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Preface

This textbook is the second in a three-part series covering the core material typically taught in a one-
year Ph.D. course in econometrics. The sequence is

1. Introduction to Econometrics (first volume)

2. Econometrics (this volume)

The textbooks are written as an integrated series. Each volume is reasonably self-contained, but each
builds on the material introduced in the previous volume(s).

This volume assumes that students have a background in multivariate calculus, probability theory,
linear algebra, and mathematical statistics. A prior course in undergraduate econometrics would be
helpful but not required. Two excellent undergraduate textbooks are Wooldridge (2015) and Stock and
Watson (2014). The relevant background in probability theory and mathematical statistics is provided in
Introduction to Econometrics.

For reference, the basic tools of matrix algebra and probability inequalites are reviewed in the Ap-
pendix.

For students wishing to deepen their knowledge of matrix algebra in relation to their study of econo-
metrics, I recommend Matrix Algebra by Abadir and Magnus (2005).

For further study in econometrics beyond this text, I recommend White (1984) and Davidson (1994)
for asymptotic theory, Hamilton (1994) and Kilian and Lütkepohl (2017) for time series methods, Cameron
and Trivedi (2005) and Wooldridge (2010) for panel data and discrete response models, and Li and Racine
(2007) for nonparametrics and semiparametric econometrics. Beyond these texts, the Handbook of
Econometrics series provides advanced summaries of contemporary econometric methods and theory.

Alternative PhD-level econometrics textbooks include Theil (1971), Amemiya (1985), Judge, Griffiths,
Hill, Lütkepohl, and Lee (1985), Goldberger (1991), Davidson and MacKinnon (1993), Johnston and Di-
Nardo (1997), Davidson (2000), Hayashi (2000), Ruud (2000), Davidson and MacKinnon (2004), Greene
(2017) and Magnus (2017). For a focus on applied methods see Angrist and Pischke (2009).

The end-of-chapter exercises are important parts of the text and are meant to help teach students of
econometrics. Answers are not provided, and this is intentional.

I would like to thank Ying-Ying Lee and Wooyoung Kim for providing research assistance in preparing
some of the numerical analysis, graphics, and empirical examples presented in the text.

This is a manuscript in progress. Parts I-III are near complete. Parts IV and V are incomplete, in
particular Chapters 16, 21, 22 and 23.
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Chapter 1

Introduction

1.1 What is Econometrics?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of Norway,
one of the three principal founders of the Econometric Society, first editor of the journal Econometrica,
and co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969. It is therefore fitting
that we turn to Frisch’s own words in the introduction to the first issue of Econometrica to describe the
discipline.

A word of explanation regarding the term econometrics may be in order. Its definition
is implied in the statement of the scope of the [Econometric] Society, in Section I of the
Constitution, which reads: “The Econometric Society is an international society for the ad-
vancement of economic theory in its relation to statistics and mathematics.... Its main object
shall be to promote studies that aim at a unification of the theoretical-quantitative and the
empirical-quantitative approach to economic problems....”

But there are several aspects of the quantitative approach to economics, and no single
one of these aspects, taken by itself, should be confounded with econometrics. Thus, econo-
metrics is by no means the same as economic statistics. Nor is it identical with what we call
general economic theory, although a considerable portion of this theory has a defininitely
quantitative character. Nor should econometrics be taken as synonomous with the appli-
cation of mathematics to economics. Experience has shown that each of these three view-
points, that of statistics, economic theory, and mathematics, is a necessary, but not by itself
a sufficient, condition for a real understanding of the quantitative relations in modern eco-
nomic life. It is the unification of all three that is powerful. And it is this unification that
constitutes econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.

This definition remains valid today, although some terms have evolved somewhat in their usage.
Today, we would say that econometrics is the unified study of economic models, mathematical statistics,
and economic data.

Within the field of econometrics there are sub-divisions and specializations. Econometric theory
concerns the development of tools and methods, and the study of the properties of econometric meth-
ods. Applied econometrics is a term describing the development of quantitative economic models and
the application of econometric methods to these models using economic data.

1
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1.2 The Probability Approach to Econometrics

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-1999)
of Norway, winner of the 1989 Nobel Memorial Prize in Economic Sciences, in his seminal paper “The
probability approach in econometrics” (1944). Haavelmo argued that quantitative economic models
must necessarily be probability models (by which today we would mean stochastic). Deterministic mod-
els are blatently inconsistent with observed economic quantities, and it is incoherent to apply determin-
istic models to non-deterministic data. Economic models should be explicitly designed to incorporate
randomness; stochastic errors should not be simply added to deterministic models to make them ran-
dom. Once we acknowledge that an economic model is a probability model, it follows naturally that an
appropriate tool way to quantify, estimate, and conduct inferences about the economy is through the
powerful theory of mathematical statistics. The appropriate method for a quantitative economic analy-
sis follows from the probabilistic construction of the economic model.

Haavelmo’s probability approach was quickly embraced by the economics profession. Today no
quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its imple-
mentation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic model
is specified, and the quantitative analysis performed under the assumption that the economic model
is correctly specified. Researchers often describe this as “taking their model seriously”Ṫhe structural
approach typically leads to likelihood-based analysis, including maximum likelihood and Bayesian esti-
mation.

A criticism of the structural approach is that it is misleading to treat an economic model as correctly
specified. Rather, it is more accurate to view a model as a useful abstraction or approximation. In this
case, how should we interpret structural econometric analysis? The quasi-structural approach to infer-
ence views a structural economic model as an approximation rather than the truth. This theory has led
to the concepts of the pseudo-true value (the parameter value defined by the estimation problem), the
quasi-likelihood function, quasi-MLE, and quasi-likelihood inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially spec-
ified but some features are left unspecified. This approach typically leads to estimation methods such
as least-squares and the Generalized Method of Moments. The semiparametric approach dominates
contemporary econometrics, and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar to the
quasi-structural approach, the calibration approach interprets structural models as approximations and
hence inherently false. The difference is that the calibrationist literature rejects mathematical statistics
(deeming classical theory as inappropriate for approximate models) and instead selects parameters by
matching model and data moments using non-statistical ad hoc1 methods.

Trygve Haavelmo

The founding ideas of the field of econometrics are largely due to the Nor-
weigen econometrician Trygve Haavelmo (1911-1999). His advocacy of proba-
bility models revolutionized the field, and his use of formal mathematical rea-
soning laid the foundation for subsequent generations. He was awarded the No-
bel Memorial Prize in Economic Sciences in 1989.

1Ad hoc means “for this purpose” – a method designed for a specific problem – and not based on a generalizable principle.
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1.3 Econometric Terms and Notation

In a typical application, an econometrician has a set of repeated measurements on a set of variables.
For example, in a labor application the variables could include weekly earnings, educational attainment,
age, and other descriptive characteristics. We call this information the data, dataset, or sample.

We use the term observations to refer to the distinct repeated measurements on the variables. An
individual observation often corresponds to a specific economic unit, such as a person, household, cor-
poration, firm, organization, country, state, city or other geographical region. An individual observation
could also be a measurement at a point in time, such as quarterly GDP or a daily interest rate.

Economists typically denote variables by the italicized roman characters y , x, and/or z. The conven-
tion in econometrics is to use the character y to denote the variable to be explained, while the characters
x and z are used to denote the conditioning (explaining) variables.

Following mathematical convention, real numbers (elements of the real line R, also called scalars)
are written using lower case italics such as x, and vectors (elements of Rk ) by lower case bold italics such
as x , e.g.

x =

0

BBBB@

x1

x2
...

xk

1

CCCCA
.

Upper case bold italics such as X are used for matrices.
We denote the number of observations by the natural number n, and subscript the variables by the

index i to denote the individual observation, e.g. yi , x i and z i . In some contexts we use indices other
than i , such as in time series applications where the index t is common. In panel studies we typically use
the double index i t to refer to individual i at a time period t .

The i th observation is the set (yi , x i , z i ).
The sample is the set {(yi , x i , z i ) : i = 1, ...,n}.

It is proper mathematical practice to use upper case X for random variables and lower case x for
realizations or specific values. Since we use upper case to denote matrices, the distinction between
random variables and their realizations is not rigorously followed in econometric notation. Thus the
notation yi will in some places refer to a random variable, and in other places a specific realization.
This is undesirable but there is little to be done about it without terrifically complicating the notation.
Hopefully there will be no confusion as the use should be evident from the context.

We typically use Greek letters such as Ø, µ and æ2 to denote unknown parameters of an econometric
model, and use boldface, e.g. Ø or µ, when these are vector-valued. Estimators are typically denoted by
putting a hat “^”, tilde “~” or bar “-” over the corresponding letter, e.g. bØ and eØ are estimators of Ø.

The covariance matrix of an econometric estimator will typically be written using the capital bold-
face V , often with a subscript to denote the estimator, e.g. V bØ = var

£bØ
§

as the covariance matrix for bØ.

Hopefully without causing confusion, we will use the notation V Ø = avar
£bØ

§
to denote the asymptotic

covariance matrix of
p

n
°bØ°Ø

¢
(the variance of the asymptotic distribution). Estimators will be denoted

by appending hats or tildes, e.g. bV Ø is an estimator of V Ø.
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1.4 Observational Data

A common econometric question is to quantify the causal impact of one set of variables on another
variable. For example, a concern in labor economics is the returns to schooling – the change in earnings
induced by increasing a worker’s education, holding other variables constant. Another issue of interest
is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns to
schooling, an experiment might randomly divide children into groups, mandate different levels of ed-
ucation to the different groups, and then follow the children’s wage path after they mature and enter the
labor force. The differences between the groups would be direct measurements of the effects of differ-
ent levels of education. However, experiments such as this would be widely condemned as immoral!
Consequently, in economics non-laboratory experimental data sets are typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data col-
lection we can record the level of a person’s education and their wage. With such data we can measure
the joint distribution of these variables, and assess the joint dependence. But from observational data it
is difficult to infer causality as we are not able to manipulate one variable to see the direct effect on the
other. For example, a person’s level of education is (at least partially) determined by that person’s choices.
These factors are likely to be affected by their personal abilities and attitudes towards work. The fact that
a person is highly educated suggests a high level of ability, which suggests a high relative wage. This is an
alternative explanation for an observed positive correlation between educational levels and wages. High
ability individuals do better in school, and therefore choose to attain higher levels of education, and their
high ability is the fundamental reason for their high wages. The point is that multiple explanations are
consistent with a positive correlation between schooling levels and education. Knowledge of the joint
distribution alone may not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. This means that
all variables must be treated as random and possibly jointly determined.

This discussion means that it is difficult to infer causality from observational data alone. Causal
inference requires identification, and this is based on strong assumptions. We will discuss these issues
on occasion throughout the text.

1.5 Standard Data Structures

There are five major types of economic data sets: cross-sectional, time series, panel, clustered, and
spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative records
are a typical source for cross-sectional data. In typical applications, the individuals surveyed are per-
sons, households, firms or other economic agents. In many contemporary econometric cross-section
studies the sample size n is quite large. It is conventional to assume that cross-sectional observations
are mutually independent. Most of this text is devoted to the study of cross-section data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates, prices
and interest rates. This type of data is characterized by serial dependence. Most aggregate economic data
is only available at a low frequency (annual, quarterly or perhaps monthly) so the sample size is typically
much smaller than in cross-section studies. An exception is financial data where data are available at a
high frequency (weekly, daily, hourly, or by transaction) so sample sizes can be quite large.
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Panel data combines elements of cross-section and time series. These data sets consist of a set of
individuals (typically persons, households, or corporations) measured repeatedly over time. The com-
mon modeling assumption is that the individuals are mutually independent of one another, but a given
individual’s observations are mutually dependent. In some panel data contexts, the number of time se-
ries observations T per individual is small while the number of individuals n is large. In other panel data
contexts (for example when countries or states are taken as the unit of measurement) the number of
individuals n can be small while the number of time series observations T can be moderately large. An
important issue in econometric panel data is the treatment of error components.

Clustered samples are increasing popular in applied economics and are related to panel data. In clus-
tered sampling, the observations are grouped into “clusters” which are treated as mutually independent
yet allowed to be dependent within the cluster. The major difference with panel data is that clustered
sampling typically does not explicitly model error component structures, nor the dependence within
clusters, but rather is concerned with inference which is robust to arbitrary forms of within-cluster cor-
relation.

Spatial dependence is another model of interdependence. The observations are treated as mutually
dependent according to a spatial measure (for example, geographic proximity). Unlike clustering, spatial
models allow all observations to be mutually dependent, and typically rely on explicit modeling of the
dependence relationships. Spatial dependence can also be viewed as a generalization of time series
dependence.

Data Structures

• Cross-section

• Time-series

• Panel

• Clustered

• Spatial

As we mentioned above, most of this text will be devoted to cross-sectional data under the assump-
tion of mutually independent observations. By mutual independence we mean that the i th observation°
yi , x i , z i

¢
is independent of the j th observation

°
y j , x j , z j

¢
for i 6= j . In this case we say that the data

are independently distributed. (Sometimes the label “independent” is misconstrued. It is a statement
about the relationship between observations i and j , not a statement about the relationship between yi

and x i and/or z i .)
Furthermore, if the data is randomly gathered, it is reasonable to model each observation as a draw

from the same probability distribution. In this case we say that the data are identically distributed.
If the observations are mutually independent and identically distributed, we say that the observations
are independent and identically distributed, i.i.d., or a random sample. For most of this text we will
assume that our observations come from a random sample.

Definition 1.1 The observations (yi , x i , z i ) are a sample from the distribution
F if they are identically distributed across i = 1, ...,n with joint distribution F .
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Definition 1.2 The observations (yi , x i , z i ) are a random sample if they are
mutually independent and identically distributed (i.i.d.) across i = 1, ...,n.

In the random sampling framework, we think of an individual observation
°
yi , x i , z i

¢
as a realization

from a joint probability distribution F
°
y, x , z

¢
which we can call the population. This “population” is

infinitely large. This abstraction can be a source of confusion as it does not correspond to a physical
population in the real world. It is an abstraction since the distribution F is unknown, and the goal of
statistical inference is to learn about features of F from the sample. The assumption of random sampling
provides the mathematical foundation for treating economic statistics with the tools of mathematical
statistics.

The random sampling framework was a major intellectual breakthrough of the late 19th century,
allowing the application of mathematical statistics to the social sciences. Before this conceptual devel-
opment, methods from mathematical statistics had not been applied to economic data as the latter was
viewed as non-random. The random sampling framework enabled economic samples to be treated as
random, a necessary precondition for the application of statistical methods.

1.6 Econometric Software

Economists use a variety of econometric, statistical, and programming software.
Stata (www.stata.com) is a powerful statistical program with a broad set of pre-programmed econo-

metric and statistical tools. It is quite popular among economists, and is continuously being updated
with new methods. It is an excellent package for most econometric analysis, but is limited when you
want to use new or less-common econometric methods which have not yet been programed. At many
points in this textbook specific Stata estimation methods and commands are described. These com-
mands are valid for Stata version 15.

MATLAB (www.mathworks.com), GAUSS (www.aptech.com), and OxMetrics (www.oxmetrics.net)
are high-level matrix programming languages with a wide variety of built-in statistical functions. Many
econometric methods have been programed in these languages and are available on the web. The ad-
vantage of these packages is that you are in complete control of your analysis, and it is easier to program
new methods than in Stata. Some disadvantages are that you have to do much of the programming your-
self, programming complicated procedures takes significant time, and programming errors are hard to
prevent and difficult to detect and eliminate. Of these languages, GAUSS used to be quite popular among
econometricians, but currently MATLAB is more popular.

An intermediate choice is R (www.r-project.org). R has the capabilities of the above high-level matrix
programming languages, but also has many built-in statistical environments which can replicate much
of the functionality of Stata. R is the dominate programming language in the statistics field, so methods
developed in that arena are most commonly available in R. Uniquely, R is open-source, user-contributed,
and best of all, completely free! A smaller but growing group of econometricians are enthusiastic fans of
R.

For highly-intensive computational tasks, some economists write their programs in a standard pro-
gramming language such as Fortran or C. This can lead to major gains in computational speed, at the
cost of increased time in programming and debugging.

There are many other packages which are used by econometricians, include Eviews, Gretl, PcGive,
Python, Julia, RATS, and SAS.

As the packages described above have distinct advantages, many empirical economists end up using
more than one package. As a student of econometrics, you will learn at least one of these packages, and
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probably more than one. My advice is that all students of econometrics should develop a basic level of
familiarity with Stata, and either Matlab or R (or all three).

1.7 Replication

Scientific research needs to be documented and replicable. For social science research using obser-
vational data, this requires careful documentation and archiving of the research methods, data manipu-
lations, and coding.

The best practice is as follows. Accompanying each published paper an author should create a com-
plete replication package (set of data files, documentation, and program code files). This package should
contain the source (raw) data used for analysis, and code which executes the empirical analysis and other
numerical work reported in the paper. In most cases this is a set of programs which may need to be ex-
ecuted sequentially. (For example, there may be an initial program which “cleans” and manipulates
the data, and then a second set of programs which estimate the reported models.) The ideal is full docu-
mentation and clarity. This package should be posted on the author(s) website, and posted at the journal
website when that is an option.

A complicating factor is that many current economic data sets have restricted access and cannot be
shared without permission. In these cases the data cannot be posted nor shared. The computed code,
however, can and should be posted.

Most journals in economics require authors of published papers to make their datasets generally
available. For example:

Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must
be replicable. Therefore, authors of accepted papers must submit data sets, programs, and
information on empirical analysis, experiments and simulations that are needed for replica-
tion and some limited sensitivity analysis.

The American Economic Review states:

All data used in analysis must be made available to any researcher for purposes of replica-
tion.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data used in
the analysis are clearly and precisely documented and are readily available to any researcher
for purposes of replication.

If you are interested in using the data from a published paper, first check the journal’s website, as
many journals archive data and replication programs online. Second, check the website(s) of the paper’s
author(s). Most academic economists maintain webpages, and some make available replication files
complete with data and programs. If these investigations fail, email the author(s), politely requesting the
data. You may need to be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their data and
programs available. Unfortunately, many fail to do so, and typically for poor reasons. The irony of the
situation is that it is typically in the best interests of a scholar to make as much of their work (including
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all data and programs) freely available, as this only increases the likelihood of their work being cited and
having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end prod-
uct, you will need (and want) to provide all data and programs to the community of scholars. The greatest
form of flattery is to learn that another scholar has read your paper, wants to extend your work, or wants
to use your empirical methods. In addition, public openness provides a healthy incentive for trans-
parency and integrity in empirical analysis.

1.8 Data Files for Textbook

On the textbook webpage http://www.ssc.wisc.edu/~bhansen/econometrics/ there are posted a num-
ber of files containing data sets which are used in this textbook both for illustration and for end-of-
chapter empirical exercises. For most of the data sets there are four files: (1) Description (pdf format);
(2) Excel data file; (3) Text data file; (4) Stata data file. The three data files are identical in content: the
observations and variables are listed in the same order in each, and all have variable labels.

For example, the text makes frequent reference to a wage data set extracted from the Current Popula-
tion Survey. This data set is named , and is represented by the files ,

, , and .
The data sets currently included are

•

– Data file from Arellano and Bond (1991)

•

– Data file from Acemoglu, Johnson and Robinson (2001)

•

– Data file from Angrist and Krueger (1991)

•

– Data file from Angrist and Lavy (1999)

•

– Data file from Bernheim, Meer and Novarro (2016)

•

– household survey data extracted from the March 2009 Current Population Survey

•

– Data file from Card (1995)

•
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– Data file from Cox, Hansen and Jimenez (2004)

•

– Data file from Card and Krueger (1994)

•

– Data file from Duflo, Dupas and Kremer (2011)

•

– Data file from DiTella and Schargrodsky (2004)

• and

– U.S. monthly and quarterly macroeconomic databases from McCracken and Ng (2015)

•

– Data file from Hall and Hall (1993)

•

– Data file from Kilian (2009)

•

– Data file from Mankiw, Romer and Weil (1992)

•

– Data file from Nerlov (1963)

•

– Data file from Reinhard and Rogoff (2010)

1.9 Reading the Manuscript

I have endeavored to use a unified notation and nomenclature. The development of the material is
cumulative, with later chapters building on the earlier ones. Nevertheless, every attempt has been made
to make each chapter self-contained so readers can pick and choose topics according to their interests.

To fully understand econometric methods it is necessary to have a mathematical understanding of its
mechanics, and this includes the mathematical proofs of the main results. Consequently, this text is self-
contained with nearly all results proved with full mathematical rigor. The mathematical development
and proofs aim at brevity and conciseness (sometimes described as mathematical elegance), but also at
pedagogy. To understand a mathematical proof it is not sufficient to simply read the proof, you need to
follow it and re-create it for yourself.
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Nevertheless, many readers will not be interested in each mathematical detail, explanation, or proof.
This is okay. To use a method it may not be necessary to understand the mathematical details. Accord-
ingly I have placed the more technical mathematical proofs and details in chapter appendices. These
appendices and other technical sections are marked with an asterisk (*). These sections can be skipped
without any loss in exposition.

The key concepts of matrix algebra and probability inequalities are reviewed in Appendices A & B.
It may be useful to read or review Appendix A.1-A.11 before starting Chapter 3, and review Appendix B
before Chapter 6. It is not necessary to understand all the material in the appendices. They are intended
to be reference material and some of the results are not used in this textbook.
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1.10 Common Symbols

a scalar
a vector
A matrix
X random variable
X random vector
R real line
R+ positive real line
R

k Euclidean k space
P [A] probability
P [A | B ] conditional probability
F (x) cumulative distribution function
º(x) probability mass function
f (x) probability density function
E [X ] mathematical expectation
E [Y | X = x], E [Y | X ] conditional expectation
var[X ] variance
var[Y | X ] conditional variance
cov(X ,Y ) covariance
var[X ] covariance matrix
P

£
y | x

§
best linear predictor

corr(X ,Y ) correlation
X n sample mean
bæ2 sample variance
s2 biased-corrected sample variance
bµ estimator
s
°bµ

¢
standard error of estimator

lim
n!1

limit

plim
n!1

probability limit

°! convergence
°!

p
convergence in probability

°!
d

convergence in distribution

Ln(µ) likelihood function
`n(µ) log-likelihood function
Iµ information matrix
N(0,1) standard normal distribution
N(µ,æ2) normal distribution with mean µ and variance æ2

¬2
k chi-square distribution with k degrees of freedom
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I n n £n identity matrix
1n n £1 vector of ones
tr A trace
A
0 vector or matrix transpose

A
°1 matrix inverse

A > 0 positive definite
A ∏ 0 positive semi-definite
kak Euclidean norm
kAk matrix norm
de f= definitional equality

(a) indicator function (1 if a is true, else 0)
' approximate equality
ª is distributed as
log(x) natural logarithm
exp(x) exponential function

nX

i=1
xummation from i = 1 to i = n
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Chapter 2

Conditional Expectation and Projection

2.1 Introduction

The most commonly applied econometric tool is least-squares estimation, also known as regression.
As we will see, least-squares is a tool to estimate an approximate conditional mean of one variable (the
dependent variable) given another set of variables (the regressors, conditioning variables, or covari-
ates).

In this chapter we abstract from estimation and focus on the probabilistic foundation of the condi-
tional expectation model and its projection approximation. This is to some extent a review of probability
theory. For a background in intermediate probability theory see Chapters 1-5 of Statistical Theory for
Econometricians.

2.2 The Distribution of Wages

Suppose that we are interested in wage rates in the United States. Since wage rates vary across work-
ers, we cannot describe wage rates by a single number. Instead, we can describe wages using a probabil-
ity distribution. Formally, we view the wage of an individual worker as a random variable wage with the
probability distribution

F (u) =P
£
wage ∑ u

§
.

When we say that a person’s wage is random we mean that we do not know their wage before it is mea-
sured, and we treat observed wage rates as realizations from the distribution F. Treating unobserved
wages as random variables and observed wages as realizations is a powerful mathematical abstraction
which allows us to use the tools of mathematical probability.

A useful thought experiment is to imagine dialing a telephone number selected at random, and then
asking the person who responds to tell us their wage rate. (Assume for simplicity that all workers have
equal access to telephones, and that the person who answers your call will respond honestly.) In this
thought experiment, the wage of the person you have called is a single draw from the distribution F of
wages in the population. By making many such phone calls we can learn the distribution F of the entire
population.

When a distribution function F is differentiable we define the probability density function

f (u) = d
du

F (u).

The density contains the same information as the distribution function, but the density is typically easier
to visually interpret.

14
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Figure 2.1: Wage Distribution and Density. All Full-time U.S. Workers

In Figure 2.1 we display estimates1 of the probability distribution function (panel (a)) and density
function (panel (b)) of U.S. wage rates in 2009. We see that the density is peaked around $15, and most
of the probability mass appears to lie between $10 and $40. These are ranges for typical wage rates in the
U.S. population.

Important measures of central tendency are the median and the mean. The median m of a continu-
ous2 distribution F is the unique solution to

F (m) = 1
2

.

The median U.S. wage is $19.23. The median is a robust3 measure of central tendency, but it is tricky to
use for many calculations as it is not a linear operator.

The expectation or mean of a random variable y with discrete support is

µ= E
£

y
§
=

1X

j=1
ø jP

£
y = ø j

§
.

For a continuous random variable with density f (y) the expectation is

µ= E
£

y
§
=

Z1

°1
y f (y)d y.

Here we have used the common and convenient convention of using the single character y to denote
a random variable, rather than the more cumbersome label wage. We sometimes use the notation Ey
instead of E

£
y
§

when the variable whose expectation is being taken is clear from the context. There is no
distinction in meaning. An alternative notation which includes both discrete and continuous random
variables as special cases is

µ= E
£

y
§
=

Z1

°1
ydF (y).

1The distribution and density are estimated nonparametrically from the sample of 50,742 full-time non-military wage-
earners reported in the March 2009 Current Population Survey. The wage rate is constructed as annual individual wage and
salary earnings divided by hours worked.

2If F is not continuous the definition is m = inf
Ω

u : F (u) ∏ 1
2

æ

3The median is not sensitive to pertubations in the tails of the distribution.
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This notation means the average with respect to the distribution function F (y).
The mean is a convenient measure of central tendency because it is a linear operator and arises

naturally in many economic models. A disadvantage of the mean is that it is not robust4 especially in the
presence of substantial skewness or thick tails, which are both features of the wage distribution as can be
seen easily in the right panel of Figure 2.1. Another way of viewing this is that 64% of workers earn less
than the mean wage of $23.90, suggesting that it is incorrect to describe the mean $23.90 as a “typical”
wage rate.

In this context it is useful to transform the data by taking the natural logarithm5. Figure 2.1(c) shows
the density of log hourly wages log(wage) for the same population. The density of log wages is much less
skewed and fat-tailed than the density of the level of wages, so its mean

E
£
log(wage)

§
= 2.95

is a much better (more robust) measure6 of central tendency of the distribution. For this reason, wage
regressions typically use log wages as a dependent variable rather than the level of wages.

Another useful way to summarize the probability distribution F (u) is in terms of its quantiles. For
any Æ 2 (0,1), the Æth quantile of the continuous7 distribution F is the real number qÆ which satisfies

F
°
qÆ

¢
=Æ.

The quantile function qÆ, viewed as a function of Æ, is the inverse of the distribution function F. The
most commonly used quantile is the median, that is, q0.5 = m. We sometimes refer to quantiles by the
percentile representation of Æ, and in this case they are often called percentiles, e.g. the median is the
50th percentile.

2.3 Conditional Expectation

We saw in Figure ?? the density of log wages. Is this distribution the same for all workers, or does
the wage distribution vary across subpopulations? To answer this question, we can compare wage dis-
tributions for different groups – for example, men and women. The plot on the left in Figure 2.2 displays
the densities of log wages for U.S. men and women. We can see that the two wage densities take similar
shapes but the density for men is somewhat shifted to the right.

The values 3.05 and 2.81 are the mean log wages in the subpopulations of men and women workers.
They are called the conditional means (or conditional expectations) of log wages given gender. We can
write their specific values as

E
£
log(wage) | gender = man

§
= 3.05

E
£
log(wage) | gender = woman

§
= 2.81.

We call these means conditional as they are conditioning on a fixed value of the variable gender.
While you might not think of a person’s gender as a random variable, it is random from the viewpoint of
econometric analysis. If you randomly select an individual, the gender of the individual is unknown and
thus random. (In the population of U.S. workers, the probability that a worker is a woman happens to be
43%.) In observational data, it is most appropriate to view all measurements as random variables, and
the means of subpopulations are then conditional means.

4The mean is sensitive to pertubations in the tails of the distribution.
5Throughout the text, we will use log(y) or log y to denote the natural logarithm of y.
6More precisely, the geometric mean exp

°
E
£
log w

§¢
= $19.11 is a robust measure of central tendency.

7If F is not continuous the definition is qÆ = inf{u : F (u) ∏Æ}



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 17

0 1 2 3 4 5 6

MenWomen

(a) Women and Men

1.8 3.2 4.6

white men
white women
black men
black women

(b) By Gender and Race

Figure 2.2: Log Wage Density by Gender and Race

As the two densities in Figure 2.2 appear similar, a hasty inference might be that there is not a mean-
ingful difference between the wage distributions of men and women. Before jumping to this conclusion
let us examine the differences in the distributions more carefully. As we mentioned above, the primary
difference between the two densities appears to be their means. This difference equals

E
£
log(wage) | gender = man

§
°E

£
log(wage) | gender = woman

§
= 3.05°2.81

= 0.24. (2.1)

A difference in expected log wages of 0.24 is often interpreted as an average 24% difference between the
wages of men and women, which is quite substantial. (For a more complete explanation see Section 2.4.)

Consider further splitting the men and women subpopulations by race, dividing the population into
whites, blacks, and other races. We display the log wage density functions of four of these groups on the
right in Figure 2.2. Again we see that the primary difference between the four density functions is their
central tendency.

Focusing on the means of these distributions, Table 2.1 reports the mean log wage for each of the six
sub-populations.

Table 2.1: Mean Log Wages by Gender and Race

men women
white 3.07 2.82
black 2.86 2.73
other 3.03 2.86

The entries in Table 2.1 are the conditional means of log(wage) given gender and race. For example

E
£
log(wage) | gender = man, race = white

§
= 3.07

and
E
£
log(wage) | gender = woman, race = black

§
= 2.73.
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One benefit of focusing on conditional means is that they reduce complicated distributions to a sin-
gle summary measure, and thereby facilitate comparisons across groups. Because of this simplifying
property, conditional means are the primary interest of regression analysis and are a major focus in
econometrics.

Table 2.1 allows us to easily calculate average wage differences between groups. For example, we can
see that the wage gap between men and women continues after disaggregation by race, as the average
gap between white men and white women is 25%, and that between black men and black women is 13%.
We also can see that there is a race gap, as the average wages of blacks are substantially less than the
other race categories. In particular, the average wage gap between white men and black men is 21%, and
that between white women and black women is 9%.

2.4 Log Differences

A useful approximation for the natural logarithm for small x is

log(1+x) º x. (2.2)

This can be derived from the infinite series expansion of log(1+x) :

log(1+x) = x ° x2

2
+ x3

3
° x4

4
+·· ·

= x +O(x2).

The symbol O(x2) means that the remainder is bounded by Ax2 as x ! 0 for some A <1. Numerically,
the approximation log(1+x) ' x is within 0.001 for |x|∑ 0.1. The approximation error increases with |x|.

If y§ is c% greater than y then
y§ = (1+ c/100)y.

Taking natural logarithms,
log y§ = log y + log(1+ c/100)

or
log y§ ° log y = log(1+ c/100) º c

100
where the approximation is (2.2). This shows that 100 multiplied by the difference in logarithms is ap-
proximately the percentage difference between y and y§. Numerically, the approximation error is less
than 0.1 percentage points for |c|∑ 10.

Many econometric equations take the semi-log form

E
£
log(w) | group = 1

§
= a1

E
£
log(w) | group = 2

§
= a2.

How should we interpret the difference¢= a1°a2? In the previous section we stated that this difference
is often interpreted as the average percentage difference. This is not quite right, but is not quite wrong
either.

As mentioned earlier, the geometric mean of a random variable w is µ = exp
°
E
£
log(w)

§¢
. Thus

µ1 = exp(a1) and µ2 = exp(a2) are the conditional geometric means for group 1 and group 2. The ge-
ometric mean is a measure of central tendency, different from the arithmetic mean, and often closer to
the median. The difference ¢ = µ1 °µ2 is the difference in the logarithms between the two geometric
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means. Thus by the above discussion about log differences ¢ approximately equals the percentage dif-
ference between the conditional geometric means µ1 and µ2. The approximation is good for percentage
differences less than 10% and the approximation deteriorates for percentages above that.

To compare different measures of percentage difference in our example see Table 2.2. In the first two
columns we report average wages for men and women in the CPS population using three “averages”:
mean (arithmetic), median, and geometric mean. For both groups the mean is higher than the median
and geometric mean, and the latter two are similar to one another. This is a common feature of skewed
distributions such as the wage distribution. The next two columns report the percentage differences
between the first two columns. There are two ways of computing a percentage difference depending on
which is the baseline. The third column reports the percentage difference taking the average woman’s
wage as the baseline, so for example the first entry of 34% states that the mean wage for men is 34%
higher than the mean wage for women. The fourth column reports the percentage difference taking the
average men’s wage as the baseline. For example the first entry of °25% states that the mean wage for
women is 25% less than the mean wage for men.

Table 2.2 shows that when examining average wages the difference between women’s and men’s
wages is 25-34% depending on the baseline. If we examine the median wage the difference is 20-26%.
If we examine the geometric mean we find a difference of 21-26%. The percentage difference in mean
wages is considerably different from the other two measures as they measure different features of the
distribution.

