Once again, we see that the jackknife estimator au-
tomatically calculates what is effectively the delta-method variance estimator, but without requiring the
user to explicitly calculate the derivative of g (w).

10.4 Example

We illustrate by reporting the asymptotic and jackknife standard errors for the four parameters given
earlier. In Table 10.1 we report the actual values of the leave-one-out estimates for each of the twenty
observations in the sample. The jackknife standard errors are calculated as the scaled square roots of
the sample variances of these leave-one-out estimates and are reported in the second-to-last row. For
comparison the asymptotic standard errors are reported in the final row.

For all estimators the jackknife and asymptotic standard errors are quite similar. This reinforces the
credibility of both standard error estimates. The largest differences arise for B and I, whose jackknife
standard errors are about 5% larger than the asymptotic standard errors.

The take-away from our presentation is that the jackknife is a simple and flexible method for vari-
ance and standard error calculation. Circumventing technical asymptotic and exact calculations, the
jackknife produces estimates which in many cases are very similar to asymptotic delta-method counter-
parts. The jackknife is especially appealing in cases where asymptotic standard errors are not available
or are difficult to calculate. They can also be used as a double-check on the reasonability of asymptotic
delta-method calculations.

In Stata, jackknife standard errors for coefficient estimates in many models are simply obtained
by the vce(jackknife) option. For nonlinear functions of the coefficients or other estimators, the
jackknife command can be combined with any other command to obtain jackknife standard errors.
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Table 10.1: Leave-one-out Estimators and Jackknife Standard Errors

Observation Bl(—i) BZ(—i) 6?7” ﬁ(_i)
1 0.150 0.764 0.150 25.63
2 0.148 0.798 0.149 25.48
3 0.153 0.739 0.151 25.97
4 0.156 0.695 0.144 26.31
5 0.154 0.701 0.146 25.38
6 0.158 0.655 0.151 26.05
7 0.152 0.705 0.114 24.32
8 0.146 0.822 0.147 25.37
9 0.162 0.588 0.151 25.75
10 0.157 0.693 0.139 26.40
11 0.168 0.510 0.141 26.40
12 0.158 0.691 0.118 26.48
13 0.139 0.974 0.141 26.56
14 0.169 0.451 0.131 26.26
15 0.146 0.852 0.150 24.93
16 0.156 0.696 0.148 26.06
17 0.165 0.513 0.140 25.22
18 0.155 0.698 0.151 25.90
19 0.152 0.742 0.151 25.73

20 0.155 0.697 0.151 25.95
sjack 0.032 0.514 0.046 2.39
sy 0.031 0.493 0.043 2.29

To illustrate, below we list the Stata commands which will calculate the jackknife standard errors
listed above. The first line is least squares estimation with standard errors calculated by the jackknife.
The second line calculates the error variance estimate 2 with a jackknife standard error. The third line
does the same for the estimate fi.

Stata Commands

reg wage education if mbf12 == 1, vce(jackknife)

jackknife (e(rss)/e(N)): reg wage education if mbf12 ==

jackknife exp(16*_b[education]+_b[_cons]+e(rss)/e(N)/2): ///
reg wage education if mbf12 ==

10.5 Jackknife for Clustered Observations

In Section 4.22 we introduced the clustered regression model, cluster-robust variance estimators,
and cluster-robust standard errors. Jackknife variance estimation can also be used for clustered samples,
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but with some natural modifications. Recall that the least-squares estimator in the clustered sample
context can be written as

[gme) [

g=1
where g = 1,...,G indexes the cluster. Instead of leave-one-out estimators, it is natural to use delete-
cluster estimators, which delete one cluster at a time. They take the form (4.52):

By =B-(X'X)7 X,
where
_ -1
oy = (I, — X (X'X) 7' X,) 2
eg = yg—XgB.

The delete-cluster jackknife estimator of the variance of f is
Ajack G —\/
Vs o= ; (/’( i ) (ﬁ( ) ﬁ)

C) |

sjack . . . .
We can also call Vlg “ a cluster-robust jackknife estimator of variance.

Using the same approximations as the previous section, we can show that the delete-cluster jackknife
estimator is asymptotically equivalent to the cluster-robust covariance matrix estimator (4.53) calculated
with the delete-cluster prediction errors. This verifies that the delete-cluster jackknife is the appropriate
jackknife approach for clustered dependence.

For parameters which are functions 0= r(ii) of the least-squares estimator, the delete-cluster jack-
knife estimator of the variance of 8 is

jack  G—1 & 2\ (5 =)/

v ng,l (9(—g) —0) (et—g) —0)
0n=rB y)
- 16 .

Using a mean-value expansion, we can show that this estimator is asymptotically equivalent to the delta-
method cluster-robust covariance matrix estimator for 8. This shows that the jackknife estimator is ap-
propriate for covariance matrix estimation.

Asin the context of i.i.d. samples, one advantage of the jackknife covariance matrix estimators is that
they do not require the user to make a technical calculation of the asymptotic distribution. A downside
is an increase in computation cost, as G separate regressions are effectively estimated.

In Stata, jackknife standard errors for coefficient estimates with clustered observations are obtained
by using the options cluster(id) vce(jackknife) where id denotes the cluster variable.
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10.6 The Bootstrap Algorithm

The bootstrap is a powerful approach to inference, and is due to the pioneering work of Efron (1979).
There are many textbook and monograph treatments of the bootstrap, including Efron (1982), Hall (1992),
Efron and Tibshirani (1993), Shao and Tu (1995), and Davison and Hinkley (1997). Reviews for econome-
tricians are provided by Hall (1994) and Horowitz (2001)

There are several ways to describe or define the bootstrap, and there are several forms of the boot-
strap. We start in this section by describing the basic nonparametric bootstrap algorithm. In subsequent
sections we give more formal definitions of the bootstrap as well as theoretical justifications.

Briefly, the bootstrap distribution is obtained by estimation on independent samples created by i.i.d.
sampling (sampling with replacement) from the original dataset.

To understand this, it is useful to start with the concept of sampling with replacement from the
dataset. To continue the empirical example used earlier in the chapter, we focus on the dataset dis-
played in Table 3.1, which has n = 20 observations. Sampling from this distribution means randomly
selecting one row from this table. Mathematically this is the same as randomly selecting an integer from
the set {1, 2, ...,20}. To illustrate, Matlab has a random integer generator (the function randi), and using
the random number seed of 13 (an arbitrary choice) we obtain the random draw 16. This means that we
draw observation number 16 from Table 3.1. Examining the table, we can see that this is an individual
with wage $18.75 and education of 16 years. We repeat by drawing another random integer on the set
{1,2,...,20} and this time obtain 5. This means we take observation 5 from Table 3.1, which is an indi-
vidual with wage $33.17 and education of 16 years. We continue until we have n = 20 such draws. This
random set of observations are {16, 5, 17, 20, 20, 10, 13, 16, 13, 15, 1, 6, 2, 18, 8, 14, 6, 7, 1, 8}. We call this
the bootstrap sample.

Notice that the observations 1, 6, 8, 13, 16, 20 each appear twice in the bootstrap sample, and the
observations 3, 4, 9, 11, 12, 19 do not appear at all. That is okay. In fact, it is necessary for the bootstrap to
work. This is because we are drawing with replacement. (If we instead made draws without replacement,
then the constructed dataset would have exactly the same observations as in Table 3.1, only in different
order.) We can also ask the question “What is the probability that an individual observation will appear
at least once in the bootstrap sample? The answer is

1 n
P [Observation in Bootstrap Sample| =1 — (1 - —) (10.6)
n
—1-¢!
=~ 0.632.

The limit holds as n — co. The approximation 0.632 is excellent even for small n. Indeed, for our example
with n = 20 the probability (10.6) is 0.641. These calculations show that an individual observation is in
the bootstrap sample with probability near 2/3, and is not in the bootstrap sample with probability near
1/3.

Once again, the bootstrap sample is the constructed dataset with the 20 observations drawn ran-
domly from the original sample. Notationally, we write the i’” bootstrap observation as (y;‘,x;‘) and
the bootstrap sample as {(y;,x}),..., (5, *;)}. In our present example with y denoting the log wage, the
bootstrap sample is

{(y1,%7), - (¥ x5)} = {(2.93,16), (3.50,16) ..., (3.76, 18)}.

The bootstrap estimate [Ai* is then obtained applying the least-squares estimation formula to the boot-
strap sample. Thus we regress y; on x;. The other bootstrap estimates, in our example &%* and [i*, are

Dk A2 A*)’

obtained by applying the estimation formula to the bootstrap sample as well. Writing 0" = (Bi‘, 5,075,
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we have the bootstrap estimate of the parameter vector 8 = (,81 , B2, o2, ,u)’. In our example (the bootstrap
sample described above) 6" =(0.195,0.113,0.107,26.7)". This is one draw from the bootstrap distribution
of the estimates.

The estimate 8~ as described is one random draw from the distribution of estimates obtained by
ii.d. sampling from the original data. With one draw we can say relatively little. But we can repeat this
exercise to obtain multiple draws from this bootstrap distribution. To distinguish between these draws
we index the bootstrap samples by b = 1, ..., B, and write the bootstrap estimates as 52 or@" (b).

To continue our illustration, we draw 20 more random integers {19, 5, 7, 19, 1, 2, 13, 18, 1, 15, 17, 2,
14, 11, 10, 20, 1, 5, 15, 7} and construct a second bootstrap sample. On this sample we again estimate
the parameters, and obtain 5*(2) = (0.175,0.52,0.124,29.3)'. This is a second random draw from the
distribution of 8". We repeat this B times, storing the parameter estimates 0" (b). We have thus created a
new dataset of bootstrap draws {5 “(b):b=1,.. B}. By construction, the draws are independent across
b and identically distributed.

The number of bootstrap draws, B, is often called the “number of bootstrap replications”. Typical
choices for B are 1000, 5000, and 10,000. We discuss selecting B later, but roughly speaking, larger B
results in a more precise estimate at an increased computation cost. For our application we set B =
10,000.

To illustrate, Figure 13.1 displays the densities of the distributions of the bootstrap estimates Bi‘ and
1" across 10,000 draws. The dotted lines show the point estimate. You can notice that the density for ,B\i‘
is slightly skewed to the left.
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Figure 10.1: Bootstrap Distributions of Ei‘ and i*

10.7 Bootstrap Variance and Standard Errors

Given the bootstrap draws we can estimate features of the bootstrap distribution. The bootstrap
. ~ . . —~%
estimator of variance of an estimator 6 is the sample variance across the bootstrap draws 8 (b). It
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equals

Vet = f (@' w-0")(0"w-0") (10.7)

=1

U:JI'—‘ OU
;_4
Sy

For a scalar estimator 8 the bootstrap standard error is the square root of the bootstrap estimator of

variance:
sgoot _ /Vtg)oot
This is a very simple statistic to calculate, and is the most common use of the bootstrap in applied econo-
metric practice. A caveat (discussed in more detail in Section 10.15) is that in many cases it is better to
use a trimmed estimator.
Standard errors are conventionally reported to convey the precision of the estimator. They are also
commonly used to construct confidence intervals. Bootstrap standard errors can be used for this pur-

pose. The normal-approximation bootstrap confidence interval is

c™ = |6- Zl—a/zsgom, 0+21- a/zsgoOt

where z;_4/2 is the 1 — a/2 quantile of the N (0, 1) distribution. This interval C"P is identical in format
to an asymptotic confidence interval, but with the bootstrap standard error replacing the asymptotic
standard error. C" is the default confidence interval reported by Stata when the bootstrap has been used
to calculate standard errors. However, the normal-approximation interval is in general a poor choice for
confidence interval construction as it relies on the normal approximation to the t-ratio which can be
inaccurate in finite samples. There are other methods - such as the bias-corrected percentile method
to be discussed in Section 10.17 — which are just as simple to compute but have better performance.
In general, bootstrap standard errors should be used as estimates of precision rather than as tools to
construct confidence intervals.

Since B is finite, all bootstrap statistics, such as Vgom, are estimates and hence random. Their values
will vary across different choices for B and simulation runs (depending on how the simulation seed is
set). Thus you should not expect to obtain the exact same bootstrap standard errors as other researchers
when replicating their results. They should be similar (up to simulation sampling error) but not precisely
the same.

In Table 10.2 we report the four parameter estimates introduced in Section 10.2, along with asymp-
totic, jackknife and bootstrap standard errors. We also report four bootstrap confidence intervals which
will be introduced in subsequent sections.

For these four estimators, we can see that the bootstrap standard errors are quite similar to the
asymptotic and jackknife standard errors. The most noticable difference arises for Bg, where the boot-
strap standard error is about 10% larger than the asymptotic standard error.

In Stata, bootstrap standard errors for coefficient estimates in many models are simply obtained by
the vce (bootstrap, reps(#)) option, where # is the number of bootstrap replications. For nonlinear
functions of the coefficients or other estimators, the bootstrap command can be combined with any
other command to obtain bootstrap standard errors. Synonyms for bootstrap are bstrap and bs.

To illustrate, below we list the Stata commands which will calculate! the bootstrap standard errors
listed above.

I They will not precisely replicate the standard errors, since those in Table 10.2 were produced in Matlab, which uses a differ-
ent random number sequence.
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Table 10.2: Comparison of Methods

Bl Ez 5?2 I
Estimate 0.155 0.698 0.144 25.80
Asymptotic s.e. (0.031) (0.493) (0.043) (2.29)
Jackknife s.e. (0.032) (0.514) (0.046) (2.39)
Bootstrap s.e. (0.034) (0.548) (0.041) (2.38)

0.08,0.21] [-0.27,1.91
0.08,0.21] [-0.25,1.93
0.08,0.21] [-0.25,1.93
0.09,0.21] [-0.20,1.81

[0.06,0.22] [21.4, 30.7]
[0.09, 0.28] [22.0, 31.5]
[0.09,0.28] [22.0, 31.5]
[0.08, 0.34] [21.6,32.2]

95% Percentile Interval

95% BC Percentile Interval
95% BC, Percentile Interval
95% Percentile-t Interval

[ ]
[ ]
[ ]
[ ]

Stata Commands

reg wage education if mbf12 == 1, vce(bootstrap, reps(10000))

bs (e(rss)/e(N)), reps(10000): reg wage education if mbf12 == 1

bs (exp(16*_bleducation]+_b[_cons]+e(rss)/e(N)/2)), reps(10000): ///
reg wage education if mbf12 ==

10.8 Percentile Interval

The second most common use of bootstrap methods is for confidence intervals. There are multiple
bootstrap methods to form confidence intervals. A popular and simple method is called the percentile
interval. It is based on the quantiles of the bootstrap distribution.

In Section 10.6 we described the bootstrap algorithm, which creates an i.i.d. sample of bootstrap
estimates {51‘,5;,...,5;} corresponding to an estimator 8 of a parameter 6. We focus on the case of a
scalar parameter 6.

For any 0 < a < 1 we can calculate the empirical quantile g of these bootstrap estimates. This is
the number such that na bootstrap estimates are smaller than g, and typically calculated by taking the
na'" order statistic of the 5;. See Section 11.3 of Introduction to Econometrics for a precise discussion of
empirical quantiles and common quantile estimators.

The percentile bootstrap 100(1 — a)% confidence interval is

C* = [dg/0 @1 _as2] - (10.8)

n* é\*

For example, if B = 1000, @ = 0.05, and the empirical quantile estimator is used, then CP¢ = [9(25), 975 |-

To illustrate, the 0.025 and 0.975 quantiles of the bootstrap distributions of ,B\i‘ and i* are indicated
in Figure 13.1 by the arrows. The intervals between the arrows are the 95% percentile interval.

The percentile interval has the convenience that it does not require calculation of a standard error.
This is particularly convenient in contexts where asymptotic standard error calculation is complicated,
burdensome, or unknown. CP€ is a simple by-product of the bootstrap algorithm and does not require
meaningful computational cost above that required to calculate the bootstrap standard error.

The percentile interval has the useful property that it is transformation-respecting. The percentile
interval for any monotone parameter transformation ¢ = m(6) is simply the percentile interval for 0
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mapped by m(0). That is, if [q(’;/z, qf—a/z] is the percentile interval for 6, then [m (q;/z) , m(qf_a/z)] is
the percentile interval for ¢. This property follows directly from the equivariance property of sample
quantiles. Many confidence-interval methods, such as the delta-method asymptotic interval and the
normal-approximation interval C", do not share this property.

To illustrate the usefulness of the transformation-respecting property, consider the variance 2. In
some cases it is useful to report the variance o2, and in other cases it is useful to report the standard
deviation o. Thus we may be interested in confidence intervals for o or o. To illustrate, the asymp-
totic 95% normal confidence interval for o2 which we calculate from Table 13.2 is [0.060,0.228]. Taking
square roots we obtain an interval for o of [0.244,0.477]. Alternatively, the delta method standard error
for & = 0.379 is 0.057, leading to an asymptotic 95% confidence interval for o of [0.265,0.493] which is
different. This shows that the delta method is not transformation-respecting. In contrast, the 95% per-
centile interval for o2 is [0.062, 0.220] and that for o is [0.249, 0.469] which is identical to the square roots
of the interval for o2.

The bootstrap percentile intervals for the four estimators are reported in Table 13.2.

In Stata, percentile confidence intervals can be obtained by using the command estat bootstrap,
percentile or the command estat bootstrap, all after an estimation command which calculates
standard errors via the bootstrap.