Returning to the log difference in equation (2.1), we found that the difference in the mean logarithm
between men and women is 0.24, and we stated that this is often interpreted as implying a 24% average
percentage difference. More accurately it should be described as the approximate percentage difference
in the geometric mean. Indeed, we see that that the actual percentage difference in the geometric mean
is 21-26%, depending on the baseline, which is quite similar to the difference in the mean logarithm.

What this implies in practice is that when we transform our data by taking logarithms (as is common
in economics) and then compare means (including regression coefficients) we are computing approxi-
mate percentage differences in the average as measured by the geometric mean.

Table 2.2: Average Wages and Percentage Differences

men women % Difference % Difference
men over women women over men

Mean $26.80 $20.00 34% °25%
Median $21.14 $16.83 26% °20%
Geometric Mean $21.03 $16.64 26% °21%

2.5 Conditional Expectation Function

An important determinant of wage levels is education. In many empirical studies economists mea-
sure educational attainment by the number of years8 of schooling. We will write this variable as educa-
tion.

The conditional mean of log wages given gender, race, and education is a single number for each

8Here, education is defined as years of schooling beyond kindergarten. A high school graduate has education=12, a college
graduate has education=16, a Master’s degree has education=18, and a professional degree (medical, law or PhD) has educa-
tion=20.
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category. For example

E
£
log(wage) | gender = man, race = white, education = 12

§
= 2.84.

We display in Figure 2.3 the conditional means of log(wage) for white men and white women as a
function of education. The plot is quite revealing. We see that the conditional mean is increasing in years
of education, but at a different rate for schooling levels above and below nine years. Another striking
feature of Figure 2.3 is that the gap between men and women is roughly constant for all education levels.
As the variables are measured in logs this implies a constant average percentage gap between men and
women regardless of educational attainment.

● ●

●

●

● ●

●

●

●

●

●

●

Years of Education

Lo
g 

D
ol

la
rs

 p
er

 H
ou

r

4 6 8 10 12 14 16 18 20

2.
0

2.
5

3.
0

3.
5

4.
0

● white men
white women

Figure 2.3: Mean Log Wage as a Function of Years of Education

In many cases it is convenient to simplify the notation by writing variables using single charac-
ters, typically y, x and/or z. It is conventional in econometrics to denote the dependent variable (e.g.
log(wage)) by the letter y, a conditioning variable (such as gender) by the letter x, and multiple condi-
tioning variables (such as race, education and gender) by the subscripted letters x1, x2, ..., xk .

Conditional expectations can be written with the generic notation

E
£

y | x1, x2, ..., xk
§
= m(x1, x2, ..., xk ).

We call this the conditional expectation function (CEF). The CEF is a function of (x1, x2, ..., xk ) as it varies
with the variables. For example, the conditional expectation of y = log(wage) given (x1, x2) = (g ender,
race) is given by the six entries of Table ??. The CEF is a function of (gender, race) as it varies across the
entries.

For greater compactness, we will typically write the conditioning variables as a vector in Rk :

x =

0

BBBB@

x1

x2
...

xk

1

CCCCA
. (2.3)
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Here we follow the convention of using lower case bold italics x to denote a vector. Given this notation,
the CEF can be compactly written as

E
£

y | x
§
= m (x) .

The CEF E
£

y | x
§

is a random variable as it is a function of the random variable x . It is also sometimes
useful to view the CEF as a function of x . In this case we can write m (u) = E

£
y | x = u

§
, which is a function

of the argument u. The expression E
£

y | x = u
§

is the conditional expectation of y, given that we know
that the random variable x equals the specific value u. However, sometimes in econometrics we take
a notational shortcut and use E

£
y | x

§
to refer to this function. Hopefully, the use of E

£
y | x

§
should be

apparent from the context.

2.6 Continuous Variables

In the previous sections, we implicitly assumed that the conditioning variables are discrete. However,
many conditioning variables are continuous. In this section, we take up this case and assume that the
variables (y, x) are continuously distributed with a joint density function f (y, x).

As an example, take y = log(wage) and x = experience, the number of years of potential labor market
experience9. The contours of their joint density are plotted on the left side of Figure 2.4 for the population
of white men with 12 years of education.
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Figure 2.4: White Men with High School Degree

Given the joint density f (y, x) the variable x has the marginal density

fx (x) =
Z1

°1
f (y, x)d y.

For any x such that fx (x) > 0 the conditional density of y given x is defined as

fy |x
°
y | x

¢
= f (y, x)

fx (x)
. (2.4)

9Here, experience is defined as potential labor market experience, equal to age°education°6
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The conditional density is a (renormalized) slice of the joint density f (y, x) holding x fixed. The slice is
renormalized (divided by fx (x) so that it integrates to one and is thus a density.) We can visualize this
by slicing the joint density function at a specific value of x parallel with the y-axis. For example, take
the density contours on the left side of Figure 2.4 and slice through the contour plot at a specific value
of experience, and then renormalize the slice so that it is a proper density. This gives us the conditional
density of log(wage) for white men with 12 years of education and this level of experience. We do this
for four levels of experience (5, 10, 25, and 40 years), and plot these densities on the right side of Figure
2.4. We can see that the distribution of wages shifts to the right and becomes more diffuse as experi-
ence increases from 5 to 10 years, and from 10 to 25 years, but there is little change from 25 to 40 years
experience.

The CEF of y given x is the mean of the conditional density (2.4)

m (x) = E
£

y | x
§
=

Z1

°1
y fy |x

°
y | x

¢
d y. (2.5)

Intuitively, m (x) is the mean of y for the idealized subpopulation where the conditioning variables are
fixed at x . This is idealized since x is continuously distributed so this subpopulation is infinitely small.

This definition (2.5) is appropriate when the conditional density (2.4) is well defined. However, the
conditional mean m(x) exists quite generally. In Theorem 2.13 in Section 2.31 we show that m(x) exists
so long as E

ØØy
ØØ<1.

In Figure 2.4 the CEF of log(wage) given experience is plotted as the solid line. We can see that the
CEF is a smooth but nonlinear function. The CEF is initially increasing in experience, flattens out around
experience = 30, and then decreases for high levels of experience.

2.7 Law of Iterated Expectations

An extremely useful tool from probability theory is the law of iterated expectations. An important
special case is the known as the Simple Law.

Theorem 2.1 Simple Law of Iterated Expectations
If E

ØØy
ØØ<1 then for any random vector x ,

E
£
E
£

y | x
§§

= E
£

y
§

.

The simple law states that the expectation of the conditional expectation is the unconditional expec-
tation. In other words the average of the conditional averages is the unconditional average. When x is
discrete

E
£
E
£

y | x
§§

=
1X

j=1
E
£

y | x = x j
§
P

£
x = x j

§

and when x is continuous

E
£
E
£

y | x
§§

=
Z

Rk
E
£

y | x
§

fx (x)d x .

Going back to our investigation of average log wages for men and women, the simple law states that

E
£
log(wage) | gender = man

§
P

£
gender = man

§

+E
£
log(wage) | gender = woman

§
P

£
gender = woman

§

= E
£
log(wage)

§
.
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Or numerically,
3.05£0.57+2.81£0.43 = 2.95.

The general law of iterated expectations allows two sets of conditioning variables.

Theorem 2.2 Law of Iterated Expectations
If E

ØØy
ØØ<1 then for any random vectors x1 and x2,

E
£
E
£

y | x1, x2
§
| x1

§
= E

£
y | x1

§
.

Notice the way the law is applied. The inner expectation conditions on x1 and x2, while the outer
expectation conditions only on x1. The iterated expectation yields the simple answer E

°
y | x1

¢
, the ex-

pectation conditional on x1 alone. Sometimes we phrase this as: “The smaller information set wins.”
As an example

E
£
log(wage) | gender = man, race = white

§
P

£
race = white | gender = man

§

+E
£
log(wage) | gender = man, race = black

§
P

£
race = black | gender = man

§

+E
£
log(wage) | gender = man, race = other

§
P

£
race = other | gender = man

§

= E
£
log(wage) | gender = man

§

or numerically
3.07£0.84+2.86£0.08+3.03£0.08 = 3.05.

A property of conditional expectations is that when you condition on a random vector x you can
effectively treat it as if it is constant. For example, E [x | x] = x and E

£
g (x) | x

§
= g (x) for any function

g (·). The general property is known as the Conditioning Theorem.

Theorem 2.3 Conditioning Theorem
If E

ØØy
ØØ<1 then

E
£
g (x) y | x

§
= g (x)E

£
y | x

§
. (2.6)

If in addition E
ØØg (x) y

ØØ<1 then

E
£
g (x) y

§
= E

£
g (x)E

£
y | x

§§
. (2.7)

The proofs of Theorems 2.1, 2.2 and 2.3 are given in Section 2.33.

2.8 CEF Error

The CEF error e is defined as the difference between y and the CEF evaluated x :

e = y °m(x).

By construction, this yields the formula
y = m(x)+e. (2.8)



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 24

In (2.8) it is useful to understand that the error e is derived from the joint distribution of (y, x), and so
its properties are derived from this construction.

Many authors in econometrics denote the CEF error using the Greek letter ". I do not follow this con-
vention since the error e is a random variable similar to y and x , and it is typical to use Latin characters
for random variables.

A key property of the CEF error is that it has a conditional mean of zero. To see this, by the linearity
of expectations, the definition m(x) = E

£
y | x

§
and the Conditioning Theorem

E [e | x] = E
£°

y °m(x)
¢
| x

§

= E
£

y | x
§
°E [m(x) | x]

= m(x)°m(x)

= 0.

This fact can be combined with the law of iterated expectations to show that the unconditional mean
is also zero.

E [e] = E [E [e | x]] = E [0] = 0.

We state this and some other results formally.

Theorem 2.4 Properties of the CEF error
If E

ØØy
ØØ<1 then

1. E [e | x] = 0.

2. E [e] = 0.

3. If E
ØØy

ØØr <1 for r ∏ 1 then E |e|r <1.

4. For any function h (x) such that E |h (x)e| <1 then E [h (x)e] = 0.

The proof of the third result is deferred to Section 2.33.The fourth result, whose proof is left to Exercise
2.3, implies that e is uncorrelated with any function of the regressors.

The equations

y = m(x)+e

E [e | x] = 0

together imply that m(x) is the CEF of y given x . It is important to understand that this is not a restriction.
These equations hold true by definition.

The condition E [e | x] = 0 is implied by the definition of e as the difference between y and the CEF
m (x) . The equation E [e | x] = 0 is sometimes called a conditional mean restriction, since the conditional
mean of the error e is restricted to equal zero. The property is also sometimes called mean indepen-
dence, for the conditional mean of e is 0 and thus independent of x . However, it does not imply that the
distribution of e is independent of x . Sometimes the assumption “e is independent of x” is added as a
convenient simplification, but it is not generic feature of the conditional mean. Typically and generally,
e and x are jointly dependent even though the conditional mean of e is zero.

As an example, the contours of the joint density of e and experience are plotted in Figure 2.5 for the
same population as Figure 2.4. Notice that the shape of the conditional distribution varies with the level
of experience.
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Figure 2.5: Joint Density of Error e and experience for White Men with High School Education

As a simple example of a case where x and e are mean independent yet dependent let e = xu where
x and u are independent N(0,1). Then conditional on x the error e has the distribution N(0, x2). Thus
E [e | x] = 0 and e is mean independent of x, yet e is not fully independent of x. Mean independence does
not imply full independence.

2.9 Intercept-Only Model

A special case of the regression model is when there are no regressors x . In this case m(x) = E
£

y
§
=µ,

the unconditional mean of y. We can still write an equation for y in the regression format:

y =µ+e

E [e] = 0.

This is useful for it unifies the notation.

2.10 Regression Variance

An important measure of the dispersion about the CEF function is the unconditional variance of the
CEF error e. We write this as

æ2 = var[e] = E
£
(e °E [e])2§= E

£
e2§ .

Theorem 2.4.3 implies the following simple but useful result.

Theorem 2.5 If E
£

y2§<1 then æ2 <1.

We can call æ2 the regression variance or the variance of the regression error. The magnitude of æ2

measures the amount of variation in y which is not “explained” or accounted for in the conditional mean
E
£

y | x
§

.
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The regression variance depends on the regressors x . Consider two regressions

y = E
£

y | x1
§
+e1

y = E
£

y | x1, x2
§
+e2.

We write the two errors distinctly as e1 and e2 as they are different – changing the conditioning informa-
tion changes the conditional mean and therefore the regression error as well.

In our discussion of iterated expectations we have seen that by increasing the conditioning set the
conditional expectation reveals greater detail about the distribution of y. What is the implication for the
regression error?

It turns out that there is a simple relationship. We can think of the conditional mean E
£

y | x
§

as the
“explained portion” of y. The remainder e = y°E

£
y | x

§
is the “unexplained portion”. The simple relation-

ship we now derive shows that the variance of this unexplained portion decreases when we condition on
more variables. This relationship is monotonic in the sense that increasing the amont of information
always decreases the variance of the unexplained portion.

Theorem 2.6 If E
£

y2§<1 then

var
£

y
§
∏ var

£
y °E

£
y | x1

§§
∏ var

£
y °E

£
y | x1, x2

§§
.

Theorem 2.6 says that the variance of the difference between y and its conditional mean (weakly)
decreases whenever an additional variable is added to the conditioning information.

The proof of Theorem 2.6 is given in Section 2.33.

2.11 Best Predictor

Suppose that given a realized value of x we want to create a prediction or forecast of y. We can write
any predictor as a function g (x) of x . The prediction error is the realized difference y ° g (x). A non-
stochastic measure of the magnitude of the prediction error is the expectation of its square

E

h°
y ° g (x)

¢2
i

. (2.9)

We can define the best predictor as the function g (x) which minimizes (2.9). What function is the
best predictor? It turns out that the answer is the CEF m(x). This holds regardless of the joint distribution
of (y, x).

To see this, note that the mean squared error of a predictor g (x) is

E

h°
y ° g (x)

¢2
i
= E

h°
e +m (x)° g (x)

¢2
i

= E
£
e2§+2E

£
e
°
m (x)° g (x)

¢§
+E

h°
m (x)° g (x)

¢2
i

= E
£
e2§+E

h°
m (x)° g (x)

¢2
i

∏ E
£
e2§

= E
h°

y °m (x)
¢2

i
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where the first equality makes the substitution y = m(x)+ e and the third equality uses Theorem 2.4.4.
The right-hand-side after the third equality is minimized by setting g (x) = m (x), yielding the inequality
in the fourth line. The minimum is finite under the assumption E

£
y2§<1 as shown by Theorem 2.5.

We state this formally in the following result.

Theorem 2.7 Conditional Mean as Best Predictor
If E

£
y2§<1, then for any predictor g (x),

E

h°
y ° g (x)

¢2
i
∏ E

h°
y °m (x)

¢2
i

where m (x) = E
£

y | x
§
.

It may be helpful to consider this result in the context of the intercept-only model

y =µ+e

E [e] = 0.

Theorem 2.7 shows that the best predictor for y (in the class of constants) is the unconditional mean
µ= E

£
y
§

, in the sense that the mean minimizes the mean squared prediction error.

2.12 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution it does
not provide information about the spread of the distribution. A common measure of the dispersion is
the conditional variance. We first give the general definition of the conditional variance of a random
variable w .

Definition 2.1 If E
£
w2§<1, the conditional variance of w given x is

var[w | x] = E
£
(w °E [w | x])2 | x

§
.

The conditional variance is distinct from the unconditional variance var[w]. The difference is that
the conditional variance is a function of the conditioning variables. Notice that the conditional variance
is the conditional second moment, centered around the conditional first moment.

Given this definition we define the conditional variance of the regression error.

Definition 2.2 If E
£
e2§<1, the conditional variance of the regression error e

is
æ2(x) = var[e | x] = E

£
e2 | x

§
.
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Again, the conditional varianceæ2(x) is distinct from the unconditional varianceæ2. The conditional
variance is a function of the regressors, the unconditional variance is not. Generally,æ2 (x) is a non-trivial
function of x and can take any form subject to the restriction that it is non-negative. One way to think
about æ2(x) is that it is the conditional mean of e2 given x . Notice as well that æ2(x) = var

£
y | x

§
so it is

equivalently the conditional variance of the dependent variable.
The variance is in a different unit of measurement than the original variable. To convert the variance

back to the same unit of measure we define the conditional standard deviation as its square root æ(x) =p
æ2(x).

As an example of how the conditional variance depends on observables, compare the conditional
log wage densities for men and women displayed in Figure 2.2. The difference between the densities is
not purely a location shift but is also a difference in spread. Specifically, we can see that the density for
men’s log wages is somewhat more spread out than that for women, while the density for women’s wages
is somewhat more peaked. Indeed, the conditional standard deviation for men’s wages is 3.05 and that
for women is 2.81. So while men have higher average wages they are also somewhat more dispersed.

In general the unconditional variance is related to the conditional variance by the following relation-
ship.

Theorem 2.8 If E
£
w2§<1 then

var[w] = E [var[w | x]]+var[E [w | x]] .

See Theorem 4.14 of Introduction to Econometrics. Theorem 2.8 decomposes the unconditional vari-
ance into what are sometimes called the “within group variance” and the “across group variance”. For
example, if x is education level, then the first term is the expected variance of the conditional means by
education level. The second term is the variance after controlling for education.

The regression error has a conditional mean of zero, so its unconditional error variance equals the
expected conditional variance, or equivalently can be found by the law of iterated expectations

æ2 = E
£
e2§= E

£
E
£
e2 | x

§§
= E

£
æ2(x)

§
.

That is, the unconditional error variance is the average conditional variance.
Given the conditional variance we can define a rescaled error

u = e
æ(x)

. (2.10)

We can calculate that since æ(x) is a function of x

E [u | x] = E
∑

e
æ(x)

ØØØØ x

∏
= 1
æ(x)

E [e | x] = 0

and

var[u | x] = E
£
u2 | x

§
= E

∑
e2

æ2(x)

ØØØØ x

∏
= 1
æ2(x)

E
£
e2 | x

§
= æ2(x)
æ2(x)

= 1.

Thus u has a conditional mean of zero and a conditional variance of 1.
Notice that (2.10) can be rewritten as

e =æ(x)u.
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and substituting this for e in the CEF equation (2.8), we find that

y = m(x)+æ(x)u.

This is an alternative (mean-variance) representation of the CEF equation.
Many econometric studies focus on the conditional mean m(x) and either ignore the conditional

variance æ2(x), treat it as a constant æ2(x) = æ2, or treat it as a nuisance parameter (a parameter not of
primary interest). This is appropriate when the primary variation in the conditional distribution is in the
mean but can be short-sighted in other cases. Dispersion is relevant to many economic topics, includ-
ing income and wealth distribution, economic inequality, and price dispersion. Conditional dispersion
(variance) can be a fruitful subject for investigation.

The perverse consequences of a narrow-minded focus on the mean has been parodied in a classic
joke:

An economist was standing with one foot in a bucket of boiling water
and the other foot in a bucket of ice. When asked how he felt, he replied,
“On average I feel just fine.”

Clearly, the economist in question ignored variance!

2.13 Homoskedasticity and Heteroskedasticity

An important special case obtains when the conditional variance æ2(x) is a constant and indepen-
dent of x . This is called homoskedasticity.

Definition 2.3 The error is homoskedastic if E
£
e2 | x

§
=æ2 does not de-

pend on x .

In the general case where æ2(x) depends on x we say that the error e is heteroskedastic.

Definition 2.4 The error is heteroskedastic if E
£
e2 | x

§
=æ2(x) depends on

x .

It is helpful to understand that the concepts homoskedasticity and heteroskedasticity concern the
conditional variance, not the unconditional variance. By definition, the unconditional variance æ2 is a
constant and independent of the regressors x . So when we talk about the variance as a function of the
regressors we are talking about the conditional variance æ2(x).

Some older or introductory textbooks describe heteroskedasticity as the case where “the variance of e
varies across observations”. This is a poor and confusing definition. It is more constructive to understand
that heteroskedasticity means that the conditional variance æ2 (x) depends on observables.
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Older textbooks also tend to describe homoskedasticity as a component of a correct regression spec-
ification and describe heteroskedasticity as an exception or deviance. This description has influenced
many generations of economists but it is unfortunately backwards. The correct view is that heteroskedas-
ticity is generic and “standard”, while homoskedasticity is unusual and exceptional. The default in em-
pirical work should be to assume that the errors are heteroskedastic, not the converse.

In apparent contradiction to the above statement we will still frequently impose the homoskedastic-
ity assumption when making theoretical investigations into the properties of estimation and inference
methods. The reason is that in many cases homoskedasticity greatly simplifies the theoretical calcula-
tions and it is therefore quite advantageous for teaching and learning. It should always be remembered,
however, that homoskedasticity is never imposed because it is believed to be a correct feature of an em-
pirical model but rather because of its simplicity.

Heteroskedastic or Heteroscedastic?

The spelling of the words homoskedastic and heteroskedastic have been
somewhat controversial. Early econometrics textbooks were split, with
some using a “c” as in heteroscedastic and some “k” as in heteroskedastic.
McCulloch (1985) pointed out that the word is derived from Greek roots.
oµo∂o& means “same”. "ø"Ωo means “other” or “different”. æ∑"±Æ∫∫¿µ∂
means “to scatter”. Since the proper transliteration of the Greek letter ∑
in æ∑"±Æ∫∫¿µ∂ is “k”, this implies that the correct English spelling of the
two words is with a “k” as in homoskedastic and heteroskedastic.

2.14 Regression Derivative

One way to interpret the CEF m(x) = E
£

y | x
§

is in terms of how marginal changes in the regressors
x imply changes in the conditional mean of the response variable y. It is typical to consider marginal
changes in a single regressor, say x1, holding the remainder fixed. When a regressor x1 is continuously
distributed, we define the marginal effect of a change in x1, holding the variables x2, ..., xk fixed, as the
partial derivative of the CEF

@

@x1
m(x1, ..., xk ).

When x1 is discrete we define the marginal effect as a discrete difference. For example, if x1 is binary,
then the marginal effect of x1 on the CEF is

m(1, x2, ..., xk )°m(0, x2, ..., xk ).

We can unify the continuous and discrete cases with the notation

r1m(x) =

8
>><

>>:

@

@x1
m(x1, ..., xk ), if x1 is continuous

m(1, x2, ..., xk )°m(0, x2, ..., xk ), if x1 is binary.
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Collecting the k effects into one k £1 vector, we define the regression derivative with respect to x :

rm(x) =

2

66664

r1m(x)
r2m(x)

...
rk m(x)

3

77775
.

When all elements of x are continuous, then we have the simplification rm(x) = @

@x
m(x), the vector of

partial derivatives.
There are two important points to remember concerning our definition of the regression derivative.
First, the effect of each variable is calculated holding the other variables constant. This is the ceteris

paribus concept commonly used in economics. But in the case of a regression derivative, the condi-
tional mean does not literally hold all else constant. It only holds constant the variables included in the
conditional mean. This means that the regression derivative depends on which regressors are included.
For example, in a regression of wages on education, experience, race and gender, the regression deriva-
tive with respect to education shows the marginal effect of education on mean wages, holding constant
experience, race and gender. But it does not hold constant an individual’s unobservable characteristics
(such as ability), nor variables not included in the regression (such as the quality of education).

Second, the regression derivative is the change in the conditional expectation of y , not the change in
the actual value of y for an individual. It is tempting to think of the regression derivative as the change
in the actual value of y , but this is not a correct interpretation. The regression derivative rm(x) is the
change in the actual value of y only if the error e is unaffected by the change in the regressor x . We return
to a discussion of causal effects in Section 2.30.

2.15 Linear CEF

An important special case is when the CEF m (x) = E
£

y | x
§

is linear in x . In this case we can write the
mean equation as

m(x) = x1Ø1 +x2Ø2 +·· ·+xkØk +Øk+1.

Notationally it is convenient to write this as a simple function of the vector x . An easy way to do so is to
augment the regressor vector x by listing the number “1” as an element. We call this the “constant” and
the corresponding coefficient is called the “intercept”. Equivalently, specify that the final element10 of
the vector x is xk = 1. Thus (2.3) has been redefined as the k £1 vector

x =

0

BBBBBB@

x1

x2
...

xk°1

1

1

CCCCCCA
. (2.11)

With this redefinition, the CEF is

m(x) = x1Ø1 +x2Ø2 +·· ·+Øk = x
0Ø (2.12)

10The order doesn’t matter. It could be any element.
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where

Ø=

0

B@
Ø1
...
Øk

1

CA

is a k £ 1 coefficient vector. This is the linear CEF model. It is also often called the linear regression
model, or the regression of y on x .

In the linear CEF model the regression derivative is simply the coefficient vector. That is

rm(x) =Ø.

This is one of the appealing features of the linear CEF model. The coefficients have simple and natural
interpretations as the marginal effects of changing one variable, holding the others constant.

Linear CEF Model

y = x
0Ø+e

E [e | x] = 0

If in addition the error is homoskedastic we call this the homoskedastic linear CEF model.

Homoskedastic Linear CEF Model

y = x
0Ø+e

E [e | x] = 0

E
£
e2 | x

§
=æ2

2.16 Linear CEF with Nonlinear Effects

The linear CEF model of the previous section is less restrictive than it might appear, as we can include
as regressors nonlinear transformations of the original variables. In this sense, the linear CEF framework
is flexible and can capture many nonlinear effects.

For example, suppose we have two scalar variables x1 and x2. The CEF could take the quadratic form

m(x1, x2) = x1Ø1 +x2Ø2 +x2
1Ø3 +x2

2Ø4 +x1x2Ø5 +Ø6. (2.13)

This equation is quadratic in the regressors (x1, x2) yet linear in the coefficients Ø = (Ø1, ...,Ø6)0. We will
descriptively call (2.13) a quadratic CEF, and yet (2.13) is also a linear CEF in the sense of being linear in
the coefficients. The key is to understand that (2.13) is quadratic in the variables (x1, x2) yet linear in the
coefficients Ø.
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To simplify the expression we define the transformations x3 = x2
1, x4 = x2

2, x5 = x1x2, and x6 = 1, and
redefine the regressor vector as x = (x1, ..., x6)0. With this redefinition,

m(x1, x2) = x
0Ø

which is linear in Ø. For most econometric purposes (estimation and inference on Ø) the linearity in Ø is
all that is important.

An exception is in the analysis of regression derivatives. In nonlinear equations such as (2.13) the re-
gression derivative should be defined with respect to the original variables not with respect to the trans-
formed variables. Thus

@

@x1
m(x1, x2) =Ø1 +2x1Ø3 +x2Ø5

@

@x2
m(x1, x2) =Ø2 +2x2Ø4 +x1Ø5.

We see that in the model (2.13), the regression derivatives are not a simple coefficient, but are functions
of several coefficients plus the levels of (x1,x2). Consequently it is difficult to interpret the coefficients
individually. It is more useful to interpret them as a group.

We typically call Ø5 the interaction effect. Notice that it appears in both regression derivative equa-
tions and has a symmetric interpretation in each. If Ø5 > 0 then the regression derivative with respect to
x1 is increasing in the level of x2 (and the regression derivative with respect to x2 is increasing in the level
of x1), while if Ø5 < 0 the reverse is true.

2.17 Linear CEF with Dummy Variables

When all regressors take a finite set of values it turns out the CEF can be written as a linear function
of regressors.

This simplest example is a binary variable which takes only two distinct values. For example, in
traditional data sets the variable gender takes only the values man and woman (or male and female).
Binary variables are extremely common in econometric applications and are alternatively called dummy
variables or indicator variables.

Consider the simple case of a single binary regressor. In this case the conditional mean can only take
two distinct values. For example,

E
£

y | gender
§
=

8
<

:

µ0 if gender = man

µ1 if gender = woman
.

To facilitate a mathematical treatment we typically record dummy variables with the values {0,1}. For
example

x1 =
Ω

0 if gender = man
1 if gender = woman

. (2.14)

Given this notation we can write the conditional mean as a linear function of the dummy variable x1,
that is

E
£

y | x1
§
=Ø1x1 +Ø2

where Ø1 = µ1 °µ0 and Ø2 = µ0. In this simple regression equation the intercept Ø2 is equal to the con-
ditional mean of y for the x1 = 0 subpopulation (men) and the slope Ø1 is equal to the difference in the
conditional means between the two subpopulations.
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Equivalently, we could have defined x1 as

x1 =
Ω

1 if gender = man
0 if gender = woman

. (2.15)

In this case, the regression intercept is the mean for women (rather than for men) and the regression
slope has switched signs. The two regressions are equivalent but the interpretation of the coefficients
has changed. Therefore it is always important to understand the precise definitions of the variables, and
illuminating labels are helpful. For example, labelling x1 as “gender” does not help distinguish between
definitions (2.14) and (2.15). Instead, it is better to label x1 as “women” or “female” if definition (2.14) is
used, or as “men” or “male” if (2.15) is used.

Now suppose we have two dummy variables x1 and x2. For example, x2 = 1 if the person is married,
else x2 = 0. The conditional mean given x1 and x2 takes at most four possible values:

E
£

y | x1, x2
§
=

8
>>><

>>>:

µ00 if x1 = 0 and x2 = 0 (unmarried men)
µ01 if x1 = 0 and x2 = 1 (married men)
µ10 if x1 = 1 and x2 = 0 (unmarried women)
µ11 if x1 = 1 and x2 = 1 (married women)

.

In this case we can write the conditional mean as a linear function of x1, x2 and their product x1x2 :

E
£

y | x1, x2
§
=Ø1x1 +Ø2x2 +Ø3x1x2 +Ø4

where Ø1 =µ10 °µ00, Ø2 =µ01 °µ00, Ø3 =µ11 °µ10 °µ01 +µ00, and Ø4 =µ00.
We can view the coefficient Ø1 as the effect of gender on expected log wages for unmarried wage

earners, the coefficient Ø2 as the effect of marriage on expected log wages for men wage earners, and the
coefficient Ø3 as the difference between the effects of marriage on expected log wages among women
and among men. Alternatively, it can also be interpreted as the difference between the effects of gender
on expected log wages among married and non-married wage earners. Both interpretations are equally
valid. We often describe Ø3 as measuring the interaction between the two dummy variables, or the
interaction effect, and describe Ø3 = 0 as the case when the interaction effect is zero.

In this setting we can see that the CEF is linear in the three variables (x1, x2, x1x2). To put the model
in the framework of Section 2.15, we define the regressor x3 = x1x2 and the regressor vector as

x =

0

BBB@

x1

x2

x3

1

1

CCCA .

So even though we started with only 2 dummy variables, the number of regressors (including the inter-
cept) is 4.

If there are 3 dummy variables x1, x2, x3, then E
£

y | x1, x2, x3
§

takes at most 23 = 8 distinct values and
can be written as the linear function

E
£

y | x1, x2, x3
§
=Ø1x1 +Ø2x2 +Ø3x3 +Ø4x1x2 +Ø5x1x3 +Ø6x2x3 +Ø7x1x2x3 +Ø8

which has eight regressors including the intercept.
In general, if there are p dummy variables x1, ..., xp then the CEF E

£
y | x1, x2, ..., xp

§
takes at most 2p

distinct values and can be written as a linear function of the 2p regressors including x1, x2, ..., xp and all
cross-products. This might be excessive in practice if p is modestly large. In the next section we will
discuss projection approximations which yield more parsimonious parameterizations.
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We started this section by saying that the conditional mean is linear whenever all regressors take
only a finite number of possible values. How can we see this? Take a categorical variable, such as race.
For example, we earlier divided race into three categories. We can record categorical variables using
numbers to indicate each category, for example

x3 =

8
<

:

1 if white
2 if black
3 if other.

When doing so, the values of x3 have no meaning in terms of magnitude, they simply indicate the relevant
category.

When the regressor is categorical the conditional mean of y given x3 takes a distinct value for each
possibility:

E
£

y | x3
§
=

8
<

:

µ1 if x3 = 1
µ2 if x3 = 2
µ3 if x3 = 3.

This is not a linear function of x3 itself, but it can be made a linear function by constructing dummy
variables for two of the three categories. For example

x4 =
Ω

1 if black
0 if not black

x5 =
Ω

1 if other
0 if not other.

In this case, the categorical variable x3 is equivalent to the pair of dummy variables (x4, x5). The explicit
relationship is

x3 =

8
<

:

1 if x4 = 0 and x5 = 0
2 if x4 = 1 and x5 = 0
3 if x4 = 0 and x5 = 1.

Given these transformations, we can write the conditional mean of y as a linear function of x4 and x5

E
£

y | x3
§
= E

£
y | x4, x5

§
=Ø1x4 +Ø2x5 +Ø3.

We can write the CEF as either E
£

y | x3
§

or E
£

y | x4, x5
§

(they are equivalent), but it is only linear as a
function of x4 and x5.

This setting is similar to the case of two dummy variables, with the difference that we have not in-
cluded the interaction term x4x5. This is because the event {x4 = 1 and x5 = 1} is empty by construction,
so x4x5 = 0 by definition.

2.18 Best Linear Predictor

While the conditional mean m(x) = E
£

y | x
§

is the best predictor of y among all functions of x , its
functional form is typically unknown. In particular, the linear CEF model is empirically unlikely to be
accurate unless x is discrete and low-dimensional so all interactions are included. Consequently in most
cases it is more realistic to view the linear specification (2.12) as an approximation. In this section we
derive a specific approximation with a simple interpretation.

Theorem 2.7 showed that the conditional mean m (x) is the best predictor in the sense that it has the
lowest mean squared error among all predictors. By extension, we can define an approximation to the
CEF by the linear function with the lowest mean squared error among all linear predictors.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 36

For this derivation we require the following regularity condition.

Assumption 2.1

1. E
£

y2§<1.

2. E
£
kxk2§<1.

3. Qx x = E
£

x x
0§ is positive definite.