10.9 The Bootstrap Distribution

For applications, it is often sufficient if one understands the bootstrap as an algorithm. However, for
theory it is more useful to view the bootstrap as a specific estimator of the sampling distribution. For
this, it is useful to introduce some additional notation.

The key is that the distribution of any estimator or statistic is determined by the distribution of the
data. While the latter is unknown it can be estimated by the empirical distribution of the data. This is
what the bootstrap does.

To fix notation, let F denote the distribution of an individual observation w. (In regression, w is the
pair (y,x).) Let G, (1, F) denote the distribution of an estimator 8. That is,

Gn(u, F)=P[@ <u|F].

We write the distribution G, as a function of n and F since they (generally) affect the distribution of
8. We are interested in the distribution G,,. For example, we want to know its variance to calculate a
standard error, or its quantiles to calculate a percentile interval.

In principle, if we knew the distribution F we should be able to determine the distribution G,. In
practice there are two barriers to implementation. The first barrier is that the calculation of G, (u, F)
is generally infeasible except in certain special cases such as the normal regression model. The second
barrier is that in general we do not know F.

The bootstrap simultaneously circumvents these two barriers by two clever ideas. First, the bootstrap
proposes estimation of F by the empirical distribution function (EDF) F,,, which is the simplest nonpara-
metric estimator of the joint distribution of the observations. The EDF is F,(x) = %2?21 1(X; <x).(See
Section 11.2 of Introduction to Econometrics for details and properties.) Replacing F with F,, we obtain
the ideal bootstrap estimator of the distribution of 0

G (u) = Gy (u, Fy). (10.9)

G, is an idealized estimator of Gj,. It is unknown in practice. The bootstrap proposes estimation of G,
by simulation. This is the bootstrap algorithm described in the previous sections. The essential idea is
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that simulation from F), is sampling with replacement from the original data, and this is computationally
very simple. Applying the estimation formula for 8, we obtain i.i.d. draws from the distribution G, (u).
By making a large number B of such draws, we can estimate any feature of G;, of interest. The bootstrap
combines two ideas: (1) estimate G, (u, F) by G, (u, F,); (2) estimate G, (u, F,,) by simulation. These ideas
are intertwined. Only by considering these steps together do we obtain a feasible method.

The way to think about the connection between G, and Gj, is as follows. Gy, is the distribution of the
estimator 8 obtained when the observations are sampled i.i.d. from the population distribution F. G},
is the distribution of the same statistic, denoted 6*, obtained when the observations are sampled i.i.d.
from the empirical distribution F,,. It is useful to conceptualize the “universe” which separately generates
the dataset and the bootstrap sample. The “sampling universe” is the population distribution F. In this
universe the true parameter is 8. The “bootstrap universe” is the empircal distribution F,,. When drawing
from the bootstrap universe we are treating F, as if it is the true distribution. Thus anything which is true
about F, should be treated as true in the bootstrap universe. In the bootstrap universe, the “true” value
of the parameter 0 is the value determined by the EDF F;,. In most cases this is the estimate 0. It is the
true value of the coefficient when the true distribution is Fj,.

We now carefully explain the connection with the bootstrap algorithm as previously described.

First, observe that sampling with replacement from the sample {y,,...,y,} is identical to sampling
from the EDF F,,. This is because the EDF is the probability distribution which puts probability mass
1/n on each observation. Thus sampling from F, means sampling an observation with probability 1/7,
which is sampling with replacement.

Second, observe that the bootstrap estimator 6" described here is identical to the bootstrap algo-
rithm described in Section 10.6. That is, @  is the random vector generated by applying the estimator
formula 8 to samples obtained by random sampling from F,,.

Third, observe that the distribution of these bootstrap estimators is the bootstrap distribution (10.9).
This is a precise equality. That is, the bootstrap algorithm generates i.i.d. samples from F,;, and when the
estimators are applied we obtain random variables 6" with the distribution G-

Fourth, observe that the bootstrap statistics described earlier — bootstrap variance, standard error,
and quantiles — are estimators of the corresponding features of the bootstrap distribution G;,.

This discussion is meant to carefully describe why the notation G}, (1) is useful to help understand the
properties of the bootstrap algorithm. Since F, is the natural nonparametric estimator of the unknown
distribution F, G;,(u) = G, (u, F,) is the natural plug-in estimator of the unknown G (u, F). Furthermore,
since F, is uniformly consistent for F by the Glivenko-Cantelli Lemma (Theorem 11.6 in Introduction to
Econometrics) we also can expect G;,(u) to be consistent for G, (u). Making this precise it a bit challenging
since F,, and G, are functions. In the next several sections we develop an asymptotic distribution theory
for the bootstrap distribution based on extending classical asymptotic theory to the case of conditional
distributions.

10.10 The Distribution of the Bootstrap Observations

Let y* be arandom draw from the sample {y,,...,y,,}. What is the distribution of y*?

Since we are fixing the observations, the correct question is: What is the conditional distribution of
y*, conditional on the observed data? The empirical distribution function F;, summarizes the informa-
tion in the sample, so equivalently we are talking about the distribution conditional on F,,. Consequently
we will write the bootstrap probability function and expectation as

P*[y* <x]=P[y* < x| Fy]
E* [y" ] =E[y" | Fa].
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Notationally, the starred distribution and expectation are conditional given the data.

The (conditional) distribution of y* is the empirical distribution function F,, which is a discrete
distribution with mass points 1/n on each observation y;. Thus even if the original data come from a
continuous distribution, the bootstrap data distribution is discrete.

The (conditional) mean and variance of y* are calculated from the EDE and equal the sample mean
and variance of the data. The mean is

E* [y" ]—Zyl [y —yl]—Zyln =y (10.10)
i=1

and the variance is
var* [y*] =E* [y"y*| - (E* [y*]) (E* [y*])

yiviP ly =yi|-vy

M= M:

1
y,-yég -vy

i=1

M T

(10.11)

To summarize, the conditional distribution of y*, given F,, is the discrete distribution on {y;, ..., y,,}, with
mean y and variance matrix 2.
We can extend this analysis to any integer moment r. Assume y; is scalar. The r'” moment of y* is

n

ro_ o~
2 Vi =0,
i=1

S|+

n
;d: [E* [y*r] — Zylru:p* [y* :yi] —
i=1
the 7/ sample moment. The r*" central moment of y* is

> (7)<

p =" [ 7)) =

the r*" central sample moment. Similarly, the r*” cumulant of y* is x* = &,, the r** sample cumulant.

10.11 The Distribution of the Bootstrap Sample Mean

The bootstrap sample mean is

. 1 Z
y = ;i:ZlJ’r
We can calculate its (conditional) mean and variance. The mean is
_ 1Z 1 & 1 _
E* [y ] =" | =X ¥ | == > E"[y} —Z =y (10.12)
niz nizs n;;3

using (10.10). Thus the bootstrap sample mean y* has a distribution centered at the sample mean y.
This is because the bootstrap observations y; are drawn from the bootstrap universe, which treats the
EDF as the truth, and the mean of the latter distribution is y.

The (conditional) variance of the bootstrap sample mean is

var® [y*| = var®

1 & 1 X ~
;ZY?] 2zvar [y,]——ZZZ=— (10.13)
i=1 i=1
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using (10.11). In the scalar case, var* [7*] = 62/n. This shows that the bootstrap variance of ?* is pre-
cisely described by the sample variance of the original observations. Again, this is because the bootstrap
observations y; are drawn from the bootstrap universe.

We can extend this to any integer moment r. Assume y; is scalar. Define the normalized bootstrap
sample mean z, = v/n(y" — 7). Using expressions from Section 6.17 of Introduction to Econometrics, the
3 through 6'" conditional moments of z are

E* [z*?)]:? /nl/Z

E* [z*4]:?4/n+31<2 (10.14)
E* [2)°] =Rs/n*/? +10R3R, /02

E* [2*6]=1<6/n + (15R 4k + 10R5) /n + 158,

where %, is the r’" sample cumulant. Similar expressions can be derived for higher moments. The
moments (10.14) are exact, not approximations.

10.12 Bootstrap Asymptotics

The bootstrap mean y™* is a sample average over n i.i.d. random variables, so we might expect it to
converge in probability to its expectation. Indeed, this is the case, but we have to be a bit careful since
the bootstrap mean has a conditional distribution (given the data) so we need to define convergence in
probability for conditional distributions.

Definition 10.1 We say that a random vector z), converges in bootstrap prob-
ability to z as n — oo, denoted z;, — z, ifforall e > 0
P

P* ||z} — 2| > €] 70.

To understand this definition recall that conventional convergence in probability z, - z means

that for a sufficiently large sample size n, the probability is high that z,, is arbitrarily close to its limit z.
In contrast, Definition 10.1 says z;, — z means that for a sufficiently large n, the probability is high that
P

the conditional probability that z}, is close to its limit z is high. Note that there are two uses of probability
—both unconditional and conditional.

Our label “convergence in bootstrap probability” is a bit unusual. The label used in much of the
statistical literature is “convergence in probability, in probability” but that seems like a mouthful. That
literature more often focuses on the related concept of “convergence in probability, almost surely” which
holds if we replace the “7” convergence with almost sure convergence. We do not use this concept in

this chapter as it is an unnecessary complication.
While we have stated Definition 10.1 for the specific conditional probability distribution P*, the idea
is more general and can be used for any conditional distribution and any sequence of random vectors.
The following may seem obvious, but it is useful to state for clarity. Its proof is given in Section 10.31.
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Theorem 10.1 If z,, — z as n — co then z,, — z.
14 p*

Given Definition 10.1, we can establish a law of large numbers for the bootstrap sample mean.

Theorem 10.2 Bootstrap WLLN. If y; are independent and uniformly inte-
grable theny* -y —0andy* — p=E[y;] as n — oo.
p* p*

The proof (presented in Section 10.31) is somewhat different from the classical case, as it is based on
the Marcinkiewicz WLLN (Theorem 10.20, presented in Section 10.31).

Notice that the conditions for the bootstrap WLLN are the same for the conventional WLLN. Notice
as well that we state two related but slightly different results. The first is that the difference between the
bootstrap sample mean y* and the sample mean y diminishes as the sample size diverges. The second
result is that the bootstrap sample mean converges to the population mean p. The latter is not surprising
(since the sample mean y converges in probability to p) but it is constructive to be precise since we are
dealing with a new convergence concept.

Theorem 10.3 Bootstrap Continuous Mapping Theorem. If z), — cas n —
p*

oo and g (-) is continuous at ¢, then g(z;,) — g(c) as n — oo.
p*

The proofis essentially identical to that of Theorem 6.6, so is omitted.
We next would like to show that the bootstrap sample mean is asymptotically normally distributed,
but for that we need a definition of convergence for conditional distributions.

Definition 10.2 Let z; be a random vector with conditional distribution
G, (w) = P* [z}, < u|. We say that z}, converges in bootstrap distribution to z
as n — oo, denoted z;, 7 z, if for all u at which G(u) = P [z < u] is continuous,

G, (u) - G(u) as n — oo.

The difference with the conventional definition is that Definition 10.2 treats the conditional distribu-
tion as random. An alternative label for Definition 10.2 is “convergence in distribution, in probability”.
We now state a CLT for the bootstrap sample mean, with a proof given in Section 10.31.
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Theorem 10.4 Bootstrap CLT. If y; are independent, | y; ||2 is uniformly inte-
grable, and X = var [y] > 0 then

V(Y -3) —N©,3)

as 1 — oQ.

Theorem 10.4 shows that the normalized bootstrap sample mean has the same asymptotic distribu-
tion as the sample mean. Thus the bootstrap distribution is asymptotically the same as the sampling
distribution. A notable difference, however, is that the bootstrap sample mean is normalized by center-
ing at the sample mean, not at the population mean. This is because y is the true mean in the bootstrap
universe.

We next state the distributional form of the continuous mapping theorem for bootstrap distributions
and the Bootstrap Delta Method.

Theorem 10.5 Bootstrap Continuous Mapping Theorem
If z), —Czasn—oo and g : R — R has the set of discontinuity points Dy

such that P* [z* € Dg| =0, then g(z}) — g(z) as n — oo.

Theorem 10.6 Bootstrap Delta Method:
If i — M vn(g* -p) — ¢, and g(u) is continuously differentiable in a neigh-

borhood of u, then as n — oo
Vn(g(a")-gm)—6'¢
where G(u) = %g(u)’ and G = G(u). In particular, if £ ~ N (0, V) then as n — co

Vn(g(a")-g@) —N(0,6'VG).

For a proof, see Exercise 10.7.
We state an analog of Theorem 6.10, which presented the asymptotic distribution for general smooth
functions of sample means, which covers most econometric estimators.



CHAPTER 10. RESAMPLING METHODS 289

Theorem 10.7 Under the assumptions of Theorem 6.10, that is, if y; is i.i.d,,
0
p=E[h(y)], 0 =g(n), E|hr(y)| < oo, and G (w) = ag(u)’ is continuous in

a neighborhood of p, for @ = g () with i = 1 3" h(y;) and 0" = g(@*) with
B =Ly as oo

vn

—_——

5*—5)?N(0,V9)

where Vg = G'VG, V=[E[(h(y)—u)(h(y)—y)’] and G=G(p).

For a proof, see Exercise 10.8.

Theorem 10.7 shows that the asymptotic distribution of the bootstrap estimator 0" is identical to
that of the sample estimator 8. This means that we can learn the distribution of 8 from the bootstrap
distribution, and hence perform asymptotically correct inference.

For some bootstrap applications we use bootstrap estimates of variance. The plug-in estimator of Vg
is Vg = G'VG where G = G (fi) and

The bootstrap version is

Ve=G"V'G"

G =G(a")

~x 1 & £Y o~ NN
Vi=—) (hly))-2") (h(y;)-R")"

Application of the bootstrap WLLN and bootstrap CMT show that ‘7; is consistent for Vy.

Theorem 10.8 Under the assumptions of Theorem 10.7, Vg — Vg as n — oco.
o

For a proof, see Exercise 10.9.

10.13 Consistency of the Bootstrap Estimate of Variance

Recall the definition (10.7) of the bootstrap estimator of variance Vgom of an estimator 8. In this

. . . 1. =boot . . . . o)
section we explore conditions under which V@OO is consistent for the asymptotic variance of 6.

To do so, it is useful to focus on a normalized version of the estimator so that the asymptotic variance
is not degenerate. Suppose that for some sequence a; we have

zZp=an(0-0) 75 (10.15)
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and
zy=a,(0"-9) —¢ (10.16)

for some limit distribution &. That is, for some normalization, both @ and " have the same asymptotic
distribution. This is quite general as it includes the smooth function model. The conventional boot-
strap estimator of the variance of z, is the sample variance of the bootstrap draws {z;(b): b =1,...,B}.
This equals the estimator (10.7) multiplied by a%. Thus it is equivalent (up to scale) whether we discuss
estimating the variance of 0 or Zn.

The bootstrap estimator of variance of z, is

=boot,B 1 B * —x * —x\/
VB =5 1 Z (Zn(b) - Zn) (Zn(b) - Zn)
B-1,5

—% 1 5 *
Z, = Eb;lzn(b).

Notice that we index the estimator by the number of bootstrap replications B.

Since z;, converges in bootstrap distribution to the same asymptotic distribution as z,, it seems rea-
sonable to guess that the variance of z,, will converge to that of {. However, convergence in distribution
is not sufficient for convergence in moments. For the variance to converge it is also necessary for the
sequence z), to be uniformly square integrable.

Theorem 10.9 If (10.15) and (10.16) hold for some sequence a;,, and HZZHZ is
uniformly integrable, then as B — oo

=boot,B ~boot
Vo =~ — Vg =var|z],
p*

and as n — oo

Vgom — Vg =var[{].
p*

This raises the question: Is the normalized sequence z, uniformly integrable? We spend the re-
mainder of this section exploring this question, and then turn in the next section to trimmed variance
estimators which do not require uniform integrability.

This condition is reasonably straightforward to verify for the case of a scalar sample mean with a
finite variance. That is, suppose z;, = v7(¥* —7) and E[y?] < co. In (10.14) we calculated the exact
fourth central moment of z;;:

_ fi,—-36*

E* [224] = K—rf+3a4 +35"

n

where 62

=n 'Y (i ~3)*and iy = n! " (i ~%)*. The assumptionE [ y2] < oo implies that E [62] =
0(1) so0 62 = O, (1). Furthermore, n_1ﬁ4 =n2 ?:1 (y,- —?)4 = 0p(1) by the Marcinkiewicz WLLN (Theo-
rem 10.20). It follows that

E* (23] = n%E* | (7 - 9)*] = 0, 0. (10.17)

Theorem 6.15 shows that this implies that z};? is uniformly integrable. Thus if y; has a finite variance,
the normalized bootstrap sample mean is uniformly square integrable, and the bootstrap estimate of
variance is consistent by Theorem 10.9.
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Now consider the smooth function model of Theorem 10.7. We can establish the following result.

Theorem 10.10 In the smooth function model of Theorem 10.7, if for some
p =1 the pth—order derivatives of g(u) are bounded, then z;, = Vn (é* —é) is
uniformly square integrable and the bootstrap estimator of variance is consis-
tent as in Theorem 10.9.

For a proof see Section 10.31.
This shows that the bootstrap estimate of variance is consistent for a reasonably broad class of esti-
mators. The class of functions g(u) covered by this result includes all p’"-order polynomials.

10.14 Trimmed Estimator of Bootstrap Variance

Theorem 10.10 showed that the bootstrap estimate of variance is consistent for smooth functions
with a bounded p'" order derivative. This is a fairly broad class, but excludes many important applica-
tions. As a leading example, consider 6 = u; /yu where 1 = E[y1] and pp = E [y2]. This function does not
have a bounded derivative (unless p, is bounded away from zero) so is not covered by Theorem 10.10.

This is more than a technical issue. When (1, y2;) are jointly normally distributed, then it is known
that the estimator § = ¥,:!/y, does not possess a finite variance. Consequently we cannot expect the
bootstrap estimator of variance to perform well. (It is attempting to estimate the variance of 6, which is
infinity.)

In these cases it is preferred to use a trimmed estimator of bootstrap variance. Let 7, — oo be a
sequence of positive trimming numbers satisfying 7,, = O (e"/ 8). Define the trimmed statistic

*k

o =z (2] = ).

The trimmed bootstrap estimator of variance is

=Dboot,B,T 1 B * % — ko * % P LAY
VB = Z (Zn (b) —Zp )(Zn (b) —Zp )
B - 1 bzl
1 B
_;;* = E Z Z;kl*(b).

b=1

. . =boot,B . . . .
We first examine the behavior of VOOOt as the number of bootstrap replications B grows to infinity.

It is a sample variance of independent bounded random vectors. Thus by the bootstrap WLLN (Theorem
=boot,B,T

10.2) Vg converges in bootstrap probability to the variance of z;,*.

=boot,B,T =boot,t

Theorem 10.11 As B — oo, Vg — Vy

_ * %
. var [z;*].

)

" as n grows to infinity. We focus
on the smooth function model of Theorem 10.7, which showed that z;, = \/ﬁ(a* - é) ;» Z ~N(0,Vy).

. . . &b
We next examine the behavior of the bootstrap estimator VBOOt
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Since the trimming is asymptotically negligible, it follows that z;* - Z. If we can show that z;;* is

uniformly square integrable, Theorem 10.9 will show that var[z;;*] — var[Z] = Vg as n — oco. This is
shown in the following result, whose proof is presented in Section 10.31.

=boot,t

Theorem 10.12 Under the assumptions of Theorem 10.7, V" — V.
p*

Theorems 10.11 and 10.12 show that the trimmed bootstrap estimator of variance is consistent for
the asymptotic variance in the smooth function model, which includes most econometric estimators.
This justifies bootstrap standard errors as consistent estimators for the asymptotic distribution.

An important caveat is that these results critically rely on the use of the trimmed variance estimator
rather than the standard untrimmed version. This is a critical caveat as conventional statistical packages
(e.g. Stata) calculate bootstrap standard errors using the untrimmed estimator (10.7). Thus there is no
guarantee that the reported standard errors are consistent. The untrimmed variance estimator works in
the context of Theorem 10.10 and whenever the bootstrap statistic is uniformly square integrable, but
not necessarily in general applications.

In practice, it may be difficult to know how to select the trimming sequence 7,,. The rule 7,, = O (e"'®)
does not provide practical guidance. Instead, it may be useful to think about trimming in terms of per-
centages of the bootstrap draws. Thus we can set 7, so that a given small percentage vy, is trimmed. For
theoretical interpretation we would set y,, — 0 as n — oco. In practice we might set y, = 1%.

10.15 Unreliability of Untrimmed Bootstrap Standard Errors

In the previous section we presented a trimmed bootstrap variance estimator which should be used
to form bootstrap standard errors for nonlinear estimators. Otherwise, the untrimmed estimator is po-
tentially unreliable.

This is an unfortunate situation, because reporting of bootstrap standard errors is very common-
place in contemporary applied econometric practice, and standard applications (including Stata) use
the untrimmed estimator.

To illustrate the seriousness of the problem, we use the simple wage regression (7.31) which we repeat
here. This is the subsample of married black women with 982 observations. The point estimates and
standard errors are

log(’wa\ge): 0.118 education+ 0.016 experience— 0.022 experience?/100+ 0.947
(0.008) (0.006) (0.012) (0.157)

We are interested in the experience level which maximizes expected log wages 83 = —50082/ 3. The point
estimate and standard errors calculated with different methods are reported in Table 10.3.3 below.

The point estimate of the experience level with maximum earnings is 05 = 35. The asymptotic and
jackknife standard errors are about 7. The bootstrap standard error, however, is 825! Confused by this
unusual value we rerun the bootstrap again and obtain a standard error of 544. Both were computed
with 10,000 bootstrap replications. The fact that the two bootstrap standard errors are considerably dif-
ferent when recomputed (with different starting seeds) is indicative of moment failure. When there is
an enormous discrepancy like this between the asymptotic and bootstrap standard error, and between
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bootstrap runs, it is a signal that there may be moment failure and consequently bootstrap standard
errors are unreliable.

A trimmed bootstrap with 7 = 25 (set to slightly exceed three asymptotic standard errors) produces a
more reasonable standard error of 10.

One message from this application is that when different methods produce very different standard
errors we should be cautious about trusting any single method. The large discrepancies indicate poor
asymptotic approximations, rendering all methods inaccurate. Another message is to be cautious about
reporting conventional bootstrap standard errors. Trimmed versions are preferred, especially for non-
linear functions of estimated coefficients.

Table 10.3: Experience Level Which Maximizes Expected log Wages

Estimate 35.2
Asymptotic s.e. (7.0)
Jackknife s.e. (7.0)
Bootstrap s.e. (standard)  (825)
Bootstrap s.e. (repeat) (544)

Bootstrap s.e. (trimmed) (10.1)

10.16 Consistency of the Percentile Interval

Recall the percentile interval (10.8). We now provide conditions under which it has asymptotically
correct coverage.

Theorem 10.13 Assume that for some sequence a,,

an (6-96) —¢ (10.18)
and
an (9*—@?5 (10.19)

where ¢ is continuously distributed and symmetric about zero. Then
P0eC’|->1-a

as 1 — oQ.

The assumptions (10.18)-(10.19) hold for the smooth function model of Theorem 10.7, so this result
incorporates many applications. The beauty of Theorem 10.13 is that the very simple confidence interval
CP° — which does not require technical calculation of asymptotic standard errors — has asymptotically
valid coverage for any estimator which falls in the smooth function class, as well as any other estimator
satisfying the convergence results (10.18)-(10.19) with ¢ symmetrically distributed. The conditions are
weaker than those required for consistent bootstrap variance estimation (and normal-approximation
confidence intervals) because it is not necessary to verify that 0* is uniformly integrable, nor necessary
to employ trimming.
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The proof of Theorem 10.7 is not difficult. The convergence assumption (10.19) implies that the a”
quantile of a, (6* — @, which is a, (g - §) by quantile equivariance, converges in probability to the a'*"
quantile of ¢, which we can denote as gq,. Thus

an(q;-0) — G (10.20)

Let H(x) = P[¢ < x] be the distribution function of {. The assumption of symmetry implies H(—x) =
1 — H(x). Then the percentile interval has coverage

P[0eCP|=P[da,<0=qy_g]
=P [-an(dy,—0) 2 an(0-0) = —an(q7_a5 -0)]
—P[~Gg22¢2~G1_g)2]
=H(~Go2) — H(=G1-qs2)
= H(al—alz) - H(ﬁa/z)
=1l-a.

The convergence holds by (10.18) and (10.20). The following equality uses the definition of H, the next-
to-last is the symmetry of H, and the final equality is the definition of g,. This establishes Theorem
10.13.

Theorem 10.13 seems quite general, but it critically rests on the assumption that the asymptotic
distribution ¢ is symmetrically distributed about zero. This may seem innocuous, since conventional
asymptotic distributions are normal and hence symmetric, but it bears further scrutiny. It is not merely
a technical assumption — an examination of the steps in the preceeding argument isolate quite clearly
that if the symmetry assumption is violated, then the asymptotic coverage will not be 1 — . While Theo-
rem 10.13 does show that the percentile interval is asymptotically valid for a conventional asymptotically
normal estimator, the reliance on symmetry in the argument suggests that the percentile method will
work poorly when the finite sample distribution is asymmetric. This turns out to be the case, and will
lead us to consider alternative methods in the following sections.

It is also worthwhile to investigate a finite sample justification for the percentile interval, based on a
heuristic analogy due to Efron.

Assume that there exists an unknown but strictly increasing transformation () such that w(@) -
1(0) has a pivotal distribution H(u) (does not vary with 8) which is symmetric about zero. For example,
if O ~ N(6,02) we can set w(0) =0/0. Alternatively, if0 = exp (ﬁ) and i ~ N(y, o2) then we can set v(0) =
log@)/o.

To assess the coverage of the percentile interval, observe that since the distribution H is pivotal the
bootstrap distribution 1//(5 *) - w(é) also has distribution H(u). Let g, be the af " quantile of the distri-
bution H. Since g is the a'" quantile of the distribution of 6*, and w(0*) — (@) is a monotonic trans-
formation of 6, by the quantile equivariance property we deduce that g, + 1//(@) =v(q,). The percentile
interval has coverage

POeCP|=P[q,,<0<q]_ ]

[w(as) <v©®) <v(d;_q)]

(W@ -w(a}) zv@ -y O) =y (@) -va]_,,)]
[~Tara = v @) - (0) =7, _,0]

(~Gas2) —H(=q1-as2)

(@1-ar2) = H(Gar2)

P
P
P
P
H
H
1-
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The second equality applies the monotonic transformation ¥ (u) to all elements. The fourth uses the
relationship g, + NMOE w(qy)- The fifth uses the defintion of H. The sixth uses the symmetry property
of H, and the final is by the definition of g, as the a'" quantile of H.

This calculation shows that under these assumptions the percentile interval has exact coverage 1 —a.
The nice thing about this argument is the introduction of the unknown transformation v (u) for which
the percentile interval automatically adapts. The unpleasant feature is the assumption of symmetry.
Similar to the asymptotic argument, the calculation strongly relies on the symmetry of the distribution
H(x). Without symmetry the coverage will be incorrect.

Intuitively, we expect that when the assumptions are approximately true, then the percentile interval
will have approximately correct coverage. Thus so long as there is a transformation v (u) such that w(@) -
1w (0) is approximately pivotal and symmetric about zero, then the percentile interval should work well.

This argument has the following application. Suppose that the parameter of interest is 6 = exp(u)
where p = E[y| and suppose y has a pivotal symmetric distribution about u. Then even though 0=
exp(y) does not have a symmetric distribution, the percentile interval applied to 6 will have the correct
coverage, because the monotonic transformation log () has a pivotal symmetric distribution.

10.17 Bias-Corrected Percentile Interval

The accuracy of the percentile interval depends critically upon the assumption that the sampling
distribution is approximately symmetrically distributed. This excludes finite sample bias, for an esti-
mator which is biased cannot be symmetrically distributed. Many contexts in which we want to apply
bootstrap methods (rather than asymptotic) are when the parameter of interest is a nonlinear function
of the original estimates, and nonlinearity typically induces estimation bias. Consequently it is difficult
to expect the percentile method to generally have accurate coverage.

To remove the bias problem, Efron (1982) introduced the bias-corrected (BC) percentile interval.
The justification is heuristic, but there is considerable evidence that the bias-corrected method is an
important improvement on the percentile interval.

The construction is based on the assumption is that there is a an unknown but strictly increasing
transformation ¥ (0) and unknown constant zy such that

Z=y@) -y +20~N(©,1). (10.21)

(The assumption that Z is normal is not critical. It could be replaced by any known symmetric and
invertible distribution.) Let ®(x) denote the normal distribution function, ®~!(p) its quantile function,
and z, = @~ (a) the normal critical values. Then the BC interval can be constructed from the bootstrap
estimators 5;; and bootstrap quantiles g, as follows. Set

18~
pr==2 1(0;<0) (10.22)
B o
and
zg =7 (p"). (10.23)

p* is a measure of median bias, and z is p* transformed into normal units. If the bias of 8 is zero then
p* =0.5and z; = 0. If 0 is upwards biased then p* < 0.5 and z; < 0. Conversely if 6 is dowward biased
then p* > 0.5 and z; > 0. Define for any « an adjusted version

x(a) = ®(zy4 +22p). (10.24)
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If zp = 0 then x(a) = a. If zp > 0 then x(a) > a, and conversely when x(a) < 0. The BC interval is

b
C* = a2y Drg—arz)) - (10.25)

Essentially, rather than going from the 2.5% to 97.5% quantile, the BC interval uses adjusted quantiles,
with the degree of adjustment depending on the extent of the bias.

The construction of the BC interval is not intuitive. We now show that assumption (10.21) implies
that the BC interval has exact coverage. (10.21) implies that

P[yw@) —w©) + 20 < x] = D(x).
Since the distribution is pivotal the result carries over to the bootstrap distribution
P* [w@) — @) + 20 < x| = D(x). (10.26)

Evaluating (10.26) at x = zg we find P* [w/(0*) — (@) < 0] = ®(z9) which implies P* [§* < 8] = ®(z0). In-
verting, we obtain
z20=® ' (P*[0* <0]) (10.27)

which is the probability limit of (10.23) as B — oco. Thus the unknown zj is recoved by (10.23), and we
can treat z; as if it were known.
From (10.26) we deduce that

x(a@) = ®(zq +220)
=P* [y@") -y ©) = za+ 20)]
- p* [é\* < w—l (w(é\) +2zp+ Za)] .

This equation shows that ! (w(@) + 20+ 2z¢) equals the x(@) " bootstrap quantile. That is, q;(m =
p! (w(@) + 20 + 24 ). Hence we can write (10.25) as

C* = [y (w®) + 20+ zarz) ¥~ (WO) + 20+ 21-as2)]

It has coverage probability

P [9 € Cbc] =Py (w® + 20+ 2412) <O <y (WO + 20+ 21-a/2)]
=P[y®) + 20+ Zar2 <W(O) < Y(@) + 20 + 21-ar2]
=P[~zar22 w0 —w(0) + 20 = —21-a/2]
=Plz1-q/2 = Z = 2¢2]
=D (21-qr2) — P (2q/2)
=1-a.

The second equality applies the transformation y(8). The fourth equality uses the model (10.21) and the
fact z, = —z1-4. This shows that the BC interval (10.25) has exact coverage under the assumption (10.21).

Furthermore, under the assumptions of Theorem 10.13, the BC interval has asymptotic coverage
probability 1 — a, since the bias correction is asymptotically negligible.

An important property of the BC percentile interval is that it is transformation-respecting (like the
percentile interval). To see this, observe that p* is invariant to transformations since it is a probability,
and thus z(’)‘ and x(a) are invariant. Since the interval is constructed from the x(a/2) and x(1 — a/2)
quantiles, the quantile equivariance property shows that the interval is transformation-respecting.
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The bootstrap BC percentile intervals for the four estimators are reported in Table 13.2. They are
generally similar to the percentile intervals, though the intervals for 0 and u are somewhat shifted to
the right.

In Stata, BC percentile confidence intervals can be obtained by using the command estat bootstrap
after an estimation command which calculates standard errors via the bootstrap.

10.18 BC, Percentile Interval

A further improvement on the BC interval was made by Efron (1987) to account for the skewness in
the sampling distribution, which can be modeled by specifying that the variance of the estimator de-
pends on the parameter. The resulting bootstrap accelerated bias-corrected percentile interval (BC,)
has improved performance on the BC interval, but requires a bit more computation and is less intuitive
to understand.

The construction is a generalization of that for the BC intervals. The assumption is that there is an
unknown but strictly increasing transformation (6), and unknown constants a and z, such that

_ OB()

T T N(0,1). (10.28)

(As before, the assumption that Z is normal could be replaced by any known symmetric and invertible
distribution.)

The constant zj is estimated by (10.23) just as for the BC interval. There are several possible estima-
tors of a. Efron’s suggestion is a scaled jackknife estimator of the skewness of 0:

o (e-aee)
a= N 372
6( n (e—é(_i)))

_ 1
0= ;;9(_,)

The jackknife estimator of @ makes the BC, interval more computationally costly than other intervals.
Define for any a the adjusted version

Zg t+ 20

x(a)=®|zg+ ——MM8M8|.
(@) 0 1-a(zy+ zp)

The BC, percentile interval is
bca _ [ * *
C* = [Axarzy Gx1-asz]-

Note that x(a) simplifies to (10.24) and CP®® simplies to C°° when a = 0. While CP® improves on CP° by
correcting the median bias, C’°® makes a further correction for skewness.

The BC,, interval is only well-defined for values of a such that a(z, + z9) < 1. (Or equivalently, if
a<®(al-z))fora>0and a>®(a ! -z) fora<0.)

The BC, interval, like the BC and percentile intervals, is transformation-respecting. Thus if q;( @/2)’ q;(l_ @/2)

is the BC, interval for 6, then [m (q;(a/2)) ,m (q;(l_a/z))] is the BC, interval for ¢ = m(0) when m(0) is
monotone.