In Assumption 2.1.2 we use the notation kxk=
°
x
0
x
¢1/2 to denote the Euclidean length of the vector

x .
The first two parts of Assumption 2.1 imply that the variables y and x have finite means, variances,

and covariances. The third part of the assumption is more technical, and its role will become apparent
shortly. It is equivalent to imposing that the columns of the matrix Qx x = E

£
x x

0§ are linearly indepen-
dent, or that the matrix is invertible.

A linear predictor for y is a function of the form x
0Ø for some Ø 2 Rk . The mean squared prediction

error is
S(Ø) = E

h°
y °x

0Ø
¢2

i
. (2.16)

The best linear predictor of y given x , written P
£

y | x
§

, is found by selecting the vector Ø to minimize
S(Ø).

Definition 2.5 The Best Linear Predictor of y given x is

P
£

y | x
§
= x

0Ø

where Ø minimizes the mean squared prediction error

S(Ø) = E
h°

y °x
0Ø

¢2
i

.

The minimizer
Ø= argmin

b2Rk
S(b) (2.17)

is called the Linear Projection Coefficient.

We now calculate an explicit expression for its value. The mean squared prediction error (2.16) can
be written out as a quadratic function of Ø :

S(Ø) = E
£

y2§°2Ø0
E
£

x y
§
+Ø0

E
£

x x
0§Ø. (2.18)

The quadratic structure of S(Ø) means that we can solve explicitly for the minimizer. The first-order
condition for minimization (from Appendix A.20) is

0 = @

@Ø
S(Ø) =°2E

£
x y

§
+2E

£
x x

0§Ø. (2.19)
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Rewriting (2.19) as
2E

£
x y

§
= 2E

£
x x

0§Ø

and dividing by 2, this equation takes the form

Q x y =Qx xØ (2.20)

where Q x y = E
£

x y
§

is k £1 and Qx x = E
£

x x
0§ is k £k. The solution is found by inverting the matrix Qx x ,

and is written
Ø=Q

°1
x x

Q x y

or
Ø=

°
E
£

x x
0§¢°1

E
£

x y
§

. (2.21)

It is worth taking the time to understand the notation involved in the expression (2.21). Qx x is a k£k ma-

trix and Q x y is a k£1 column vector. Therefore, alternative expressions such as E[x y]
E[x x 0] or E

£
x y

§°
E
£

x x
0§¢°1

are incoherent and incorrect. We also can now see the role of Assumption 2.1.3. It is equivalent to assum-
ing that Q x x has an inverse Q

°1
x x

which is necessary for the normal equations (2.20) to have a solution or
equivalently for (2.21) to be uniquely defined. In the absence of Assumption 2.1.3 there could be multiple
solutions to the equation (2.20).

We now have an explicit expression for the best linear predictor:

P
£

y | x
§
= x

0 °
E
£

x x
0§¢°1

E
£

x y
§

.

This expression is also referred to as the linear projection of y on x .
The projection error is

e = y °x
0Ø. (2.22)

This equals the error (2.8) from the regression equation when (and only when) the conditional mean is
linear in x , otherwise they are distinct.

Rewriting, we obtain a decomposition of y into linear predictor and error

y = x
0Ø+e. (2.23)

In general, we call equation (2.23) or x
0Ø the best linear predictor of y given x or the linear projection of y

on x . Equation (2.23) is also often called the regression of y on x but this can sometimes be confusing as
economists use the term regression in many contexts. (Recall that we said in Section 2.15 that the linear
CEF model is also called the linear regression model.)

An important property of the projection error e is

E [xe] = 0. (2.24)

To see this, using the definitions (2.22) and (2.21) and the matrix properties A A
°1 = I and I a = a,

E [xe] = E
£

x
°
y °x

0Ø
¢§

= E
£

x y
§
°E

£
x x

0§°
E
£

x x
0§¢°1

E
£

x y
§

= 0 (2.25)

as claimed.
Equation (2.24) is a set of k equations, one for each regressor. In other words, (2.24) is equivalent to

E
£
x j e

§
= 0 (2.26)
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for j = 1, ...,k. As in (2.11), the regressor vector x typically contains a constant, e.g. xk = 1. In this case
(2.26) for j = k is the same as

E [e] = 0. (2.27)

Thus the projection error has a mean of zero when the regressor vector contains a constant. (When x

does not have a constant (2.27) is not guaranteed. As it is desirable for e to have a zero mean this is a
good reason to always include a constant in any regression model.)

It is also useful to observe that since cov(x j ,e) = E
£
x j e

§
°E

£
x j

§
E [e] , then (2.26)-(2.27) together imply

that the variables x j and e are uncorrelated.
This completes the derivation of the model. We summarize some of the most important properties.

Theorem 2.9 Properties of Linear Projection Model
Under Assumption 2.1,

1. The moments E
£

x x
0§ and E

£
x y

§
exist with finite elements.

2. The Linear Projection Coefficient (2.17) exists, is unique, and equals

Ø=
°
E
£

x x
0§¢°1

E
£

x y
§

.

3. The best linear predictor of y given x is

P (y | x) = x
0 °
E
£

x x
0§¢°1

E
£

x y
§

.

4. The projection error e = y °x
0Ø exists and satisfies

E
£
e2§<1

and
E [xe] = 0.

5. If x contains an constant, then

E [e] = 0.

6. If E
ØØy

ØØr <1 and Ekxkr <1 for r ∏ 2 then E |e|r <1.

A complete proof of Theorem 2.9 is given in Section 2.33.
It is useful to reflect on the generality of Theorem 2.9. The only restriction is Assumption 2.1. Thus

for any random variables (y, x) with finite variances we can define a linear equation (2.23) with the prop-
erties listed in Theorem 2.9. Stronger assumptions (such as the linear CEF model) are not necessary. In
this sense the linear model (2.23) exists quite generally. However, it is important not to misinterpret the
generality of this statement. The linear equation (2.23) is defined as the best linear predictor. It is not
necessarily a conditional mean, nor a parameter of a structural or causal economic model.
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Linear Projection Model

y = x
0Ø+e.

E [xe] = 0

Ø=
°
E
£

x x
0§¢°1

E
£

x y
§

Invertibility and Identification

The linear projection coefficient Ø=
°
E
£

x x
0§¢°1

E
£

x y
§

exists and is unique
as long as the k £k matrix Qx x = E

£
x x

0§ is invertible. The matrix Qx x is some-
times called the design matrix as in experimental settings the researcher is able
to control Qx x by manipulating the distribution of the regressors x .

Observe that for any non-zero Æ 2Rk ,

Æ0
Qx xÆ= E

£
Æ0

x x
0Æ

§
= E

h°
Æ0

x
¢2

i
∏ 0

so Qx x by construction is positive semi-definite, conventionally written as
Qx x ∏ 0. The assumption that it is positive definite means that this is a strict

inequality, E
h°
Æ0

x
¢2

i
> 0. This is conventionally written as Qx x > 0. This

condition means that there is no non-zero vector Æ such that Æ0
x = 0 iden-

tically. Positive definite matrices are invertible. Thus when Qx x > 0 then
Ø =

°
E
£

x x
0§¢°1

E
£

x y
§

exists and is uniquely defined. In other words, if we
can exclude the possibility that a linear function of x is degenerate, then Ø is
uniquely defined.

Theorem 2.5 shows that the linear projection coefficient Ø is identified
(uniquely determined) under Assumption 2.1. The key is invertibility of Qx x .
Otherwise, there is no unique solution to the equation

Qx xØ=Q x y . (2.28)

When Qx x is not invertible there are multiple solutions to (2.28). In this case
the coefficient Ø is not identified as it does not have a unique value.
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Minimization

The mean squared prediction error (2.18) is a function with vector argu-
ment of the form

f (x) = a °2b
0
x +x

0
C x

where C > 0. For any function of this form, the unique minimizer is

x =C
°1

b. (2.29)

To see that this is the unique minimizer we present two proofs. The first uses
matrix calculus. From Appendix A.20

@

@x

°
b
0
x
¢
= b (2.30)

@

@x

°
x
0
C x

¢
= 2C x (2.31)

@2

@x@x 0
°
x
0
C x

¢
= 2C . (2.32)

Using (2.30) and (2.31), we find

@

@x
f (x) =°2b +2C x .

The first-order condition for minimization sets this derivative equal to zero.
Thus the solution satisfies °2b +2C x = 0. Solving for x we find (2.29). Using
(2.32) we also find

@2

@x@x 0 f (x) = 2C > 0

which is the second-order condition for minimization. This shows that (2.29)
is the unique minimizer of f (x).

Our second proof is algebraic. Re-write f (x) as

f (x) =
°
a °b

0
C

°1
b
¢
+

°
x °C

°1
b
¢0

C
°
x °C

°1
b
¢

.

The first term does not depend on x so does not affect the minimizer. The
second term is a quadratic form in a positive definite matrix. This means that
for any non-zero Æ, Æ0

CÆ > 0. Thus for x 6= C
°1

b, the second-term is strictly
positive, yet for x = C

°1
b this term equals zero. It is therefore minimized at

x =C
°1

b as claimed.

2.19 Illustrations of Best Linear Predictor

We illustrate the best linear predictor (projection) using three log wage equations introduced in ear-
lier sections.

For our first example, we consider a model with the two dummy variables for sex and race similar to
Table 2.1. As we learned in Section 2.17, the entries in this table can be equivalently expressed by a linear
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CEF. For simplicity, let’s consider the CEF of log(wage) as a function of Black and Female.

E
£
log(wage) | black, female

§
=°0.20black°0.24female+0.10black£ female+3.06. (2.33)

This is a CEF as the variables are binary and all interactions are included.
Now consider a simpler model omitting the interaction effect. This is the linear projection on the

variables black and female

P
£
log(wage) | black, female

§
=°0.15black°0.23female+3.06. (2.34)

What is the difference? The full CEF (2.33) shows that the race gap is differentiated by gender: it is 20%
for black men (relative to non-black men) and 10% for black women (relative to non-black women). The
projection model (2.34) simplifies this analysis, calculating an average 15% wage gap for blacks, ignoring
the role of gender. Notice that this is despite the fact that the gender variable is included in (2.34).
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Figure 2.6: Projections of log(wage) onto education and experience

For our second example we consider the CEF of log wages as a function of years of education for
white men which was illustrated in Figure 2.3 and is repeated in Figure 2.6(a). Superimposed on the
figure are two projections. The first (given by the dashed line) is the linear projection of log wages on
years of education

P
£
log(wage) | education

§
= 0.11education+1.5.

This simple equation indicates an average 11% increase in wages for every year of education. An in-
spection of the Figure shows that this approximation works well for education∏ 9, but under-predicts
for individuals with lower levels of education. To correct this imbalance we use a linear spline equation
which allows different rates of return above and below 9 years of education:

P
£
log(wage) | education, (education°9)£ (education > 9)

§

= 0.02education+0.10£ (education°9)£ (education > 9)+2.3.

This equation is displayed in Figure 2.6(a) using the solid line, and appears to fit much better. It indicates
a 2% increase in mean wages for every year of education below 9, and a 12% increase in mean wages for
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every year of education above 9. It is still an approximation to the conditional mean but it appears to be
fairly reasonable.

For our third example we take the CEF of log wages as a function of years of experience for white men
with 12 years of education, which was illustrated in Figure 2.4 and is repeated as the solid line in Figure
2.6(b). Superimposed on the figure are two projections. The first (given by the dot-dashed line) is the
linear projection on experience

P
£
log(wage) | experience

§
= 0.011experience+2.5

and the second (given by the dashed line) is the linear projection on experience and its square

P
£
log(wage) | experience

§
= 0.046experience°0.0007experience2 +2.3.

It is fairly clear from an examination of Figure 2.6(b) that the first linear projection is a poor approxima-
tion. It over-predicts wages for young and old workers, and under-predicts for the rest. Most importantly,
it misses the strong downturn in expected wages for older wage-earners. The second projection fits much
better. We can call this equation a quadratic projection since the function is quadratic in experience.

2.20 Linear Predictor Error Variance

As in the CEF model, we define the error variance as

æ2 = E
£
e2§ .

Setting Qy y = E
£

y2§ and Q y x = E
£

y x
0§ we can write æ2 as

æ2 = E
h°

y °x
0Ø

¢2
i

= E
£

y2§°2E
£

y x
0§Ø+Ø0

E
£

x x
0§Ø

=Qy y °2Q y xQ
°1
x x

Q x y +Q y xQ
°1
x x

Qx xQ
°1
x x

Q x y

=Qy y °Q y xQ
°1
x x

Q x y

de f= Qy y ·x . (2.35)

One useful feature of this formula is that it shows that Qy y ·x = Qy y °Q y xQ
°1
x x

Q x y equals the variance of
the error from the linear projection of y on x .

2.21 Regression Coefficients

Sometimes it is useful to separate the constant from the other regressors and write the linear projec-
tion equation in the format

y = x
0Ø+Æ+e (2.36)

where Æ is the intercept and x does not contain a constant.
Taking expectations of this equation, we find

E
£

y
§
= E

£
x
0Ø

§
+E [Æ]+E [e]

or
µy =µ0

xØ+Æ
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where µy = E
£

y
§

and µ
x
= E [x] , since E [e] = 0 from (2.27). (While x does not contain a constant, the

equation does so (2.27) still applies.) Rearranging, we find

Æ=µy °µ0
x
Ø.

Subtracting this equation from (2.36) we find

y °µy =
°
x °µ

x

¢0
Ø+e, (2.37)

a linear equation between the centered variables y°µy and x°µ
x

. (They are centered at their means, so
are mean-zero random variables.) Because x°µ

x
is uncorrelated with e, (2.37) is also a linear projection.

Thus by the formula for the linear projection model,

Ø=
≥
E

h°
x °µ

x

¢°
x °µ

x

¢0i¥°1
E
£°

x °µ
x

¢°
y °µy

¢§

= var[x]°1 cov
°
x , y

¢

a function only of the covariances11 of x and y.

Theorem 2.10 In the linear projection model

y = x
0Ø+Æ+e,

then
Æ=µy °µ0

x
Ø (2.38)

and
Ø= var[x]°1 cov

°
x , y

¢
. (2.39)

2.22 Regression Sub-Vectors

Let the regressors be partitioned as

x =
µ

x1

x2

∂
. (2.40)

We can write the projection of y on x as

y = x
0Ø+e

= x
0
1Ø1 +x

0
2Ø2 +e (2.41)

E [xe] = 0.

In this section we derive formulae for the sub-vectors Ø1 and Ø2.
Partition Qx x conformably with x

Qx x =
∑

Q11 Q12
Q21 Q22

∏
=

∑
E
£

x1x
0
1

§
E
£

x1x
0
2

§

E
£

x2x
0
1

§
E
£

x2x
0
2

§
∏

11The covariance matrix between vectors x and z is cov(x , z) = E
£
(x °E [x]) (z °E [z])0

§
. The (co)variance matrix of the vector

x is var[x] = cov(x , x) = E
£
(x °E [x]) (x °E [x])0

§
.
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and similarly Q x y

Q x y =
∑

Q1y
Q2y

∏
=

∑
E
£

x1 y
§

E
£

x2 y
§

∏
.

By the partitioned matrix inversion formula (A.3)

Q
°1
x x

=
∑

Q11 Q12
Q21 Q22

∏°1
de f=

∑
Q

11
Q

12

Q
21

Q
22

∏
=

∑
Q

°1
11·2 °Q

°1
11·2Q12Q

°1
22

°Q
°1
22·1Q21Q

°1
11 Q

°1
22·1

∏
(2.42)

where Q11·2
de f= Q11 °Q12Q

°1
22 Q21 and Q22·1

de f= Q22 °Q21Q
°1
11 Q12. Thus

Ø=
µ
Ø1
Ø2

∂

=
∑

Q
°1
11·2 °Q

°1
11·2Q12Q

°1
22

°Q
°1
22·1Q21Q

°1
11 Q

°1
22·1

∏∑
Q1y
Q2y

∏

=
µ

Q
°1
11·2

°
Q1y °Q12Q

°1
22 Q2y

¢

Q
°1
22·1

°
Q2y °Q21Q

°1
11 Q1y

¢
∂

=
µ

Q
°1
11·2Q1y ·2

Q
°1
22·1Q2y ·1

∂
.

We have shown that

Ø1 =Q
°1
11·2Q1y ·2

Ø2 =Q
°1
22·1Q2y ·1.

2.23 Coefficient Decomposition

In the previous section we derived formulae for the coefficient sub-vectors Ø1 and Ø2. We now use
these formulae to give a useful interpretation of the coefficients in terms of an iterated projection.

Take equation (2.41) for the case dim(x1) = 1 so that Ø1 2R.

y = x1Ø1 +x
0
2Ø2 +e. (2.43)

Now consider the projection of x1 on x2 :

x1 = x
0
2∞2 +u1

E [x2u1] = 0.

From (2.21) and (2.35), ∞2 =Q
°1
22 Q21 and E

£
u2

1

§
=Q11·2 =Q11 °Q12Q

°1
22 Q21. We can also calculate that

E
£
u1 y

§
= E

£°
x1 °∞0

2x2
¢

y
§
= E

£
x1 y

§
°∞0

2E
£

x2 y
§
=Q1y °Q12Q

°1
22 Q2y =Q1y ·2.

We have found that

Ø1 =Q
°1
11·2Q1y ·2 =

E
£
u1 y

§

E
£
u2

1

§

the coefficient from the simple regression of y on u1.
What this means is that in the multivariate projection equation (2.43), the coefficient Ø1 equals the

projection coefficient from a regression of y on u1, the error from a projection of x1 on the other regres-
sors x2. The error u1 can be thought of as the component of x1 which is not linearly explained by the
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other regressors. Thus the coefficient Ø1 equals the linear effect of x1 on y after stripping out the effects
of the other variables.

There was nothing special in the choice of the variable x1. This derivation applies symmetrically to
all coefficients in a linear projection. Each coefficient equals the simple regression of y on the error from
a projection of that regressor on all the other regressors. Each coefficient equals the linear effect of that
variable on y after linearly controlling for all the other regressors.

2.24 Omitted Variable Bias

Again, let the regressors be partitioned as in (2.40). Consider the projection of y on x1 only. Perhaps
this is done because the variables x2 are not observed. This is the equation

y = x
0
1∞1 +u (2.44)

E [x1u] = 0.

Notice that we have written the coefficient on x1 as∞1 rather thanØ1 and the error as u rather than e. This
is because (2.44) is different than (2.41). Goldberger (1991) introduced the catchy labels long regression
for (2.41) and short regression for (2.44) to emphasize the distinction.

Typically, Ø1 6=∞1, except in special cases. To see this, we calculate

∞1 =
°
E
£

x1x
0
1
§¢°1

E
£

x1 y
§

=
°
E
£

x1x
0
1
§¢°1

E
£

x1
°
x
0
1Ø1 +x

0
2Ø2 +e

¢§

=Ø1 +
°
E
£

x1x
0
1
§¢°1

E
£

x1x
0
2
§
Ø2

=Ø1 +°12Ø2

where °12 = Q
°1
11 Q12 is the coefficient matrix from a projection of x2 on x1 where we use the notation

from Section 2.22.
Observe that ∞1 =Ø1 +°12Ø2 6=Ø1 unless °12 = 0 or Ø2 = 0. Thus the short and long regressions have

different coefficients on x1. They are the same only under one of two conditions. First, if the projection
of x2 on x1 yields a set of zero coefficients (they are uncorrelated), or second, if the coefficient on x2

in (2.41) is zero. In general, the coefficient in (2.44) is ∞1 rather than Ø1. The difference °12Ø2 between
∞1 and Ø1 is known as omitted variable bias. It is the consequence of omission of a relevant correlated
variable.

To avoid omitted variables bias the standard advice is to include all potentially relevant variables in
estimated models. By construction, the general model will be free of such bias. Unfortunately in many
cases it is not feasible to completely follow this advice as many desired variables are not observed. In this
case, the possibility of omitted variables bias should be acknowledged and discussed in the course of an
empirical investigation.

For example, suppose y is log wages, x1 is education, and x2 is intellectual ability. It seems reasonable
to suppose that education and intellectual ability are positively correlated (highly able individuals attain
higher levels of education) which means °12 > 0. It also seems reasonable to suppose that conditional
on education, individuals with higher intelligence will earn higher wages on average, so that Ø2 > 0.
This implies that °12Ø2 > 0 and ∞1 = Ø1 +°12Ø2 > Ø1. Therefore, it seems reasonable to expect that in
a regression of wages on education with ability omitted, the coefficient on education is higher than in
a regression where ability is included. In other words, in this context the omitted variable biases the
regression coefficient upwards. It is possible, for example, that Ø1 = 0 so that education has no direct
effect on wages yet ∞1 =°12Ø2 > 0 meaning that the regression coefficient on education alone is positive,
but is a consequence of the unmodeled correlation between education and intellectual ability.
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Unfortunately the above simple characterization of omitted variable bias does not immediately carry
over to more complicated settings, as discovered by Luca, Magnus, and Peracchi (2018). For example,
suppose we compare three nested projections

y = x
0
1∞1 +u1

y = x
0
1±1 +x

0
2±2 +u2

y = x
0
1Ø1 +x

0
2Ø2 +x

0
3Ø3 +e.

We can call them the short, medium, and long regressions. Suppose that the parameter of interest isØ1 in
the long regression. We are interested in the consequences of omitting x3 when estimating the medium
regression, and of omitting both x2 and x3 when estimating the short regression. In particular we are
interested in the question: Is it better to estimate the short or medium regression, given that both omit
x3? Intuition suggests that the medium regression should be “less biased” but it is worth investigating in
greater detail. By similar calculations to those above, we find that

∞1 =Ø1 +°12Ø2 +°13Ø3

±1 =Ø1 +°13·2Ø3

where °13·2 =Q
°1
11·2Q13·2 using the notation from Section 2.22.

We see that the bias in the short regression coefficient is °12Ø2 +°13Ø3 which depends on both Ø2
and Ø3, while that for the medium regression coefficient is °13·2Ø3 which only depends on Ø3. So the
bias for the medium regression is less complicated and intuitively seems more likely to be smaller than
that of the short regression. However it is impossible to strictly rank the two. It is quite possible that∞1 is
less biased than ±1. Thus as a general rule it is strictly impossible to state that estimation of the medium
regression will be less biased than estimation of the short regression.

2.25 Best Linear Approximation

There are alternative ways we could construct a linear approximation x
0Ø to the conditional mean

m(x). In this section we show that one alternative approach turns out to yield the same answer as the
best linear predictor.

We start by defining the mean-square approximation error of x
0Ø to m(x) as the expected squared

difference between x
0Ø and the conditional mean m(x)

d(Ø) = E
h°

m(x)°x
0Ø

¢2
i

.

The function d(Ø) is a measure of the deviation of x
0Ø from m(x). If the two functions are identical then

d(Ø) = 0, otherwise d(Ø) > 0. We can also view the mean-square difference d(Ø) as a density-weighted
average of the function

°
m(x)°x

0Ø
¢2 since

d(Ø) =
Z

Rk

°
m(x)°x

0Ø
¢2 fx (x)d x

where fx (x) is the marginal density of x .
We can then define the best linear approximation to the conditional m(x) as the function x

0Ø ob-
tained by selecting Ø to minimize d(Ø) :

Ø= argmin
b2Rk

d(b). (2.45)
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Similar to the best linear predictor we are measuring accuracy by expected squared error. The difference
is that the best linear predictor (2.17) selects Ø to minimize the expected squared prediction error, while
the best linear approximation (2.45) selects Ø to minimize the expected squared approximation error.

Despite the different definitions, it turns out that the best linear predictor and the best linear approx-
imation are identical. By the same steps as in (2.18) plus an application of conditional expectations we
can find that

Ø=
°
E
£

x x
0§¢°1

E [xm(x)] (2.46)

=
°
E
£

x x
0§¢°1

E
£

x y
§

(2.47)

(see Exercise 2.19). Thus (2.45) equals (2.17). We conclude that the definition (2.45) can be viewed as an
alternative motivation for the linear projection coefficient.

2.26 Regression to the Mean

The term regression originated in an influential paper by Francis Galton (1886) where he examined
the joint distribution of the stature (height) of parents and children. Effectively, he was estimating the
conditional mean of children’s height given their parent’s height. Galton discovered that this conditional
mean was approximately linear with a slope of 2/3. This implies that on average a child’s height is more
mediocre (average) than his or her parent’s height. Galton called this phenomenon regression to the
mean, and the label regression has stuck to this day to describe most conditional relationships.

One of Galton’s fundamental insights was to recognize that if the marginal distributions of y and x
are the same (e.g. the heights of children and parents in a stable environment) then the regression slope
in a linear projection is always less than one.

To be more precise, take the simple linear projection

y = xØ+Æ+e (2.48)

where y equals the height of the child and x equals the height of the parent. Assume that y and x have
the same mean so that µy =µx =µ. Then from (2.38)

Æ=
°
1°Ø

¢
µ

so we can write the linear projection (2.48) as

P
°
y | x

¢
=

°
1°Ø

¢
µ+xØ.

This shows that the projected height of the child is a weighted average of the population average height
µ and the parent’s height x with the weight equal to the regression slope Ø. When the height distribution
is stable across generations so that var

£
y
§
= var[x] , then this slope is the simple correlation of y and x.

Using (2.39)

Ø=
cov

°
x, y

¢

var[x]
= corr(x, y).

By the Cauchy-Schwarz inequality (B.32), °1 ∑ corr(x, y) ∑ 1, with corr(x, y) = 1 only in the degenerate
case y = x. Thus if we exclude degeneracy, Ø is strictly less than 1.

This means that on average a child’s height is more mediocre (closer to the population average) than
the parent’s.
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A common error – known as the regression fallacy – is to infer from Ø < 1 that the population is
converging meaning that its variance is declining towards zero. This is a fallacy because we derived the
implication Ø < 1 under the assumption of constant means and variances. So certainly Ø < 1 does not
imply that the variance y is less than than the variance of x.

Another way of seeing this is to examine the conditions for convergence in the context of equation
(2.48). Since x and e are uncorrelated, it follows that

var[y] =Ø2 var[x]+var[e].

Then var[y] < var[x] if and only if

Ø2 < 1° var[e]
var[x]

which is not implied by the simple condition
ØØØ

ØØ< 1.
The regression fallacy arises in related empirical situations. Suppose you sort families into groups by

the heights of the parents, and then plot the average heights of each subsequent generation over time.
If the population is stable, the regression property implies that the plots lines will converge – children’s
height will be more average than their parents. The regression fallacy is to incorrectly conclude that the
population is converging. A message to be learned from this example is that such plots are misleading
for inferences about convergence.

The regression fallacy is subtle. It is easy for intelligent economists to succumb to its temptation. A
famous example is The Triumph of Mediocrity in Business by Horace Secrist published in 1933. In this
book, Secrist carefully and with great detail documented that in a sample of department stores over 1920-
1930, when he divided the stores into groups based on 1920-1921 profits, and plotted the average profits
of these groups for the subsequent 10 years, he found clear and persuasive evidence for convergence
“toward mediocrity”. Of course, there was no discovery – regression to the mean is a necessary feature of
stable distributions.

2.27 Reverse Regression

Galton noticed another interesting feature of the bivariate distribution. There is nothing special
about a regression of y on x. We can also regress x on y. (In his heredity example this is the best lin-
ear predictor of the height of parents given the height of their children.) This regression takes the form

x = yØ§+Æ§+e§. (2.49)

This is sometimes called the reverse regression. In this equation, the coefficients Æ§, Ø§ and error e§ are
defined by linear projection. In a stable population we find that

Ø§ = corr(x, y) =Ø

Æ§ =
°
1°Ø

¢
µ=Æ

which are exactly the same as in the projection of y on x! The intercept and slope have exactly the same
values in the forward and reverse projections!

While this algebraic discovery is quite simple, it is counter-intuitive. Instead, a common yet mistaken
guess for the form of the reverse regression is to take the equation (2.48), divide through by Ø and rewrite
to find the equation

x = y
1
Ø
° Æ

Ø
° 1
Ø

e (2.50)
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suggesting that the projection of x on y should have a slope coefficient of 1/Ø instead of Ø, and intercept
of °Æ/Ø rather than Æ. What went wrong? Equation (2.50) is perfectly valid because it is a simple ma-
nipulation of the valid equation (2.48). The trouble is that (2.50) is neither a CEF nor a linear projection.
Inverting a projection (or CEF) does not yield a projection (or CEF). Instead, (2.49) is a valid projection,
not (2.50).

In any event, Galton’s finding was that when the variables are standardized the slope in both projec-
tions (y on x, and x and y) equals the correlation and both equations exhibit regression to the mean. It
is not a causal relation, but a natural feature of all joint distributions.

2.28 Limitations of the Best Linear Projection

Let’s compare the linear projection and linear CEF models.
From Theorem 2.4.4 we know that the CEF error has the property E [xe] = 0. Thus a linear CEF is

the best linear projection. However, the converse is not true as the projection error does not necessarily
satisfy E [e | x] = 0. Furthermore, the linear projection may be a poor approximation to the CEF.

To see these points in a simple example, suppose that the true process is y = x+x2 with x ª N(0,1). In
this case the true CEF is m(x) = x +x2 and there is no error. Now consider the linear projection of y on x
and a constant, namely the model y =Øx+Æ+u. Since x ª N(0,1) then x and x2 are uncorrelated and the
linear projection takes the form P

£
y | x

§
= x +1. This is quite different from the true CEF m(x) = x + x2.

The projection error equals e = x2 °1 which is a deterministic function of x yet is uncorrelated with x.
We see in this example that a projection error need not be a CEF error and a linear projection can be a
poor approximation to the CEF.

0 1 2 3 4 5 6

0
2

4
6

8

Conditional Mean
Linear Projection, Group 1
Linear Projection, Group 2

Figure 2.7: Conditional Mean and Two Linear Projections

Another defect of linear projection is that it is sensitive to the marginal distribution of the regressors
when the conditional mean is non-linear. We illustrate the issue in Figure 2.7 for a constructed12 joint
distribution of y and x. The solid line is the non-linear CEF of y given x. The data are divided in two

12The x in Group 1 are N(2,1) and those in Group 2 are N(4,1), and the conditional distribution of y given x is N(m(x),1)
where m(x) = 2x °x2/6.
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groups – Group 1 and Group 2 – which have different marginal distributions for the regressor x, and
Group 1 has a lower mean value of x than Group 2. The separate linear projections of y on x for these two
groups are displayed in the Figure by the dashed lines. These two projections are distinct approximations
to the CEF. A defect with linear projection is that it leads to the incorrect conclusion that the effect of x
on y is different for individuals in the two groups. This conclusion is incorrect because in fact there
is no difference in the conditional mean function. The apparent difference is a by-product of a linear
approximation to a nonlinear mean, combined with different marginal distributions for the conditioning
variables.

2.29 Random Coefficient Model

A model which is notationally similar to but conceptually distinct from the linear CEF model is the
linear random coefficient model. It takes the form

y = x
0¥

where the individual-specific coefficient ¥ is random and independent of x . For example, if x is years of
schooling and y is log wages, then ¥ is the individual-specific returns to schooling. If a person obtains
an extra year of schooling, ¥ is the actual change in their wage. The random coefficient model allows the
returns to schooling to vary in the population. Some individuals might have a high return to education
(a high ¥) and others a low return, possibly 0, or even negative.

In the linear CEF model the regressor coefficient equals the regression derivative – the change in
the conditional mean due to a change in the regressors, Ø = rm(x). This is not the effect on a given
individual, it is the effect on the population average. In contrast, in the random coefficient model the
random vector ¥=r

°
x
0¥

¢
is the true causal effect – the change in the response variable y itself due to a

change in the regressors.
It is interesting, however, to discover that the linear random coefficient model implies a linear CEF.

To see this, let Ø and ß denote the mean and covariance matrix of ¥ :

Ø= E
£
¥
§

ß= var
£
¥
§

and then decompose the random coefficient as

¥=Ø+u

where u is distributed independently of x with mean zero and covariance matrix ß. Then we can write

E
£

y | x
§
= x

0
E
£
¥ | x

§
= x

0
E
£
¥
§
= x

0Ø

so the CEF is linear in x , and the coefficients Ø equal the mean of the random coefficient ¥.
We can thus write the equation as a linear CEF

y = x
0Ø+e

where e = x
0
u and u =¥°Ø. The error is conditionally mean zero:

E [e | x] = 0.
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Furthermore

var[e | x] = x
0 var

£
¥
§

x

= x
0ßx

so the error is conditionally heteroskedastic with its variance a quadratic function of x .

Theorem 2.11 In the linear random coefficient model y = x
0¥with ¥ indepen-

dent of x , Ekxk2 <1, and E
∞∞¥

∞∞2 <1, then

E
£

y | x
§
= x

0Ø

var
£

y | x
§
= x

0ßx

where Ø= E
£
¥
§

and ß= var
£
¥
§

.

2.30 Causal Effects

So far we have avoided the concept of causality, yet often the underlying goal of an econometric anal-
ysis is to uncover a causal relationship between variables. It is often of great interest to understand the
causes and effects of decisions, actions, and policies. For example, we may be interested in the effect
of class sizes on test scores, police expenditures on crime rates, climate change on economic activity,
years of schooling on wages, institutional structure on growth, the effectiveness of rewards on behavior,
the consequences of medical procedures for health outcomes, or any variety of possible causal relation-
ships. In each case, the goal is to understand what is the actual effect on the outcome y due to a change
in the input x. We are not just interested in the conditional mean or linear projection, we would like to
know the actual change.

Two inherent barriers are that the causal effect is typically specific to an individual and that it is
unobserved.

Consider the effect of schooling on wages. The causal effect is the actual difference a person would
receive in wages if we could change their level of education holding all else constant. This is specific to
each individual as their employment outcomes in these two distinct situations is individual. The causal
effect is unobserved because the most we can observe is their actual level of education and their actual
wage, but not the counterfactual wage if their education had been different.

To be even more specific, suppose that there are two individuals, Jennifer and George, and both
have the possibility of being high-school graduates or college graduates, but both would have received
different wages given their choices. For example, suppose that Jennifer would have earned $10 an hour
as a high-school graduate and $20 an hour as a college graduate while George would have earned $8 as
a high-school graduate and $12 as a college graduate. In this example the causal effect of schooling is
$10 a hour for Jennifer and $4 an hour for George. The causal effects are specific to the individual and
neither causal effect is observed.

A variable x1 can be said to have a causal effect on the response variable y if the latter changes when
all other inputs are held constant. To make this precise we need a mathematical formulation. We can
write a full model for the response variable y as

y = h (x1, x2,u) (2.51)
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where x1 and x2 are the observed variables, u is an `£1 unobserved random factor, and h is a functional
relationship. This framework, called the potential outcomes framework, includes as a special case the
random coefficient model (2.29) studied earlier. We define the causal effect of x1 within this model as
the change in y due to a change in x1 holding the other variables x2 and u constant.

Definition 2.6 In the model (2.51) the causal effect of x1 on y is

C (x1, x2,u) =r1h (x1, x2,u) , (2.52)

the change in y due to a change in x1, holding x2 and u constant.

To understand this concept, imagine taking a single individual. As far as our structural model is
concerned this person is described by their observables x1 and x2 and their unobservables u. In a wage
regression the unobservables would include characteristics such as the person’s abilities, skills, work
ethic, interpersonal connections, and preferences. The causal effect of x1 (say, education) is the change
in the wage as x1 changes holding constant all other observables and unobservables.

It may be helpful to understand that (2.52) is a definition and does not necessarily describe causal-
ity in a fundamental or experimental sense. Perhaps it would be more appropriate to label (2.52) as a
structural effect (the effect within the structural model).

Sometimes it is useful to write this relationship as a potential outcome function

y(x1) = h (x1, x2,u)

where the notation implies that y(x1) is holding x2 and u constant.
A popular example arises in the analysis of treatment effects with a binary regressor x1. Let x1 = 1

indicate treatment (e.g. a medical procedure) and x1 = 0 indicate non-treatment. In this case y(x1) can
be written

y(0) = h (0, x2,u)

y(1) = h (1, x2,u) .

In the literature on treatment effects it is common to refer to y(0) and y(1) as the latent outcomes asso-
ciated with non-treatment and treatment, respectively. That is, for a given individual, y(0) is the health
outcome if there is no treatment and y(1) is the health outcome if there is treatment. The causal effect of
treatment for the individual is the change in their health outcome due to treatment – the change in y as
we hold both x2 and u constant:

C (x2,u) = y(1)° y(0).

This is random (a function of x2 and u) as both potential outcomes y(0) and y(1) are different across
individuals.

In a sample, we cannot observe both outcomes from the same individual. We only observe the real-
ized value

y =

8
<

:

y(0) if x1 = 0

y(1) if x1 = 1.

As the causal effect varies across individuals and is not observable it cannot be measured on the in-
dividual level. We therefore focus on aggregate causal effects, in particular what is known as the average
causal effect.
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Definition 2.7 In the model (2.51) the average causal effect of x1 on y condi-
tional on x2 is

ACE(x1, x2) = E [C (x1, x2,u) | x1, x2]

=
Z

R`
r1h (x1, x2,u) f (u | x1, x2)du

where f (u | x1, x2) is the conditional density of u given x1, x2.

We can think of the average causal effect ACE(x1, x2) as the average effect in the general population.
Take the Jennifer & George schooling example given earlier. Suppose that half of the population are
Jennifer’s and the other half are George’s. Then the average causal effect of college is (10+4)/2 = $7 an
hour. This is not the individual causal effect, it is the average of the causal effect across all individuals in
the population. Given data on only educational attainment and wages, the ACE of $7 is the best we can
hope to learn.

When we conduct a regression analysis (that is, consider the regression of observed wages on ed-
ucational attainment) we might hope that the regression reveals the average causal effect. Technically,
that the regression derivative (the coefficient on education) equals the ACE. Is this the case? In other
words, what is the relationship between the average causal effect ACE(x1, x2) and the regression deriva-
tive r1m (x1, x2)? Equation (2.51) implies that the CEF is

m(x1, x2) = E [h (x1, x2,u) | x1, x2]

=
Z

R`
h (x1, x2,u) f (u | x1, x2)du,

the average causal equation, averaged over the conditional distribution of the unobserved component
u.

Applying the marginal effect operator, the regression derivative is

r1m(x1, x2) =
Z

R`
r1h (x1, x2,u) f (u | x1, x2)du

+
Z

R`
h (x1, x2,u)r1 f (u|x1, x2)du

= ACE(x1, x2)+
Z

R`
h (x1, x2,u)r1 f (u | x1, x2)du. (2.53)

Equation (2.53) shows that in general the regression derivative does not equal the average causal
effect. The difference is the second term on the right-hand-side of (2.53). The regression derivative and
ACE equal in the special case when this term equals zero, which occurs when r1 f (u | x1, x2) = 0, that is,
when the conditional density of u given (x1, x2) does not depend on x1. When this condition holds then
the regression derivative equals the ACE. This means that regression analysis can be interpreted causally
in the sense that it uncovers average causal effects.

The condition is sufficiently important that it has a special name in the treatment effects literature.

Definition 2.8 Conditional Independence Assumption (CIA). Conditional on
x2, the random variables x1 and u are statistically independent.
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Table 2.3: Example Distribution

$8 $10 $12 $20 Mean
High-School Graduate 10 6 0 0 $8.75
College Graduate 0 0 6 10 $17.00

The CIA implies f (u | x1, x2) = f (u | x2) does not depend on x1, and thus r1 f (u | x1, x2) = 0. Thus the
CIA implies that r1m(x1, x2) = ACE(x1, x2), the regression derivative equals the average causal effect.

Theorem 2.12 In the structural model (2.51), the Conditional Independence
Assumption implies

r1m(x1, x2) = ACE(x1, x2)

the regression derivative equals the average causal effect for x1 on y condi-
tional on x2.

This is a fascinating result. It shows that whenever the unobservable is independent of the treat-
ment variable (after conditioning on appropriate regressors) the regression derivative equals the average
causal effect. In this case, the CEF has causal economic meaning, giving strong justification to estima-
tion of the CEF. Our derivation also shows the critical role of the CIA. If CIA fails, then the equality of the
regression derivative and ACE fails.

This theorem is quite general. It applies equally to the treatment-effects model where x1 is binary or
to more general settings where x1 is continuous.

It is also helpful to understand that the CIA is weaker than full independence of u from the regressors
(x1, x2). The CIA was introduced precisely as a minimal sufficient condition to obtain the desired result.
Full independence implies the CIA and implies that each regression derivative equals that variable’s av-
erage causal effect, but full independence is not necessary in order to causally interpret a subset of the
regressors.

To illustrate, let’s return to our education example involving a population with equal numbers of
Jennifer’s and George’s. Recall that Jennifer earns $10 as a high-school graduate and $20 as a college
graduate (and so has a causal effect of $10) while George earns $8 as a high-school graduate and $12 as a
college graduate (so has a causal effect of $4). Given this information, the average causal effect of college
is $7, which is what we hope to learn from a regression analysis.

Now suppose that while in high school all students take an aptitude test. If a student gets a high (H)
score he or she goes to college with probability 3/4, and if a student gets a low (L) score he or she goes to
college with probability 1/4. Suppose further that Jennifer’s get an aptitude score of H with probability
3/4, while George’s get a score of H with probability 1/4. Given this situation, 62.5% of Jennifer’s will go
to college13, while 37.5% of George’s will go to college14.

An econometrician who randomly samples 32 individuals and collects data on educational attain-
ment and wages will find the wage distribution in Table 2.3.

Let college denote a dummy variable taking the value of 1 for a college graduate, otherwise 0. Thus
the regression of wages on college attendance takes the form

E
£
wage | college

§
= 8.25college+8.75.

13
P

£
college | Jennifer

§
=P

£
college | H

§
P

£
H | Jennifer

§
+P

£
college | L

§
P

£
L | Jennifer

§
= (3/4)2 + (1/4)2.

14
P

£
college | George

§
=P

£
college | H

§
P

£
H | George

§
+P

£
college | L

§
P

£
L | George

§
= (3/4)(1/4)+ (1/4)(3/4).
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Table 2.4: Example Distribution 2

$8 $10 $12 $20 Mean
High-School Graduate + High Test Score 1 3 0 0 $9.50
College Graduate + High Test Score 0 0 3 9 $18.00
High-School Graduate + Low Test Score 9 3 0 0 $8.50
College Graduate + Low Test Score 0 0 3 1 $14.00

The coefficient on the college dummy, $8.25, is the regression derivative, and the implied wage effect
of college attendance. But $8.25 overstates the average causal effect of $7. The reason is because the
CIA fails. In this model the unobservable u is the individual’s type (Jennifer or George) which is not
independent of the regressor x1 (education), since Jennifer is more likely to go to college than George.
Since Jennifer’s causal effect is higher than George’s the regression derivative overstates the ACE. The
coefficient $8.25 is not the average benefit of college attendance, rather it is the observed difference in
realized wages in a population whose decision to attend college is correlated with their individual causal
effect. At the risk of repeating myself, in this example $8.25 is the true regression derivative. It is the
difference in average wages between those with a college education and those without. It is not, however,
the average causal effect of college education in the population.

This does not mean that it is impossible to estimate the ACE. The key is conditioning on the appro-
priate variables. The CIA says that we need to find a variable x2 such that conditional on x2, u and x1

(type and education) are independent. In this example a variable which will achieve this is the aptitude
test score. The decision to attend college was based on the test score not on an individual’s type. Thus
educational attainment and type are independent once we condition on the test score.

This also alters the ACE. Notice that Definition 2.7 is a function of x2 (the test score). Among the
students who receive a high test score, 3/4 are Jennifer’s and 1/4 are George’s. Thus the ACE for students
with a score of H is (3/4)£10+(1/4)£4 = $8.50. Among the students who receive a low test score, 1/4 are
Jennifer’s and 3/4 are George’s. Thus the ACE for students with a score of L is (1/4)£10+(3/4)£4 = $5.50.
The ACE varies between these two observable groups (those with high test scores and those with low test
scores). Again, we would hope to be able to learn the ACE from a regression analysis, this time from a
regression of wages on education and test scores.

To see this in the wage distribution, suppose that the econometrician collects data on the aptitude
test score as well as education and wages. Given a random sample of 32 individuals we would expect to
find the wage distribution in Table 2.4.

Define the dummy variable highscore which takes the value 1 for students who received a high test
score, else zero. The regression of wages on college attendance and test scores (with interactions) takes
the form

E
£
wage | college,highscore

§
= 1.00highscore+5.50college+3.00highscore£ college+8.50.

The coefficient on college, $5.50, is the regression derivative of college attendance for those with low test
scores, and the sum of this coefficient with the interaction coefficient, $8.50, is the regression derivative
for college attendance for those with high test scores. These equal the average causal effect as calculated
above. Furthermore, since 1/2 of the population achieves a high test score and 1/2 achieve a low test
score, the measured average causal effect in the entire population is $7, which precisely equals the true
value.

In this example, by conditioning on the aptitude test score, the average causal effect of education on
wages can be learned from a regression analysis. What this shows is that by conditioning on the proper
variables, it may be possible to achieve the CIA, in which case regression analysis measures average
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causal effects.

2.31 Existence and Uniqueness of the Conditional Expectation*

In Sections 2.3 and 2.6 we defined the conditional mean when the conditioning variables x are dis-
crete and when the variables (y, x) have a joint density. We have explored these cases because these are
the situations where the conditional mean is easiest to describe and understand. However, the condi-
tional mean exists quite generally without appealing to the properties of either discrete or continuous
random variables.

To justify this claim we now present a deep result from probability theory. What it says is that the
conditional mean exists for all joint distributions (y, x) for which y has a finite mean.

Theorem 2.13 Existence of the Conditional Mean
If E

ØØy
ØØ<1 then there exists a function m(x) such that for all sets X for which

P [x 2X ] is defined,

E
£

(x 2X ) y
§
= E [ (x 2X )m(x)] . (2.54)

The function m(x) is almost everywhere unique, in the sense that if h(x) satis-
fies (2.54), then there is a set S such that P [S] = 1 and m(x) = h(x) for x 2 S. The
function m(x) is called the conditional mean and is written m(x) = E

£
y | x

§
.

See, for example, Ash (1972), Theorem 6.3.3.

The conditional mean m(x) defined by (2.54) specializes to (2.5) when (y, x) have a joint density. The
usefulness of definition (2.54) is that Theorem 2.13 shows that the conditional mean m(x) exists for all
finite-mean distributions. This definition allows y to be discrete or continuous, for x to be scalar or
vector-valued, and for the components of x to be discrete or continuously distributed.

You may have noticed that Theorem 2.13 applies only to sets X for whichP [x 2X ] is defined. This is
a technical issue –measurability – which we largely side-step in this textbook. Formal probability theory
only applies to sets which are measurable – for which probabilities are defined – as it turns out that not all
sets satisfy measurability. This is not a practical concern for applications, so we defer such distinctions
for formal theoretical treatments.

2.32 Identification*

A critical and important issue in structural econometric modeling is identification, meaning that a
parameter is uniquely determined by the distribution of the observed variables. It is relatively straight-
forward in the context of the unconditional and conditional mean, but it is worthwhile to introduce and
explore the concept at this point for clarity.

Let F denote the distribution of the observed data, for example the distribution of the pair (y, x). Let
F be a collection of distributions F. Let µ be a parameter of interest (for example, the mean E

£
y
§
).

Definition 2.9 A parameter µ 2 R is identified on F if for all F 2 F , there is a
uniquely determined value of µ.
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Equivalently, µ is identified if we can write it as a mapping µ = g (F ) on the set F . The restriction to the
set F is important. Most parameters are identified only on a strict subset of the space of all distributions.

Take, for example, the mean µ= E
£

y
§

. It is uniquely determined if E
ØØy

ØØ<1, so µ is identified for the
set F =

©
F : E

ØØy
ØØ<1

™
.

Next, consider the conditional mean. Theorem 2.13 demonstrates that E
ØØy

ØØ <1 is a sufficient con-
dition for identification.

Theorem 2.14 Identification of the Conditional Mean
If E

ØØy
ØØ < 1, the conditional mean m(x) = E

£
y | x

§
is identified almost every-

where.

It might seem as if identification is a general property for parameters, so long as we exclude degener-
ate cases. This is true for moments of observed data, but not necessarily for more complicated models.
As a case in point, consider the context of censoring. Let y be a random variable with distribution F.
Instead of observing y, we observe y§ defined by the censoring rule

y§ =
Ω

y if y ∑ ø

ø if y > ø.

That is, y§ is capped at the value ø. A common example is income surveys, where income responses are
“top-coded” meaning that incomes above the top code ø are recorded as the top code. The observed
variable y§ has distribution

F§(u) =
Ω

F (u) for u ∑ ø

1 for u ∏ ø.

We are interested in features of the distribution F not the censored distribution F§. For example, we are
interested in the mean wage µ= E

£
y
§

. The difficulty is that we cannot calculate µ from F§ except in the
trivial case where there is no censoring P

£
y ∏ ø

§
= 0. Thus the mean µ is not generically identified from

the censored distribution.
A typical solution to the identification problem is to assume a parametric distribution. For example,

let F be the set of normal distributions y ª N(µ,æ2). It is possible to show that the parameters (µ,æ2) are
identified for all F 2 F . That is, if we know that the uncensored distribution is normal we can uniquely
determine the parameters from the censored distribution. This is often called parametric identification
as identification is restricted to a parametric class of distributions. In modern econometrics this is gen-
erally viewed as a second-best solution as identification has been achieved only through the use of an
arbitrary and unverifiable parametric assumption.

A pessimistic conclusion might be that it is impossible to identify parameters of interest from cen-
sored data without parametric assumptions. Interestingly, this pessimism is unwarranted. It turns out
that we can identify the quantiles qÆ of F for Æ ∑ P

£
y ∑ ø

§
. For example, if 20% of the distribution is

censored we can identify all quantiles for Æ 2 (0,0.8). This is often called nonparametric identification
as the parameters are identified without restriction to a parametric class.

What we have learned from this little exercise is that in the context of censored data moments can
only be parametrically identified while non-censored quantiles are nonparametrically identified. Part of
the message is that a study of identification can help focus attention on what can be learned from the
data distributions available.
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2.33 Technical Proofs*

Proof of Theorem 2.1 For convenience, assume that the variables have a joint density f
°
y, x

¢
. Since

E
£

y | x
§

is a function of the random vector x only, to calculate its expectation we integrate with respect
to the density fx (x) of x , that is

E
£
E
£

y | x
§§

=
Z

Rk
E
£

y | x
§

fx (x)d x .

Substituting in (2.5) and noting that fy |x
°
y |x

¢
fx (x) = f

°
y, x

¢
, we find that the above expression equals

Z

Rk

µZ

R

y fy |x
°
y |x

¢
d y

∂
fx (x)d x =

Z

Rk

Z

R

y f
°
y, x

¢
d yd x = E

£
y
§

the unconditional mean of y. Á

Proof of Theorem 2.2 Again assume that the variables have a joint density. It is useful to observe that

f
°
y |x1, x2

¢
f (x2|x1) =

f
°
y, x1, x2

¢

f (x1, x2)
f (x1, x2)

f (x1)
= f

°
y, x2|x1

¢
, (2.55)

the density of
°
y, x2

¢
given x1. Here, we have abused notation and used a single symbol f to denote the

various unconditional and conditional densities to reduce notational clutter.
Note that

E
£

y | x1, x2
§
=

Z

R

y f
°
y |x1, x2

¢
d y. (2.56)

Integrating (2.56) with respect to the conditional density of x2 given x1, and applying (2.55) we find that

E
£
E
£

y | x1, x2
§
| x1

§
=

Z

Rk2
E
£

y | x1, x2
§

f (x2|x1)d x2

=
Z

Rk2

µZ

R

y f
°
y |x1, x2

¢
d y

∂
f (x2|x1)d x2

=
Z

Rk2

Z

R

y f
°
y |x1, x2

¢
f (x2|x1)d yd x2

=
Z

Rk2

Z

R

y f
°
y, x2|x1

¢
d yd x2

= E
£

y | x1
§

as stated. Á

Proof of Theorem 2.3

E
£
g (x) y | x

§
=

Z

R

g (x) y fy |x
°
y |x

¢
d y = g (x)

Z

R

y fy |x
°
y |x

¢
d y = g (x)E

£
y | x

§

This is (2.6). Equation (2.7) follows by applying the simple law of iterated expectations (Theorem 2.1) to
(2.6). Á

Proof of Theorem 2.4 Applying Minkowski’s inequality (B.34) to e = y °m(x),

°
E |e|r

¢1/r =
°
E

ØØy °m(x)
ØØr ¢1/r ∑

°
E

ØØy
ØØr ¢1/r +

°
E |m(x)|r

¢1/r <1,
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where the two parts on the right-hand-side are finite since E
ØØy

ØØr <1 by assumption and E |m(x)|r <1
by the conditional expectation inequality (B.29). The fact that (E |e|r )1/r <1 implies E |e|r <1. Á

Proof of Theorem 2.6 The assumption that E
£

y2§<1 implies that all the conditional expectations below
exist.

Using the law of iterated expectations (Theorem 2.2) E
£

y | x1
§
= E

°
E
£

y | x1, x2
§
| x1

¢
and the condi-

tional Jensen’s inequality (B.28),
°
E
£

y | x1
§¢2 =

°
E
°
E
£

y | x1, x2
§
| x1

¢¢2 ∑ E
h°
E
£

y | x1, x2
§¢2 | x1

i
.

Taking unconditional expectations, this implies

E

h°
E
£

y | x1
§¢2

i
∑ E

h°
E
£

y | x1, x2
§¢2

i
.

Similarly, °
E
£

y
§¢2 ∑ E

h°
E
£

y | x1
§¢2

i
∑ E

h°
E
£

y | x1, x2
§¢2

i
. (2.57)

The variables y, E
£

y | x1
§

and E
£

y | x1, x2
§

all have the same mean E
£

y
§

, so the inequality (2.57) im-
plies that the variances are ranked monotonically:

0 ∑ var
°
E
£

y | x1
§¢
∑ var

°
E
£

y | x1, x2
§¢

. (2.58)

Define e = y °E
£

y | x
§

and u = E
£

y | x
§
°µ so that we have the decomposition

y °µ= e +u.

Notice E [e | x] = 0 and u is a function of x . Thus by the conditioning theorem (Theorem 2.3), E [eu] = 0
so e and u are uncorrelated. It follows that

var
£

y
§
= var[e]+var[u] = var

£
y °E

£
y | x

§§
+var

£
E
£

y | x
§§

. (2.59)

The monotonicity of the variances of the conditional mean (2.58) applied to the variance decomposition
(2.59) implies the reverse monotonicity of the variances of the differences, completing the proof. Á

Proof of Theorem 2.9 For part 1, by the expectation inequality (B.30), (A.16) and Assumption 2.1,
∞∞E

£
x x

0§∞∞∑ E
∞∞x x

0∞∞= Ekxk2 <1.

Similarly, using the expectation inequality (B.30), the Cauchy-Schwarz inequality (B.32) and Assumption
2.1, ∞∞E

£
x y

§∞∞∑ E
∞∞x y

∞∞∑
°
Ekxk2¢1/2 °

E
£

y2§¢1/2 <1.

Thus the moments E
£

x y
§

and E
£

x x
0§ are finite and well defined.

For part 2, the coefficientØ=
°
E
£

x x
0§¢°1

E
£

x y
§

is well defined since
°
E
£

x x
0§¢°1 exists under Assump-

tion 2.1.
Part 3 follows from Definition 2.5 and part 2.
For part 4, first note that

E
£
e2§= E

h°
y °x

0Ø
¢2

i

= E
£

y2§°2E
£

y x
0§Ø+Ø0

E
£

x x
0§Ø

= E
£

y2§°E
£

y x
0§°
E
£

x x
0§¢°1

E
£

x y
§

∑ E
£

y2§

<1.
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The first inequality holds because E
£

y x
0§°
E
£

x x
0§¢°1

E
£

x y
§

is a quadratic form and therefore necessarily
non-negative. Second, by the expectation inequality (B.30), the Cauchy-Schwarz inequality (B.32) and
Assumption 2.1,

kE (xe)k ∑ Ekxek=
°
Ekxk2¢1/2 °

E
£
e2§¢1/2 <1.

It follows that the expectation E [xe] is finite, and is zero by the calculation (2.25).
For part 6, Applying Minkowski’s inequality (B.34) to e = y °x

0Ø,

°
E |e|r

¢1/r =
°
E

ØØy °x
0Ø

ØØr ¢1/r

∑
°
E

ØØy
ØØr ¢1/r +

°
E

ØØx
0Ø

ØØr ¢1/r

∑
°
E

ØØy
ØØr ¢1/r +

°
Ekxkr ¢1/r ∞∞Ø

∞∞

<1,

the final inequality by assumption. Á
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Exercises

Exercise 2.1 Find E
£
E
£
E
£

y | x1, x2, x3
§
| x1, x2

§
| x1

§
.

Exercise 2.2 If E
£

y | x
§
= a +bx, find E

£
y x

§
as a function of moments of x.

Exercise 2.3 Prove Theorem 2.4.4 using the law of iterated expectations.

Exercise 2.4 Suppose that the random variables y and x only take the values 0 and 1, and have the fol-
lowing joint probability distribution

x = 0 x = 1
y = 0 .1 .2
y = 1 .4 .3

Find E
£

y | x
§

, E
£

y2 | x
§

and var
£

y | x
§

for x = 0 and x = 1.

Exercise 2.5 Show that æ2(x) is the best predictor of e2 given x :

(a) Write down the mean-squared error of a predictor h(x) for e2.

(b) What does it mean to be predicting e2?

(c) Show that æ2(x) minimizes the mean-squared error and is thus the best predictor.

Exercise 2.6 Use y = m(x)+e to show that

var
£

y
§
= var[m(x)]+æ2

Exercise 2.7 Show that the conditional variance can be written as

æ2(x) = E
£

y2 | x
§
°

°
E
£

y | x
§¢2 .

Exercise 2.8 Suppose that y is discrete-valued, taking values only on the non-negative integers, and the
conditional distribution of y given x is Poisson:

P
£

y = j | x
§
=

exp
°
°x

0Ø
¢°

x
0Ø

¢ j

j !
, j = 0,1,2, ...

Compute E
£

y | x
§

and var
£

y | x
§

. Does this justify a linear regression model of the form y = x
0Ø+e?

Hint: If P
£

y = j
§
= exp(°∏)∏ j

j !
then E

£
y
§
=∏ and var(y) =∏.

Exercise 2.9 Suppose you have two regressors: x1 is binary (takes values 0 and 1) and x2 is categorical
with 3 categories (A,B ,C ). Write E

£
y | x1, x2

§
as a linear regression.

Exercise 2.10 True or False. If y = xØ+e, x 2R, and E [e | x] = 0, then E
£
x2e

§
= 0.

Exercise 2.11 True or False. If y = xØ+e, x 2R, and E [xe] = 0, then E
£
x2e

§
= 0.

Exercise 2.12 True or False. If y = x
0Ø+e and E [e | x] = 0, then e is independent of x .
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Exercise 2.13 True or False. If y = x
0Ø+e and E [xe] = 0, then E [e | x] = 0.

Exercise 2.14 True or False. If y = x
0Ø+ e, E [e | x] = 0, and E

£
e2 | x

§
= æ2, a constant, then e is indepen-

dent of x .

Exercise 2.15 Consider the intercept-only model y =Æ+e defined as the best linear predictor. Show that
Æ= E

£
y
§

.

Exercise 2.16 Let x and y have the joint density f
°
x, y

¢
= 3

2

°
x2 + y2¢ on 0 ∑ x ∑ 1, 0 ∑ y ∑ 1. Compute the

coefficients of the best linear predictor y = Æ+Øx + e. Compute the conditional mean m(x) = E
£

y | x
§

.
Are the best linear predictor and conditional mean different?

Exercise 2.17 Let x be a random variable with µ= E [x] and æ2 = var[x]. Define

g
°
x |µ,æ2¢=

√
x °µ°

x °µ
¢2 °æ2

!

.

Show that E
£
g (x | m, s)

§
= 0 if and only if m =µ and s =æ2.

Exercise 2.18 Suppose that

x =

0

@
1
x2

x3

1

A

and x3 =Æ1 +Æ2x2 is a linear function of x2.

(a) Show that Q x x = E
£

x x
0§ is not invertible.

(b) Use a linear transformation of x to find an expression for the best linear predictor of y given x . (Be
explicit, do not just use the generalized inverse formula.)

Exercise 2.19 Show (2.46)-(2.47), namely that for

d(Ø) = E
h°

m(x)°x
0Ø

¢2
i

then

Ø= argmin
b2Rk

d(b)

=
°
E
£

x x
0§¢°1

E [xm(x)]

=
°
E
£

x x
0§¢°1

E
£

x y
§

.

Hint: To show E [xm(x)] = E
£

x y
§

use the law of iterated expectations.

Exercise 2.20 Verify that (2.54) holds with m(x) defined in (2.5) when (y, x) have a joint density f (y, x).

Exercise 2.21 Consider the short and long projections

y = x∞1 +e

y = xØ1 +x2Ø2 +u
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(a) Under what condition does ∞1 =Ø1?

(b) Now suppose the long projection is
y = xµ1 +x3µ2 + v

Is there a similar condition under which ∞1 = µ1?

Exercise 2.22 Take the homoskedastic model

y = x
0
1Ø1 +x

0
2Ø2 +e

E [e | x1, x2] = 0

E
£
e2 | x1, x2

§
=æ2

E [x2 | x1] =°x1

° 6= 0.

Suppose the parameter Ø1 is of interest. We know that the exclusion of x2 creates omited variable bias
in the projection coefficient on x2. It also changes the equation error. Our question is: what is the ef-
fect on the homoskedasticity property of the induced equation error? Does the exclusion of x2 induce
heteroskedasticity or not? Be specific.



Chapter 3

The Algebra of Least Squares

3.1 Introduction

In this chapter we introduce the popular least-squares estimator. Most of the discussion will be alge-
braic, with questions of distribution and inference deferred to later chapters.

3.2 Samples

In Section 2.18 we derived and discussed the best linear predictor of y given x for a pair of random
variables

°
y, x

¢
2R£Rk and called this the linear projection model. We are now interested in estimating

the parameters of this model, in particular the projection coefficient

Ø=
°
E
£

x x
0§¢°1

E
£

x y
§

. (3.1)

We can estimate Ø from observational data which includes joint measurements on the variables°
y, x

¢
. For example, supposing we are interested in estimating a wage equation, we would use a dataset

with observations on wages (or weekly earnings), education, experience (or age), and demographic char-
acteristics (gender, race, location). One possible dataset is the Current Population Survey (CPS), a sur-
vey of U.S. households which includes questions on employment, income, education, and demographic
characteristics.

Notationally we wish to distinguish observations from the underlying random variables. The con-
vention in econometrics is to denote observations by appending a subscript i which runs from 1 to n,
thus the i th observation is (yi , x i ), and n denotes the sample size. The dataset is then {(yi , x i ); i = 1, ...,n}.
We call this the sample or the observations.

From the viewpoint of empirical analysis a dataset is an array of numbers often organized as a table,
where the columns of the table correspond to distinct variables and the rows correspond to distinct
observations. For empirical analysis the dataset and observations are fixed in the sense that they are
numbers presented to the researcher. For statistical analysis we need to view the dataset as random, or
more precisely as a realization of a random process.

In order for the coefficient Ø defined in (3.1) to make sense as defined the expectations over the
random variables (x , y) need to be common across the observations. The most elegant approach to
ensure this is to assume that the observations are draws from an identical underlying population F. This
is the standard assumption that the observations are identically distributed:

64
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Assumption 3.1 The observations {(y1, x1), ..., (yi , x i ), ..., (yn , xn)} are identically
distributed; they are draws from a common distribution F .

This assumption does not need to be viewed as literally true, rather it is a useful modeling device so
that parameters such as Ø are well defined. This assumption should be interpreted as how we view an
observation a priori, before we actually observe it. If I tell you that we have a sample with n = 59 obser-
vations set in no particular order, then it makes sense to view two observations, say 17 and 58, as draws
from the same distribution. We have no reason to expect anything special about either observation.

In econometric theory we refer to the underlying common distribution F as the population. Some
authors prefer the label the data-generating-process (DGP). You can think of it as a theoretical con-
cept or an infinitely-large potential population. In contrast we refer to the observations available to us
{(yi , x i ) : i = 1, ...,n} as the sample or dataset. In some contexts the dataset consists of all potential ob-
servations, for example administrative tax records may contain every single taxpayer in a political unit.
Even in this case we view the observations as if they are random draws from an underlying infinitely-large
population as this will allow us to apply the tools of statistical theory.

The linear projection model applies to the random observations
°
yi , x i

¢
. This means that the prob-

ability model for the observations is the same as that described in Section 2.18. We can write the model
as

yi = x
0
iØ+ei (3.2)

where the linear projection coefficient Ø is defined as

Ø= argmin
b2Rk

S(b), (3.3)

the minimizer of the expected squared error

S(Ø) = E
h°

yi °x
0
iØ

¢2
i

. (3.4)

The coefficient has the explicit solution

Ø=
°
E
£

x i x
0
i

§¢°1
E
£

x i yi
§

. (3.5)

3.3 Moment Estimators

We want to estimate the coefficient Ø defined in (3.5) from the sample of observations. Notice that
Ø is written as a function of certain population expectations. In this context an appropriate estimator is
the same function of the sample moments. Let’s explain this in detail.

To start, suppose that we are interested in the population mean µ of a random variable yi with dis-
tribution function F

µ= E
£

yi
§
=

Z1

°1
ydF (y). (3.6)

The mean µ is a function of the distribution F as written in (3.6). To estimate µ given a sample {y1, ..., yn}
a natural estimator is the sample mean

bµ= y = 1
n

nX

i=1
yi .

Notice that we have written this using two pieces of notation. The notation y with the bar on top is
conventional for a sample mean. The notation bµ with the hat “^” is conventional in econometrics to
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denote an estimator of the parameter µ. In this case y is the estimator of µ, so bµ and y are the same. The
sample mean y can be viewed as the natural analog of the population mean (3.6) because y equals the
expectation (3.6) with respect to the empirical distribution – the discrete distribution which puts weight
1/n on each observation yi . There are many other justifications for y as an estimator for µ. We will
defer these discussions for now. Suffice it to say that it is the conventional estimator in the lack of other
information about µ or the distribution of yi .

Now suppose that we are interested in a set of population means of possibly non-linear functions of
a random vector y , say µ= E

£
h(y i )

§
. For example, we may be interested in the first two moments of yi ,

E
£

yi
§

and E
£

y2
i

§
. In this case the natural estimator is the vector of sample means,

bµ= 1
n

nX

i=1
h(yi )

where h(y) = (y, y2). In this case bµ1 =
1
n

Pn
i=1 yi and bµ2 =

1
n

Pn
i=1 y2

i . We call bµ the moment estimator for
µ.

Now suppose that we are interested in a nonlinear function of a set of moments. For example, con-
sider the variance of y

æ2 = var
£

yi
§
= E

£
y2

i

§
°

°
E
£

yi
§¢2 .

In general, many parameters of interest can be written as a function of moments of y . Notationally,

Ø= g (µ)

µ= E
£
h(y i )

§
.

Here, y i are the random variables, h(y i ) are functions (transformations) of the random variables, and
µ is the mean (expectation) of these functions. Ø is the parameter of interest, and is the (nonlinear)
function g (·) of these means.

In this context a natural estimator of Ø is obtained by replacing µwith bµ.

bØ= g
°
bµ
¢

bµ= 1
n

nX

i=1
h(y i ).

The estimator bØ is sometimes called a “plug-in” estimator, and sometimes a “substitution” estimator. We
typically call bØ a moment, or moment-based, estimator ofØ, since it is a natural extension of the moment
estimator bµ.