We now give a justification for the BC, interval. The most difficult feature to understand is the esti-
mator 4 for a. This involves higher-order approximations which are too advanced for our treatment, so
we instead refer readers to Chapter 4.1.4 of Shao and Tu (1995), and simply assume that a is known.
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We now show that assumption (10.28) with a known implies that Cbca has exact coverage. The argu-
ment is essentially the same as that given in the previous section. Assumption (10.28) implies that the
bootstrap distribution satisfies

P* w +zp<x| =D(x). (10.29)
1+ ay(0)

Evaluating at x = zp and inverting we obtain (10.27) which is the same as for the BC interval. Thus the
estimator (10.23) is consistent as B — oo, and we can treat zg as if it were known.
From (10.29) we deduce that

yO)-yO _  zatz
l+ay®  1-a(za+2z)

WO + 24 + Zo)

x(a) =P*

=p*

1-a(zyq+ zg)

§*sw‘1(

YO +za+2
1-a(zq+20)

This shows that ! ( ) equals the x(a)!" bootstrap quantile. Hence we can write CP“? as

1—a(zq/2 + zo) 1-a(z1-q/2 + 20)

cbea _ [w‘l (w(é) + 22 + zO) . (w(é) + 2102 +z<>)

It has coverage probability

P [9 € cbca] _p |yt WO) + zas2 + 20 h<y-! WO +z1_a12 + 20
1-a(zq/2 + 20) 1-a(zi—q;2 + zo)
_p W0 + za/2 + 20 < v = VO +21-as2+ 20
1-a(zq/2 + zo) 1-a(zi—a/;2 + 2zo)
@ -y ©)
=P —Zq/2 = % + 20 = —Zl_a/g]

=Plz1-q/2 = Z = 2q/2]

=1l—-a.

The second equality applies the transformation ¥ (8). The fourth equality uses the model (10.28) and the
fact zy = —z1_q. This shows that the BC, interval C@ has exact coverage under the assumption (10.28)
with a known.

The bootstrap BC, percentile intervals for the four estimators are reported in Table 13.2. They are
generally similar to the BC intervals, though the intervals for 02 and p are slightly shifted to the right.

In Stata, BC, intervals can be obtained by using the command estat bootstrap, bca or the com-
mand estat bootstrap, all after an estimation command which calculates standard errors via the
bootstrap using the bca option.

10.19 Percentile-t Interval

In many cases we can obtain improvement in accuracy by bootstrapping a studentized statistic such
as a t-ratio. Let 0 be an estimator of a scalar parameter 8 and s(0) a standard error. The sample t-ratio is

_0-0

T —.
s(0)




CHAPTER 10. RESAMPLING METHODS 299

The bootstrap t-ratio is
0" -6

T = —
s(0%)

where s(8*) is the standard error calculated on the bootstrap sample. Notice that the bootstrap t-ratio is
centered at the parameter estimate 0. This is because 8 is the “true value” in the bootstrap universe.

The percentile-t interval is formed using the distribution of T*. This can be calculated via the boot-
strap algorithm. On each bootstrap sample the estimator * and its standard error s(*) are calculated,
and the t-ratio T* = (§ *— é) /s(@ *) calculated and stored. This is repeated B times. The ath quantile g,
is estimated by the @’ empirical quantile (or any quantile estimator) from the B bootstrap draws of T*.

The bootstrap percentile-t confidence interval is then defined as

[‘9 - 5(9)511 a2 0 3(9)%/2]

The form may appear unusual when compared with the percentile interval. The left endpoint is deter-
mined by the upper quantile of the distribution of T*, and the right endpoint is determined by the lower
quantile. As we show below, this construction is important for the interval to have correct coverage when
the distribution is not symmetric.

When the estimator is asymptotically normal and the standard error a reliable estimator of the stan-
dard deviation of the distribution, we would expect the t-ratio T to be roughly approximated by the
normal distribution. In this case we would expect g ¢, = —q o5 = 2. Departures from this baseline oc-
cur as the distribution becomes skewed or fat-tailed. If the bootstrap quantiles depart substantially from
this baseline it is evidence of substantial departure from normality. (It may also indicate a programming
error, so in these cases it is wise to triple-check!)

The percentile-t has the following advantages. First, when the standard error s@) is reasonably reli-
able, the percentile-t bootstrap makes use of the information in the standard error, thereby reducing the
role of the bootstrap. This can improve the precision of the method relative to other methods. Second, as
we show later, the percentile-t intervals achieve higher-order accuracy than the percentile and BC per-
centile intervals. Third, the percentile-t intervals correspond to the set of parameter values “not rejected”
by one-sided t-tests using bootstrap critical values (bootstrap tests are presented in Section 10.21).

The percentile-t interval has the following disadvantages. First, they may be infeasible when stan-
dard error formula are unknown. Second, they may be practically infeasible when standard error calcu-
lations are computationally costly (since the standard error calculation needs to be performed on each
bootstrap sample). Third, the percentile-t may be unreliable if the standard errors s(@) are unreliable and
thus add more noise than clarity. Fourth, the percentile-t interval is not translation preserving, unlike the
percentile, BC percentile, and BC, percentile intervals.

It is typical to calculate percentile-t interval with t-ratios constructed with conventional asymptotic
standard errors. But this is not the only possible implementation. The percentile-t interval can be con-
structed with any data-dependent measure of scale. For example, if Oisa two-step estimator for which it
is unclear how to construct a correct asymptotic standard error, but we know how to calculate a standard
error s(é) appropriate for the second step alone, then s(@) can be used for a percentile-t-type interval as
described above. It will not possess the higher-order accuracy properties of the following section, but it
will satisfy the conditions for first-order validity.

Furthermore, percentile-t intervals can be constructed using bootstrap standard errors. That is, the
statistics T and T* can be computed using bootstrap standard errors s2°°'. This is computationally
costly, as it requires what we call a “nested bootstrap”. Specifically, for each bootstrap replication, a
random sample is drawn, the bootstrap estimate * computed, and then B additional bootstrap sub-
samples drawn from the bootstrap sample to compute the bootstrap standard error for the bootstrap
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estimate 6*. Effectively B? bootstrap samples are drawn and estimated, which increases the computa-
tional requirement by an order of magnitude.
We now describe the distribution theory for first-order validity of the percentile-t bootstrap.

First, consider the smooth function model, where § = g(m) and s@) = \/%(A;,Vﬁ with bootstrap
analogs 6* = g(p*) and s(@*) = %&*’f/*f;*. From Theorems 6.10, 10.7, and 10.8

-0
T:XE%TTJ_*Z
VGVG ¢
and R
0* -0
T*=X§9r{1—~2
G* V* G* da*

where Z ~ N(0,1). This shows that the sample and bootstrap t-ratios have the same asymptotic distribu-
tion.

This motivates considering the broader situation where the sample and bootstrap t-ratios have the
same asymptotic distribution, but not necessarily normal. Thus assume that

T—¢ (10.30)
T —¢ (10.31)

for some continuous distribution ¢. (10.31) implies that the quantiles of T* converge in probability to
those of ¢, that is g, - g Where ¢ is the a'" quantile of &. This and (10.30) imply

P[0 eCP] =P[0-5@)q;_o,<0=0-5@)q;,]
=P (= T<a]_q]

—P[qar2 <& < G1-ai2]
=1-a.

Thus the percentile-t is asymptotically valid.

Theorem 10.14 If (10.30) and (10.31) hold where ¢ is continuously distributed,
then
Pl0eC’|-1-a

as 1 — oQ.

The bootstrap percentile-t intervals for the four estimators are reported in Table 13.2. They are simi-
lar but somewhat different from the percentile-type intervals, and generally wider. The largest difference
arises with the interval for o2, which is noticably wider than the other intervals.
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10.20 Percentile-t Asymptotic Refinement

This section uses the theory of Edgeworth and Cornish-Fisher expansions introduced in Chapter
9.8-9.10 of Introduction to Econometrics. This theory will not be familiar to most students. If you are
interested the following refinement theory it is advisable to start by reading these sections of Introduction
to Econometrics.

The percentile-t interval can be viewed as the intersection of two one-sided confidence intervals.
In our discussion of Edgeworth expansions for the coverage probability of one-sided asymptotic confi-
dence intervals (following Theorem 7.17 in the context of functions of regression coefficients) we found
that one-sided asymptotic confidence intervals have accuracy to order O (n‘” 2). We now show that the
percentile-t interval has improved accuracy.

Theorem 9.13 of Introduction to Econometrics showed that the Cornish-Fisher expansion for the
quantile g, of a t-ratio T in the smooth function model takes the form

da = Zqt n_llzpll(za) +0 (n_l)

where pj; (x) is an even polynomial of order 2 with coefficients depending on the moments of k(y) up
to order 8. The bootstrap quantile g, has a similar Cornish-Fisher expansion

qs=za+n "?p} (z0) + 0, (n7)

where pi‘ 1 (x) is the same as p1;(x) except that the moments of h(y) are replaced by the corresponding
sample moments. Sample moments are estimated at the rate n~'/2. Thus we can replace py; with p1y
without affecting the order of this expansion:
qr=zq+n12p1(20) + Oy (n71)
=qa+0,(n7").
This shows that the bootstrap quantiles g, of the studentized t-ratio are within O, (n‘l) of the exact
quantiles gg.

By the Edgeworth expansion Delta method (Theorem 9.12 of Introduction to Econometrics), T and
T+(qga—qy)=T+0, (n~1!) have the same Edgeworth expansion to order O(n!). Thus

P[T<q}]=P[T+(qa—4q}) < qa]
=P[T<qq|+0mn™)
=a+0(nh.

Thus the coverage of the percentile-t interval is

PlOeC”|=P[qy,<T=<q]_u»]
=P [%/2 =T=< QI—a/Z] + O(n_l)

=l-a+ O(n_l).

This is an improved rate of convergence relative to the one-sided asymptotic confidence interval.

Theorem 10.15 Under the assumptions of Theorem 9.11 of Introduction to
Econometrics,
Pl0eC?|=1-a+0n™").
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The following definition of the accuracy of a confidence interval is useful.

Definition 10.3 A confidence set C for 6 is k'"*-order accurate if

[F°[0€C]:1—a+0(n_k/2).

Examining our results, we find that one-sided asymptotic confidence intervals are first-order accu-
rate, but percentile-t intervals are second-order accurate. When a bootstrap confidence interval (or test)
achieves high-order accuracy than the analogous asymptotic interval (or test), we say that the bootstrap
method achieves an asymptotic refinement. Here, we have shown that the percentile-t interval achieves
an asymptotic refinement.

In order to achieve this asymptotic refinement, it is important that the t-ratio T (and its bootstrap
counter-part T*) are constructed with asymptotically valid standard errors. This is because the first
term in the Edgeworth expansion is the standard normal distribution, and this requires that the t-ratio
is asymptotically normal. This also has the practical finite-sample implication that the accuracy of the
percentile-t interval in practice depends on the accuracy of the standard errors used to construct the
t-ratio.

We do not go through the details, but normal-approximation bootstrap intervals, percentile boot-
strap intervals, and bias-corrected percentile bootstrap intervals are all first-order accurate, and do not
achieve an asymptotic refinement.

The BC, interval, however, can be shown to be asymptotically equivalent to the percentile-t inter-
val, and thus achieves an asymptotic refinement. We do not make this demonstration here as it is too
advanced. For a demonstration see Section 3.10.4 of Hall (1992).

Peter Hall

Peter Gavin Hall (1951-2016) of Australia was one of the most influential and
prolific theoretical statisticians in history. He made wide-ranging contributions.
Some of the most relevant for econometrics are theoretical investigations of
bootstrap methods and nonparametric kernel methods.

10.21 Bootstrap Hypothesis Tests

To test the hypothesis Hy : 8 = 8¢ against H; : 0 # 8, the most common approach is a t-test. We reject
Hp in favor of H; for large absolute values of the t-statistic

s@
where 8 is an estimator of 6 and s(0) is a standard error for 8. For a bootstrap test we use the bootstrap
algorithm to calculate the critical value.



CHAPTER 10. RESAMPLING METHODS 303

The bootstrap algorithm samples with replacement from the dataset. Given a bootstrap sample
the bootstrap estimator §* and standard error s(6*) are calculated. Given these values the bootstrap
t-statistic is

There are two important features about the bootstrap t-statistic. First, T* is centered at the sample es-
timate (3, not at the hypothesized value 6y. This is done because 0 is the true value in the bootstrap
universe, and the distribution of the t-statistic must be centered at the true value within the bootstrap
sampling framework. Second, T* is calculated using the bootstrap standard error s(@*). This allows the
bootstrap to incorporate the randomness in standard error estimation.

The failure to properly center the bootstrap statistic at § is a common error in applications. Often
this is because the hypothesis to be tested is Hp : 8 = 0, so the test statisticis T = 0/ s(@). This intuitively
suggests the bootstrap statistic T* = 8*/s(@*), but this is wrong. The correct bootstrap statistic is T* =
(6% -8)/s@).

The bootstrap algorithm creates B draws T (b) = (5* (b) —@ /s(é*(b)), b =1,..,B. The bootstrap
100a% critical value is g;"_,, where q, is the a'" quantile of the absolute values of the bootstrap t-ratios
|T*(b)|. For a 100a% test we reject Hy : 8 = 0 in favor of H; : 6 # 6 if |T| > q;‘_a and fail to reject if
ITI<q{_,-

It is generally better to report p-values rather than critical values. Recall that a p-valueis p =1—
G,(T|) where G, (u) is the null distribution of the statistic |T|. The bootstrap p-value is defined as
p* =1-G; (T, where G} (u) is the bootstrap distribution of |T*|. This is estimated from the bootstrap
algorithm as

1 B
p == Y AT W) >17),
b=1

the percentage of bootstrap t-statistics that are larger than the observed t-statistic. Intuitively, we want to
know how “unusual” is the observed statistic T when the null hypothesis is true. The bootstrap algorithm
generates a large number of independent draws from the distribution T* (which is an approximation to
the unknown distribution of T). If the percentage of the |T*| that exceed |T| is very small (say 1%) this
tells us that | T'| is an unusually large value. However, if the percentage is larger, say 15%, then we cannot
interpret | T| as unusually large.

If desired, the bootstrap test can be implemented as a one-sided test. In this case the statistic is
the signed version of the t-ratio, and bootstrap critical values are calculated from the upper tail of the
distribution for the alternative H; : 8 > 0y, and from the lower tail for the alternative H; : 8 < 8y. There is
a connection between the one-sided tests and the percentile-t confidence interval. The latter is the set
of parameter values 6 which are not rejected by either one-sided 100a/2% bootstrap t-test.

Bootstrap tests can also be conducted with other statistics. When standard errors are not available or
are not reliable, we can use the non-studentized statistic T = 0- 6. The bootstrap versionis T* = 0* -0.
Let g, be the a'" quantile of the bootstrap statistics |§ *(b)-0 | Abootstrap 100a% test rejects Hp : 8 = 09
if |6 — 09| > g;_,- The bootstrap p-value is

18 o~ A
p ==> 1(|6"()-06]>|60-60]).
B o
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Theorem 10.16 If (10.30) and (10.31) hold where ¢ is continuously distributed,
then the bootstrap critical value satisfies

*
—a > q1-a
ql a p

where g;_q is the 1 - ath quantile of |¢]. The bootstrap test “Reject Hyp in favor
of Hy if | T > g;_,” has asymptotic size a:

PIITI> 47 |Ho] — a

as 71 — oQ.

In the smooth function model the t-test (with correct standard errors) has the following performance.

Theorem 10.17 Under the assumptions of Theorem 9.11 of Introduction to
Econometrics,

G1—q =Z1-a+0p (”_1)

whereZ, = @71 ((1 + a)/2) is the ath quantile of | Z|. The asymptotic test “Reject
Hp in favor of H, if | T| > Z;_,” has accuracy

P(ITI>Z1—q |Hp] =1-a+0(n")
and the bootstrap test “Reject Hg in favor of Hy if |T| > g;_,” has accuracy

P(ITI>q;_,IHo]=1-a+o(n?).

This shows that the bootstrap test achieves a refinement relative to the asymptotic test.
The reasoning is as follows. We have shown that the Edgeworth expansion for the absolute t-ratio
takes the form
PIT|<x]=20x)—1+n 12ps(x) +0o(nh).

This means the asymptotic test has accuracy of order O(n™1).
Given the Edgeworth expansion, the Cornish-Fisher expansion for the a‘" quantile g, of the distri-
bution of | T'| takes the form

Ga =Zq+ n_1P21 (Za) + O(n_l) .
The bootstrap quantile g, has the Cornish-Fisher expansion
Gs=Za+n 'ps(Zg) +o(n?)
=Zo+ N ' P21(Za) +0p(n7Y)
=qa+op(n’')

where p3, (x) is the same as p2) (x) except that the moments of h(y) are replaced by the corresponding
sample moments. The bootstrap test has rejection probability, using the Edgeworth expansion Delta
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method (Theorem 11.12 of of Introduction to Econometrics)

PITI> qi_aIHo] =P[ITI+ (q1-a — Gi_¢) > G1-a]
=P[ITI> qi_q] +o(n™)

=l-a+ o(n_l)

as claimed.

10.22 Wald-Type Bootstrap Tests

If @ is a vector, then to test Hp : 8 = 8 against H; : 8 # 0 at size a, a common test is based on the

Wald statistic
~ I ~—1 /2
W=(0-86) Vy (0-060)

where 8 is an estimator of @ and ?9 is a covariance matrix estimator. For a bootstrap test we use the
bootstrap algorithm to calculate the critical value.

The bootstrap algorlthm samples with replacement from the dataset. Given a bootstrap sample the
bootstrap estimator 0" and covariance matrix estimator VA are calculated. Given these values the boot-

strap Wald statistic is
w50 75 5 9)

As for the t-test, it is essential that the bootstrap Wald statistic W™ is centered at the sample estimator 0
instead of the hypothesized value 6. This is because 0 is the true value in the bootstrap universe.

Based on B bootstrap replications we calculate the a’” quantile q,, of the distribution of the boot-
strap Wald statistics W*. The bootstrap test rejects Hy in favor of Hy if W > g;_,. More commonly, we
calculate a bootstrap p-value. This is

pr==> 1(W*)>Ww).
B o
The asymptotic performance of the Wald test mimics that of the t-test. In general, the bootstrap Wald
test is first-order correct (achieves the correct size asymptotically), and under conditions for which an
Edgeworth expansion exists, has accuracy

P(W>gqi_,IH=1-a+o(n™

and thus achieves a refinement relative to the asymptotic Wald test.

If a reliable covariance matrix estimator 175 is not available, a Wald-type test can be implemented
with any positive-definite weight matrix instead of V. This includes simple choices such as the identity
matrix. The bootstrap algorithm can be used to calculate critical values and p-values for the test. So
long as the estimator 0 has an asymptotic distribution, this bootstrap test will be asymptotically first-
order valid. The test will not achieve an asymptotic refinement but provides a simple method to test
hypotheses when covariance matrix estimates are not available.

10.23 Criterion-Based Bootstrap Tests

A criterion-based estimator takes the form

p= arg;nin J(B)
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for some criterion function J (ﬁ) This includes least-squares, maximum likelihood, minimum distance,
and GMM. Given a hypothesis Hy : 8 = 8o where 8 = r (ﬁ), the restricted estimator which satisfies Hy is

B = argmin J (B).
r(B)=6o

A criterion-based statistic to test Hy is

]=Jggoﬂﬁ%ﬁ%nJW)

=J(B) - J(P).

A criterion-based test rejects Hy for large values of J. A bootstrap test uses the bootstrap algorithm to
calculate the critical value.

In this context we need to be a bit thoughtful about how to construct bootstrap versions of J. It might
seem natural to construct the exact same statistic on the bootstrap samples as on the original sample,
but this is incorrect. It makes the same error as calculating a t-ratio or Wald statistic centered at the
hypothesized value. In the bootstrap universe, the true value of @ is not 8y, rather it is @ = r (). Thus
when using the nonparametric bootstrap, we want to impose the constraint r () = r () = 8 to obtain
the bootstrap version of J.

Thus, the correct way to calculate a bootstrap version of J is as follows. Generate a bootstrap sample
by random sampling from the dataset. Let J* () be the the bootstrap version of the criterion. On a
bootstrap sample calculate the unrestricted estimator

~

B = arglrsnin J* (B)

and the restricted version

B = argmin J* (6)
r(p)=0

where 8 = r (B). The bootstrap statistic is

J*= min_J*(B)—min J* (B)
r(B)=6 B

=B -7 B).

Calculate J* on each bootstrap sample. Take the 1 - a‘" quantile q;_,- The bootstrap test rejects Hy
in favor of H; if J > g;_ ,. The bootstrap p-value is

B
Z (J ) >J).

Ud I

Special cases of criterion-based tests are minimum distance tests, F tests, and likelihood ratio tests.
Take the F test for a linear hypothesis R’ = 0. The F statistic is

_(6°-3%)/q
G2/ (n-k)

where 2 is the unrestricted estimator of the error variance, 2 is the restricted estimator, g is the number
of restrictions and k is the number of estimated coefficients. The bootstrap version of the F statistic is

(&*2 _ 6*2) /q

F*=
0*2/(n—k)
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where *? is the unrestricted estimator on the bootstrap sample, and &*? is the restricted estimator
which imposes the restriction R’ =0 = R'B.
Take the likelihood ratio (LR) test for the hypothesis r (ﬁ) =0,. The LR test statistic is

LR=2(¢,(B) - ¢ (B))

where [Ai is the unrestricted MLE and [~i is the restricted MLE (imposing r (B) = 0¢). The bootstrap version
is

e =2(es (7))

where £} (B) is the log-likelihood function calculated on the bootstrap sample, ﬁ
maximizer, and B is the restricted maximizer imposing the restriction r (8) = r (B)

is the unrestricted

*

10.24 Parametric Bootstrap

Throughout this chapter we have described the most popular form of the bootstrap known as the
nonparametric bootstrap. However there are other forms of the bootstrap algorithm including the para-
metric bootstrap. This is appropriate when there is a full parametric model for the distribution, as in
likelihood estimation.

First, consider the context where the model specifies the full distribution of the random vector y,
e.g. y ~ F(y | B) where the distribution function F is known but the parameter f is unknown. Let ii
be an estimator of B, such as the maximum likelihood estimator. The parametric bootstrap algorithm
generates bootstrap observations y; by drawing random vectors from the distribution function F(y | [Ai).
When this is done, the true value of § in the bootstrap universe is B Everything which has been discussed
in the chapter can be applied using this bootstrap algorithm.

Second, consider the context where the model specifies the conditional distribution of the random
vector y given the random vector x, e.g. y | x ~ F(y | x, B). An example is the normal linear regression
model, where y | x ~ N(x'f,0?). In this context we can hold the regressors x; fixed and then draw the
bootstrap observations y; from the conditional distribution F(y | x;, B). In the example of the normal
regression model this is equivalent to drawing a normal error e ~ N (0,6%) and then setting yvi= x;fﬂe;ﬁ
Again, in this algorithm the true value of § is B and everything which is discussed in this chapter can be
applied as before.

Third, consider tests of the hypothesis r () = 8. In this context we can also construct a restricted
estimator 73 (for example the restricted MLE) which satisfies the hypothesis r ([~i) = 0. Then we can
alternatively generate bootstrap samples by simulating from the distribution y; ~ F(y | p), or in the
conditional context from y;‘ ~F(y| xi,ﬁ). When this is done, the true value of g in the bootstrap is ii
which satisfies the hypothesis. So in this context the correct values of the bootstrap statistics are

-~

0* -6

T = —
s(0%)

w=(0"-8,) V5 (8" - 00)

J = min J* —min J*
,oin, (B) i (B)

LR* =2(m§1x€;‘l (B) —r(mmajgof,’; (ﬁ))
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and r ann
g (07-0")1q
0*2/(n—k)
where *? is the unrestricted estimator on the bootstrap sample, and &*? is the restricted estimator
which imposes the restriction R’ = .

The primary advantage of the parametric bootstrap (relative to the nonparametric bootstrap) is that
it will be more accurate when the parametric model is correct. This may be quite important in small
samples. The primary disadvantage of the parameric bootstrap is that it can be inaccurate when the
parametric model is incorrect.

10.25 How Many Bootstrap Replications?

How many bootstrap replications should be used? There is no universally correct answer as there is a
trade-off between accuracy and computation cost. Computation cost is essentially linear in B. Accuracy
(either standard errors or p-values) is proportional to B~'/2. Improved accuracy can be obtained but
only at a higher computational cost.

In most empirical research, most calculations are quick and investigatory, not requiring full accu-
racy. But final results (those going into the final version of the paper) should be accurate. Thus it seems
reasonable to use asymptotic and/or bootstrap methods with a modest number of replications for daily
calculations, but use a much larger B for the final version.

In particular, for final calculations, B = 10,000 is desired, with B = 1000 a minimal choice. In contrast,
for daily quick calculations values as low as B = 100 may be sufficient for rough estimates.

A useful way to think about the accuracy of bootstrap methods stems from the calculation of p-
values. The bootstrap p-value p* is an average of B Bernoulli draws. The variance of the simulation
estimator of p* is p* (1 — p*)/B, which is bounded below 1/4B. To calculate the p-value within, say, 0.01
of the true value with 95% probability requires a standard error below 0.005. This is ensured if B = 10,000.

Stata by default sets B = 50. This is useful for verification that a program runs, but is a poor choice
for empirical reporting. Make sure that you set B to the value you want.

10.26 Setting the Bootstrap Seed

Computers do not generate true random numbers, but rather pseudo-random numbers generated by
a deterministic algorithm. The algorithms generate sequences which are indistinguishable from random
sequences, so this is not a worry for bootstrap applications.

The methods, however, necessarily require a starting value known as a “seed”. Most packages imple-
ment this with a default seed which is reset each time the statistical package is started. This means if
you start the package fresh, run a bootstrap program (e.g. a “do” file in Stata), exit the package, restart
the package and then rerun the bootstrap program, you should obtain exactly the same results. If you
instead run the bootstrap program (e.g. “do” file) twice sequentially without restarting the package, the
seed is not reset so a different set of pseudo-random numbers will be generated, and the results from the
two runs will be different.

Packages allow users to set their own seed. (In Stata, the command is set seed # where # is a num-
ber. In Matlab the command is rng (#).) If the seed is set to a specific number at the start of a file, then
the exact same pseudo-random numbers will be generated each time the program is run. If this is the
case, the results of a bootstrap calculation (standard error or test) will be identical across computer runs.
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The fact that the bootstrap results can be fixed by setting the seed in the replication file has motivated
many researchers to follow this choice. They set the seed at the start of the replication file so that repeated
executions result in the same numerical findings.

Fixing seeds, however, should be done cautiously. It may be a wise choice for a final calculation
(when a paper is finished) but is an unwise choice for daily calculations. If you use a small number of
replications in your preliminary work, say B = 100, the bootstrap calculations will be quite inaccurate.
But as you run your results again and again (as is typical in empirical projects) you will find the same
numerical standard errors and test results, giving you a false sense of stability and accuracy. If instead a
different seed is used each time the program is run then the bootstrap results will vary across runs, and
you will observe that the results vary across these runs, giving you important and meaningful informa-
tion about the (lack of) accuracy in your results. One way to ensure this in Matlab is to use the command
rng(‘shuffle’) which sets the seed according to the current clock.

These considerations lead to a recommended hybrid approach. For daily empirical investigations, do
not fix the bootstrap seed in your program unless you have it set by the clock. For your final calculations
set the seed to a specific arbitrary choice, and set B = 10,000 so that the results are insensitive to the seed.

10.27 Bootstrap Regression

A major focus of this textbook has been on the least-squares estimator B in the projection model.
The bootstrap can be used to calculate standard errors and confidence intervals for smooth functions of
the coefficient estimates.

The nonparametric bootstrap algorithm, as described before, samples observations randomly with
replacement from the dataset, creating the bootstrap sample {(y;,x7), ..., (¥, %},)}, or in matrix notation
(y*,X™) It is important to recognize that entire observations (pairs of y; and x;) are sampled. This is
often called the pairs bootstrap.

Given this bootstrap sample, we calculate the regression estimator

B =(x"x")" (x"y). (10.32)

This is repeated B times. The bootstrap standard errors are the standard deviations across the draws,
and confidence intervals are constructed from the empirical quantiles across the draws.

What is the nature of the bootstrap distribution of ii*? It is useful to start with the distribution of
the bootstrap observations (y;,x}), which is the discrete distribution which puts mass 1/7 on each ob-
servation pair (y;,x;). The bootstrap universe can be thought of as the empirical scatter plot of the
observations. The true value of the projection coefficient in this bootstrap universe is

€ i) € i) =[S (2 ) <5

We see that the true value in the bootstrap distribution is the least-squares estimate ii
The bootstrap observations satisfy the projection equation

vi=x{'p+e (10.33)
E* [x}ef]=0.

For each bootstrap pair (yl* ,x;‘) = (yj,x j) the true error e = €; equals the least-squares residual from
the original dataset. This is because each bootstrap pair corresponds to an actual observation.

A technical problem (which is typically ignored) is that it is possible for X*'X* to be singular in a
simulated bootstrap sample, in which case the least-squares estimator fi* cannot be defined. Indeed,
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the probability is always positive that X*'X* is singular. For example, the probability that a bootstrap
sample consists entirely of one observation repeated n times is ="~ This is a small probability, but
positive. A more significant example is sparse dummy variable designs where it is possible to draw an
entire sample with only one observed value for the dummy variable. For example, if a sample has n =20
observations with a dummy variable with treatment (equals 1) for only three of the 20 observations, the
probability is 4% that a bootstrap sample contains entirely non-treated values (all 0’s). 4% is quite high!
The standard approach to circumvent this problem is to compute ii* only if X*'X* is non-singular
as defined by a conventional numerical tolerance and treat it as missing otherwise. A better solution is
to define a tolerance which bounds X*'X* away from non-singularity. Define the ratio of the smallest

eigenvalue of the bootstrap design matrix to that of the data design matrix
Amin (X'X)

If, in a given bootstrap replication, 1* < 7 is smaller than a given tolerance (Shao and Tu (1995, p. 291)
recommend 7 = 1/2) then the estimator can be treated as missing, or we can define the trimming rule

o ifAr=t
B =4 (10.34)
B ifAr<r.

This ensures that the bootstrap estimator ﬁ* will be well behaved.

10.28 Bootstrap Regression Asymptotic Theory

Define the least-squares estimator [Ai, its bootstrap version ii* as in (10.32), and the transformations
. Y " P Y =
0=g(f)and @ =r(pB ) for some smooth transformation r. Let Vg and Vg denote heteroskedasticity-
robust covariance matrix estimators for  and 0, and let 17; and !7; be their bootstrap versions. When

6 is scalar define the standard errors s(8) = \/n~1Vy and s@*) = \/n"1Vg- . Define the t-ratios T =
(6 - 6) /5(0) and bootstrap version T* = (6* —8) /5(8*). We are interested in the asymptotic distributions
of[Ai*, 0" and T*.

Since the bootstrap observations satisfy the model (10.33), we see by standard calculations that

G5 -8)-[Lfr) (L5
n|p -pl=(=) x'x} — Y xtel|.
nl:I 1771 \/ﬁlzl 171
By the bootstrap WLLN
1 < s %/ E /1
Ei;xixi o [xix;] = Q
and by the bootstrap CLT
1 n
— ) xjel —N(0,Q
NCE =R 0,Q)

where Q =E [x,-x;. e?]. Again applying the bootstrap WLLN we obtain
Vg— V=0 'QQ™!
p*

and
Vo— Vg=R'VgR
pr
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where R =R ().
Combining with the bootstrap CMT and delta method we establish the asymptotic distribution of
the bootstrap regression estimator.

Theorem 10.18 Under Assumption 7.2, as n — co
vn(B"-B) —N(0,vp).
If Assumption 7.3 also holds then
V(8" -8) —N@©,Vy).
d*
If Assumption 7.4 also holds then

T* — N(0,1).
d*

This means that the bootstrap confidence interval and testing methods all apply for inference on f
and @. This includes the percentile, BC percentile, BC,, and percentile-t intervals, and hypothesis tests
based on t-tests, Wald tests, MD tests, LR tests and F tests.

To justify the use of bootstrap standard errors we also need to verify the uniform square integrabil-
ity of Ti* and 8" . This is technically challenging because the least-squares estimator involves division
(matrix inversion) which is not a globally continuous function. A partial solution is to use the trimmed
estimator (10.34). This bounds the moments of ﬁ* by those of n1 ;’:1 x;.k e;‘. Since this is a sample
mean, Theorem 10.10 applies and V; is bootstrap consistent for V g. However, this does not ensure that
Vg will be consistent for Vg unless the function r (1) satisfies the conditions of Theorem 10.10. For gen-
eral applications we should use a trimmed estimator for the bootstrap variance. For some 7, = O (e”/ 8)
define

zy = \/ﬁ(?)* —5)
2" =2"1(]|z;[| < 7n)
Ly
B o
B
v - LS @) -7 -7
B-1,5

The matrix VBOOt is a trimmed bootstrap estimator of the variance of z, = v/71(6 —8). The associated

5o . (B /[ _ ¢sboot
bootstrap standard error for 8 (in the scalar case) is s(@) = \/n=1Vg .

By an application of Theorems 10.11 and 10.12, we find that this estimator IA/BOOt is consistent for the
asymptotic variance.

Theorem 10.19 Under Assumption 7.2 and 7.3, as n — oo

=boot,
Vo'l — V.
p*
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. . = boot . . boot,
Programs such as Stata use the untrimmed estimator V" rather than the trimmed estimator V"

This means that we should be cautious about interpreting reported bootstrap standard errors especially
for nonlinear functions such as ratios.

10.29 Wild Bootstrap

Take the linear regression model

yi=x;B+e;
[E[ei le-] =0.

What is special about this model is the conditional mean restriction. The nonparametric bootstrap
(which samples the pairs (y;,x;) i.i.d. from the original observations) does not make use of this re-
striction. Consequently the bootstrap distribution for ( y;‘,x;‘) does not satisfy the conditional mean
restriction, and therefore does not satisfy the linear regression assumption. To improve the precision of
the bootstrap method it seems reasonable to impose the conditional mean restriction on the bootstrap
distribution.

A natural approach is to hold the regressors x; fixed and then draw the errors e in some way which
imposes a conditional mean of zero. The simplest approach is to draw the errors independent from
the regressors, perhaps from the empirical distribution of the residuals. This procedure is known a the
residual bootstrap. However, this imposes independence of the errors from the regressors, which is
much stronger than the conditional mean assumption. This is generally undesirable.