Take the example of the variance æ2 = var
£

yi
§
. Its moment estimator is

bæ2 = bµ2 ° bµ2
1 =

1
n

nX

i=1
y2

i °
√

1
n

nX

i=1
yi

!2

.

This is not the only possible estimator for æ2 (there is also the well-known bias-corrected estimator) but
bæ2 is a straightforward and simple choice.

3.4 Least Squares Estimator

The linear projection coefficient Ø is defined in (3.3) as the minimizer of the expected squared error
S(Ø) defined in (3.4). For given Ø, the expected squared error is the expectation of the squared error
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°
yi °x

0
iØ

¢2 . The moment estimator of S(Ø) is the sample average:

bS(Ø) = 1
n

nX

i=1

°
yi °x

0
iØ

¢2 (3.7)

= 1
n

SSE(Ø)

where

SSE(Ø) =
nX

i=1

°
yi °x

0
iØ

¢2

is called the sum-of-squared-errors function.
Since bS(Ø) is a sample average we can interpret it as an estimator of the expected squared error S(Ø).

Examining bS(Ø) as a function of Ø is informative about how S(Ø) varies with Ø. Since the projection
coefficient minimizes S(Ø) an analog estimator minimizes (3.7).

We define the estimator bØ as the minimizer of bS(Ø).

Definition 3.1 The least-squares estimator bØ is

bØ= argmin
Ø2Rk

bS(Ø)

where
bS(Ø) = 1

n

nX

i=1

°
yi °x

0
iØ

¢2

As bS(Ø) is a scale multiple of SSE(Ø) we may equivalently define bØ as the minimizer of SSE(Ø). Hence
bØ is commonly called the least-squares (LS) estimator of Ø. The estimator is also commonly refered to
as the ordinary least-squares (OLS) estimator. For the origin of this label see the historical discussion on
Adrien-Marie Legendre below. Here, as is common in econometrics, we put a hat “^” over the parameter
Ø to indicate that bØ is a sample estimate of Ø. This is a helpful convention. Just by seeing the symbol
bØ we can immediately interpret it as an estimator (because of the hat) of the parameter Ø. Sometimes
when we want to be explicit about the estimation method, we will write bØols to signify that it is the OLS
estimator. It is also common to see the notation bØn , where the subscript “n” indicates that the estimator
depends on the sample size n.

It is important to understand the distinction between population parameters such as Ø and sample
estimators such as bØ. The population parameter Ø is a non-random feature of the population while the
sample estimator bØ is a random feature of a random sample. Ø is fixed, while bØ varies across samples.

3.5 Solving for Least Squares with One Regressor

For simplicity, we start by considering the case k = 1 so that there is a scalar regressor xi and a scalar
coefficient Ø. To illustrate, Figure 3.1(a) displays a scatter plot1 of 20 pairs (yi , xi ).

The sum of squared errors SSE(Ø) is a function of Ø. Given Ø we calculate the “error” yi ° xiØ by
taking the vertical distance between yi and xiØ. This can be seen in Figure 3.1(a) by the vertical lines
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Figure 3.1: Regression With One Regressor

which connect the observations to the straight line. These vertical lines are the errors yi ° xiØ. The sum
of squared errors is the sum of the 20 squared lengths.

The sum of squared errors is the function

SSE(Ø) =
nX

i=1

°
yi °xiØ

¢2

=
√

nX

i=1
y2

i

!

°2Ø

√
nX

i=1
xi yi

!

+Ø2

√
nX

i=1
x2

i

!

.

This is a quadratic function of Ø. The sum of squared error function is displayed in Figure 3.1(b) over the
range [2,4]. The coefficient Ø ranges along the x-axis. The sum-of-squared errors SSE(Ø) as a function of
Ø is displayed on the y-axis.

The OLS estimator bØ minimizes this function. From elementary algebra we know that the minimizer
of the quadratic function a °2bx + cx2 is x = b/c. Thus the minimizer of SSE(Ø) is

bØ=
Pn

i=1 xi yi
Pn

i=1 x2
i

. (3.8)

For example, the minimizer of the sum of squared error function displayed in Figure 3.1(b) is bØ = 3.07,
and is marked on the x-axis.

The intercept-only model is the special case xi = 1. In this case we find

bØ=
Pn

i=1 1yi
Pn

i=1 12 = 1
n

nX

i=1
yi = y , (3.9)

the sample mean of yi . Here, as is common, we put a bar “°” over y to indicate that the quantity is a
sample mean. This calculation shows that the OLS estimator in the intercept-only model is the sample
mean.

1The observations were generated by simulation as xi ªU [0,1], ei ª N[0,1], and yi = 3xi +ei .
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Technically, the estimator bØ in (3.8) only exists if the denominator is non-zero. Since it is a sum of
squares it is necessarily non-negative. Thus bØ exists if

Pn
i=1 x2

i > 0.

3.6 Solving for Least Squares with Multiple Regressors

We now consider the case with k > 1 so that the coefficient Ø is a vector.
To illustrate, Figure 3.2(a) displays a scatter plot of 100 triples (yi , x1i , x2i ). The regression function

x
0Ø= x1Ø1 +x2Ø2 is a 2-dimensional surface and is shown as the plane in Figure 3.2(a).
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Figure 3.2: Regression with Two Variables

The sum of squared errors SSE(Ø) is a function of the vector Ø. For any Ø the error yi ° x
0
iØ is the

vertical distance between yi and x
0
iØ. This can be seen in Figure 3.2(a) by the vertical lines which connect

the observations to the plane. As in the single regressor case these vertical lines are the errors ei = yi °
x
0
iØ. The sum of squared errors is the sum of the 100 squared lengths.

The sum of squared errors can be written as

SSE(Ø) =
nX

i=1
y2

i °2Ø0
nX

i=1
x i yi +Ø0

nX

i=1
x i x

0
iØ.

As in the single regressor case this is a quadratic function in Ø. The difference is that in the multiple
regressor case this is a vector-valued quadratic function. To visualize the sum of squared errors function
Figure 3.2(b) displays SSE(Ø). Another way to visualize a 3-dimensional surface is by a contour plot.
A contour plot of the same SSE(Ø) function is shown in Figure ??. The contour lines are points in the
(Ø1,Ø2) space where SSE(Ø) takes the same value. The contour lines are elliptical.

The least-squares estimator bØminimizes SSE(Ø). A simple way to find the minimum is by solving the
first-order conditions. The latter are

0 = @

@Ø
SSE(bØ) =°2

nX

i=1
x i yi +2

nX

i=1
x i x

0
i
bØ. (3.10)

We have written this using a single expression, but it is actually a system of k equations with k unknowns
(the elements of bØ).
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The solution for bØ may be found by solving the system of k equations in (3.10). We can write this
solution compactly using matrix algebra. Dividing (3.10) by 2 we obtain

nX

i=1
x i x

0
i
bØ=

nX

i=1
x i yi . (3.11)

This is a system of equations of the form Ab = c where A is k £k and b and c are k £1. The solution is
b = A

°1
c , and can be obtained by pre-multiplying Ab = c by A

°1 and using the matrix inverse property
A
°1

A = I k . Applied to (3.11) we find an explicit formula for the least-squares estimator

bØ=
√

nX

i=1
x i x

0
i

!°1 √
nX

i=1
x i yi

!

. (3.12)

This is the natural estimator of the best linear projection coefficient Ø defined in (3.3), and can also be
called the linear projection estimator.

Recall that we claim that bØ in (3.12) is the minimizer of SSE(Ø), and we found this by solving the
first-order conditions. To be complete we should verify the second-order conditions. We calculate that

@2

@Ø@Ø0 SSE(Ø) = 2
nX

i=1
x i x

0
i > 0

which is a positive definite matrix. This shows that the second-order condition for minimization is sat-
isfied so bØ is indeed the unique minimizer of SSE(Ø).

Returning to the example sum-of-squared errors function SSE(Ø) displayed in Figures ?? and ??, the
least-squares estimator bØ is the the pair ( bØ1, bØ2) which minimize this function; visually it is the low spot
in the 3-dimensional graph, and is marked in Figure ?? as the center point of the contour plots.

Returning to equation (3.12) suppose that k = 1. In this case x i is scalar so x i x
0
i = x2

i . Then (3.12)
simplifies to the expression (3.8) previously derived. The expression (3.12) is a notationally simple gen-
eralization but requires a careful attention to vector and matrix manipulations.

Alternatively, equation (3.5) writes the projection coefficient Ø as an explicit function of the popula-
tion moments Q x y and Q x x . Their moment estimators are the sample moments

bQ x y =
1
n

nX

i=1
x i yi

bQ x x = 1
n

nX

i=1
x i x

0
i .

The moment estimator of Ø replaces the population moments in (3.5) with the sample moments:

bØ= bQ°1
x x

bQ x y

=
√

1
n

nX

i=1
x i x

0
i

!°1 √
1
n

nX

i=1
x i yi

!

=
√

nX

i=1
x i x

0
i

!°1 √
nX

i=1
x i yi

!

which is identical with (3.12).
Technically, the estimator bØ in (3.12) exists and is unique only if the inverted matrix is actually invert-

ible, which holds if (and only if) this matrix is positive definite. This excludes the case that x i contains
redundant regressors or regressors with no sample variation. This will be discussed further in Section
3.24.
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Theorem 3.1 If
Pn

i=1 x i x
0
i > 0, the least squares estimator equals

bØ=
√

nX

i=1
x i x

0
i

!°1 √
nX

i=1
x i yi

!

.

Adrien-Marie Legendre

The method of least-squares was first published in 1805 by the French mathe-
matician Adrien-Marie Legendre (1752-1833). Legendre proposed least-squares
as a solution to the algebraic problem of solving a system of equations when the
number of equations exceeded the number of unknowns. This was a vexing and
common problem in astronomical measurement. As viewed by Legendre, (3.2) is
a set of n equations with k unknowns. As the equations cannot be solved exactly,
Legendre’s goal was to select Ø to make the set of errors as small as possible. He
proposed the sum of squared error criterion and derived the algebraic solution
presented above. As he noted, the first-order conditions (3.10) is a system of k
equations with k unknowns which can be solved by “ordinary” methods. Hence
the method became known as Ordinary Least Squares and to this day we still
use the abbreviation OLS to refer to Legendre’s estimation method.

3.7 Illustration

We illustrate the least-squares estimator in practice with the data set used to calculate the estimates
reported in Chapter 2. This is the March 2009 Current Population Survey, which has extensive informa-
tion on the U.S. population. This data set is described in more detail in Section 3.22. For this illustration
we use the sub-sample of married (spouse present) black female wage earners with 12 years potential
work experience. This sub-sample has 20 observations.

In Table 3.1 we display the observations for reference. Each row is an individual observation which
are the data for an individual person. The columns correspond to the variables (measurements) for the
individuals. The second column is the reported wage (total annual earnings divided by hours worked).
The third column is the natural logarithm of the wage. The fourth column is years of education. The
fifth and six columns are further transformations, specifically the square of education and the product of
education and log(wage). The bottom row are the sums of the elements in that column.

Putting the variables into the standard regression notation, let yi be log wages and x i be years of
education and an intercept. Then from the column sums in Table 3.1 we have

nX

i=1
x i yi =

µ
995.86
62.64

∂

and
nX

i=1
x i x

0
i =

µ
5010 314
314 20

∂
.
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Table 3.1: Observations From CPS Data Set

Observation Wage log(Wage) Education Education2 Education*log(Wage)
1 37.93 3.64 18 324 65.44
2 40.87 3.71 18 324 66.79
3 14.18 2.65 13 169 34.48
4 16.83 2.82 16 256 45.17
5 33.17 3.50 16 256 56.03
6 29.81 3.39 18 324 61.11
7 54.62 4.00 16 256 64.00
8 43.08 3.76 18 324 67.73
9 14.42 2.67 12 144 32.03

10 14.90 2.70 16 256 43.23
11 21.63 3.07 18 324 55.44
12 11.09 2.41 16 256 38.50
13 10.00 2.30 13 169 29.93
14 31.73 3.46 14 196 48.40
15 11.06 2.40 12 144 28.84
16 18.75 2.93 16 256 46.90
17 27.35 3.31 14 196 46.32
18 24.04 3.18 16 256 50.76
19 36.06 3.59 18 324 64.53
20 23.08 3.14 16 256 50.22

Sum 515 62.64 314 5010 995.86
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Taking the inverse we obtain √
nX

i=1
x i x

0
i

!°1

=
µ

0.0125 °0.196
°0.196 3.124

∂
.

Thus by matrix multiplication

bØ=
µ

0.0125 °0.196
°0.196 3.124

∂µ
995.86
62.64

∂

=
µ

0.155
0.698

∂
.

In practice, the regression estimates bØ are computed by computer software without the user taking
the explict steps listed above. However, it is useful to understand that the least-squares estimator can
be calculated by simple algebraic operations. If your data is in a spreadsheet similar to Table 3.1, then
the listed transformations (logarithm, squares and cross-products, column sums) can be computed by
spreadsheet operations. bØ could then be calculated by matrix inversion and multiplication. Once again,
this is rarely done by applied economists since computer software is available to ease the process.

We often write the estimated equation using the format

·log(wage) = 0.155 education+0.698. (3.13)

An interpretation of the estimated equation is that each year of education is associated with a 16% in-
crease in mean wages.

Equation (3.13) is called a bivariate regression as there are two variables. It is also called a simple
regression as there is a single regressor. A multiple regression has two or more regressors and allows a
more detailed investigation. Let’s take an example similar to (3.13) but include all levels of experience.
This time we use the sub-sample of single (never married) Asian men which has 268 observations. In-
cluding as regressors years of potential work experience (experience) and its square (experience2/100)
(we divide by 100 to simplify reporting) we obtain the estimates

·log(wage) = 0.143 education+0.036 experience°0.071 experience2/100+0.575. (3.14)

These estimates suggest a 14% increase in mean wages per year of education holding experience con-
stant.

3.8 Least Squares Residuals

As a by-product of estimation we define the fitted value

byi = x
0
i
bØ

and the residual
bei = yi ° byi = yi °x

0
i
bØ. (3.15)

Sometimes byi is called the predicted value but this is a misleading label. The fitted value byi is a function
of the entire sample, including yi , and thus cannot be interpreted as a valid prediction of yi . It is thus
more accurate to describe byi as a fitted rather than a predicted value.

Note that yi = byi + bei and
yi = x

0
i
bØ+ bei . (3.16)
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We make a distinction between the error ei and the residual bei . The error ei is unobservable while the
residual bei is a by-product of estimation. These two variables are frequently mislabeled which can cause
confusion.

Equation (3.10) implies that
nX

i=1
x i bei = 0. (3.17)

To see this by a direct calculation, using (3.15) and (3.12),

nX

i=1
x i bei =

nX

i=1
x i

°
yi °x

0
i
bØ
¢

=
nX

i=1
x i yi °

nX

i=1
x i x

0
i
bØ

=
nX

i=1
x i yi °

nX

i=1
x i x

0
i

√
nX

i=1
x i x

0
i

!°1 √
nX

i=1
x i yi

!

=
nX

i=1
x i yi °

nX

i=1
x i yi

= 0.

When x i contains a constant an implication of (3.17) is

1
n

nX

i=1
bei = 0. (3.18)

Thus the residuals have a sample mean of zero and the sample correlation between the regressors and
the residual is zero. These are algebraic results, and hold true for all linear regression estimates.

3.9 Demeaned Regressors

Sometimes it is useful to separate the constant from the other regressors, and write the linear projec-
tion equation in the format

yi = x
0
iØ+Æ+ei

where Æ is the intercept and x i does not contain a constant. The least-squares estimates and residuals
can be written as

yi = x
0
i
bØ+ bÆ+ bei .

In this case (3.17) can be written as the equation system

nX

i=1

°
yi °x

0
i
bØ° bÆ

¢
= 0

nX

i=1
x i

°
yi °x

0
i
bØ° bÆ

¢
= 0.

The first equation implies
bÆ= y °x

0bØ.

Subtracting from the second we obtain

nX

i=1
x i

≥°
yi ° y

¢
°

°
x i °x

¢0 bØ
¥
= 0.
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Solving for bØ we find

bØ=
√

nX

i=1
x i

°
x i °x

¢0
!°1 √

nX

i=1
x i

°
yi ° y

¢
!

=
√

nX

i=1

°
x i °x

¢°
x i °x

¢0
!°1 √

nX

i=1

°
x i °x

¢°
yi ° y

¢
!

. (3.19)

Thus the OLS estimator for the slope coefficients is a regression with demeaned data.
The representation (3.19) is known as the demeaned formula for the least-squares estimator.

3.10 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in ma-
trix notation. The linear equation (2.23) is a system of n equations, one for each observation. We can
stack these n equations together as

y1 = x
0
1Ø+e1

y2 = x
0
2Ø+e2

...

yn = x
0
nØ+en .

Now define

y =

0

BBBB@

y1

y2
...

yn

1

CCCCA
, X =

0

BBBB@

x
0
1

x
0
2
...

x
0
n

1

CCCCA
, e =

0

BBBB@

e1

e2
...

en

1

CCCCA
.

Observe that y and e are n £1 vectors and X is an n £k matrix. Then the system of n equations can be
compactly written in the single equation

y = XØ+e. (3.20)

Sample sums can be written in matrix notation. For example

nX

i=1
x i x

0
i = X

0
X

nX

i=1
x i yi = X

0
y .

Therefore the least-squares estimator can be written as

bØ=
°

X
0
X

¢°1 °
X

0
y
¢

.

The matrix version of (3.16) and estimated version of (3.20) is

y = X bØ+be.

Equivalently the residual vector is
be = y °X bØ.
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Using the residual vector we can write (3.17) as

X
0be = 0.

It can also be useful to write the sum-of-squared error criterion as

SSE
°
Ø

¢
=

°
y °XØ

¢0 °
y °XØ

¢
.

Using matrix notation we have simple expressions for most estimators. This is particularly conve-
nient for computer programming as most languages allow matrix notation and manipulation.

Theorem 3.2 Important Matrix Expressions

bØ=
°

X
0
X

¢°1 °
X

0
y
¢

be = y °X bØ
X

0be = 0.

Early Use of Matrices

The earliest known treatment of the use of matrix methods to
solve simultaneous systems is found in Chapter 8 of the Chinese
text The Nine Chapters on the Mathematical Art, written by sev-
eral generations of scholars from the 10th to 2nd century BCE.

3.11 Projection Matrix

Define the matrix
P = X

°
X

0
X

¢°1
X

0.

Observe that
P X = X

°
X

0
X

¢°1
X

0
X = X .

This is a property of a projection matrix. More generally, for any matrix Z which can be written as
Z = X° for some matrix ° (we say that Z lies in the range space of X ), then

P Z = P X°= X
°

X
0
X

¢°1
X

0
X°= X°= Z .

As an important example, if we partition the matrix X into two matrices X 1 and X 2 so that

X = [X 1 X 2] ,

then P X 1 = X 1. (See Exercise 3.7.)



CHAPTER 3. THE ALGEBRA OF LEAST SQUARES 77

The projection matrix P has the algebraic property that it is an idempotent matrix P P = P . See
Theorem 3.3.2 below. For the general properties of projection matrices see Section A.11.

The matrix P creates the fitted values in a least-squares regression:

P y = X
°

X
0
X

¢°1
X

0
y = X bØ= by .

Because of this property P is also known as the “hat matrix”.
A special example of a projection matrix occurs when X = 1n is an n-vector of ones. Then

P = 1n
°
10

n1n
¢°1 10

n

= 1
n

1n10
n .

Note that in this case

P y = 1n
°
10

n1n
¢°1 10

n y

= 1n y

creates an n-vector whose elements are the sample mean y of yi .
The projection matrix P appears frequently in algebraic manipulations in least squares regression.

The matrix has the following important properties.

Theorem 3.3 The projection matrix P = X
°

X
0
X

¢°1
X

0 for any n £k X with n ∏
k has the following algebraic properties

1. P is symmetric (P
0 = P ).

2. P is idempotent (P P = P ).

3. trP = k.

4. The eigenvalues of P are 1 and 0. There are k eigenvalues equalling 1 and
n °k equalling 0.

5. rank(P ) = k.

We close this section by proving the claims in Theorem 3.3. Part 1 holds since

P
0 =

≥
X

°
X

0
X

¢°1
X

0
¥0

=
°

X
0¢0

≥°
X

0
X

¢°1
¥0

(X )0

= X

≥°
X

0
X

¢0¥°1
X

0

= X

≥
(X )0

°
X

0¢0
¥°1

X
0

= P .



CHAPTER 3. THE ALGEBRA OF LEAST SQUARES 78

To establish part 2, the fact that P X = X implies that

P P = P X
°

X
0
X

¢°1
X

0

= X
°

X
0
X

¢°1
X

0

= P

as claimed.
For part 3,

trP = tr
≥

X
°

X
0
X

¢°1
X

0
¥

= tr
≥°

X
0
X

¢°1
X

0
X

¥

= tr(I k )

= k.

See Appendix A.5 for definition and properties of the trace operator.
For part 4, it is shown in Appendix A.11 that the eigenvalues ∏i of an idempotent matrix are all 1

and 0. Since trP equals the sum of the n eigenvalues and trP = k by part 3, it follows that there are k
eigenvalues equalling 1 and the remainder (n °k) equalling n °k.

For part 5, observe that P is positive semi-definite since its eigenvalues are all non-negative. By
Theorem A.4.5 its rank equals the number of positive eigenvalues, which is k as claimed.

3.12 Orthogonal Projection

Define

M = I n °P

= I n °X
°

X
0
X

¢°1
X

0

where I n is the n £n identity matrix. Note that

M X = (I n °P ) X = X °P X = X °X = 0. (3.22)

Thus M and X are orthogonal. We call M an orthogonal projection matrix, or more colorfully an anni-
hilator matrix, due to the property that for any matrix Z in the range space of X then

M Z = Z °P Z = 0.

For example, M X 1 = 0 for any subcomponent X 1 of X , and MP = 0 (see Exercise 3.7).
The orthogonal projection matrix M has similar properties with P , including that M is symmetric

(M
0 = M) and idempotent (M M = M). Similarly to Theorem 3.3.3 we can calculate

tr M = n °k. (3.23)

(See Exercise 3.9.) One implication is that the rank of M is n °k.
While P creates fitted values, M creates least-squares residuals:

M y = y °P y = y °X bØ= be. (3.24)
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As discussed in the previous section, a special example of a projection matrix occurs when X = 1n is
an n-vector of ones, so that P = 1n

°
10

n1n
¢°1 10

n . In this case the orthogonal projection matrix is

M = I n °P

= I n °1n
°
10

n1n
¢°1 10

n .

While P creates a vector of sample means, M creates demeaned values:

M y = y °1n y .

For simplicity we will often write the right-hand-side as y ° y . The i th element is yi ° y , the demeaned
value of yi .

We can also use (3.24) to write an alternative expression for the residual vector. Substituting y =
XØ+e into be = M y and using M X = 0 we find

be = M y = M
°

XØ+e
¢
= Me (3.25)

which is free of dependence on the regression coefficient Ø.

3.13 Estimation of Error Variance

The error variance æ2 = E
£
e2

i

§
is a moment, so a natural estimator is a moment estimator. If ei were

observed we would estimate æ2 by

eæ2 = 1
n

nX

i=1
e2

i . (3.26)

However, this is infeasible as ei is not observed. In this case it is common to take a two-step approach to
estimation. The residuals bei are calculated in the first step, and then we substitute bei for ei in expression
(3.26) to obtain the feasible estimator

bæ2 = 1
n

nX

i=1
be2

i . (3.27)

In matrix notation, we can write (3.26) and (3.27) as

eæ2 = n°1
e
0
e

and
bæ2 = n°1be 0be. (3.28)

Recall the expressions be = M y = Me from (3.24) and (3.25). Applied to (3.28) we find

bæ2 = n°1be 0be

= n°1
y
0
M M y

= n°1
y
0
M y

= n°1
e
0
Me (3.29)

the third equality since M M = M .
An interesting implication is that

eæ2 ° bæ2 = n°1
e
0
e °n°1

e
0
Me

= n°1
e
0
Pe

∏ 0.

The final inequality holds because P is positive semi-definite and e
0
Pe is a quadratic form. This shows

that the feasible estimator bæ2 is numerically smaller than the idealized estimator (3.26).
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3.14 Analysis of Variance

Another way of writing (3.24) is
y = P y +M y = by +be. (3.30)

This decomposition is orthogonal, that is

by 0be =
°
P y

¢0 °
M y

¢
= y

0
P M y = 0. (3.31)

It follows that
y
0
y = by 0by +2by 0be +be 0be = by 0by +be 0be

or
nX

i=1
y2

i =
nX

i=1
by2

i +
nX

i=1
be2

i .

Subtracting ȳ from both sides of (3.30) we obtain

y °1n y = by °1n y +be.

This decomposition is also orthogonal when X contains a constant, as

°
by °1n y

¢0be = by 0be ° y10
nbe = 0

under (3.18). It follows that

°
y °1n y

¢0 °
y °1n y

¢
=

°
by °1n y

¢0 °by °1n y
¢
+be 0be

or
nX

i=1

°
yi ° y

¢2 =
nX

i=1

°
byi ° y

¢2 +
nX

i=1
be2

i .

This is commonly called the analysis-of-variance formula for least squares regression.
A commonly reported statistic is the coefficient of determination or R-squared:

R2 =
Pn

i=1

°
byi ° y

¢2

Pn
i=1

°
yi ° y

¢2 = 1°
Pn

i=1 be2
i

Pn
i=1

°
yi ° y

¢2 .

It is often described as the fraction of the sample variance of yi which is explained by the least-squares fit.
R2 is a crude measure of regression fit. We have better measures of fit, but these require a statistical (not
just algebraic) analysis and we will return to these issues later. One deficiency with R2 is that it increases
when regressors are added to a regression (see Exercise 3.16) so the “fit” can be always increased by
increasing the number of regressors.

The coefficient of determination was introduced by Wright (1921).

3.15 Projections

One way to visualize least squares fitting is as a projection operation.
Write the regressor matrix as X = [X 1 X 2 ... X k ] where X j is the j th column of X . The range space

R(X ) of X is the space consisting of all linear combinations of the columns X 1,X 2,...,X k . R(X ) is a k
dimensional surface contained in R

n . If k = 2 then R(X ) is a plane. The operator P = X
°

X
0
X

¢°1
X

0

projects vectors onto the R(X ). In particular, the fitted values by = P y are the projection of y onto R(X ).
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To visualize, examine Figure 3.3. This displays the case n = 3 and k = 2. Displayed are three vectors
y , X 1, and X 2, which are each elements of R3. The plane which is created by X 1 and X 2 is the range
space R(X ). Regression fitted values must be linear combinations of X 1 and X 2, and so lie on this plane.
The fitted value by is the vector on this plane which is closest to y . The residual be = y ° by is the difference
between the two. The angle between the vectors by and be must be 90±, and therefore are orthogonal as
shown.

X1

X2

X1

X2

y

X1

X2

ê

y

X1

X2

ê

y

X1

X2

ê

y

X1

X2

ê

y

ŷ

X1

X2

ê

y

ŷ

X1

X2

ê

y

ŷ

X1

X2

ê

y

ŷ

X1

Figure 3.3: Projection of y onto X 1 and X 2

3.16 Regression Components

Partition
X = [X 1 X 2]

and

Ø=
µ
Ø1
Ø2

∂
.

Then the regression model can be rewritten as

y = X 1Ø1 +X 2Ø2 +e. (3.32)

The OLS estimator of Ø= (Ø0
1,Ø0

2)0 is obtained by regression of y on X = [X 1 X 2] and can be written as

y = X bØ+be = X 1bØ1 +X 2bØ2 +be. (3.33)

We are interested in algebraic expressions for bØ1 and bØ2.
Let’s focus on finding an algebraic expression for bØ1. The least-squares estimator by definition is

found by the joint minimization °bØ1, bØ2
¢
= argmin

Ø1,Ø2

SSE
°
Ø1,Ø2

¢
(3.34)
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where
SSE

°
Ø1,Ø2

¢
=

°
y °X 1Ø1 °X 2Ø2

¢0 °
y °X 1Ø1 °X 2Ø2

¢
.

An equivalent expression for bØ1 can be obtained by concentration (nested minimization). The solution
(3.34) can be written as

bØ1 = argmin
Ø1

µ
min
Ø2

SSE
°
Ø1,Ø2

¢∂
. (3.35)

The inner expression minØ2
SSE

°
Ø1,Ø2

¢
minimizes over Ø2 while holding Ø1 fixed. It is the lowest pos-

sible sum of squared errors given Ø1. The outer minimization argminØ1
finds the coefficient Ø1 which

minimizes the “lowest possible sum of squared errors given Ø1”. This means that bØ1 as defined in (3.34)
and (3.35) are algebraically identical.

Examine the inner minimization problem in (3.35). This is simply the least squares regression of
y °X 1Ø1 on X 2. This has solution

argmin
Ø2

SSE
°
Ø1,Ø2

¢
=

°
X

0
2X 2

¢°1 °
X

0
2
°

y °X 1Ø1
¢¢

with residuals

y °X 1Ø1 °X 2
°

X
0
2X 2

¢°1 °
X

0
2
°

y °X 1Ø1
¢¢
=

°
M 2 y °M 2X 1Ø1

¢

= M 2
°

y °X 1Ø1
¢

where
M 2 = I n °X 2

°
X

0
2X 2

¢°1
X

0
2 (3.36)

is the orthogonal projection matrix for X 2. This means that the inner minimization problem (3.35) has
minimized value

min
Ø2

SSE
°
Ø1,Ø2

¢
=

°
y °X 1Ø1

¢0
M 2M 2

°
y °X 1Ø1

¢

=
°

y °X 1Ø1
¢0

M 2
°

y °X 1Ø1
¢

where the second equality holds since M 2 is idempotent. Substituting this into (3.35) we find

bØ1 = argmin
Ø1

°
y °X 1Ø1

¢0
M 2

°
y °X 1Ø1

¢

=
°

X
0
1M 2X 1

¢°1 °
X

0
1M 2 y

¢
.

By a similar argument we can find

bØ2 =
°

X
0
2M 1X 2

¢°1 °
X

0
2M 1 y

¢

where
M 1 = I n °X 1

°
X

0
1X 1

¢°1
X

0
1 (3.37)

is the orthogonal projection matrix for X 1.

Theorem 3.4 The least-squares estimator
°bØ1, bØ2

¢
for (3.33) has the algebraic

solution

bØ1 =
°

X
0
1M 2X 1

¢°1 °
X

0
1M 2 y

¢
(3.38)

bØ2 =
°

X
0
2M 1X 2

¢°1 °
X

0
2M 1 y

¢
(3.39)

where M 1 and M 2 are defined in (3.37) and (3.36), respectively.
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3.17 Regression Components (Alternative Derivation)*

An alternative proof of Theorem 3.4 uses an algebraic argument which is identical to that for the
population coefficients as presented in Section 2.22. Since this is a classic derivation we present it here
for completeness.

Partition bQ x x as

bQ x x =

2

4
bQ11

bQ12

bQ21
bQ22

3

5=

2

6664

1
n

X
0
1X 1

1
n

X
0
1X 2

1
n

X
0
2X 1

1
n

X
0
2X 2

3

7775

and similarly bQ x y as

bQ x y =

2

4
bQ1y

bQ2y

3

5=

2

6664

1
n

X
0
1 y

1
n

X
0
2 y

3

7775 .

By the partitioned matrix inversion formula (A.3)

bQ°1
x x

=

2

4
bQ11

bQ12

bQ21
bQ22

3

5

°1

de f=

2

64
bQ11 bQ12

bQ21 bQ22

3

75=

2

64
bQ°1

11·2 °bQ°1
11·2 bQ12

bQ°1
22

°bQ°1
22·1 bQ21

bQ°1
11

bQ°1
22·1

3

75 (3.40)

where bQ11·2 = bQ11 ° bQ12
bQ°1

22
bQ21 and bQ22·1 = bQ22 ° bQ21

bQ°1
11

bQ12. Thus

bØ=
µ bØ1

bØ2

∂

=
"

bQ°1
11·2 °bQ°1

11·2 bQ12
bQ°1

22

°bQ°1
22·1 bQ21

bQ°1
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bQ°1
22·1

#∑ bQ1y
bQ2y

∏

=
√
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11·2 bQ1y ·2

bQ°1
22·1 bQ2y ·1

!

.

Now

bQ11·2 = bQ11 ° bQ12
bQ°1

22
bQ21

= 1
n

X
0
1X 1 °

1
n

X
0
1X 2

µ
1
n

X
0
2X 2

∂°1 1
n

X
0
2X 1

= 1
n

X
0
1M 2X 1

and

bQ1y ·2 = bQ1y ° bQ12
bQ°1

22
bQ2y

= 1
n

X
0
1 y ° 1

n
X

0
1X 2

µ
1
n

X
0
2X 2

∂°1 1
n

X
0
2 y

= 1
n

X
0
1M 2 y .

Equation (3.39) follows.

Similarly to the calculation for bQ11·2 and bQ1y ·2 you can show that bQ2y ·1 = 1
n

X
0
2M 1 y and bQ22·1 =

1
n

X
0
2M 1X 2. This establishes (3.38). Together, this is Theorem 3.4.
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3.18 Residual Regression

As first recognized by Frisch and Waugh (1933) and extended by Lovell (1963), expressions (3.38)
and (3.39) can be used to show that the least-squares estimators bØ1 and bØ2 can be found by a two-step
regression procedure.

Take (3.39). Since M 1 is idempotent, M 1 = M 1M 1 and thus

bØ2 =
°

X
0
2M 1X 2

¢°1 °
X

0
2M 1 y

¢

=
°

X
0
2M 1M 1X 2

¢°1 °
X

0
2M 1M 1 y

¢

=
≥
eX 0

2
eX 2

¥°1 ≥
eX 0

2ee1

¥

where
eX 2 = M 1X 2

and
ee1 = M 1 y .

Thus the coefficient estimate bØ2 is algebraically equal to the least-squares regression of ee1 on eX 2.
Notice that these two are y and X 2, respectively, premultiplied by M 1. But we know that multiplication
by M 1 is equivalent to creating least-squares residuals. Therefore ee1 is simply the least-squares residual
from a regression of y on X 1, and the columns of eX 2 are the least-squares residuals from the regressions
of the columns of X 2 on X 1.

We have proven the following theorem.

Theorem 3.5 Frisch-Waugh-Lovell (FWL)
In the model (3.32), the OLS estimator of Ø2 and the OLS residuals be may be
equivalently computed by either the OLS regression (3.33) or via the following
algorithm:

1. Regress y on X 1, obtain residuals ee1;

2. Regress X 2 on X 1, obtain residuals eX 2;

3. Regress ee1 on eX 2, obtain OLS estimates bØ2 and residuals be.

In some contexts (such as panel data models, to be introduced in Chapter 17), the FWL theorem can
be used to greatly speed computation.

The FWL theorem is a direct analog of the coefficient representation obtained in Section 2.23. The
result obtained in that section concerned the population projection coefficients; the result obtained here
concern the least-squares estimates. The key message is the same. In the least-squares regression (3.33)
the estimated coefficient bØ2 algebraically equals the regression of y on the regressors X 2 after the regres-
sors X 1 have been linearly projected out. Similarly, the coefficient estimate bØ1 algebraically equals the
regression of y on the regressors X 1 after the regressors X 2 have been linearly projected out. This result
can be insightful when interpreting regression coefficients.

A common application of the FWL theorem is the demeaning formula for regression obtained in
(3.19). Partition X = [X 1 X 2] where X 1 = 1n is a vector of ones and X 2 is a matrix of observed regressors.
In this case

M 1 = I n °1n
°
10

n1n
¢°1 10

n .
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Observe that
eX 2 = M 1X 2 = X 2 °X 2

and
M 1 y = y ° y

are the “demeaned” variables. The FWL theorem says that bØ2 is the OLS estimate from a regression of
yi ° y on x2i °x2 :

bØ2 =
√

nX

i=1

°
x2i °x2

¢°
x2i °x2

¢0
!°1 √

nX

i=1

°
x2i °x2

¢°
yi ° y

¢
!

.

This is (3.19).

Ragnar Frisch
Ragnar Frisch (1895-1973) was co-winner with Jan Tinbergen of the first No-
bel Memorial Prize in Economic Sciences in 1969 for their work in developing
and applying dynamic models for the analysis of economic problems. Frisch
made a number of foundational contributions to modern economics beyond the
Frisch-Waugh-Lovell Theorem, including formalizing consumer theory, produc-
tion theory, and business cycle theory.

3.19 Leverage Values

The leverage values for the regressor matrix X are the diagonal elements of the projection matrix
P = X

°
X

0
X

¢°1
X

0 . There are n leverage values, and are typically written as hi i for i = 1, ...,n. Since

P =

0

BBBB@

x
0
1

x
0
2
...

x
0
n

1

CCCCA

°
X

0
X

¢°1 °
x1 x2 · · · xn

¢

they are
hi i = x

0
i

°
X

0
X

¢°1
x i . (3.41)

The leverage value hi i is a normalized length of the observed regressor vector x i . They appear fre-
quently in the algebraic and statistical analysis of least-squares regression, including leave-one-out re-
gression, influential observations, robust covariance matrix estimation, and cross-validation.

A few properties of the leverage values are now listed.

Theorem 3.6

1. 0 ∑ hi i ∑ 1.

2. hi i ∏ 1/n if X includes an intercept.

3.
Pn

i=1 hi i = k.
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We prove Theorem 3.6 below.
The leverage values hi i measure how unusual the i th observation x i is relative to the other values

in the sample. A large hi i occurs when x i is quite different from the other sample values. A measure of
overall unusualness is the maximum leverage value

h = max
1∑i∑n

hi i . (3.42)

It is common to say that a regression design is balanced when the leverage values are all roughly
equal to one another. From Theorem 3.6.3 we can deduce that complete balance implies hi i = h = k/n.
An example where complete balance occurs is when the regressors are all orthogonal dummy variables,
each of which have equal occurrance of 0’s and 1’s.

A regression design is unbalanced if some leverage values are highly unequal from the others. The
most extreme case is h = 1. An example where this occurs is when there is a dummy regressor which
takes the value 1 for only one observation in the sample.

The maximal leverage value (3.42) will change depending on the choice of regressors. For example,
consider equation (3.14), the wage regression for single Asian men which has n = 268 observations. This
regression has h = 0.33. If the squared experience regressor is omitted, the leverage drops to h = 0.10.
If a cubic in experience is added, it increases to h = 0.76. And if a fourth and fifth power are added, it
increases to h = 0.99.

In general, there is no reason to check the leverage values as in general there is no problem if the
leverage values are balanced, unbalanced, or every highly unbalanced. However, the fact that leverage
values can easily be large and close to one suggests that we should take this into consideration when
examining procedures (such as robust covariance matrix estimation and cross-validation) which make
use of leverage values. We will return to these issues later when leverage values arise.

We now prove Theorem 3.6. For part 1 let si be an n£1 unit vector with a 1 in the i th place and zeros
elsewhere so that hi i = s

0
i P si . Then applying the Quadratic Inequality (B.18) and Theorem 3.3.4,

hi i = s
0
i P si ∑ s

0
i si∏max (P ) = 1

as claimed.
For part 2 partition x i = (1, z

0
i )0. Without loss of generality we can replace z i with the demeaned

values z
§
i = z i ° z . Then since z

§
i and the intercept are orthgonal

hi i = (1, z
§0
i )

∑
n 0
0 Z

§0
Z

§

∏°1 µ
1

z
§
i

∂

= 1
n
+ z

§0
i

°
Z

§0
Z

§¢°1
z
§
i

∏ 1
n

.

For part 3,
Pn

i=1 hi i = trP = k where the second equality is Theorem 3.3.3.

3.20 Leave-One-Out Regression

There are a number of statistical procedures – residual analysis, jackknife variance estimation, cross-
validation, two-step estimation, hold-out sample evaluation – which make use of estimators constructed
on sub-samples. Of particular importance is the case where we exclude a single observation and then
repeat this for all observations. This is called leave-one-out (LOO) regression.
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Specifically, the leave-one-out least-squares estimator of the regression coefficient Ø is the least-
squares estimator constructed using the full sample excluding a single observation i . This can be written
as

bØ(°i ) =
√
X

j 6=i
x j x

0
j

!°1 √
X

j 6=i
x j y j

!

=
°

X
0
X °x i x

0
i

¢°1 °
X

0
y °x i yi

¢

=
≥

X
0
(°i )X (°i )

¥°1
X

0
(°i ) y (°i ). (3.43)

Here, X (°i ) and y (°i ) are the data matrices omitting the i th row. The notation bØ(°i ) or bØ°i is commonly
used to denote an estimator with the i th observation omitted.

There is a leave-one-out estimator for each observation, i = 1, ...,n, so we have n such estimators.
The leave-one-out predicted value for yi is

eyi = x
0
i
bØ(°i ).

This is the predicted value obtained by estimatingØ on the sample without observation i and then using
the covariate vector x i to predict yi . Notice that eyi is an authentic prediction as yi is not used to construct
eyi . This is in contrast to the fitted values byi which are functions of yi .

The leave-one-out residual, prediction error, or prediction residual is

eei = yi ° eyi .

The prediction errors may be used as estimates of the errors instead of the residuals. The prediction
errors are better estimates than the residuals since the former are based on authentic predictions.

The leave-one-out formula (3.43) gives the unfortunate impression that the leave-one-out coeffi-
cients and errors are computationally cumbersome, requiring n separate regressions. In the context of
linear regression this is fortunately not the case. There are simple linear expressions for bØ(°i ) and eei .

Theorem 3.7 The leave-one-out least-squares estimator and prediction error
can be calculated as

bØ(°i ) = bØ°
°

X
0
X

¢°1
x i eei (3.44)

and
eei = (1°hi i )°1 bei (3.45)

where hi i are the leverage values as defined in (3.41).

We prove Theorem 3.7 at the end of the section.
Equation (3.44) shows that the leave-one-out coefficients can be calculated by a simple linear oper-

ation and do not need to be calculated using n separate regressions. Equation (3.45) for the prediction
error is particularly convenient. It shows that the leave-one-out residuals are a simple scaling of the
standard least-squares residuals.

Equations (3.44) and (3.45) both show the usefulness of the leverage values hi i .
Another interesting feature of equation (3.45) is that the prediction errors eei are a simple scaling

of the residuals bei with the scaling depending on the leverage values hi i . If hi i is small then eei ' bei .
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However if hi i is large then eei can be quite different from bei . Thus the difference between the residuals
and predicted values depends on the leverage values, that is, how unusual x i is relative to the other
observations.

To write (3.45) in vector notation, define

M
§ =

°
I n °diag{h11, ..,hnn}

¢°1

= diag{(1°h11)°1 , .., (1°hnn)°1}.

Then (3.45) is equivalent to
ee = M

§be. (3.46)

One use of the prediction errors is to estimate the out-of-sample mean squared error. The natural
estimator is

eæ2 = 1
n

nX

i=1
ee2

i =
1
n

nX

i=1
(1°hi i )°2 be2

i . (3.47)

This is also known as the sample mean squared prediction error. Its square root eæ=
p

eæ2 is the predic-
tion standard error.

We complete the section by presenting a proof of Theorem 3.7. The leave-one-out estimator (3.43)
can be written as

bØ(°i ) =
°

X
0
X °x i x

0
i

¢°1 °
X

0
y °x i yi

¢
. (3.48)

Multiply (3.48) by
°

X
0
X

¢°1 °
X

0
X °x i x

0
i

¢
. We obtain

bØ(°i ) °
°

X
0
X

¢°1
x i x

0
i
bØ(°i ) =

°
X

0
X

¢°1 °
X

0
y °x i yi

¢
= bØ°

°
X

0
X

¢°1
x i yi .

Rewriting
bØ(°i ) = bØ°

°
X

0
X

¢°1
x i

°
yi °x

0
i
bØ(°i )

¢
= bØ°

°
X

0
X

¢°1
x i eei

which is (3.44). Premultiplying this expression by x
0
i and using definition (3.41) we obtain

x
0
i
bØ(°i ) = x

0
i
bØ°x

0
i

°
X

0
X

¢°1
x i eei = x

0
i
bØ°hi i eei .

Using the definitions for bei and eei we obtain eei = bei °hi i eei . Re-writing we obtain (3.45).

3.21 Influential Observations

Another use of the leave-one-out estimator is to investigate the impact of influential observations,
sometimes called outliers. We say that observation i is influential if its omission from the sample induces
a substantial change in a parameter estimate of interest.

For illustration consider Figure 3.4 which shows a scatter plot of random variables (yi , xi ). The 25
observations shown with the open circles are generated by xi ªU [1,10] and yi ª N (xi ,4). The 26th ob-
servation shown with the filled circle is x26 = 9, y26 = 0. (Imagine that y26 = 0 was incorrectly recorded
due to a mistaken key entry.) The figure shows both the least-squares fitted line from the full sample
and that obtained after deletion of the 26th observation from the sample. In this example we can see
how the 26th observation (the “outlier”) greatly tilts the least-squares fitted line towards the 26th obser-
vation. In fact, the slope coefficient decreases from 0.97 (which is close to the true value of 1.00) to 0.56,
which is substantially reduced. Neither y26 nor x26 are unusual values relative to their marginal distribu-
tions so this outlier would not have been detected from examination of the marginal distributions of the
data. The change in the slope coefficient of °0.41 is meaningful and should raise concern to an applied
economist.
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Figure 3.4: Impact of an Influential Observation on the Least-Squares Estimator

From (3.44) we know that
bØ° bØ(°i ) =

°
X

0
X

¢°1
x i eei . (3.49)

By direct calculation of this quantity for each observation i , we can directly discover if a specific obser-
vation i is influential for a coefficient estimate of interest.

For a general assessment, we can focus on the predicted values. The difference between the full-
sample and leave-one-out predicted values is

byi ° eyi = x
0
i
bØ°x

0
i
bØ(°i )

= x
0
i

°
X

0
X

¢°1
x i eei

= hi i eei

which is a simple function of the leverage values hi i and prediction errors eei . Observation i is influential
for the predicted value if |hi i eei | is large, which requires that both hi i and |eei | are large.

One way to think about this is that a large leverage value hi i gives the potential for observation i to
be influential. A large hi i means that observation i is unusual in the sense that the regressor x i is far
from its sample mean. We call an observation with large hi i a leverage point. A leverage point is not
necessarily influential as the latter also requires that the prediction error eei is large.

To determine if any individual observations are influential in this sense several diagnostics have been
proposed (some names include DFITS, Cook’s Distance, and Welsch Distance). Unfortunately, from a
statistical perspective it is difficult to recommend these diagnostics for applications as they are not based
on statistical theory. Probably the most relevant measure is the change in the coefficient estimates given
in (3.49). The ratio of these changes to the coefficient’s standard error is called its DFBETA, and is a
postestimation diagnostic available in Stata. While there is no magic threshold, the concern is whether
or not an individual observation meaningfully changes an estimated coefficient of interest. A simple
diagnostic for influential observations is to calculate

Influence = max
1∑i∑n

ØØbyi ° eyi
ØØ= max

1∑i∑n
|hi i eei | .
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This is the largest (absolute) change in the predicted value due to a single observation. If this diagnostic
is large relative to the distribution of yi it may indicate that that observation is influential.

If an observation is determined to be influential what should be done? As a common cause of influ-
ential observations is data entry error, the influential observations should be examined for evidence that
the observation was mis-recorded. Perhaps the observation falls outside of permitted ranges, or some
observables are inconsistent (for example, a person is listed as having a job but receives earnings of $0).
If it is determined that an observation is incorrectly recorded, then the observation is typically deleted
from the sample. This process is often called “cleaning the data”. The decisions made in this process in-
volve a fair amount of individual judgment. [When this is done the proper practice is to retain the source
data in its original form and create a program file which executes all cleaning operations (for example
deletion of individual observations). The cleaned data file can be saved at this point, and then used for
the subsequent statistical analysis. The point of retaining the source data and a specific program file
which cleans the data is twofold: so that all decisions are documented, and so that modifications can
be made in revisions and future research.] It is also possible that an observation is correctly measured,
but unusual and influential. In this case it is unclear how to proceed. Some researchers will try to alter
the specification to properly model the influential observation. Other researchers will delete the obser-
vation from the sample. The motivation for this choice is to prevent the results from being skewed or
determined by individual observations. This latter practice is viewed skeptically by many researchers
who believe it reduces the integrity of reported empirical results.

For an empirical illustration consider the log wage regression (3.14) for single Asian men. This regres-
sion, which has 268 observations, has Influence = 0.29. This means that the most influential observation,
when deleted, changes the predicted (fitted) value of the dependent variable log(wage) by 0.29, or equiv-
alently the average wage by 29%. This is a meaningful change and suggests further investigation. We
examine the influential observation, and find that its leverage hi i is 0.33, which is the maximum in the
sample as described in Section 3.19. It is a rather large leverage value, meaning that the regressor x i is
unusual. Examining further, we find that this individual is 65 years old with 8 years education, so that
his potential experience is 51 years. This is the highest experience in the subsample – the next highest is
41 years. The large leverage is due to his unusual characteristics (very low education and very high expe-
rience) within this sample. Essentially, regression (3.14) is attempting to estimate the conditional mean
at experience= 51 with only one observation. It is not surprising that this observation determines the fit
and is thus influential. A reasonable conclusion is the regression function can only be estimated over
a smaller range of experience. We restrict the sample to individuals with less than 45 years experience,
re-estimate, and obtain the following estimates.

·log(wage) = 0.144 education+0.043 experience°0.095 experience2/100+0.531. (3.50)

For this regression, we calculate that Influence = 0.11, which is greatly reduced relative to the regression
(3.14). Comparing (3.50) with (3.14), the slope coefficient for education is essentially unchanged, but the
coefficients in experience and its square have slightly increased.

By eliminating the influential observation equation (3.50) can be viewed as a more robust estimate
of the conditional mean for most levels of experience. Whether to report (3.14) or (3.50) in an application
is largely a matter of judgment.

3.22 CPS Data Set

In this section we describe the data set used in the empirical illustrations.
The Current Population Survey (CPS) is a monthly survey of about 57,000 U.S. households conducted

by the Bureau of the Census of the Bureau of Labor Statistics. The CPS is the primary source of informa-
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tion on the labor force characteristics of the U.S. population. The survey covers employment, earnings,
educational attainment, income, poverty, health insurance coverage, job experience, voting and registra-
tion, computer usage, veteran status, and other variables. Details can be found at www.census.gov/cps
and dataferrett.census.gov.

From the March 2009 survey we extracted the individuals with non-allocated variables who were
full-time employed (defined as those who had worked at least 36 hours per week for at least 48 weeks
the past year), and excluded those in the military. This sample has 50,742 individuals. We extracted
14 variables from the CPS on these individuals and created the data files (Stata format),

(Excel format) and (text format). The variables are described in the file
All data files are available at http://www.ssc.wisc.edu/~bhansen/econometrics/

3.23 Numerical Computation

Modern econometric estimation involves large samples and many covariates. Consequently calcu-
lation of even simple statistics such as the least squares estimator requires a large number (millions)
of arithmetic operations. In practice most economists don’t need to think much about this as it is done
swiftly and effortlessly on our personal computers. Nevertheless it is useful to understand the underlying
calculation methods as occasionally choices can make substantive differences.

While today nearly all statistical computations are made using statistical software running on per-
sonal computers, this was not always the case. In the nineteenth and early twentieth centures, “com-
puter” was a job label for workers who made computations by hand. Computers were employed by
astronomers and statistical laboratories to execute numerical calculations. This fascinating job (and the
fact that most computers employed in laboratories were women) has entered popular culture. For ex-
ample the lives of several computers who worked for the early U.S. space program is described in the
book and popular movie Hidden Figures, and the life of computer/astronomer Henrietta Swan Leavitt is
dramatized in the moving play Silent Sky.

Until programmable electronic computers became available in the 1960s, economics graduate stu-
dents were routinely employed as computers. Sample sizes were considerably smaller than those seen
today, but still the effort required to calculate by hand (for example) a regression with n = 100 observa-
tions and k = 5 variables is considerable! If you are a current graduate student, you should feel fortunate
that the profession has moved on from the era of human computers! (Now research assistants do more
elevated tasks such as writing Stata and Matlab code.)

To obtain the least squares estimator bØ=
°

X
0
X

¢°1 °
X

0
y
¢

we need to either invert X
0
X or solve a sys-

tem of equations. To be specific, let A = X
0
X and c = X

0
y so that the least squares estimator can be

written as either the solution to
AbØ= c (3.51)

or as
bØ= A

°1
c . (3.52)

The equations (3.51) and (3.52) are algebraically identical, but they suggest two distinct numerical ap-
proaches to obtain bØ. (3.51) suggests solving a system of k equations. (3.52) suggests finding A

°1 and
then multiplying by c . While the two expressions are algebraically identical, the implied numerical ap-
proaches are different.

In a nutshell, solving the system of equations (3.51) is numerically preferred to the matrix inversion
problem (3.52). Directly solving (3.51) is faster and produces a solution with a higher degree of numerical
accuracy. Thus (3.51) is generally recommended over (3.52). However, in most practical applications the
choice will not make any practical difference. Contexts where the choice may make a difference is when
the matrix A is ill-conditioned (to be discussed in Section 3.24) or of extremely high dimension.
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Numerical methods to solve the system of equations (3.51) and calculate A
°1 are discussed in Sec-

tions A.18 and A.19, respectively.
Statistical packages use a variety of matrix to solve (3.51). Stata uses the sweep algorithm which is a

variant of the Gauss-Jordan algorithm discussed in Section A.18. (For the sweep algorithm see Goodnight
(1979).) In R, uses the QR decomposition. In Matlab, \ uses the Cholesky decomposition
when A is positive definite and the QR decomposition otherwise.

3.24 Collinearity Errors

For the least squares estimator to be uniquely defined the regressors cannot be linearly dependent.
However, it is quite easy to attempt to calculate a regression with linearly dependent regressors. This can
occur for many reasons, including the following.

1. Including the same regressor twice.

2. Including regressors which are a linear combination of one another, such as education, experience
and age in the CPS data set example (recall, experience is defined as age-education-6).

3. Including a dummy variable and its square.

4. Estimating a regression on a sub-sample for which a dummy variable is either all zeros or all ones.

5. Including a dummy variable interaction which yields all zeros.

6. Including more regressors than observations.

In any of the above cases the regressors are linearly dependent so X
0
X is singular and the least

squares estimator is not defined. If you attempt to estimate the regression, you are likely to encounter
an error message. (A possible exception is Matlab using “ \ ”, as discussed below.) The message may be
that “system is exactly singular”, “system is computationally singular”, a variable is “omitted because of
collinearity”, or a coefficient is listed as “NA”. In some cases (such as estimation in R using explicit matrix
computation or Matlab using the command) the program will stop execution. In other cases
the program will continue to run. In Stata (and in the package in R), a regression will be reported but
one or more variables will be omitted to achieve non-singularity.

If any of these warnings or error messages appear, the correct response is to stop and examine the
regression coding and data. Did you make an unintended mistake? Have you included a linearly de-
pendent regressor? Are you estimating on a subsample for which the variables (in particular dummy
variables) have no variation? If you can determine that one of these scenarios caused the error, the so-
lution is immediately apparent. You need to respecify your model (either sample or regressors) so that
the redundancy is eliminated. All empirical researchers encounter this error in the course of empirical
work. You should not, however, simply accept output if the package has selected variables for omission.
It is the researcher’s job to understand the underlying cause and enact a suitable remedy.

There is also a possibility that the statistical package will not detect and report the matrix singularity.
If you compute in Matlab using explicit matrix operations and use the recommended \ command to
compute the least squares estimator Matlab may return a numerical solution without an error message
even when the regressors are algebraically dependent. It is therefore recommended that you perform a
numerical check for matrix singularity when using explicit matrix operations in Matlab.

How can we numerically check if a matrix A is singular? A standard diagnostic is the reciprocal
condition number

C = ∏min (A)
∏max (A)

.
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If C = 0 then A is singular. If C = 1 then A is perfectly balanced. If C is extremely small we say that
A is ill-conditioned. The reciprocal condition number can be calculated in Matlab or R by the
command. Unfortunately, there is no accepted tolerance for how small C should be before regarding
A as numerically singular, in part since can return a positive (but small) result even if A is
algebraically singular. However, in double precision (which is typically used for computation) numerical
accuracy is bounded by 2°52 ' 2e-16, suggesting the minimum bound C ∏ 2e-16.

Checking for numerical singularity is complicated by the fact that low values of C can also be caused
by unbalanced or highly correlated regressors.

To illustrate, consider a wage regression using the sample from (3.14) on powers of experience x from
1 through k (e.g. x, x2, x3, ..., xk ). We calculated the reciprocal condition number C for each k, and found
that C is decreasing as k increases, indicating increasing ill-conditioning. Indeed, for k = 5, we find C =
6e-17, which is lower than double precision accuracy. This means that a regression on (x, x2, x3, x4, x5) is
ill-conditioned. The regressor matrix, however, is not singular. The low value of C is not due to algebraic
singularity but rather is due to a lack of balance and high collinearity.

Ill-conditioned regressors have the potential problem that the numerical results (the reported coef-
ficient estimates) will be inaccurate. It is not a major concern as this only occurs in extreme cases and
because high numerical accuracy is not typically an important goal in econometric estimation. Never-
theless, we should try and avoid ill-conditioned regressions whenever possible.

There are strategies which can reduce or even eliminate ill-conditioning. Often it is sufficient to
rescale the regressors. A simple rescaling which often works for non-negative regressors is to divide each
by its sample mean, thus replace x j i with x j i /x j . In the above example with the powers of experience,
this means replacing x2

i with x2
i /

°
n°1 Pn

i=1 x2
i

¢
, etc. Doing so dramatically reduces the ill-conditioning.

With this scaling regressions for k ∑ 11 satisfy C ∏ 1e-15. Another rescaling specific to a regression with
powers is to first rescale the regressor to lie in [°1,1] before taking powers. With this scaling, regressions
for k ∑ 16 satisfy C ∏ 1e-15. A simpler scaling option is to rescale the regressor to lie in [0,1] before taking
powers. With this scaling, regressions for k ∑ 9 satisfy C ∏ 1e-15. This is often sufficient for applications.

Ill-conditioning can often be completely eliminated by orthogonalization of the regressors. This is
achieved by sequentially regressing each variable (each column in X ) on the preceeding variables (each
preceeding column), taking the residual, and then rescaling to have a unit variance. This will produce
regressors which algebraically satisfy X

0
X = nI n and have a condition number of C = 1. If we apply this

method to the above example, we obtain a condition number close to 1 for k ∑ 20.
What this shows is that when a regression has a small condition number it is important to examine

the specification carefully. It is possible that the regressors are linearly dependent in which case one or
more regressors will need to be omitted. It is also possible that the regressors are badly scaled in which
case it may be useful to rescale some of the regressors. It is also possible that the variables are highly
collinear in which case a possible solution is orthogonalization. These choices should be made by the
researcher not by an automated software program.

3.25 Programming

Most packages allow both interactive programming (where you enter commands one-by-one) and
batch programming (where you run a pre-written sequence of commands from a file). Interactive pro-
gramming can be useful for exploratory analysis but eventually all work should be executed in batch
mode. This is the best way to control and document your work.

Batch programs are text files where each line executes a single command. For Stata, this file needs to
have the filename extension “.do”, and for MATLAB “.m”. For R there is no specific naming requirements,
though it is typical to use the extension “.r”. When writing batch files it is useful to include comments for
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documentation and readability. To execute a program file you type a command within the program.
Stata: executes the file chapter3.do
MATLAB: executes the file chapter3.m
R: or executes the file chapter3.r
There are other similarities and differences between the commands used in these packages. For

example:

1. Different symbols are used to create comments. in Stata, in R, and in Matlab.

2. Matlab uses the symbol to separate lines. Stata and R use a hard return.

3. Stata uses to compute natural logarithms. R and Matlab use .

4. The symbol is used to define a variable. R prefers < . Double equality is used to test equality.

We now illustrate programming files for Stata, R, and MATLAB, which execute a portion of the em-
pirical illustrations from Sections 3.7 and 3.21. For the R and Matlab code we illustrate using explicit
matrix operations. Alternatively, R and Matlab have packages which implement least squares regression
without the need for explicit matrix operations. In R the standard package is . In Matlab the standard
command is . The advantage of using explicit matrix operations as shown below is that you
know exactly what computations are done and it is easier to go “out of the box” to execute new proce-
dures. The advantage of using built-in packages and commands is that coding is simplified and you are
much less likely to make a coding error.

Stata do File

* Clear memory and load the data
clear
use cps09mar.dta
* Generate transformations
gen wage = ln(earnings/(hours*week))
gen experience = age - education - 6
gen exp2 = (experience^2)/100
* Create indicator for subsamples
gen mbf = (race == 2) & (marital <= 2) & (female == 1)
gen mbf12 = (mbf == 1) & (experience == 12)
gen sam = (race == 4) & (marital == 7) & (female == 0)
* Regressions
reg wage education if mbf12 == 1
reg wage education experience exp2 if sam == 1
* Leverage and influence
predict leverage, hat
predict e, residual
gen d=e*leverage/(1-leverage)
summarize d if sam ==1
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R Program File

# Load the data and create subsamples
dat <- read.table("cps09mar.txt")
experience <- dat[,1]-dat[,4]-6
mbf <- (dat[,11]==2)&(dat[,12]<=2)&(dat[,2]==1)&(experience==12)
sam <- (dat[,11]==4)&(dat[,12]==7)&(dat[,2]==0)
dat1 <- dat[mbf,]
dat2 <- dat[sam,]
# First regression
y <- as.matrix(log(dat1[,5]/(dat1[,6]*dat1[,7])))
x <- cbind(dat1[,4],matrix(1,nrow(dat1),1))
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)
print(beta)
# Second regression
y <- as.matrix(log(dat2[,5]/(dat2[,6]*dat2[,7])))
experience <- dat2[,1]-dat2[,4]-6
exp2 <- (experience^2)/100
x <- cbind(dat2[,4],experience,exp2,matrix(1,nrow(dat2),1))
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)
print(beta)
# Create leverage and influence
e <- y-x%*%beta
xxi <- solve(xx)
leverage <- rowSums(x*(x%*%xxi))
r <- e/(1-leverage)
d <- leverage*e/(1-leverage)
print(max(abs(d)))
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MATLAB Program File

% Load the data and create subsamples
dat = load cps09mar.txt;
# An alternative to load the data from an excel file is
# dat = xlsread(’cps09mar.xlsx’);
experience = dat(:,1)-dat(:,4)-6;
mbf = (dat(:,11)==2)&(dat(:,12)<=2)&(dat(:,2)==1)&(experience==12);
sam = (dat(:,11)==4)&(dat(:,12)==7)&(dat(:,2)==0);
dat1 = dat(mbf,:);
dat2 = dat(sam,:);
% First regression
y = log(dat1(:,5)./(dat1(:,6).*dat1(:,7)));
x = [dat1(:,4),ones(length(dat1),1)];
xx = x’*x
xy = x’*y
beta = xx\xy;
display(beta);
% Second regression
y = log(dat2(:,5)./(dat2(:,6).*dat2(:,7)));
experience = dat2(:,1)-dat2(:,4)-6;
exp2 = (experience.^2)/100;
x = [dat2(:,4),experience,exp2,ones(length(dat2),1)];
xx = x’*x
xy = x’*y
beta = xx\xy;
display(beta);
% Create leverage and influence
e = y-x*beta;
xxi = inv(xx)
leverage = sum((x.*(x*xxi))’)’;
d = leverage.*e./(1-leverage);
influence = max(abs(d));
display(influence);
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Exercises

Exercise 3.1 Let y be a random variable with µ= E
£

y
§

and æ2 = var[y]. Define

g
°
y,µ,æ2¢=

√
y °µ°

y °µ
¢2 °æ2

!

.

Let (bµ, bæ2) be the values such that g n(bµ, bæ2) = 0 where g n(m, s) = n°1 Pn
i=1 g

°
yi ,m, s

¢
. Show that bµ and

bæ2 are the sample mean and variance.

Exercise 3.2 Consider the OLS regression of the n £ 1 vector y on the n £k matrix X . Consider an al-
ternative set of regressors Z = XC , where C is a k £k non-singular matrix. Thus, each column of Z is a
mixture of some of the columns of X . Compare the OLS estimates and residuals from the regression of y

on X to the OLS estimates from the regression of y on Z .

Exercise 3.3 Using matrix algebra, show X
0be = 0.

Exercise 3.4 Let be be the OLS residual from a regression of y on X = [X 1 X 2]. Find X
0
2be.

Exercise 3.5 Let be be the OLS residual from a regression of y on X . Find the OLS coefficient from a
regression of be on X .

Exercise 3.6 Let by = X (X
0
X )°1

X
0
y . Find the OLS coefficient from a regression of by on X .

Exercise 3.7 Show that if X = [X 1 X 2] then P X 1 = X 1 and M X 1 = 0.

Exercise 3.8 Show that M is idempotent: M M = M .

Exercise 3.9 Show that tr M = n °k.

Exercise 3.10 Show that if X = [X 1 X 2] and X
0
1X 2 = 0 then P = P 1 +P 2.

Exercise 3.11 Show that when X contains a constant,
1
n

Pn
i=1 byi = y .

Exercise 3.12 A dummy variable takes on only the values 0 and 1. It is used for categorical data, such as
an individual’s gender. Let d 1 and d 2 be vectors of 1’s and 0’s, with the i th element of d 1 equaling 1 and
that of d 2 equaling 0 if the person is a man, and the reverse if the person is a woman. Suppose that there
are n1 men and n2 women in the sample. Consider fitting the following three equations by OLS

y =µ+d 1Æ1 +d 2Æ2 +e (3.53)

y = d 1Æ1 +d 2Æ2 +e (3.54)

y =µ+d 1¡+e (3.55)

Can all three equations (3.53), (3.54), and (3.55) be estimated by OLS? Explain if not.

(a) Compare regressions (3.54) and (3.55). Is one more general than the other? Explain the relationship
between the parameters in (3.54) and (3.55).

(b) Compute 10
nd 1 and 10

nd 2, where 1n is an n £1 vector of ones.
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(c) Letting Æ = (Æ1 Æ2)0, write equation (3.54) as y = XÆ+ e. Consider the assumption E(x i ei ) = 0. Is
there any content to this assumption in this setting?

Exercise 3.13 Let d 1 and d 2 be defined as in the previous exercise.

(a) In the OLS regression
y = d 1b∞1 +d 2b∞2 + bu,

show that b∞1 is the sample mean of the dependent variable among the men of the sample (y1), and
that b∞2 is the sample mean among the women (y2).

(b) Let X (n £k) be an additional matrix of regressors. Describe in words the transformations

y
§ = y °d 1 y1 °d 2 y2

X
§ = X °d 1x

0
1 °d 2x

0
2

where x1 and x2 are the k £1 means of the regressors for men and women, respectively.

(c) Compare eØ from the OLS regression
y
§ = X

§eØ+ee

with bØ from the OLS regression
y = d 1 bÆ1 +d 2 bÆ2 +X bØ+be.

Exercise 3.14 Let bØn =
°

X
0
n X n

¢°1
X

0
n y n denote the OLS estimate when y n is n£1 and X n is n£k. A new

observation (yn+1, xn+1) becomes available. Prove that the OLS estimate computed using this additional
observation is

bØn+1 = bØn + 1

1+x
0
n+1

°
X

0
n X n

¢°1
xn+1

°
X

0
n X n

¢°1
xn+1

°
yn+1 °x

0
n+1

bØn
¢

.