A method which imposes the conditional mean restriction while allowing general heteroskedasticity
is the wild bootstrap. It was proposed by Liu (1988) and extended by Mammon (1993). The method uses
auxiliary random variables ¢ ; which are i.i.d., mean zero, and variance 1. The bootstrap observations are
then generated as

* _ _Ip *
Vi =x;B+e

ej = @&}

where the regressors x; are held fixed at their sample values, B is the sample least-squares estimator, and
e; are the least-squares residuals, which are also held fixed at their sample values.

This algorithm generates bootstrap errors e; which are conditionally mean zero. Thus the bootstrap
pairs (yl* ,x;) satisfy a linear regression, with the “true” coefficient of [Ai The conditional variance of the
wild bootstrap errors e; are

E" e ;] =2;.

This means that the conditional variance of the bootstrap estimator Ti* is
k) [k ) & -
€[5 -3) B 1] - v [ £ et )
i=1

which is the White estimator of the variance of [Ai Thus the wild bootstrap replicates the appropriate first
and second moments of the distribution.

Two distributions have been proposed for the auxilary variables ¢ both of which are two-point dis-
crete distributions. The first are Rademacher random variables, which satisfy

pe; =-1]=

N =N =
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The second is the Mammen (1993) two-point distribution

. 1+v5| V5-1
Pl PG
. 1-v5| V5+1
Pl¢i=— =

The reasoning behind the Mammen distribution is that this choice implies E [¢ ;‘3] =1, which implies
that the third central moment of [Ai* matches the natural nonparametric estimator of the third central
moment of fi Since the wild bootstrap matches the first three moments, the percentile-t interval and
one-sided t-tests can be shown to achieve asymptotic refinements.

The reasoning behind the Rademacher distribution is that this choice implies E [¢*] = 1, which im-
plies that the fourth central moment of [Ai* matches the natural nonparametric estimator of the fourth
central moment of E If the regression errors e; are symmetrically distributed (so the third moment
is zero) then the first four moments are matched. In this case the wild bootstrap should have even
better performance, and additionally two-sided t-tests can be shown to achieve an asymptotic refine-
ment. When the regression error is not symmetrically distributed these asymptotic refinements are
not achieved. However, simulation evidence for one-sided t-tests presented in Davidson and Flachaire
(2008) suggest that the Rademacher distribution (used with the restricted wild bootstrap) overall has the
best performance and is the preferred choice.

For hypothesis testing improved precision can be obtained by the restricted wild bootstrap. Con-
sider tests of the hypothesis

Ho:r(B)=0.

Let [~i be a CLS or EMD estimator of  subject to the restriction r (ii) =0. Lete; = y; - x;ii be the con-
strained residuals. The restricted wild bootstrap algorithm generates observations as

¥ _ _Ip *
Vi =x;p+e

e;.k = glfj

With this modification, f is the true value in the bootstrap universe, so the null hypothesis Hy holds. Thus
bootstrap tests are constructed the same as for the parametric bootstrap using a restricted parameter
estimator.

10.30 Bootstrap for Clustered Observations

Bootstrap methods can also be applied in the context of clustered observations, though the method-
ological literature is relatively thin. Here we review methods discussed in Cameron, Gelbach and Miller
(2008).

Lety, = (y1g o Vngg)' and Xg = (X154, ..., Xp,g)" denote the ng x 1 vector of dependent variables and
ng x k matrix of regressors for the g* " cluster. A linear regression model using cluster notation is

yg:Xgﬁ+eg

where eg = (e1g, ..., engg)’ is a ng x 1 error vector. The sample has G cluster pairs (yg,Xg).
The pairs cluster bootstrap samples G cluster pairs (y,, X,) to create the bootstrap sample. Least-
squares is applied to the bootstrap sample to obtain the coefficient estimators. By repeating B times,
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bootstrap standard errors for coefficients estimates, or functions of the coefficient estimates, can be
calculated. Percentile, BC percentile, and BC, confidence intervals can be calculated.

The BC, interval requires an estimator of the acceleration coefficient a which is a scaled jackknife
estimate of the third moment of the estimator. In the context of clustered observations the delete-cluster
jackknife should be used for estimation of a.

Furthermore, on each bootstrap sample the cluster-robust standard errors can be calculated and
used to compute bootstrap t-ratios, from which percentile-t confidence intervals can be calculated.

The wild cluster bootstrap fixes the clusters and regressors, and generates the bootstrap observa-
tions as

yg =X.p+ eg

e =2

where ¢ is a scalar auxilary random variable as described in the previous section. Notice that ¢y is

interacted with the entire vector of residuals from cluster g. Cameron, Gelbach and Miller (2008) follow

the recommendation of Davidson and Flachaire (2008) and use Rademacher random variables for é ;.
For hypothesis testing, Cameron, Gelbach and Miller (2008) recommend the restricted wild cluster

bootstrap. For tests of

[H]O:r(ﬁ):o

let [~5 be a CLS or EMD estimator of f§ subject to the restriction r ([~5) =0. Leteg =y, - X gﬁ be the con-
strained cluster-level residuals. The restricted wild cluster bootstrap algorithm generates observations
as

Ve=XgP+eg
* _

eg Eif 2

On each bootstrap sample the test statistic for Hy (t-ratio, Wald, LR, or F) is applied. Since the bootstrap
algorithm satisfies Hy these statistics are centered at the hypothesized value. p-values are then calculated
conventionally and used to assess the significance of the test statistic.

There are several reasons why conventional asymptotic approximations may work poorly with clus-
tered observations. First, while the sample size n may be large, the effective sample size is the number
of clusters G. This is because when the dependence structure within each cluster is unconstrained the
central limit theorem effectively treats each cluster as a single observation. Thus, if G is small we should
treat inference as a small sample problem. Second, cluster-robust covariance matrix estimation explic-
itly treats each cluster as a single observation. Consequently the accuracy of normal approximations
to t-ratios and Wald statistics is more accurately viewed as a small sample distribution problem. Third,
when cluster sizes ng are heterogeneous, this means that the estimation problems just described also
involve heterogeneous variances. Specifically, heterogeneous cluster sizes induces a high degree of ef-
fective heteroskedasticity (since the variance of a within-cluster sum is proportional to ng). When G
is small this means that cluster-robust inference is similar to finite-sample inference with a small het-
eroskedastic sample. Fourth, interest often concerns treatment which is applied at the level of a cluster
(such as the effect of tracking discussed in Section 4.22). If the number of treated clusters is small, this
is equivalent to estimation with a highly sparse dummy variable design, in which case cluster-robust
covariance matrix estimation can be unreliable.

These concerns suggest that conventional normal approximations may be poor in the context of
clustered observations with a small number of groups G, motivating the use of bootstrap methods. How-
ever, these concerns also can cause challenges with the accuracy of bootstrap approximations. When the
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number of clusters G is small, the cluster sizes ng heterogeneous, or the number of treated clusters small,
bootstrap methods may be inaccurate. In such cases inference should proceed cautiously.

To illustrate the use of the pairs cluster bootstrap, Table 10.4 reports the estimates of the example
from Section 4.22 of the effect of tracking on testscores from Duflo, Dupas and Kremer (2011). In addition
to the asymptotic cluster standard error, we report the cluster jackknife and cluster bootstrap standard
errors, as well as three percentile-type confidence intervals and using 10,000 bootstrap replications. In
this example the asymptotic, jackknife, and cluster bootstrap standard errors are identical, which reflects
the good balance of this particular regression design.

Table 10.4: Comparison of Methods for Estimate of Effect of Tracking

Coefficient on Tracking 0.138
Asymptotic cluster s.e. (0.078)
Jackknife cluster s.e. (0.078)
Cluster Bootstrap s.e. (0.078)
95% Percentile Interval [-0.013, 0.291]
95% BC Percentile Interval [-0.015, 0.289]

95% BC, Percentile Interval [—0.018, 0.286]

In Stata, to obtain cluster bootstrap standard errors and confidence intervals use the options cluster (id)
vce(bootstrap, reps(#)), where id is the cluster variable and # is the number of bootstrap replica-
tions.

10.31 Technical Proofs*
Some of the asymptotic results are facilitated by the following convergenced result.

Theorem 10.20 Marcinkiewicz WLLN If u; are independent and uniformly integrable, then for any r >
l,asn—oo0

n

Z lu;|” — 0.
Proof of Theorem 10.20

r—1 1 n
n ") il < ( max |u ) =) luil—0
Z lu;l n| il . l;| il p
by the WLLN, Theorem 6.17, and r > 1. |
Proof of Theorem 10.1 Fix € > 0. Since z, - z there is an n sufficiently large such that
Plllz,—z| >¢€] <e.

Since the event | z,, — z|| > € is non-random under the conditional probability P*, for such n,

0 with probability exceeding 1 —¢

Polllzn =2l > el = { 1  with probability less than .

Since ¢ is arbitrary we conclude P* [||z;, — z|| > €] — 0 as required. [ |
14
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Proof of Theorem 10.2 Fix € > 0. By Markov’s inequality (B.36), the facts (10.12) and (10.13), and finally
the Marcinkiewicz WLLN (Theorem 10.20) with r =2 and u; = || y; ||,

Py -7l > el e |3 -3
= ¢ 2t (var* [7*])

1.
=¢? tr(—Z)
n

n
<en Y yly;
i=1
— 0.
p
This establishes that y* —y — 0.
o
Sincey— — 0 by the WLLN, y — g — 0 by Theorem 10.1. Since y* —u =y* -y +y — u, we deduce
p*
thaty* —u — 0. [ ]
o

Proof of Theorem 10.4 We verify conditions for the multivariate Lindeberg CLT (Theorem 6.4). (We
cannot use the Lindeberg-Lévy CLT since the conditional distribution depends on n.) Conditional on
F,, the bootstrap draws y;‘ — 7y arei.i.d. with mean 0 and variance matrix 3. Set v% = Amin(2). Note that
by the WLLN, v2 - v? = Amin(Z) > 0. Thus for 7 sufficiently large, v2 > 0 with high probability. Fix € > 0.

Equation (6.2) equals

- %E* [y =312 (Jy; -71 = env2)

Yl - TP Iy T zem?)
’W% i=1 ' ' "

7

[E
sm/n ||y,

[EII 1

ZII 1

EYZV

El’lz 4

— 0.

p
The second inequality uses Minkowski’s inequality (B.34), Liapunov’s inequality (B.35) and the ¢, in-
equality (B.6). The following equality is E* ||y:‘ H4 =n! pN ||yi ||4, which is similar to (10.10). The final
convergence holds by the Marcinkiewicz WLLN (Theorem 10.20) with r =2 and u; = H Vi H2 The condi-
tions for Theorem 6.4 hold and we conclude

£Va(y -y) —No.D.

Since £ — X we deduce that
p*
Vi7" -3) - NO.D
as claimed. [ |

Proof of Theorem 10.10 For notational simplicity assume 8 and p are scalar. Set k; = h(y;). The assump-
tion that the p’”" derivative of g(u) is bounded implies | g (u)| < C for some C < co. Taking a p'"* order
Taylor series expansion
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g\ (E)
J!

~ ~ —% — p-l
0" -0=g(h )-gh)=)_
j=1
where {7, lies between 7" and h. This implies
A P — —J
2| = V[0 -0 < v Y. c;[n" =T
j=1

where ¢; = | g (E” / jifor j < pand ¢, = C/p!. We find that the fourth central moment of the normalized
bootstrap estimator z;, = /71 (§* — 0) satisfies the bound

—k

h —E|r (10.35)

* x4 & 2 *
E*[z;*] <) arn’E
r=4

where the coefficients a, are products of the coefficients ¢; and hence each O, (1). We see that E* [224] =

—x  —|T
0p (V) if n?E* [l = 7| = 0p(1 for r =4,...,4p.
We show this holds for any r = 4 using Rosenthal’s inequality (B.51), which states that for each r there
is a constant R, < oo such that
;

—k

—| T
n’E* |h —h) =n®"E*

> (i -7

< nZ’Rr{(nE* (ny —E)Z

r/2 i
+nE* |n} =7

hi—h

1 n
_ 2-rl2~r
_Rr{n o} +_nr‘2 E
i=1

Since E [h%] < 0o, 6% = Op(1), so the first term in (10.36) is O,(1). Also, by the Marcinkiewicz WLLN
—| T

(Theorem 10.20), n"/z):?zl |hi - h‘ = 0p(1) for any r = 1, so the second term in (10.36) is 0,(1) for

r = 4. Thus for all r = 4, (10.36) is Op (1) and thus (10.35) is O, (1). We deduce that z;, is uniformly square

integrable, and the bootstrap estimate of variance is consistent.
This argument can be extended to vector-valued means and estimates. [ |

' } (10.36)

Proof of Theorem 10.12 We show that E* || z;*|* = 0,(1). By Theorem 6.15 this implies that z;* is uni-
formly square integrable. Since z},* ;» Z, Theorem 6.16 implies that var [z;*,*] —var[Z] = Vg as stated.

0
Set h; = h(y;). Since G(u) = — g (w)’ is continuous in a neighborhood of p, there exists n > 0 and
M < oo such that || u—y” < 27 implies tr(G(u)’G(u)) < M. By the WLLN and bootstrap WLLN there

is an n sufficiently large such that “ﬁn - p| <7 and ’ < n with probability exceeding 1 — 7.

< n implies tr (G (u)’' G (w)) < M. Using the mean-value theorem at a point {};

On this event, || u —En

LN —
intermediate between h,, and h,,

271 1 ([~ “1(|m, - R

<1)

<)< () 5[

<n?|6(¢;) (1)
4

4
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Then

e | P S | ey B~y

<ol xie o

[, - B,

1))

e — 4
< M2 |y = | + P >7). (10.37)

In (10.17) we showed that the first term in (10.37) is O(1) in the scalar case. The vector case follows
by element-by-element expansion.

Now take the second term in (10.37). We apply Bernstein’s inequality for vectors (B.40). Note that
— = i <
h,—h,= n! ;’:1 u; with u; = h;‘ — h, with jth element u;fl. = h;fl. — hjy. The u; are i.i.d., mean zero,
E* [u;lz] = 6? = 0p(1), and satisfy the bound |u}"l
that

< 2max; ; |h j i| = By, say. Bernstein’s inequality states

172

2m?n~12 max; 6? +2mn~Y2B,n/3 ]|

P* |

[, -,

>17] <2mexp (—nm (10.38)
Theorem 6.17 shows that n~1/ 2B, = 0p(1). Thus the expression in the denominator of the parentheses
in (10.38) is 0y (1) as n — oo, . It follows that for 7 sufficiently large (10.38) is O, (exp (—n'/?)). Hence the
second term in (10.37) is O, (exp (-nt'?)) op (exp (-nt'?)) = 0p (1) by the assumption on 7.

We have shown that the two terms in (10.37) are each O, (1). This completes the proof. |
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Exercises
Exercise 10.1 Find the jackknife estimator of variance of the estimator fi, = n~! Yyl foru, =E [ yi ].

Exercise 10.2 Show that if the jackknife estimator of variance of [Ai is f/]g Ck, then the jackknife estimator

of variance of 6 = a + CB is ﬁjaa(?k _ CVJ;CkC’_

Exercise 10.3 A two-step estimator such as (12.51) is f = (xr, ﬁ/iﬁ)’i)_l (X7, w;y;) where w; = A'z;
and A= (Z' Z)71 Z'X. Describe how to construct the jackknife estimator of variance of B.

. . . . 5. b .
Exercise 10.4 Show that if the boostrap estimator of variance of g is Vﬁoor , then the bootstrap estimator

=boot =boot

of variance of @ = a + Cp is Vg =CVq C.

Exercise 10.5 Show that if the percentile interval for § is [L, U] then the percentile interval for a + cf is
[a+cL,a+ cU].

Exercise 10.6 Consider the following bootstrap procedure. Using the non-parametric bootstrap, gener-
ate bootstrap samples, calculate the estimate 8* on these samples and then calculate

T = ©* -0)/5©),

where s(0) is the standard error in the original data. Let q,,,, and q;_,, denote the a/ 2h and 1 - /2"
quantiles of T*, and define the bootstrap confidence interval

C=[0+s0)q., 0+s0)q;_,.].
Show that C exactly equals the percentile interval.
Exercise 10.7 Prove Theorem 10.6.
Exercise 10.8 Prove Theorem 10.7.
Exercise 10.9 Prove Theorem 10.8.
Exercise 10.10 Lety; beiid., u=E[y;]>0,and0=p " . Leti= Y ,, be the sample mean and 6= ol

@) Is 6 unbiased for 02
(b) If 8 is biased, can you determine the direction of the bias E [# — 8] (up or down)?

(c) Isthe percentile interval appropriate in this context for confidence interval construction?

Exercise 10.11 Consider the following bootstrap procedure for a regression of y; on x;. Let P denote the
OLS estimator from the regression of y on X, and € = y — X f§ the OLS residuals.

(a) Draw a random vector (x*, e*) from the pair {(x;,¢;) : i = 1,..., n}. That is, draw a random integer i’
from [1,2,...,n], and set x* = x; and e* = &;.. Set y* = x*' f + e*. Draw (with replacement) n such
vectors, creating a random bootstrap data set (y*, X*).
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(b) Regress y* on X*, yielding OLS estimates ii* and any other statistic of interest.

Show that this bootstrap procedure is (numerically) identical to the non-parametric bootstrap.