Exercise 3.15 Prove that R2 is the square of the sample correlation between y and by .

Exercise 3.16 Consider two least-squares regressions

y = X 1eØ1 +ee

and
y = X 1bØ1 +X 2bØ2 +be.

Let R2
1 and R2

2 be the R-squared from the two regressions. Show that R2
2 ∏ R2

1. Is there a case (explain)
when there is equality R2

2 = R2
1?

Exercise 3.17 For eæ2 defined in (3.47), show that eæ2 ∏ bæ2. Is equality possible?

Exercise 3.18 For which observations will bØ(°i ) = bØ?

Exercise 3.19 For the intercept-only model yi =Ø+ei , show that the leave-one-out prediction error is

eei =
≥ n

n °1

¥°
yi ° y

¢
.
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Exercise 3.20 Define the leave-one-out estimator of æ2,

bæ2
(°i ) =

1
n °1

X

j 6=i

≥
y j °x

0
j
bØ(°i )

¥2
.

This is the estimator obtained from the sample with observation i omitted. Show that

bæ2
(°i ) =

n
n °1

bæ2 °
be2

i

(n °1)(1°hi i )
.

Exercise 3.21 Consider the least-squares regression estimators

yi = x1i bØ1 +x2i bØ2 + bei

and the “one regressor at a time” regression estimators

yi = eØ1x1i + ee1i yi = eØ2x2i + ee2i

Under what condition does eØ1 = bØ1 and eØ2 = bØ2?

Exercise 3.22 You estimate a least-squares regression

yi = x
0
1i

eØ1 + eui

and then regress the residuals on another set of regressors

eui = x
0
2i

eØ2 + eei

Does this second regression give you the same estimated coefficients as from estimation of a least-
squares regression on both set of regressors?

yi = x
0
1i

bØ1 +x
0
2i

bØ2 + bei

In other words, is it true that eØ2 = bØ2? Explain your reasoning.

Exercise 3.23 The data matrix is (y , X ) with X = [X 1, X 2] , and consider the transformed regressor matrix
Z = [X 1, X 2 °X 1] . Suppose you do a least-squares regression of y on X , and a least-squares regression
of y on Z . Let bæ2 and eæ2 denote the residual variance estimates from the two regressions. Give a formula
relating bæ2 and eæ2? (Explain your reasoning.)

Exercise 3.24 Use the data set from Section 3.22 and the sub-sample used for equation (3.50) (see Sec-
tion 3.25) for data construction)

(a) Estimate equation (3.50) and compute the equation R2 and sum of squared errors.

(b) Re-estimate the slope on education using the residual regression approach. Regress log(wage) on
experience and its square, regress education on experience and its square, and the residuals on the
residuals. Report the estimates from this final regression, along with the equation R2 and sum of
squared errors. Does the slope coefficient equal the value in (3.50)? Explain.

(c) Are the R2 and sum-of-squared errors from parts (a) and (b) equal? Explain.
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Exercise 3.25 Estimate equation (3.50) as in part (a) of the previous question. Let bei be the OLS residual,
byi the predicted value from the regression, x1i be education and x2i be experience. Numerically calculate
the following:

(a)
Pn

i=1 bei

(b)
Pn

i=1 x1i bei

(c)
Pn

i=1 x2i bei

(d)
Pn

i=1 x2
1i bei

(e)
Pn

i=1 x2
2i bei

(f)
Pn

i=1 byi bei

(g)
Pn

i=1 be2
i

Are these calculations consistent with the theoretical properties of OLS? Explain.

Exercise 3.26 Use the data set from Section 3.22.

(a) Estimate a log wage regression for the subsample of white male Hispanics. In addition to educa-
tion, experience, and its square, include a set of binary variables for regions and marital status. For
regions, create dummy variables for Northeast, South and West so that Midwest is the excluded
group. For marital status, create variables for married, widowed or divorced, and separated, so that
single (never married) is the excluded group.

(b) Repeat this estimation using a different econometric package. Compare your results. Do they
agree?



Chapter 4

Least Squares Regression

4.1 Introduction

In this chapter we investigate some finite-sample properties of the least-squares estimator in the
linear regression model. In particular we calculate the finite-sample mean and covariance matrix and
propose standard errors for the coefficient estimates.

4.2 Random Sampling

Assumption 3.1 specified that the observations have identical distributions. To derive the finite-
sample properties of the estimators we will need to additionally specify the dependence structure across
the observations.

The simplest context is when the observations are mutually independent in which case we say that
they are independent and identically distributed or i.i.d. It is also common to describe i.i.d. observa-
tions as a random sample. Traditionally, random sampling has been the default assumption in cross-
section (e.g. survey) contexts. It is quite convenient as i.i.d. sampling leads to straightforward expres-
sions for estimation variance. The assumption seems appropriate (meaning that it should be approx-
imately valid) when samples are small and relatively dispersed. That is, if you randomly sample 1000
people from a large country such as the United States it seems reasonable to model their responses as
mutually independent.

Assumption 4.1 The observations {(y1, x1), ..., (yi , x i ), ..., (yn , xn)} are independent
and identically distributed.

For most of this chapter we will use Assumption 4.1 to derive properties of the OLS estimator.
Assumption 4.1 means that if you take any two individuals i 6= j in a sample, the values (yi , x i ) are in-

dependent of the values (y j , x j ) yet have the same distribution. Independence means that the decisions
and choices of individual i do not affect the decisions of individual j and conversely.

This assumption may be violated if individuals in the sample are connected in some way, for example
if they are neighbors, members of the same village, classmates at a school, or even firms within a spe-
cific industry. In this case it seems plausible that decisions may be inter-connected and thus mutually
dependent rather than independent. Allowing for such interactions complicates inference and requires
specialized treatment. A currently popular approach which allows for mutual dependence is known as

101
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clustered dependence which assumes that that observations are grouped into “clusters” (for example,
schools). We will discuss clustering in more detail in Section 4.22.

4.3 Sample Mean

We start with the simplest setting of the intercept-only model

yi =µ+ei

E [ei ] = 0.

which is equivalent to the regression model with k = 1 and xi = 1. In the intercept model µ= E
£

yi
§

is the
mean of yi . (See Exercise 2.15.) The least-squares estimator bµ = y equals the sample mean as shown in
equation (3.9).

We now calculate the mean and variance of the estimator y . Since the sample mean is a linear func-
tion of the observations its expectation is simple to calculate

E
£

y
§
= E

"
1
n

nX

i=1
yi

#

= 1
n

nX

i=1
E
£

yi
§
=µ.

This shows that the expected value of the least-squares estimator (the sample mean) equals the projec-
tion coefficient (the population mean). An estimator with the property that its expectation equals the
parameter it is estimating is called unbiased.

Definition 4.1 An estimator bµ for µ is unbiased if E
£bµ

§
= µ.

We next calculate the variance of the estimator y under Assumption 4.1. Making the substitution
yi =µ+ei we find

y °µ= 1
n

nX

i=1
ei .

Then

var
£

y
§
= E

h°
y °µ

¢2
i

= E
"√

1
n

nX

i=1
ei

!√
1
n

nX

j=1
e j

!#

= 1
n2

nX

i=1

nX

j=1
E
£
ei e j

§

= 1
n2

nX

i=1
æ2

= 1
n
æ2.

The second-to-last inequality is because E
£
ei e j

§
= æ2 for i = j yet E

£
ei e j

§
= 0 for i 6= j due to indepen-

dence.
We have shown that var

£
y
§
= 1

næ
2. This is the familiar formula for the variance of the sample mean.
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4.4 Linear Regression Model

We now consider the linear regression model. Throughout this chapter we maintain the following.

Assumption 4.2 Linear Regression Model
The observations (yi , x i ) satisfy the linear regression equation

yi = x
0
iØ+ei (4.1)

E [ei | x i ] = 0. (4.2)

The variables have finite second moments

E
£

y2
i

§
<1,

Ekx ik2 <1,

and an invertible design matrix

Q x x = E
£

x i x
0
i

§
> 0.

We will consider both the general case of heteroskedastic regression where the conditional variance

E
£
e2

i | x i
§
=æ2(x i ) =æ2

i

is unrestricted, and the specialized case of homoskedastic regression where the conditional variance is
constant. In the latter case we add the following assumption.

Assumption 4.3 Homoskedastic Linear Regression Model
In addition to Assumption 4.2

E
£
e2

i | x i
§
=æ2(x i ) =æ2 (4.3)

is independent of x i .

4.5 Mean of Least-Squares Estimator

In this section we show that the OLS estimator is unbiased in the linear regression model. This cal-
culation can be done using either summation notation or matrix notation. We will use both.

First take summation notation. Observe that under (4.1)-(4.2)

E
£

yi | X
§
= E

£
yi | x i

§
= x

0
iØ. (4.4)

The first equality states that the conditional expectation of yi given {x1, ..., xn} only depends on x i since
the observations are independent across i . The second equality is the assumption of a linear conditional
mean.
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Using definition (3.12), the conditioning theorem (Theorem 2.3), the linearity of expectations, (4.4),
and properties of the matrix inverse,

E
£bØ | X

§
= E

"√
nX

i=1
x i x

0
i

!°1 √
nX

i=1
x i yi

!

| X

#

=
√

nX

i=1
x i x

0
i

!°1

E

"√
nX

i=1
x i yi

!

| X

#

=
√

nX

i=1
x i x

0
i

!°1 nX

i=1
E
£

x i yi | X
§

=
√

nX

i=1
x i x

0
i

!°1 nX

i=1
x iE

£
yi | X

§

=
√

nX

i=1
x i x

0
i

!°1 nX

i=1
x i x

0
iØ

=Ø.

Now let’s show the same result using matrix notation. (4.4) implies

E
£

y | X
§
=

0

BB@

...
E
£

yi | X
§

...

1

CCA=

0

BB@

...
x
0
iØ
...

1

CCA= XØ. (4.5)

Similarly

E [e | X ] =

0

BB@

...
E [ei | X ]

...

1

CCA=

0

BB@

...
E [ei | x i ]

...

1

CCA= 0.

Using bØ=
°

X
0
X

¢°1 °
X

0
y
¢
, the conditioning theorem, the linearity of expectations, (4.5), and the prop-

erties of the matrix inverse,

E
£bØ | X

§
= E

h°
X

0
X

¢°1
X

0
y | X

i

=
°

X
0
X

¢°1
X

0
E
£

y | X
§

=
°

X
0
X

¢°1
X

0
XØ

=Ø.

At the risk of belaboring the derivation, another way to calculate the same result is as follows. Insert
y = XØ+e into the formula for bØ to obtain

bØ=
°

X
0
X

¢°1 °
X

0 °
XØ+e

¢¢

=
°

X
0
X

¢°1
X

0
XØ+

°
X

0
X

¢°1 °
X

0
e
¢

=Ø+
°

X
0
X

¢°1
X

0
e. (4.6)
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This is a useful linear decomposition of the estimator bØ into the true parameter Ø and the stochastic
component

°
X

0
X

¢°1
X

0
e. Once again, we can calculate that

E
£bØ°Ø | X

§
= E

h°
X

0
X

¢°1
X

0
e | X

i

=
°

X
0
X

¢°1
X

0
E [e | X ]

= 0.

Regardless of the method we have shown that E
£bØ | X

§
=Ø. We have shown the following theorem.

Theorem 4.1 Mean of Least-Squares Estimator
In the linear regression model (Assumption 4.2) with i.i.d. sampling
(Assumption 4.1)

E
£bØ | X

§
=Ø. (4.7)

Equation (4.7) says that the estimator bØ is unbiased for Ø, conditional on X . This means that the
conditional distribution of bØ is centered at Ø. By “conditional on X ” this means that the distribution is
unbiased (centered at Ø) for any realization of the regressor matrix X . In conditional models we simply
refer to this as saying “bØ is unbiased for Ø”.

4.6 Variance of Least Squares Estimator

In this section we calculate the conditional variance of the OLS estimator.
For any r £1 random vector Z define the r £ r covariance matrix

var[Z ] = E
£
(Z °E [Z ]) (Z °E [Z ])0

§

= E
£

Z Z
0§° (E [Z ]) (E [Z ])0

and for any pair (Z , X ) define the conditional covariance matrix

var[Z | X ] = E
£
(Z °E [Z | X ]) (Z °E [Z | X ])0 | X

§
.

We define
V bØ

de f= var
£bØ | X

§

as the conditional covariance matrix of the regression coefficient estimates. We now derive its form.
The conditional covariance matrix of the n £1 regression error e is the n £n matrix

var[e | X ] = E
£
ee

0 | X
§ de f= D .

The i th diagonal element of D is
E
£
e2

i | X
§
= E

£
e2

i | x i
§
=æ2

i

while the i j th off-diagonal element of D is

E
£
ei e j | X

§
= E (ei | x i )E

£
e j | x j

§
= 0
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where the first equality uses independence of the observations (Assumption 4.1) and the second is (4.2).
Thus D is a diagonal matrix with i th diagonal element æ2

i :

D = diag
°
æ2

1, ...,æ2
n
¢
=

0

BBBB@

æ2
1 0 · · · 0

0 æ2
2 · · · 0

...
...

. . .
...

0 0 · · · æ2
n

1

CCCCA
. (4.8)

In the special case of the linear homoskedastic regression model (4.3), then

E
£
e2

i | x i
§
=æ2

i =æ2

and we have the simplification
D = I næ

2.

In general, however, D need not necessarily take this simplified form.
For any n £ r matrix A = A(X ),

var
£

A
0
y | X

§
= var

£
A
0
e | X

§
= A

0
D A. (4.9)

In particular, we can write bØ= A
0
y where A = X

°
X

0
X

¢°1 and thus

V bØ = var
£bØ | X

§
= A

0
D A =

°
X

0
X

¢°1
X

0
D X

°
X

0
X

¢°1 .

It is useful to note that

X
0
D X =

nX

i=1
x i x

0
iæ

2
i ,

a weighted version of X
0
X .

In the special case of the linear homoskedastic regression model, D = I næ
2, so X

0
D X = X

0
Xæ2, and

the variance matrix simplifies to
V bØ =

°
X

0
X

¢°1
æ2.

Theorem 4.2 Variance of Least-Squares Estimator
In the linear regression model (Assumption 4.2) with i.i.d. sampling (Assump-
tion 4.1)

V bØ = var
£bØ | X

§
=

°
X

0
X

¢°1 °
X

0
D X

¢°
X

0
X

¢°1 (4.10)

where D is defined in (4.8). If in addition the error is homoskedastic (Assump-
tion 4.3) then (4.10) simplifies to

V bØ =æ2 °
X

0
X

¢°1 .
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4.7 Unconditional Moments

The previous sections derived the form of the conditional mean and variance of least-squares estima-
tor where we conditioned on the regressor matrix X . What about the unconditional mean and variance?

Another goal is to state conditions under which the unconditional moments of the estimator are
finite. For example, if it determined that E

∞∞bØ
∞∞<1 then applying the law of iterated expectations (The-

orem 2.1), we find that the unconditional mean of bØ is

E
£bØ

§
= E

£
E
£bØ | X

§§
=Ø

which means that bØ is unconditionally unbiased.
A challenge is that bØmay not have finite moments. Take the case of a single dummy variable regressor

di with no intercept. Assume P [di = 1] = p < 1. Then

bØ=
Pn

i=1 di yi
Pn

i=1 di

is well defined if
Pn

i=1 di > 0. However, P
£Pn

i=1 di = 0
§
=

°
1°p

¢n > 0. This means that with positive (but
small) probability bØ does not exist. Consequently bØ has no finite moments! We ignore this complication
in practice but it does pose a conundrum for theory. This existence problem arises whenever there are
discrete regressors.

A solution can be obtained when the regressors have continuous distributions. A particularly clean
statement was obtained by Kinal (1980) under the assumption of normal regressors and errors.

Theorem 4.3 Kinal (1980)
In the linear regression model with i.i.d. sampling, if in addition (x i ,ei ) have a
joint normal distribution then for any r , E

∞∞bØ
∞∞r <1 if and only if r < n °k +1.

This shows that when the errors and regressors are normally distributed that the least-squares esti-
mator possesses all moments up to n°k which includes all moments of practical interest. The normality
assumption is not particularly critical for this result. What is key is the assumption that the regressors
are continuously distributed.

As stated above, Theorem 4.3 shows that if n °k > 0 then E

∞∞bØ
∞∞ <1 and E

£bØ
§
= Ø. Furthermore, if

n°k > 1 then E
∞∞bØ

∞∞2 <1 and bØ has a finite unconditional variance. Using Theorem 2.8 we can calculate
explicitly that

var
£bØ

§
= E

£
var

£bØ | X
§§
+var

£
E
£bØ | X

§§

= E
h°

X
0
X

¢°1 °
X

0
D X

¢°
X

0
X

¢°1
i

the second line since E
£bØ | X

§
=Ø has zero variance. In the homoskedastic case this simplifies to

var
£bØ

§
=æ2

E

h°
X

0
X

¢°1
i

.

In both cases the expectation cannot pass through the matrix inverse since this is a non-linear function.
Thus there is not a simple expression for the unconditional variance, other than stating that is it the
mean of the conditional variance.
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4.8 Gauss-Markov Theorem

Now consider the class of estimators of Ø which are linear functions of the vector y and thus can be
written as

eØ= A
0
y

where A is an n £k function of X . As noted before, the least-squares estimator is the special case ob-
tained by setting A = X (X

0
X )°1. What is the best choice of A? The Gauss-Markov theorem1 which we

now present says that the least-squares estimator is the best choice among linear unbiased estimators
when the errors are homoskedastic, in the sense that the least-squares estimator has the smallest vari-
ance among all unbiased linear estimators.

To see this, since E
£

y | X
§
= XØ then for any linear estimator eØ= A

0
y we have

E
£eØ | X

§
= A

0
E
£

y | X
§
= A

0
XØ,

so eØ is unbiased if (and only if) A
0
X = I k . Furthermore, we saw in (4.9) that

var
£eØ | X

§
= var

£
A
0
y | X

§
= A

0
D A = A

0
Aæ2

the last equality using the homoskedasticity assumption D = I næ
2 . The “best” unbiased linear estimator

is obtained by finding the matrix A0 satisfying A
0
0X = I k such that A

0
0 A0 is minimized in the positive

definite sense, which means that for any other matrix A satisfying A
0
X = I k then A

0
A ° A

0
0 A0 is positive

semi-definite.

Theorem 4.4 Gauss-Markov
In the homoskedastic linear regression model (Assumption 4.3) with i.i.d. sam-
pling (Assumption 4.1), if eØ is a linear unbiased estimator of Ø then

var
£eØ | X

§
∏æ2 °

X
0
X

¢°1 .

The Gauss-Markov theorem provides a lower bound on the variance matrix of unbiased linear esti-
mators under the assumption of homoskedasticity. It says that no unbiased linear estimator can have a
variance matrix smaller (in the positive definite sense) than æ2 °

X
0
X

¢°1. Since the variance of the OLS
estimator is exactly equal to this bound this means that the OLS estimator is efficient in the class of
linear unbiased estimators. This gives rise to the description of OLS as BLUE, standing for “best linear
unbiased estimator”. This is an efficiency justification for the least-squares estimator. The justification is
limited because the class of models is restricted to homoskedastic regressions and the class of potential
estimators is restricted to linear unbiased estimators. This latter restriction is particularly unsatisfactory
as there is no sensible motivation for focusing on linear estimators.

We complete this section with a proof of the Gauss-Markov theorem.
Let A be any n £k function of X such that A

0
X = I k . The estimator A

0
y is unbiased for Ø and has

variance A
0
Aæ2. Since the least-squares estimator is unbiased and has variance

°
X

0
X

¢°1
æ2, it is sufficient

to show that the difference in the two variance matrices is positive semi-definite, or

A
0
A °

°
X

0
X

¢°1 > 0. (4.11)

1Named after the mathematicians Carl Friedrich Gauss and Andrey Markov.
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Set C = A °X
°

X
0
X

¢°1 . Note that X
0
C = 0. We calculate that

A
0
A °

°
X

0
X

¢°1 =
≥
C +X

°
X

0
X

¢°1
¥0 ≥

C +X
°

X
0
X

¢°1
¥
°

°
X

0
X

¢°1

=C
0
C +C

0
X

°
X

0
X

¢°1 +
°

X
0
X

¢°1
X

0
C

+
°

X
0
X

¢°1
X

0
X

°
X

0
X

¢°1 °
°

X
0
X

¢°1

=C
0
C

> 0.

The final inequality states that the matrix C
0
C is positive semi-definite which is a property of quadratic

forms (see Appendix A.10). We have shown (4.11) as requred.

4.9 Generalized Least Squares

Take the linear regression model in matrix format

y = XØ+e. (4.12)

Consider a generalized situation where the observation errors are possibly correlated and/or heteroskedas-
tic. Specifically, suppose that

E [e | X ] = 0 (4.13)

var[e | X ] =≠ (4.14)

for some n£n covariance matrix≠, possibly a function of X . This includes the i.i.d. sampling framework
where≠= D as defined in (4.8) but allows for non-diagonal covariance matrices as well. As a covariance
matrix,≠ is necessarily symmetric and positive semi-definite.

Under these assumptions, by arguments similar to the previous section we can calculate the mean
and variance of the OLS estimator:

E
£bØ | X

§
=Ø (4.15)

var
£bØ | X

§
=

°
X

0
X

¢°1 °
X

0≠X
¢°

X
0
X

¢°1 (4.16)

(see Exercise 4.5).
We have an analog of the Gauss-Markov Theorem.

Theorem 4.5 Generalized Gauss-Markov
In the linear regression model (Assumption 4.2), i.i.d. sampling, and≠> 0, if eØ
is a linear unbiased estimator of Ø then

var
£eØ | X

§
∏

°
X

0≠°1
X

¢°1
.

We leave the proof for Exercise 4.6.
The theorem provides a lower bound on the variance matrix of unbiased linear estimators. The

bound is different from the variance matrix of the OLS estimator as stated in (4.16) except when ≠ =
I næ

2. This suggests that we may be able to improve on the OLS estimator.



CHAPTER 4. LEAST SQUARES REGRESSION 110

This is indeed the case when ≠ is known up to scale. That is, suppose that ≠ = c2ß where c2 > 0 is
real andß is n£n and known. Take the linear model (4.12) and pre-multiply byß°1/2. This produces the
equation

ey = eXØ+ee

where ey =ß°1/2
y , eX =ß°1/2

X , and ee =ß°1/2
e. Consider OLS estimation of Ø in this equation.

eØgls =
≥
eX 0 eX

¥°1 eX 0ey

=
≥°
ß°1/2

X
¢0 °
ß°1/2

X
¢¥°1 °

ß°1/2
X

¢0 °
ß°1/2

y
¢

=
°

X
0ß°1

X
¢°1

X
0ß°1

y . (4.17)

This is called the Generalized Least Squares (GLS) estimator of Ø and was introduced by Aitken (1935).
You can calculate that

E

h
eØgls | X

i
=Ø (4.18)

var
h
eØgls | X

i
=

°
X

0≠°1
X

¢°1
. (4.19)

This shows that the GLS estimator is unbiased and has a covariance matrix which equals the lower bound
from Theorem 4.5. This shows that the lower bound is sharp when ß is known. GLS is thus efficient in
the class of linear unbiased estimators.

In the linear regression model with independent observations and known conditional variances, so
that≠=ß= D = diag

°
æ2

1, ...,æ2
n
¢
, the GLS estimator takes the form

eØgls =
°

X
0
D

°1
X

¢°1
X

0
D

°1
y

=
√

nX

i=1
æ°2

i x i x
0
i

!°1 √
nX

i=1
æ°2

i x i yi

!

.

The assumption≠> 0 in this case reduces to æ2
i > 0 for i = 1, ...n.

In practice, the covariance matrix≠ is unknown so the GLS estimator as presented here is not feasi-
ble. However, the form of the GLS estimator motivates feasible versions, effectively by replacing≠ with
an estimator. We do not pursue this here as it is not common in current applied econometric practice.

4.10 Modern Gauss Markov Theorem

In this section we establish an improved version of the Gauss-Markov Theorem.

Theorem 4.6 Modern Gauss-Markov
In the linear regression model, i.i.d. sampling, and æ2

i > 0 for i = 1, ...n, if eØ is

an unbiased estimator of Ø then var
£eØ | X

§
∏

°
X

0
D

°1
X

¢°1 .

The proof of Theorem 4.6 is technically advanced so we leave it to Section 4.25. It is a generalization
of Theorem 11.1 from Introduction to Econometrics for the best unbiased estimation of the mean.

The interpretation of Theorem 4.6 is similar to Theorem 4.5. It shows that the GLS covariance ma-
trix

°
X

0
D

°1
X

¢°1 is the best possible among all unbiased estimators. When the error is conditionally
homoskedastic the variance bound simplifies to æ2 °

X
0
X

¢°1, matching that from the classical Gauss-
Markov Theorem. A caveat should be mentioned that in the homoskedastic case the estimator cannot
exploit homoskedasticity – that is the unbiased property needs to hold under heteroskedasticity as well.



CHAPTER 4. LEAST SQUARES REGRESSION 111

4.11 Residuals

What are some properties of the residuals bei = yi °x
0
i
bØ and prediction errors eei = yi °x

0
i
bØ(°i ) at least

in the context of the linear regression model?
Recall from (3.25) that we can write the residuals in vector notation as be = Me where M = I n °

X
°

X
0
X

¢°1
X

0 is the orthogonal projection matrix. Using the properties of conditional expectation

E [be | X ] = E [Me | X ] = ME [e | X ] = 0

and
var[be | X ] = var[Me | X ] = M var[e | X ] M = MD M (4.20)

where D is defined in (4.8).
We can simplify this expression under the assumption of conditional homoskedasticity

E
£
e2

i | x i
§
=æ2.

In this case (4.20) simplifies to
var[be | X ] = Mæ2. (4.21)

In particular, for a single observation i we can find the (conditional) variance of bei by taking the i th

diagonal element of (4.21). Since the i th diagonal element of M is 1°hi i as defined in (3.41) we obtain

var[bei | X ] = E
£
be2

i | X
§
= (1°hi i )æ2. (4.22)

As this variance is a function of hi i and hence x i the residuals bei are heteroskedastic even if the errors ei

are homoskedastic. Notice as well that (4.22) implies be2
i is a biased estimator of æ2.

Similarly, recall from (3.46) that the prediction errors eei = (1°hi i )°1 bei can be written in vector nota-
tion as ee = M

§be where M
§ is a diagonal matrix with i th diagonal element (1°hi i )°1 . Thus ee = M

§
Me.

We can calculate that
E [ee | X ] = M

§
ME [e | X ] = 0

and
var[ee | X ] = M

§
M var[e | X ] M M

§ = M
§

MD M M
§

which simplifies under homoskedasticity to

var[ee | X ] = M
§

M M M
§æ2

= M
§

M M
§æ2.

The variance of the i th prediction error is then

var[eei | X ] = E
£
ee2

i | X
§

= (1°hi i )°1 (1°hi i ) (1°hi i )°1æ2

= (1°hi i )°1æ2.

A residual with constant conditional variance can be obtained by rescaling. The standardized resid-
uals are

ēi = (1°hi i )°1/2 bei , (4.23)

and in vector notation
ē = (ē1, ..., ēn)0 = M

§1/2
Me. (4.24)
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From our above calculations, under homoskedasticity,

var[ē | X ] = M
§1/2

M M
§1/2æ2

and
var[ēi | X ] = E

£
ē2

i | X
§
=æ2

and thus these standardized residuals have the same bias and variance as the original errors when the
latter are homoskedastic.

4.12 Estimation of Error Variance

The error variance æ2 = E
°
e2

i

¢
can be a parameter of interest even in a heteroskedastic regression or

a projection model. æ2 measures the variation in the “unexplained” part of the regression. Its method of
moments estimator (MME) is the sample average of the squared residuals:

bæ2 = 1
n

nX

i=1
be2

i .

In the linear regression model we can calculate the mean of bæ2. From (3.29) and the properties of the
trace operator observe that

bæ2 = 1
n

e
0
Me = 1

n
tr

°
e
0
Me

¢
= 1

n
tr

°
Mee

0¢ .

Then

E
£
bæ2 | X

§
= 1

n
tr

°
E
£

Mee
0 | X

§¢

= 1
n

tr
°
ME

£
ee

0 | X
§¢

= 1
n

tr(MD) (4.25)

= 1
n

nX

i=1
(1°hi i )æ2

i .

The final equality holds since the trace is the sum of the diagonal elements of MD , and since D is diago-
nal the diagonal elements of MD are the product of the diagonal elements of M and D which are 1°hi i

and æ2
i , respectively.

Adding the assumption of conditional homoskedasticity E
£
e2

i | x i
§
=æ2 so that D = I næ

2, then (4.25)
simplifies to

E
£
bæ2 | X

§
= 1

n
tr

°
Mæ2¢

=æ2
µ

n °k
n

∂

the final equality by (3.23). This calculation shows that bæ2 is biased towards zero. The order of the bias
depends on k/n, the ratio of the number of estimated coefficients to the sample size.



CHAPTER 4. LEAST SQUARES REGRESSION 113

Another way to see this is to use (4.22). Note that

E
£
bæ2 | X

§
= 1

n

nX

i=1
E
£
be2

i | X
§

= 1
n

nX

i=1
(1°hi i )æ2

=
µ

n °k
n

∂
æ2

the last equality using Theorem 3.6.
Since the bias takes a scale form a classic method to obtain an unbiased estimator is by rescaling the

estimator. Define

s2 = 1
n °k

nX

i=1
be2

i . (4.26)

By the above calculation
E
£
s2 | X

§
=æ2

and
E
£
s2§=æ2.

Hence the estimator s2 is unbiased for æ2. Consequently, s2 is known as the “bias-corrected estimator”
for æ2 and in empirical practice s2 is the most widely used estimator for æ2.

Interestingly, this is not the only method to construct an unbiased estimator for æ2. An estimator
constructed with the standardized residuals ēi from (4.23) is

æ2 = 1
n

nX

i=1
ē2

i =
1
n

nX

i=1
(1°hi i )°1 be2

i .

You can show (see Exercise 4.9) that
E
£
æ2 | X

§
=æ2 (4.27)

and thus æ2 is unbiased for æ2 (in the homoskedastic linear regression model).
When k/n is small (typically this occurs when n is large) the estimators bæ2, s2 and æ2 are likely to be

similar to one another. However, if k/n is large then s2 andæ2 are generally preferred to bæ2. Consequently
it is best to use one of the bias-corrected variance estimators in applications.

4.13 Mean-Square Forecast Error

One use of an estimated regression is to predict out-of-sample values. Consider an out-of-sample
observation (yn+1, xn+1) where xn+1 is observed but not yn+1. Given the coefficient estimator bØ the stan-
dard point estimator of E

°
yn+1 | xn+1

¢
= x

0
n+1Ø is eyn+1 = x

0
n+1

bØ. The forecast error is the difference be-
tween the actual value yn+1 and the point forecast eyn+1. This is the forecast error een+1 = yn+1° eyn+1. The
mean-squared forecast error (MSFE) is its expected squared value

MSFEn = E
£
ee2

n+1
§

.

In the linear regression model een+1 = en+1 °x
0
n+1

°bØ°Ø
¢

so

MSFEn = E
£
e2

n+1
§
°2E

£
en+1x

0
n+1

°bØ°Ø
¢§

(4.28)

+E
h

x
0
n+1

°bØ°Ø
¢°bØ°Ø

¢0
xn+1

i
.
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The first term in (4.28) is æ2. The second term in (4.28) is zero since en+1x
0
n+1 is independent of bØ°Ø

and both are mean zero. Using the properties of the trace operator the third term in (4.28) is

tr
≥
E
£

xn+1x
0
n+1

§
E

h°bØ°Ø
¢°bØ°Ø

¢0i¥

= tr
≥
E
°
xn+1x

0
n+1

¢
E

h
E

h°bØ°Ø
¢°bØ°Ø

¢0 | X

ii¥

= tr
≥
E
£

xn+1x
0
n+1

§
E

h
V bØ

i¥

= E
h

tr
≥°

xn+1x
0
n+1

¢
V bØ

¥i

= E
h

x
0
n+1V bØxn+1

i
(4.29)

where we use the fact that xn+1 is independent of bØ, the definition V bØ = E
h°bØ°Ø

¢°bØ°Ø
¢0 | X

i
, and the

fact that xn+1 is independent of V bØ. Thus

MSFEn =æ2 +E
h

x
0
n+1V bØxn+1

i
.

Under conditional homoskedasticity this simplifies to

MSFEn =æ2
≥
1+E

h
x
0
n+1

°
X

0
X

¢°1
xn+1

i¥
.

A simple estimator for the MSFE is obtained by averaging the squared prediction errors (3.47)

eæ2 = 1
n

nX

i=1
ee2

i

where eei = yi °x
0
i
bØ(°i ) = bei (1°hi i )°1. Indeed, we can calculate that

E
£
eæ2§= E

£
ee2

i

§

= E
h°

ei °x
0
i

°bØ(°i ) °Ø
¢¢2

i

=æ2 +E
h

x
0
i

°bØ(°i ) °Ø
¢°bØ(°i ) °Ø

¢0
x i

i
.

By a similar calculation as in (4.29) we find

E
£
eæ2§=æ2 +E

h
x
0
i V bØ(°i )

x i

i
= MSFEn°1.

This is the MSFE based on a sample of size n ° 1 rather than size n. The difference arises because the
in-sample prediction errors eei for i ∑ n are calculated using an effective sample size of n °1, while the
out-of sample prediction error een+1 is calculated from a sample with the full n observations. Unless n is
very small we should expect MSFEn°1 (the MSFE based on n°1 observations) to be close to MSFEn (the
MSFE based on n observations). Thus eæ2 is a reasonable estimator for MSFEn .