Exercise 10.12 Take p* as defined in (10.22) for the BC percentile interval. Show that it is invariant to
replacing 0 with g(0) for any strictly monotonically increasing transformation g(6). Does this extend to
z; as defined in (10.23)?

Exercise 10.13 Show that if the percentile-t interval for §is [L, U] then the percentile-t interval for a+ ¢
is[a+ bL,a+ bU].

Exercise 10.14 You want to test Hp : 8 = 0 against H; : 8 > 0. The test for Hy is to reject if T, = 5/3(5) >c
where c is picked so that Type I error is a. You do this as follows. Using the nonparametric bootstrap, you
generate bootstrap samples, calculate the estimates 8* on these samples and then calculate

T =0*/s(0").

Let g;_,, denote the 1 — a'" quantile of T*. You replace ¢ with q;_,» and thus reject Ho if T, = 0/5(6) >
q;_,- What is wrong with this procedure?

Exercise 10.15 Suppose thatin an application, 6=1.2and s = .2. Using the nonparametric bootstrap,
1000 samples are generated from the bootstrap distribution, and 6* is calculated on each sample. The
6* are sorted, and the 0.025"" and 0.975'" quantiles of the * are .75 and 1.3, respectively.

(a) Report the 95% percentile interval for 6.

(c) With the given information, can you calculate the 95% BC percentile interval or percentile-t inter-
val for 67

Exercise 10.16 Take the normal regression model

yi=x;p+e
ei | x; ~ N(0,0°)

where we know the MLE are the least-squares estimators B and 2.

(a) Describe the parametric regression bootstrap for this model. Show that the conditional distribu-
tion of the bootstrap observations is y | F, ~ N (x/,52).

(b) Show that the distribution of the bootstrap least-squares estimator is ii* | F, ~N (ii, (X ! X)_1 62).

(c) (optional) Show that the distribution of the bootstrap t-ratio with a homoskedastic standard error
isT* ~ ty_f.

Exercise 10.17 Consider the model

yi=xp+e;
Ele;|x;]=0
with y; scalar and x; a k vector. You have a random sample (y;,x; : i = 1,...,n). You are interested in

estimating the regression function m(x) = E [ y; | x; = x| at a fixed vector x and constructing a 95% confi-
dence interval.
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(a) Write down the standard estimator and asymptotic confidence interval for m(x).
(b) Describe the percentile bootstrap confidence interval for m(x).

(c) Describe the percentile-t bootstrap confidence interval for m(x).

Exercise 10.18 The observed datais {y;, x;} € R x R¥ k>1,i=1,..., n. Take the model

yi=x;p+e;
[E[xie,-] =0
ps=E[e}]

(a) Write down an estimator for us.

(b) Explain how to use the percentile method to construct a 90% confidence interval for s in this
specific model.

Exercise 10.19 Take the model

yi=x;B+e
[E[xie,-] =0
Elej] =0

Describe the bootstrap percentile confidence interval for o2.

Exercise 10.20 The model is

Vi=x\ B+ x5, +e;
[E[x,-e,'] =0

with x,; scalar. Describe how to test Hy : B2 = 0 against H; : 82 # 0 using the nonparametric bootstrap.
Exercise 10.21 The model is

Vi=X;By+x2iP2+e;
[E[xl-ei] =0

with both x;; and x1; kx 1. Describe how to testHy : 8, = B, againstH; : B, # B, using the nonparametric
bootstrap.

Exercise 10.22 Suppose a Ph.D. student has a sample (y;,x;,z; : i = 1,...,,n) and estimates by OLS the
equation
Yi= zi@+x;ﬁ+5,~

where « is the coefficient of interest and she is interested in testing Hy : @ = 0 against H; : a # 0. She
obtains @ = 2.0 with standard error s(@) = 1.0 so the value of the t-ratio for Hg is T = a@/s(@) = 2.0. To
assess significance, the student decides to use the bootstrap. She uses the following algorithm

1. Samples ( yl’.k , x;.“, z;‘) randomly from the observations. (Random sampling with replacement). Cre-
ates a random sample with n observations.
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2. On this pseudo-sample, estimates the equation
yi=zla" +x'B*+é

by OLS and computes standard errors, including s(@*). The t-ratio for Hy, 7* = &*/s(@*) is com-
puted and stored.

3. Thisis repeated B = 10,000 times.
4. The 0.95"" empirical quantile 45 = 3.5 of the bootstrap absolute t-ratios | 7*| is computed.

5. The student notes that while |T| = 2 > 1.96 (and thus an asymptotic 5% size test rejects Hp), | T| =
2 < g5 = 3.5 and thus the bootstrap test does not reject Ho. As the bootstrap is more reliable, the
student concludes that Hy cannot be rejected in favor of H;.

Question: Do you agree with the student’s method and reasoning? Do you see an error in her method?
Exercise 10.23 Take the model

Vi=X1iP1+ X2, 2 + e
E[x;e;] =0.

The parameter of interest is 8 = 8, f,. Show how to construct a confidence interval for 6 using the fol-
lowing three methods.

(a) Asymptotic Theory.
(b) Percentile Bootstrap.

(c) Percentile-t Bootstrap.
Your answer should be specific to this problem, not general.
Exercise 10.24 Take the model

Vi=X1iP1+ X2, P2 + e
[E[x,-el-] =0
p1

B2’

Assume that the observations (y;, X1, X2;) are i.i.d. across i = 1,..., n. Describe how you would construct
the percentile-t bootstrap confidence interval for 6.

Exercise 10.25 The modelisi.i.d. data,i=1,...,n,

yi=x;p+e;
Ele; | x;]1=0.

Does the presence of conditional heteroskedasticity invalidate the application of the nonparametric
bootstrap? Explain.
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Exercise 10.26 The RESET specification test for nonlinearity in a random sample (due to Ramsey (1969))
is the following. The null hypothesis is a linear regression

Vi=X;B+e;
Ele; | x;]1=0.

The parameter f is estimated by OLS yielding predicted values ;. Then a second-stage least-squares
regression is estimated including both x; and ¥;

yi=x;B+ ()7 +e

The RESET test statistic R is the squared t-ratio on y.
A colleague suggests obtaining the critical value for the test using the bootstrap. He proposes the
following bootstrap implementation.

* Draw n observations (y;,x;) randomly from the observed sample pairs (y;, x;) to create a boot-
strap sample.

¢ Compute the statistic R* on this bootstrap sample as described above.

* Repeat this B times. Sort the bootstrap statistics R*, take the 0.95" quantile and use this as the
critical value.

* Reject the null hypothesis if R exceeds this critical value, otherwise do not reject.

Is this procedure a correct implementation of the bootstrap in this context? If not, propose a modifi-
cation.

Exercise 10.27 The model is

yi=xX;p+e
Elxie;] #0,

so the regressor x; is endogenous. We know that in this case, the least-squares estimator may be biased
for the parameter . We also know that the nonparametric BC percentile interval is (generally) a good
method for confidence interval construction in the presence of bias. Explain whether or not you ex-
pect the BC percentile interval applied to the least-squares estimator will have accurate coverage in the
presence of endogeneity.

Exercise 10.28 In Exercise 9.26 you estimated a cost function for 145 electric companies and tested the
restriction 6 = B3 + B4 + 5 = 1.

(a) Estimate the regression by unrestricted least-squares, and report standard errors calculated by
asymptotic, jackknife and the bootstrap.

(b) Estimate 8 = B3 + B4 + B5, and report standard errors calculated by asymptotic, jackknife and the
bootstrap.

(c) Report confidence intervals for 8 using the percentile and BC, methods.

Exercise 10.29 In Exercise 9.27 you estimated the Mankiw, Romer, and Weil (1992) unrestricted regres-
sion. Let 6 be the sum of the second, third and fourth coefficients.
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(a) Estimate the regression by unrestricted least-squares, and report standard errors calculated by
asymptotic, jackknife and the bootstrap.
(b) Estimate 6 and report standard errors calculated by asymptotic, jackknife and the bootstrap.

(c) Report confidence intervals for 8 using the percentile and BC methods.

Exercise 10.30 In Exercise 7.28 you estimated a wage regression with the CPS dataset and the subsample
of white Male Hispanics. Further restrict the sample to those never-married and live in the Midwest
region. (This sample has 99 observations.) As in subquestion (b), let 6 be the ratio of the return to one
year of education to the return of one year of experience.

(a) Estimate 0 and report standard errors calculated by asymptotic, jackknife and the bootstrap.
(b) Explain the discrepancy between the standard errors.

(c) Report confidence intervals for 8 using the BC percentile method.

Exercise 10.31 In Exercise 4.26 you extended the work from Duflo, Dupas and Kremer (2011). Repeat
that regression, now calculating the standard error as well by cluster bootstrap. Report a BC, confidence
interval for each coefficient.
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Chapter 11

Multivariate Regression

11.1 Introduction

Multivariate regression is a system of regression equations. Multivariate regression is used as re-
duced form models for instrumental variable estimation (explored in Chaper 12), vector autoregressions
(explored in Chapter 15), demand systems (demand for multiple goods), and other contexts.

Multivariate regression is also called by the name systems of regression equations. Closely related is
the method of Seemingly Unrelated Regressions (SUR) which we introduce in Section 11.7.

Most of the tools of single equation regression generalize naturally to multivariate regression. A ma-
jor difference is a new set of notation to handle matrix estimates.

11.2 Regression Systems

A system of linear regressions takes the form
Vii=x;B;+eji (11.1)
for variables j = 1,...,m and observations i = 1,..., n, where the regressor vectors x;; are k; x 1 and ej;
is an error. The coefficient vectors f; are k; x 1. The total number of coefficients are k = Z;’zl kj. The
regression system specializes to univariate regression when m = 1.

It is typical to treat the observations as independent across observations i but correlated across vari-
ables j. As an example, the observations y;; could be expenditures by household i on good j. The
standard assumptions are that households are mutually independent, but expenditures by an individual
household are correlated across goods.

To describe the dependence between the dependent variables, we can define the m x 1 error vector
e; =(e1;,...,em;) and its m x m variance matrix

>=E[e;e)].
The diagonal elements are the variances of the errors e;;, and the off-diagonals are the covariances across
variables. It is typical to allow X to be unconstrained.

We can group the m equations (11.1) into a single equation as follows. Let y; = (y1i,..., ymi)' be the
m x 1 vector of dependent variables, define the m x k matrix of regressors

/
_ x; 0 - 0
X; = . / ,
! X)i ;
0 0 X,
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and define the k x 1 stacked coefficient vector
By
B=| :
B
Then the m regression equations can jointly be written as

yi=XiB+ei. (11.2)

The entire system can be written in matrix notation by stacking the variables. Define

1 el X,
y= ’ e= ’ X:

.Vn el’l Xn
which are mn x 1, mn x 1, and mn x k, respectively. The system can be written as
y=Xp+e.

In many applications the regressor vectors x;; are common across the variables j, so x;; = x; and
kj = k. By this we mean that the same variables enter each equation with no exclusion restrictions.
Several important simplifications occur in this context. One is that we can write (11.2) using the notation

yi=B'xi+e; (11.3)

where B = (B,,B,, -, B,,,) is k x m. Another is that we can write the system in the n x m matrix notation

Y=XB+E
where
/ / /
Y1 € X1
Y = , E=| : |, X=
Yn €, x),

x, 0 0
0 x 0

Xl= . =Im®x;
0 0 x;

where ® is the Kronecker product (see Appendix A.21).

11.3 Least-Squares Estimator

Consider estimating each equation (11.1) by least-squares. This takes the form

. n . g
ﬁj:(;xjixji) (Zixjiyji).
i= i=
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The combined estimator of f is the stacked vector

B
B=| :
B

It turns that we can write this estimator using the systems notation

B=(X%) " (Xy)= (_Z X;Z-)_l (iiéyi). (14

X,
—I= — / .
XX=( X, X, )|
Xn
no__,__
=) X X;
i=1
/
. [ *u 0 0 x,; 0 0
:i; Xoi : DX,
0o o Xomi 0o o0 x .
X111 X
Zln—l ,ll 0 0
- Z?:IxZilel : ,
n
0 0 i=1 ¥miXp,;
and
A4
Xy=(%, - X,]| :
Yn
no_,
=) Xy
i=1
" 0 Yii
; le : :
= Xmi Ymi
1iV1i
z, 1Y
Z?:lxmiJ’mi
Hence

(Zln lxmlx/mz)_1 (Z?:1 xmiymi)

Il
=)
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as claimed.
The m x 1 residual vector for the ‘" observation is

ei=y;,—X;p

and the least-squares estimator of the m x m error variance matrix is

n
==Y ¢ (11.5)

In the case of common regressors, observe that

n 1
ﬁj:(;xix;) (;xi.)’ji)

and o ~
B=(B.B, . B,) = (X'X)"' (X'Y). (11.6)

In Stata, multivariate regression can be implemented using the mvreg command.

11.4 Mean and Variance of Systems Least-Squares

We can calculate the finite-sample mean and variance of fi under the conditional mean assumption
Ele;|x;]=0 (11.7)

where x; is the union of the regressors x ;. Equation (11.7) is equivalent to E [yj ilxi] = x’j ;B or that
the regression model is correctly specified.
We can center the estimator as

p-p=(X%)" (X¢)= (Z“) [£7)

Taking conditional expectations, we find E [[Ai | X] = B. Consequently, systems least-squares is unbiased
under correct specification.
To compute the variance of the estimator, define the conditional covariance matrix of the errors of
the i’" observation
E [eie;- | xi] = Z,’

which in general is unrestricted. Observe that if the observations are mutually independent, then

e e, eex; - ee,
Elee | X]=E : : X
éne; epey - €pep
> 0 - 0
0 o --- X,

Also, by independence across observations,
n
var

1

n n
X;-el- IX] = Zvar[Xliei Ix,-] = ZX;Z,-Xi.
i=1

1 i i=1
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It follows that
— n —
var[B1x] = (X'x) (zfgziz) (xx) .
i=1

When the regressors are common so that X; = I, ® x;. then the covariance matrix can be written as

n
var[B1X] = (Lno (X'X)™") (z (Zie x,-x;)) (T (x'x)7").
i=1
Alternatively, if the errors are conditionally homoskedastic
Eleie}|x;| =2 (11.8)
then the covariance matrix takes the form

var[1x] = (XX)" (zl X.2%,|(XX) .

If both simplifications (common regressors and conditional homoskedasticity) hold then we have
the considerable simplication
var[B| X]=Z e (X'X)"".

11.5 Asymptotic Distribution

For an asymptotic distribution it is sufficient to consider the equation-by-equation projection model

in which case
[E[xj,'eji] =0. (11.9)

First, consider consistency. Since B j are the standard least-squares estimators, they are consistent
for the projection coefficients f ;.

Second, consider the asymptotic distribution. Again by our single equation theory it is immediate
that the 3 j are asymptotically normally distributed. But our previous theory does not provide a joint
distribution of the B j across j. For this we need a joint theory for the stacked estimates [Ai, which we now
provide.

Since the vector

X1i€1i
Y’iei =
Xmi€mi

isi.i.d. across i and mean zero under (11.9), the central limit theorem implies
! ii’ N(0,Q)
_ .e; — ,
N =R

where
— — [
Q= |Xeie/X;| =E[X;2X;].

The matrix € is the covariance matrix of the variables x;;e;; across equations. Under conditional
homoskedasticity (11.8) the matrix Q simplifies to

Q-=E [X;zii] (11.10)
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(see Exercise 11.1). When the regressors are common then it simplies to
Q=Ee;e;®x;x] (11.11)

(see Exercise 11.2) and under both conditions (homoskedasticity and common regressors) it simplifies
to
Q=3Fx;x}] (11.12)

(see Exercise 11.3).
Applied to the centered and normalized estimator we obtain the asymptotic distribution.

Theorem 11.1 Under Assumption 7.2,
Vn(B-p)—N(0,V)
where

Vg=Q 'QQ™!
E[xy;x};] 0 - 0
Q=E|X;X;| = : :

For a proof, see Exercise 11.4.
When the regressors are common then the matrix Q simplies as

Q=1,0FE[x;x}] (11.13)

(See Exercise 11.5).
If both the regressors are common and the errors are conditionally homoskedastic (11.8) then we
have the simplification

-1

V=20 (E[x;x}]) (11.14)

(see Exercise 11.6).

Sometimes we are interested in parameters 6 = r(f,, ..., §,,,) = r () which are functions of the coeffi-
cients from multiple equations. In this case the least-squares estimate of @ is 0= r(lAi). The asymptotic
distribution of 8 can be obtained from Theorem 11.1 by the delta method.

Theorem 11.2 Under Assumptions 7.2 and 7.3,
Vn(0-8) —N@©,Vp)

where
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For a proof, see Exercise 11.7.

Theorem 11.2 is an example where multivariate regression is fundamentally distinct from univariate
regression. Only by treating the least-squares estimates as a joint estimator can we obtain a distributional
theory for an estimator 0 which is a function of estimates from multiple equations and thereby construct
standard errors, confidence intervals, and hypothesis tests.

11.6 Covariance Matrix Estimation

From the finite sample and asymptotic theory we can construct appropriate estimators for the vari-
ance of B. In the general case we have

7;-(¥%)" ( Z X;a,.a;.z.) (x%) .

Under conditional homoskedasticity (11.8) an appropriate estimator is

no__, __
X,;2X;

f x| )

1

v (xx) |

When the regressors are common then these estimators equal

n
‘73 _ (Im ® (X/X)—l) (Zl (’él’é/l ®xixli)) (Im ® (X/X)_l)
i=
and 0
~ EN -1
V=Ze(X'X)",

respectively.
Covariance matrix estimators for @ are found as

~ PN N
Vg=R VER
S0 =10
V=R VﬁR
~ 0 sy
R=—r .
55" @
Theorem 11.3 Under Assumption 7.2,
I’LVIA; —p> Vg
and .
S50 10
nVﬁ 5 Vﬁ.

For a proof, see Exercise 11.8.
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11.7 Seemingly Unrelated Regression

Consider the systems regression model under the conditional mean and conditional homoskedas-
ticity assumptions

yi=Xip+e; (11.15)
Ele;|x;]=0
Eleie)|x;] =2

Since the errors are correlated across equations we can consider estimation by Generalized Least Squares
(GLS). To derive the estimator, premultiply (11.15) by >71/2 5o that the transformed error vector is i.i.d.
with covariance matrix I,,. Then apply least-squares and rearrange to find

_1 n
(Zf’iz*yi . (11.16)

i=1

n
~ —_ R e

i=1

(see Exercise 11.9). Another approach is to take the vector representation
y=Xp+e

and calculate that the equation error e has variance E[ee’] = I,, ® . Premultiply the equation by I,, ®
3712 50 that the transformed error has variance matrix I ,,,, and then apply least-squares to find

Bgls: (X,(In@’z_l)f)_l(X,(I’l@z_l)y) a1

(see Exercise 11.10).
Expressions (11.16) and (11.17) are algebraically equivalent. To see the equivalence, observe that

>l 0 -~ 0 X,
X (Lez)X=(X, -« X, )| : =z : :
o o ... x! X,
n
=Y X;27'X;
i=1
and
=t oo 0 "
X (I,ezy=( X, x, | 31 :
0 0 >t Y
}‘l_l -1
=2 X2y,

Since X is unknown it must be replaced by an estimator. Using X from (11.5) we obtain a feasible GLS
estimator.

- (E’(1n®i‘l)i)_l(i’ (1nez7)y). (11.18)
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This is known as the Seemingly Unrelated Regression (SUR) estimator, and was introduced by Zellner
(1962).

The estimator £ can be updated by calculating the SUR residuals &; = y; —X;ﬁsm and the covariance
matrix estimate 3 = %Z?:l e;e.. Substituted into (11.18) we find an iterated SUR estimator, and this can
be iterated until convergence.

Under conditional homoskedasticity (11.8) we can derive its asymptotic distribution.

Theorem 11.4 Under Assumption 7.2 and (11.8)
\/ﬁ (ﬁsur - ﬁ) 7 N (0; V;)

where
vy=(E [YQZ*E])_I.

For a proof, see Exercise 11.11.
Under these assumptions (in particular conditional homoskedasticity), SUR is more efficient than
least-squares.

Theorem 11.5 Under Assumption 7.2 and (11.8)
vi=(e[xizx))
<(e[xx]) e[x=x|[E[xx])"
=Vp

and thus iisur is asymptotically more efficient than [Aiols.

For a proof, see Exercise 11.12.
An appropriate estimator of the variance of i, is

v

B:

Theorem 11.6 Under Assumption 7.2 and (11.8)

I’lVﬁ 7 Vﬁ.

For a proof, see Exercise 11.13.
In Stata, the seemingly unrelated regressions estimator is implemented using the sureg command.
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Arnold Zellner

Arnold Zellner (1927-2000) of the United States was a founding father of the
econometrics field. He was a pioneer in Bayesian econometrics. One of his core
contributions was the method of Seemingly Unrelated Regressions.

11.8 Equivalence of SUR and Least-Squares

When the regressors are common across equations x j; = x; it turns out that the SUR estimator sim-
plifies to least-squares.
To see this, recall that when regressors are common this implies that X; = I, ® x’l.. Then

—la-1 o-1
X3S ' =(Upex)3
= 2_1 ] X;
o-1
- (z ®1k) I, ®x;)
= —
= (27 e )X

Thus

~ n — A1 —
ﬁsur: ZXiZ X;

A model where regressors are not common across equations is nested within a model with the union
of all regressors included in all equations. Thus the model with regressors common across equations
is a fully unrestricted model, and a model where the regressors differ across equations is a restricted
model. Thus the above result shows that the SUR estimator reduces to least-squares in the absence of
restrictions, but SUR can differ from least-squares otherwise.

11.9 Maximum Likelihood Estimator

Take the linear model under the assumption that the error is independent of the regressors and mul-
tivariate normally distributed. Thus

Vi Zfiﬁ"'ei
e; ~N(0,X).

In this case we can consider the maximum likelihood estimator (MLE) of the coefficients.
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It is convenient to reparameterize the covariance matrix in terms of its inverse, thus § = >~ With
this reparameterization, the conditional denstiy of y; given X; equals

_ det(5)"? (

1 /
fyi |Xi)—WeXp _E(Yi_xiﬁ) S(J’i—Xiﬁ))-

The log-likelihood function for the sample is

nm n 12 — N/ _
02(B,S) :—Tlog(Zn)+§logdet(S)—Eizzl(yi—Xiﬁ) s(y;-Xip).

The maximum likelihood estimator (iimle, §mle) maximizes the log-likelihood function. The first or-
der conditions are

and

The second equation uses the matrix results % logdet (S) = $~! and % tr (AB) = A’ from Appendix A.20.
Solving and making the substitution £ = $™" we obtain

- 1 & _— —
z"mle = ; Z (yi _Xiﬁ) (yi _Xiﬁ) .
i=1
Notice that each equation refers to the other. Hence these are not closed-form expressions, but can be
solved via iteration. The solution is identical to the iterated SUR estimator. Thus the SUR estimator
(iterated) is identical to the MLE under normality.
Recall that the SUR estimator simplifies to OLS when the regressors are common across equations.

The same occurs for the MLE. Thus when X; = I, ® x; we find that . = B, and 3 mle = Zols-

11.10 Restricted Estimation

In many multivariate regression applications it is desired to impose restrictions on the coefficients.
In particular, cross-equation restrictions (for example, imposing Slutsky symmetry on a demand system)
can be quite important, and can only be imposed by a multivariate estimation method. Estimation sub-
ject to restrictions can be done by minimum distance, maximum likelihood, or the generalized method
of moments.
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Minimum distance is a straightforward application of the methods of Chapter 8 to the estimators
presented in this chapter, since such methods apply to any asymptotically normal unrestricted estima-
tor.

Imposing restrictions on maximum likelihood is also straightforward. The likelihood is maximized
subject to the imposed restrictions. One important example is explored in detail in the following section.

Generalized method of moments estimation of multivariate regression subject to restrictions will be
explored in Section 13.18. This is a particularly simple and straightforward way to estimate restricted
multivariate regression models, and is our generally preferred approach.

11.11 Reduced Rank Regression

One context where systems estimation is important is when it is desired to impose or test restrictions
across equations. Restricted systems are commonly estimated by maximum likelihood under normal-
ity. In this section we explore one important special case of restricted multivariate regression known
as reduced rank regression. The model was originally proposed by Anderson (1951) and extended by
Johansen (1995).

The unrestricted model is

y;=B'xi+C'z;+e; (11.19)
E[eie; Ixi,zl-] =2

where B is k x m, Cis ¢ x m, and x; and z; are regressors. We separate the regressors x; and z; because
the coefficient matrix B will be restricted while C will be unrestricted.
The matrix B is full rank if
rank (B) = min(k, m).

The reduced rank restriction is that
rank (B) = r < min(k, m)

for some known r.
The reduced rank restriction implies that we can write the coefficient matrix B in the factored form

B=GA

where Ais mxr and Gis k x r. This representation is not unique (as we can replace G with GQ and A with
AQ~! for any invertible Q and the same relation holds). Identification therefore requires a normalization
of the coefficients. A conventional normalization is

G'DG=1,

for given D.

Equivalently, the reduced rank restriction can be imposed by requiring that B satisfy the restriction
BA, = GA'A; = 0 for some m x (m — r) coefficient matrix A;. Since G is full rank this requires that
A'A; =0, hence A is the orthogonal complement to A. Note that A is not unique as it can be replaced
by A, Q for any (m —r) x (m —r) invertible Q. Thus if A is to be estimated it requires a normalization.

We discuss methods for estimation of G, A, Z, C, and A, . The standard approach is maximum like-
lihood under the assumption that e; ~ N (0, X). The log-likelihood function for the sample is

0,(G,A,C,Z) = —%log(Zn) - glogdet )

(y;—AG'x;—C'z;)) =7 (y;, - AG'x; - C'z;).
1

1 n
_5.:

1



CHAPTER 11. MULTIVARIATE REGRESSION 338

Anderson (1951) derived the MLE by imposing the constraint BA; = 0 via the method of Lagrange
multipliers. This turns out to be algebraically cumbersome.

Johansen (1995) instead proposed a concentration method which turns out to be relatively straight-
forward. The method is as follows. First, treat G as if it is known. Then maximize the log-likelihood
with respect to the other parameters. Resubstituting these estimates, we obtain the concentrated log-
likelihood function with respect to G. This can be maximized to find the MLE for G. The other parameter
estimates are then obtain by substitution. We now describe these steps in detail.

Given G, the likelihood is a normal multivariate regression in the variables G'x; and z;, so the MLE for
A, C and X are least-squares. In particular, using the Frisch-Waugh-Lovell residual regression formula,
we can write the estimators for A and X as

A = (VX6 (G’X'}?G)_l
and
1
n

~ ~~ ~~ ~f~ -1 )~
3G = (Y’Y— Y'XG (G’X’XG) G'X’y)

where
Y=Y-2Z(Z'2)'Z'vY
X=x-z(z2z)"'z'x.

Substituting these estimators into the log-likelihood function, we obtain the concentrated likelihood
function, which is a function of G only

74(6)=1,(G,A6),C(6),2(G)

~l~ o~ ~ ~f~ -1 ~)~
=2 (nlogem - 1) - glogdet(Y'Y -7'X6(¢X'X6) ¢X'V

-1

det (G’ (XX -X'7(7'7) Y’X) c)

- % (nlog(2m) —1) - glogdet(f/’fr) " (G'X’XG)

The third equality uses Theorem A.1.8. The MLE G for G is the maximizer of 7| (G), or equivalently equals

o~ e fme [~y ~\—1 ~
det (G’ (X’X X'y (Y’Y) Y’X) G)

~

G = argmin = (11.20)
G det(G’X XG)
ISP
det(G’X Y(Y Y) Y’XG)
= argmax —
G det(G’X XG)
= {vll ey Vr}

et (ot e\l —f
which are the generalized eigenvectors of X 'Y (Y’Y) Y'X with respect to X 'X corresponding to the

r largest generalized eigenvalues. (Generalized eigenvalues and eigenvectors are discussed in Section
. . C L Nl . .
A.14.) The estimator satisfies the normalization G X XG = I,. Letting v}f denote the eigenvectors of

(11.20), we can also express G = {v},, .., v5 .}

This is computationally straightforward. In MATLAB, for example, the generalized eigenvalues and
eigenvectors of a matrix A with respect to B are found using the command eig(A,B).
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Given f;, the MLE A4, (AJ, 3 are found by least-squares regression of y; on @’xi and z;. In particular,
A=G'X'Y since G X'XG = I,.
We now discuss the estimator A; of A . It turns out that
S sis(ois) lors
det(A’(Y Y-V X(X X) X Y)A)
(11.21)

A T det(A’f/’?A)

= {WI, [XX3) wm—r}

the eigenvectors of YY-v'x (5( '52)_1 X'Y with respect to Y'Y associated with the largest m — r eigen-
values.

By the dual eigenvalue relation (Theorem A.5), the eigenvalue problems in equations (11.20) and
(11.21) have the same non-unit eigenvalues 1;, and the associated eigenvectors v;f and w; satisfy the
relationship

-1 -
wi=A;"2(V'Y) VX,
Letting A = diag{A;, ..., Am—r+1} this implies
SIS SIS "
(W oo Wiy pa1} = (Y Y) Y'X{v,..,v LA

m-r+1
= (17'17)_ AA.
The second equality holds since G = {vy,..,v5 ., }and A =Y'XG. Since the eigenvectors w; satisfy

m-r+

the orthogonality property w’]. Y'Yw,=0for j # ¢, it follows that

O = ﬁl?,?{wM,..., Wm_r+l} = 23_21\.

Since A > 0 we conclude that ?ll?l =0 as desired.
The solution A, in (11.21) can be represented several ways. One which is computationally conve-
nient is to observe that .
VV7-V'X(X'X) V'X=Y'Mx,Y=0¢

where Mx z = I, - (X,2)((X,2)' (X, Z))_1 (X,Z) and € = My 2Y is the residual from the unrestricted

least-squares regression of Y on X and Z. The first equality follows by the Frisch-Waugh-Lovell theorem.

This shows that A are the generalized eigenvectors of € with respect to Y'Yy corresponding to the m—r

largest eigenvalues. In MATLAB, for example, these can be computed using the eig(4,B) command.
Another representation is to write Mz = I,— Z(Z'Z )_1 Z' so that

det(A'Y'Mx 7Y A) . det(A'Y'M2YA)

det(AY'MzYA) 4 det(A'Y'Mx ,YA)

A, =argmax
A
We summarize our findings.

Theorem 11.7 The MLE for the reduced rank model (11.19) under e; ~ N (0, X) is given as follows. @mle =
e (el —re
{v1,...,v;}, the generalized eigenvectors of X 'Y (Y'Y) Y'X with respect to X'x corresponding to the r

largest eigenvalues. Amle, C‘mle and 2. are obtained by the least-squares regression

~ -~/ —~
Y = AnleGpieXi + Cpezi +€;

1

nf
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A, equals the generalized eigenvectors of &€ with respect to Y'Yy corresponding to the m — r smallest
eigenvalues.

11.12 Principal Component Analysis

Recall in Section 4.22 we described the Duflo, Dupas and Kremer (2011) dataset which contains a
sample of Kenyan first grade students and their test scores. Following the authors we had estimated re-
gressions attempting to explain the variable fotalscore, which was each student’s composite test score.
However, if you examine the data file you will find a large number of other pieces of information, includ-
ing each student’s score on the separate sections of the test, with the labels wordscore (word recognition),
sentscore (sentence recognition), letterscore (letter recognition), spellscore (spelling), additions_score (ad-
dition), substractions_score (subtraction), multiplications_score (multiplication). The “total” score sums
the scores from the individual sections. Perhaps there is more information in the individual scores. How
can we learn about this from the data?

Principal component analysis (PCA) addresses this issue by building models consisting of a com-
mon component and an idiosyncratic component. Let x; be a k x 1 vector (for example the seven test
sub-scores described above) of observations for individual i. The elements of x; should be standardized
to have mean zero and unit variance. A single factor model takes the form

xi=hfi+u; (11.22)

where x;, h and u; are k x 1 and f; is scalar. The random variable f; is known as the common factor and
the random vector u; is the individual component. The vector h is called the factor loadings. The scale
of h and f; are not separately identified, so a normalization is required. A typical choice is to normalize
h to have unit length, h'h = 1. The sign of h and f; are also not separately identified, so another normal-
ization is needed. One choice is to set the sign so that )., f; > 0. Let 0? =E| flz] be a free parameter.

Economists typically refer to (11.22) as a factor model. Other disciplines reserve that label for similar
but distinct models.

The way to think about (11.22) in the student test score example is that f; is a student’s scholastic
“aptitude” and the vector h describes how scholastic aptitude affects the seven sub-sections of the test.
We would expect the elements of k to all be positive, indicating that scholastic aptitude is related to
improved performance in all seven test areas.

Equation (11.22) decomposes the vector of observables x; into a the components f; and u;. The
model is typically completed by the assumption that the elements of f; and u; are mutually uncorrelated,
and the elements of u; have common variances so that E [ui u’l] =1 kUi-

Under the assumptions described above the covariance matrix of x; takes the form

= =E[x;x]
= hh'a? + 102,
In fact this summarizes the implications of the assumptions. An alternative way of viewing the model

(11.22) is that it is equivalent to restricting the covariance matrix X to take this form.
Notice that since ' h =1

2.h = R A0% + [Ao% = ho' + ho’, = k(0% + 0%

This means that h is an eigenvector of X, with associated eigenvalue 0? +02. Leth j be any other eigen-

vector of Z,. Since h'h; =0,
2hj=hW'hjo’ + Ixhjoy, = hjoy,
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so its associated eigenvalue is 0. Thus X, has eigenvalues U?, +0? and ¢?, the latter with multiplicity

k—1. So h is the eigenvector associated with the largest eigenvalue (if U? is strictly positive). The pro-

portional contribution of this factor to the total variance is 1,/ Z%zl Am where 1, are the eigenvalues of
3.

This suggests that the factor loading can be estimated by the leading eigenvector of the sample co-
variance matrix £, = n~! ;?:1 xix;.. Let 11 > Ig > > ik be the eigenvalues of 3. and ﬁl,ﬁz, ...,ﬁk the
associated eigenvectors. The estimator of h is Tll.

A multiple factor model takes the form

r
Xi= Z hmfml +U; (11.23)
m=1
=Hf;+u,

where h;, are k x 1 factor loadings and f;; is scalar. The second line sets H = 