Theorem 4.7 MSFE
In the linear regression model (Assumption 4.2) and i.i.d. sampling (Assump-
tion 4.1)

MSFEn = E
£
ee2

n+1
§
=æ2 +E

h
x
0
n+1V bØxn+1

i

where V bØ = var
£bØ | X

§
. Furthermore, eæ2 defined in (3.47) is an unbiased esti-

mator of MSFEn°1 :
E
£
eæ2§= MSFEn°1.
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4.14 Covariance Matrix Estimation Under Homoskedasticity

For inference we need an estimator of the covariance matrix V bØ of the least-squares estimator. In
this section we consider the homoskedastic regression model (Assumption 4.3).

Under homoskedasticity, the covariance matrix takes the relatively simple form

V
0
bØ
=

°
X

0
X

¢°1
æ2

which is known up to the unknown scale æ2. In Section 4.12 we discussed three estimators of æ2. The
most commonly used choice is s2 leading to the classic covariance matrix estimator

bV 0
bØ =

°
X

0
X

¢°1 s2. (4.30)

Since s2 is conditionally unbiased foræ2 it is simple to calculate that bV 0
bØ is conditionally unbiased for

V bØ under the assumption of homoskedasticity:

E

h
bV 0

bØ | X

i
=

°
X

0
X

¢°1
E
£
s2 | X

§

=
°

X
0
X

¢°1
æ2

=V bØ.

This was the dominant covariance matrix estimator in applied econometrics for many years and
is still the default method in most regression packages. For example, Stata uses the covariance matrix
estimator (4.30) by default in linear regression unless an alternative is specified.

If the estimator (4.30) is used but the regression error is heteroskedastic it is possible for bV 0
bØ to be

quite biased for the correct covariance matrix V bØ =
°

X
0
X

¢°1 °
X

0
D X

¢°
X

0
X

¢°1 . For example, suppose

k = 1 and æ2
i = x2

i with E [xi ] = 0. The ratio of the true variance of the least-squares estimator to the
expectation of the variance estimator is

V bØ

E

h
bV 0

bØ | X

i =
Pn

i=1 x4
i

æ2 Pn
i=1 x2

i

'
E
£
x4

i

§

°
E
£
x2

i

§¢2

de f= ∑.

(Notice that we use the fact that æ2
i = x2

i implies æ2 = E
£
æ2

i

§
= E

£
x2

i

§
.) The constant ∑ is the standardized

fourth moment (or kurtosis) of the regressor xi and can be any number greater than one. For example, if
xi ª N

°
0,æ2¢ then ∑ = 3, so the true variance V bØ is three times larger than the expected homoskedastic

estimator bV 0
bØ. But ∑ can be much larger. Suppose, for example, that xi ª¬2

1°1. In this case ∑= 15 so that

the true variance V bØ is fifteen times larger than the expected homoskedastic estimator bV 0
bØ. While this is

an extreme and constructed example the point is that the classic covariance matrix estimator (4.30) may
be quite biased when the homoskedasticity assumption fails.

4.15 Covariance Matrix Estimation Under Heteroskedasticity

In the previous section we showed that that the classic covariance matrix estimator can be highly
biased if homoskedasticity fails. In this section we show how to construct covariance matrix estimators
which do not require homoskedasticity.

Recall that the general form for the covariance matrix is

V bØ =
°

X
0
X

¢°1 °
X

0
D X

¢°
X

0
X

¢°1 .
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with D defined in (4.8). This depends on the unknown matrix D which we can write as

D = diag
°
æ2

1, ...,æ2
n
¢

= E
£
ee

0 | X
§

= E
£ eD | X

§

where eD = diag
°
e2

1, ...,e2
n
¢

. Thus eD is a conditionally unbiased estimator for D . If the squared errors e2
i

were observable, we could construct an unbiased estimator for V bØ as

bV ideal
bØ =

°
X

0
X

¢°1 °
X

0 eD X
¢°

X
0
X

¢°1

=
°

X
0
X

¢°1

√
nX

i=1
x i x

0
i e2

i

!
°

X
0
X

¢°1 .

Indeed,

E

h
bV ideal

bØ | X

i
=

°
X

0
X

¢°1

√
nX

i=1
x i x

0
iE

£
e2

i | X
§
!
°

X
0
X

¢°1

=
°

X
0
X

¢°1

√
nX

i=1
x i x

0
iæ

2
i

!
°

X
0
X

¢°1

=
°

X
0
X

¢°1 °
X

0
D X

¢°
X

0
X

¢°1

=V bØ

verifying that bV ideal
bØ is unbiased for V bØ.

Since the errors e2
i are unobserved, bV ideal

bØ is not a feasible estimator. However, we can replace the
errors ei with the least-squares residuals bei . Making this substitution we obtain the estimator

bV HC0
bØ =

°
X

0
X

¢°1

√
nX

i=1
x i x

0
i be

2
i

!
°

X
0
X

¢°1 . (4.31)

The label “HC” refers to “heteroskedasticity-consistent”. The label “HC0” refers to this being the baseline
heteroskedasticity-consistent covariance matrix estimator.

We know, however, that be2
i is biased towards zero (recall equation (4.22)). To estimate the varianceæ2

the unbiased estimator s2 scales the moment estimator bæ2 by n/(n °k) . Making the same adjustment
we obtain the estimator

bV HC1
bØ =

≥ n
n °k

¥°
X

0
X

¢°1

√
nX

i=1
x i x

0
i be

2
i

!
°

X
0
X

¢°1 . (4.32)

While the scaling by n/(n °k) is ad hoc, HC1 is often recommended over the unscaled HC0 estimator.
Alternatively, we could use the standardized residuals ēi or the prediction errors eei , yielding the esti-

mators

bV HC2
bØ =

°
X

0
X

¢°1

√
nX

i=1
x i x

0
i ē2

i

!
°

X
0
X

¢°1

=
°

X
0
X

¢°1

√
nX

i=1
(1°hi i )°1

x i x
0
i be

2
i

!
°

X
0
X

¢°1 (4.33)
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and

bV HC3
bØ =

°
X

0
X

¢°1

√
nX

i=1
x i x

0
i ee

2
i

!
°

X
0
X

¢°1

=
°

X
0
X

¢°1

√
nX

i=1
(1°hi i )°2

x i x
0
i be

2
i

!
°

X
0
X

¢°1 . (4.34)

These are often called the “HC2” and “HC3” estimators as labeled.
The four estimators HC0, HC1, HC2 and HC3 are collectively called robust, heteroskedasticity-

consistent, or heteroskedasticity-robust covariance matrix estimators. The HC0 estimator was first
developed by Eicker (1963) and introduced to econometrics by White (1980) and is sometimes called
the Eicker-White or White covariance matrix estimator. The degree-of-freedom adjustment in HC1 was
recommended by Hinkley (1977) and is the default robust covariance matrix estimator implemented in
Stata. It is implement by the “,r” option. For example, by a regression executed with the command “

”. In applied econometric practice this is the currently most popular covariance matrix estima-
tor. The HC2 estimator was introduced by Horn, Horn and Duncan (1975) (and is implemented using
the option in Stata). The HC3 estimator was derived by MacKinnon and White (1985) from the
jackknife principle (see Section 10.3), and by Andrews (1991a) based on the principle of leave-one-out
cross-validation (and is implemented using the option in Stata).

Since (1°hi i )°2 > (1°hi i )°1 > 1 it is straightforward to show that

bV HC0
bØ < bV HC2

bØ < bV HC3
bØ . (4.35)

(See Exercise 4.10.) The inequality A < B when applied to matrices means that the matrix B°A is positive
definite.

In general, the bias of the covariance matrix estimators is quite complicated but they greatly simplify
under the assumption of homoskedasticity (4.3). For example, using (4.22),

E

h
bV HC0

bØ | X

i
=

°
X

0
X

¢°1

√
nX

i=1
x i x

0
iE

£
be2
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!
°

X
0
X

¢°1

=
°

X
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X

¢°1

√
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i=1
x i x

0
i (1°hi i )æ2

!
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X
0
X

¢°1

=
°

X
0
X

¢°1
æ2 °

°
X

0
X

¢°1

√
nX

i=1
x i x

0
i hi i

!
°

X
0
X

¢°1
æ2

<
°

X
0
X

¢°1
æ2

=V bØ.

This calculation shows that bV HC0
bØ is biased towards zero.

By a similar calculation (again under homoskedasticity) we can calculate that the HC2 estimator is
unbiased

E

h
bV HC2

bØ | X

i
=

°
X

0
X

¢°1
æ2. (4.36)

(See Exercise 4.11.)
It might seem rather odd to compare the bias of heteroskedasticity-robust estimators under the as-

sumption of homoskedasticity but it does give us a baseline for comparison.
Another interesting calculation shows that in general (that is, without assuming homoskedasticity)

the HC3 estimator is biased away from zero. Indeed, using the definition of the prediction errors (3.45)

eei = yi °x
0
i
bØ(°i ) = ei °x

0
i

°bØ(°i ) °Ø
¢
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so
ee2

i = e2
i °2x

0
i

°bØ(°i ) °Ø
¢

ei +
°
x
0
i

°bØ(°i ) °Ø
¢¢2

.

Note that ei and bØ(°i ) are functions of non-overlapping observations and are thus independent. Hence
E
£°bØ(°i ) °Ø

¢
ei | X

§
= 0 and

E
£
ee2

i | X
§
= E

£
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i | X
§
°2x
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iE

£°bØ(°i ) °Ø
¢
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∏æ2
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It follows that
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=
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=V bØ.

This means that the HC3 estimator is conservative in the sense that it is weakly larger (in expectation)
than the correct variance for any realization of X .

We have introduced five covariance matrix estimators, including the homoskedastic estimator bV 0
bØ

and the four HC estimators. Which should you use? The classic estimator bV 0
bØ is typically a poor choice

as it is only valid under the unlikely homoskedasticity restriction. For this reason it is not typically used
in contemporary econometric research. Unfortunately, standard regression packages set their default
choice as bV 0

bØ so users must intentionally select a robust covariance matrix estimator.
Of the four robust estimators HC1 is the most commonly used as it is the default robust covariance

matrix option in Stata. However, HC2 and HC3 are preferred. HC2 is unbiased (under homoskedasticity)
and HC3 is conservative for any X . In most applications HC1, HC2 and HC3 will be very similar so this
choice will not matter. The context where the estimators can differ substantially is when the sample has
a large leverage value hi i for some observation (or multiple large leverage values). You can see this by
comparing the formulas (4.32), (4.33) and (4.34) and noting that the only difference is the scaling by the
leverage values hi i . If there is an observation with hi i close to one, then (1°hi i )°1 and (1°hi i )°2 will be
large, giving this observation much greater weight for construction of the covariance matrix estimator.

Halbert L. White

Hal White (1950-2012) of the United States was an influential econometrician of
recent years. His 1980 paper on heteroskedasticity-consistent covariance matrix
estimation for many years was the most cited paper in economics. His research
was central to the movement to view econometric models as approximations,
and to the drive for increased mathematical rigor in the discipline. In addition to
being a highly prolific and influential scholar, he also co-founded the economic
consulting firm Bates White.
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4.16 Standard Errors

A variance estimator such as bV bØ is an estimator of the variance of the distribution of bØ. A more
easily interpretable measure of spread is its square root – the standard deviation. This is so important
when discussing the distribution of parameter estimators we have a special name for estimates of their
standard deviation.

Definition 4.2 A standard error s( bØ) for a real-valued estimator bØ is an esti-
mator of the standard deviation of the distribution of bØ.

WhenØ is a vector with estimator bØ and covariance matrix estimator bV bØ, standard errors for individ-

ual elements are the square roots of the diagonal elements of bV bØ. That is,

s( bØ j ) =
q

bV Ø̂ j
=

rh
bV bØ

i

j j
.

When the classical covariance matrix estimator (4.30) is used the standard error takes the particularly
simple form

s( bØ j ) = s
rh°

X
0
X

¢°1
i

j j
. (4.37)

As we discussed in the previous section there are multiple possible covariance matrix estimators so
standard errors are not unique. It is therefore important to understand what formula and method is used
by an author when studying their work. It is also important to understand that a particular standard error
may be relevant under one set of model assumptions but not under another set of assumptions.

To illustrate, we return to the log wage regression (3.13) of Section 3.7. We calculate that s2 = 0.160.
Therefore the homoskedastic covariance matrix estimate is

bV 0
bØ =

µ
5010 314
314 20

∂°1

0.160 =
µ

0.002 °0.031
°0.031 0.499

∂
.

We also calculate that
nX

i=1
(1°hi i )°1

x i x
0
i ê2

i =
µ

763.26 48.513
48.513 3.1078

∂
.

Therefore the HC2 covariance matrix estimate is

bV HC2
bØ =

µ
5010 314
314 20

∂°1 µ
763.26 48.513
48.513 3.1078

∂µ
5010 314
314 20

∂°1

=
µ

0.001 °0.015
°0.015 0.243

∂
. (4.38)

The standard errors are the square roots of the diagonal elements of these matrices. A conventional
format to write the estimated equation with standard errors is

·log(wage) = 0.155
(0.031)

education+ 0.698
(0.493)

. (4.39)
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Table 4.1: Standard Errors

Education Intercept
Homoskedastic (4.30) 0.045 0.707
HC0 (4.31) 0.029 0.461
HC1 (4.32) 0.030 0.486
HC2 (4.33) 0.031 0.493
HC3 (4.34) 0.033 0.527

Alternatively, standard errors could be calculated using the other formulae. We report the different
standard errors in the following table.

The homoskedastic standard errors are noticeably different (larger in this case) than the others. The
robust standard errors are reasonably close to one another though the jackknife standard errors are larger
than the others.

4.17 Covariance Matrix Estimation with Sparse Dummy Variables

The heteroskedasticity-robust covariance matrix estimators can be quite imprecise in some contexts.
One is in the presence of sparse dummy variables – when a dummy variable only takes the value 1 or 0
for very few observations. In these contexts one component of the variance matrix is estimated on just
those few observations and will be imprecise. This is effectively hidden from the user.

To see the problem, let d1i be a dummy variable (takes on the values 1 and 0) and consider the
dummy variable regression

yi =Ø1di +Ø2 +ei . (4.40)

The number of observations for which di = 1 is n1 = Pn
i=1 di . The number of observations for which

di = 0 is n2 = n °n1. We say the design is sparse if n1 is small.
To simplify our analysis, we take the most extreme case where n1 = 1. The ideas extend to the case of

n1 > 1 but small, though with less dramatic effects.
In the regression model (4.40) we can calculate that the true covariance matrix of the least-squares

estimator for the coefficients under the simplifying assumption of conditional homoskedasticity is

V bØ =æ2 °
X

0
X

¢°1 =æ2
µ

1 1
1 n

∂°1

= æ2

n °1

µ
n °1
°1 1

∂
.

In particular, the variance of the estimator for the coefficient on the dummy variable is

V bØ1
=æ2 n

n °1
.

Essentially, the coefficient Ø1 is estimated from a single observation so its variance is roughly unaffected
by sample size.

Now let’s examine the standard HC1 covariance matrix estimator (4.32). The regression has perfect
fit for the observation for which di = 1 so the corresponding residual is bei = 0. It follows that di bei = 0 for
all i (either di = 0 or bei = 0). Hence

nX

i=1
x i x

0
i be

2
i =

µ
0 0
0

Pn
i=1 be2

i

∂
=

µ
0 0
0 (n °2)s2

∂
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where s2 = (n °2)°1 Pn
i=1 be2

i is the bias-corrected estimator of æ2. Together we find that

bV HC1
bØ =

≥ n
n °2

¥ 1

(n °1)2

µ
n °1
°1 1

∂µ
0 0
0 (n °2)s2

∂µ
n °1
°1 1

∂

= s2 n

(n °1)2

µ
1 °1
°1 1

∂
.

In particular, the estimator for V bØ1
is

bV HC1
bØ1

= s2 n

(n °1)2 .

It has expectation

E

h
bV HC1

bØ1

i
=æ2 n

(n °1)2 =
V bØ1

n °1
<<V bØ1

.

The variance estimator bV HC1
bØ1

is extremely biased for V bØ1
. It is too small by a multiple of n! The reported

variance – and standard error – is misleadingly small. The variance estimate erroneously mis-states the
precision of bØ1.

The fact that bV HC1
bØ1

is biased is unlikely to be noticed by the applied researcher. Nothing in the re-

ported output will alert a researcher to the problem.
Another way to see the issue is to consider the estimator bµ = bØ1 + bØ2 for the sum of the coefficients

µ =Ø1 +Ø2. This estimator has true variance æ2. The variance estimator, however is bV HC1
bµ = 0! (It equals

the sum of the four elements in bV HC1
bØ ). Clearly, the estimator “0” is biased for the true value æ2.

Another insight is to examine the leverage values. For the observation with di = 1 we can calculate
that

hi i =
1

n °1

°
1 1

¢µ n °1
°1 1

∂µ
1
1

∂
= 1.

This is an extreme leverage value.
The general solution is to replace the biased covariance matrix estimator bV HC1

bØ1
with the unbiased

estimator bV HC2
bØ1

(unbiased under homoskedasticity) or the conservative estimator bV HC3
bØ1

. This cannot

be done in the extreme sparse case n1 = 1 (for bV HC2
bØ1

and bV HC3
bØ1

cannot be calculated if hi i = 1 for any

observation) but applies otherwise. When hi i = 1 for some observation then bV HC2
bØ1

and bV HC3
bØ1

cannot be

calculated. In this case unbiased covariance matrix estimation appears to be impossible.

4.18 Computation

We illustrate methods to compute standard errors for equation (3.14) extending the code of Section
3.25.
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Stata do File (continued)

* Homoskedastic formula (4.30):
reg wage education experience exp2 if (mnwf == 1)
* HC1 formula (4.32):
reg wage education experience exp2 if (mnwf == 1), r
* HC2 formula (4.33):
reg wage education experience exp2 if (mnwf == 1), vce(hc2)
* HC3 formula (4.34):
reg wage education experience exp2 if (mnwf == 1), vce(hc3)

R Program File (continued)

n <- nrow(y)
k <- ncol(x)
a <- n/(n-k)
sig2 <- (t(e) %*% e)/(n-k)
u1 <- x*(e%*%matrix(1,1,k))
u2 <- x*((e/sqrt(1-leverage))%*%matrix(1,1,k))
u3 <- x*((e/(1-leverage))%*%matrix(1,1,k))
v0 <- xx*sig2
xx <- solve(t(x)%*%x)
v1 <- xx %*% (t(u1)%*%u1) %*% xx
v1a <- a * xx %*% (t(u1)%*%u1) %*% xx
v2 <- xx %*% (t(u2)%*%u2) %*% xx
v3 <- xx %*% (t(u3)%*%u3) %*% xx
s0 <- sqrt(diag(v0)) # Homoskedastic formula
s1 <- sqrt(diag(v1)) # HC0
s1a <- sqrt(diag(v1a)) # HC1
s2 <- sqrt(diag(v2)) # HC2
s3 <- sqrt(diag(v3)) # HC3
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MATLAB Program File (continued)

[n,k]=size(x);
a=n/(n-k);
sig2=(e’*e)/(n-k);
u1=x.*(e*ones(1,k));u2=x.*((e./sqrt(1-leverage))*ones(1,k));
u3=x.*((e./(1-leverage))*ones(1,k));xx=inv(x’*x);
v0=xx*sig2;
v1=xx*(u1’*u1)*xx;
v1a=a*xx*(u1’*u1)*xx;
v2=xx*(u2’*u2)*xx;
v3=xx*(u3’*u3)*xx;
s0=sqrt(diag(v0)); # Homoskedastic formula
s1=sqrt(diag(v1)); # HC0 formula
s1a=sqrt(diag(v1a)); # HC1 formula
s2=sqrt(diag(v2)); # HC2 formula
s3=sqrt(diag(v3)); # HC3 formula

4.19 Measures of Fit

As we described in the previous chapter a commonly reported measure of regression fit is the regres-
sion R2 defined as

R2 = 1°
Pn

i=1 be2
i

Pn
i=1

°
yi ° y

¢2 = 1° bæ2

bæ2
y

.

where bæ2
y = n°1 Pn

i=1

°
yi ° y

¢2 . R2 can be viewed as an estimator of the population parameter

Ω2 =
var

£
x
0
iØ

§

var
£

yi
§ = 1° æ2

æ2
y

.

However, bæ2 and bæ2
y are biased estimators. Theil (1961) proposed replacing these by the unbiased

versions s2 and eæ2
y = (n ° 1)°1 Pn

i=1

°
yi ° y

¢2 yielding what is known as R-bar-squared or adjusted R-
squared:

R
2 = 1° s2

eæ2
y
= 1°

(n °1)
Pn

i=1 be2
i

(n °k)
Pn

i=1

°
yi ° y

¢2 .

While R
2

is an improvement on R2 a much better improvement is

eR2 = 1°
Pn

i=1 ee2
i

Pn
i=1

°
yi ° y

¢2 = 1° eæ2

bæ2
y

where eei are the prediction errors (3.45) and eæ2 is the MSPE from (3.47). As described in Section (4.13)
eæ2 is a good estimator of the out-of-sample mean-squared forecast error so eR2 is a good estimator of the
percentage of the forecast variance which is explained by the regression forecast. In this sense eR2 is a
good measure of fit.



CHAPTER 4. LEAST SQUARES REGRESSION 124

One problem with R2 which is partially corrected by R
2

and fully corrected by eR2 is that R2 necessarily
increases when regressors are added to a regression model. This occurs because R2 is a negative function

of the sum of squared residuals which cannot increase when a regressor is added. In contrast, R
2

and
eR2 are non-monotonic in the number of regressors. eR2 can even be negative, which occurs when an
estimated model predicts worse than a constant-only model.

In the statistical literature the MSPE eæ2 is known as the leave-one-out cross validation criterion
and is popular for model comparison and selection, especially in high-dimensional (non-parametric)
contexts. It is equivalent to use eR2 or eæ2 to compare and select models. Models with high eR2 (or low eæ2)
are better models in terms of expected out of sample squared error. In contrast, R2 cannot be used for
model selection as it necessarily increases when regressors are added to a regression model. R

2
is also an

inappropriate choice for model selection (it tends to select models with too many parameters) though

a justification of this assertion requires a study of the theory of model selection. Unfortunately, R
2

is
routinely used by some economists, possibly as a hold-over from previous generations.

In summary, it is recommended to omit R2 and R
2

. If a measure of fit is desired, report eR2 or eæ2.

Henri Theil

Henri Theil (1924-2000) of the Netherlands invented R
2

and two-stage least
squares, both of which are routinely seen in applied econometrics. He also wrote
an early influential advanced textbook on econometrics (Theil, 1971).

4.20 Empirical Example

We again return to our wage equation but use a much larger sample of all individuals with at least
12 years of education. For regressors we include years of education, potential work experience, expe-
rience squared, and dummy variable indicators for the following: female, female union member, male
union member, married female2, married male, formerly married female3, formerly married male, His-
panic, black, American Indian, Asian, and mixed race4 . The available sample is 46,943 so the parameter
estimates are quite precise and reported in Table 4.2. For standard errors we use the unbiased Horn-
Horn-Duncan formula.

Table 4.2 displays the parameter estimates in a standard tabular format. Parameter estimates and
standard errors are reported for all coefficients. In addition to the coefficient estimates the table also
reports the estimated error standard deviation and the sample size. These are useful summary measures
of fit which aid readers.

As a general rule it is advisable to always report standard errors along with parameter estimates. This
allows readers to assess the precision of the parameter estimates, and as we will discuss in later chapters,
form confidence intervals and t-tests for individual coefficients if desired.

The results in Table 4.2 confirm our earlier findings that the return to a year of education is approxi-
mately 12%, the return to experience is concave, single women earn approximately 10% less then single
men, and blacks earn about 10% less than whites. In addition, we see that Hispanics earn about 11% less

2Defining “married” as marital code 1, 2, or 3.
3Defining “formerly married” as marital code 4, 5, or 6.
4Race code 6 or higher.
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Table 4.2: OLS Estimates of Linear Equation for log(wage)

bØ s( bØ)
Education 0.117 0.001
Experience 0.033 0.001
Experience2/100 -0.056 0.002
Female -0.098 0.011
Female Union Member 0.023 0.020
Male Union Member 0.095 0.020
Married Female 0.016 0.010
Married Male 0.211 0.010
Formerly Married Female -0.006 0.012
Formerly Married Male 0.083 0.015
Hispanic -0.108 0.008
Black -0.096 0.008
American Indian -0.137 0.027
Asian -0.038 0.013
Mixed Race -0.041 0.021
Intercept 0.909 0.021
bæ 0.565
Sample Size 46,943

Standard errors are heteroskedasticity-consistent (Horn-Horn-Duncan formula).

than whites, American Indians 14% less, and Asians and Mixed races about 4% less. We also see there
are wage premiums for men who are members of a labor union (about 10%), married (about 21%) or
formerly married (about 8%), but no similar premiums are apparent for women.

4.21 Multicollinearity

As discussed in Section 3.24, if X
0
X is singular then

°
X

0
X

¢°1 and bØ are not defined. This situation
is called strict multicollinearity as the columns of X are linearly dependent, i.e., there is some Æ 6= 0
such that XÆ= 0. Most commonly this arises when sets of regressors are included which are identically
related. In Section 3.24 we discussed possible causes of strict multicollinearity and discussed the related
problem of ill-conditioning which can cause numerical inaccuracies in severe cases.

A related common situation is near multicollinearity which is often called “multicollinearity” for
brevity. This is the situation when the regressors are highly correlated. An implication of near multi-
collinearity is that individual coefficient estimates will be imprecise. This is not necessarily a problem
for econometric analysis if the reported standard errors are accurate. However, robust standard errors
can be sensitive to large leverage values which can occur under near multicollinearity. This leads to the
undesirable situation where the coefficient estimates are imprecise yet the standard errors are mislead-
ingly small.

We can see the impact of near multicollinearity on precision in a simple homoskedastic linear regres-
sion model with two regressors

yi = x1iØ1 +x2iØ2 +ei ,
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and
1
n

X
0
X =

µ
1 Ω

Ω 1

∂
.

In this case

var
£bØ | X

§
= æ2

n

µ
1 Ω

Ω 1

∂°1

= æ2

n
°
1°Ω2

¢
µ

1 °Ω
°Ω 1

∂
.

The correlation Ω indexes collinearity since as Ω approaches 1 the matrix becomes singular. We can see
the effect of collinearity on precision by observing that the variance of a coefficient estimateæ2 £

n
°
1°Ω2¢§°1

approaches infinity as Ω approaches 1. Thus the more “collinear” are the regressors the worse the preci-
sion of the individual coefficient estimates.

What is happening is that when the regressors are highly dependent it is statistically difficult to dis-
entangle the impact of Ø1 from that of Ø2. As a consequence the precision of individual estimates are
reduced.

Many early-generation textbooks overemphasized multicollinearity. An amusing parody of these
texts appeared in Chapter 23.3 of Goldberger’s A Course in Econometrics (1991), part of which is reprinted
below. To understand his basic point you should notice how the estimation varianceæ2 £

n
°
1°Ω2¢§°1 de-

pends equally and symmetrically on the correlation Ω and the sample size n. Goldberger was pointing
out that the only statistical implication of multicollinearity in the homoskedastic model is a lack of preci-
sion. Small sample sizes have the exact same implication. (What both Goldberger and these other early
texts missed, however, is that multicollinearity increases the bias of robust standard errors as discussed
in Section 4.17.)

Arthur S. Goldberger

Art Goldberger (1930-2009) was one of the most distinguished members of the
Department of Economics at the University of Wisconsin. His Ph.D. thesis devel-
oped a pioneering macroeconometric forecasting model (the Klein-Goldberger
model). Most of his remaining career focused on microeconometric issues. He
was the leading pioneer of what has been called the Wisconsin Tradition of em-
pirical work – a combination of formal econometric theory with a careful critical
analysis of empirical work. Goldberger wrote a series of highly regarded and in-
fluential graduate econometric textbooks, including Econometric Theory (1964),
Topics in Regression Analysis (1968), and A Course in Econometrics (1991).



CHAPTER 4. LEAST SQUARES REGRESSION 127

Micronumerosity
Arthur S. Goldberger

A Course in Econometrics (1991), Chapter 23.3

Econometrics texts devote many pages to the problem of multicollinearity in mul-
tiple regression, but they say little about the closely analogous problem of small sample
size in estimating a univariate mean. Perhaps that imbalance is attributable to the lack
of an exotic polysyllabic name for “small sample size.” If so, we can remove that imped-
iment by introducing the term micronumerosity.

Suppose an econometrician set out to write a chapter about small sample size in
sampling from a univariate population. Judging from what is now written about multi-
collinearity, the chapter might look like this:

1. Micronumerosity

The extreme case, “exact micronumerosity,” arises when n = 0, in which case the
sample estimate of µ is not unique. (Technically, there is a violation of the rank
condition n > 0 : the matrix 0 is singular.) The extreme case is easy enough to
recognize. “Near micronumerosity” is more subtle, and yet very serious. It arises
when the rank condition n > 0 is barely satisfied. Near micronumerosity is very
prevalent in empirical economics.

2. Consequences of micronumerosity

The consequences of micronumerosity are serious. Precision of estimation is
reduced. There are two aspects of this reduction: estimates of µ may have large
errors, and not only that, but Vȳ will be large.

Investigators will sometimes be led to accept the hypothesis µ= 0 because ȳ/bæȳ

is small, even though the true situation may be not that µ= 0 but simply that the
sample data have not enabled us to pick µ up.

3. Testing for micronumerosity

Tests for the presence of micronumerosity require the judicious use of various
fingers. Some researchers prefer a single finger, others use their toes, still others
let their thumbs rule.

A generally reliable guide may be obtained by counting the number of observa-
tions. Most of the time in econometric analysis, when n is close to zero, it is also
far from infinity.

4. Remedies for micronumerosity

If micronumerosity proves serious in the sense that the estimate of µ has an un-
satisfactorily low degree of precision, we are in the statistical position of not being
able to make bricks without straw.
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4.22 Clustered Sampling

In Section 4.2 we briefly mentioned clustered sampling as an alternative to the assumption of ran-
dom sampling. We now introduce the framework in more detail and extend the primary results of this
chapter to encompass clustered dependence.

It might be easiest to understand the idea of clusters by considering a concrete example. Duflo,
Dupas and Kremer (2011) investigate the impact of tracking (assigning students based on initial test
score) on educational attainment in a randomized experiment. An extract of their data set is available
on the textbook webpage in the file .

In 2005, 140 primary schools in Kenya received funding to hire an extra first grade teacher to reduce
class sizes. In half of the schools (selected randomly) students were assigned to classrooms based on
an initial test score (“tracking”); in the remaining schools the students were randomly assigned to class-
rooms. For their analysis the authors restricted attention to the 121 schools which initially had a single
first-grade class.

The key regression5 in the paper is

TestScorei g =°0.071+0.138Trackingg +ei g (4.41)

where TestScorei g is the standardized test score (normalized to have mean 0 and variance 1) of student i
in school g , and Trackingg is a dummy equal to 1 if school g was tracking. The OLS estimates indicate
that schools which tracked the students had an overall increase in test scores by about 0.14 standard
deviations, which is quite meaningful. More general versions of this regression are estimated, many of
which take the form

TestScorei g =Æ+∞Trackingg +x
0
i gØ+ei g (4.42)

where x i g is a set of controls specific to the student (including age, gender and initial test score).
A difficulty with applying the classical regression framework is that student achievement is likely

to be correlated within a given school. Student achievement may be affected by local demographics,
individual teachers, and classmates, all of which imply dependence. These concerns, however, do not
suggest that achievement will be correlated across schools, so it seems reasonable to model achievement
across schools as mutually independent.

In clustering contexts it is convenient to double index the observations as (yi g , x i g ) where g = 1, ...,G
indexes the cluster and i = 1, ...,ng indexes the individual within the g th cluster. The number of ob-
servations per cluster ng may vary across clusters. The number of clusters is G . The total number of
observations is n = PG

g=1 ng . In the Kenyan schooling example the number of clusters (schools) in the
estimation sample is G = 121, the number of students per school varies from 19 to 62, and the total
number of observations is n = 5795.

While it is typical to write the observations using the double index notation (yi g , x i g ) it is also useful
to use cluster-level notation. Let y g = (y1g , ..., yng g )0 and X g = (x1g , ..., xng g )0 denote the ng £1 vector of

dependent variables and ng £k matrix of regressors for the g th cluster. A linear regression model can be
written for the individual observations as

yi g = x
0
i gØ+ei g

and using cluster notation as
y g = X gØ+eg (4.43)

5Table 2, column (1). Duflo, Dupas and Kremer (2011) report a coefficient estimate of 0.139, perhaps due to a slightly different
calculation to standardize the test score.
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where eg = (e1g , ...,eng g )0 is a ng £ 1 error vector. We can also stack the observations into full sample
matrices and write the model as

y = XØ+e.

Using this notation we can write the sums over the observations using the double sum
PG

g=1
Png

i=1.
This is the sum across clusters of the sum across observations within each cluster. The OLS estimator
can be written as

bØ=
√

GX

g=1

ngX

i=1
x i g x

0
i g

!°1 √
GX

g=1

ngX

i=1
x i g yi g

!

=
√

GX

g=1
X

0
g X g

!°1 √
GX

g=1
X

0
g y g

!

(4.44)

=
°

X
0
X

¢°1 °
X

0
y
¢

.

The OLS residuals are bei g = yi g ° x
0
i g

bØ in individual level notation and beg = y g ° X g bØ in cluster level
notation.

The standard clustering assumption is that the clusters are known to the researcher and that the
observations are independent across clusters.

Assumption 4.4 The clusters (y g , X g ) are mutually independent across clusters g .

In our example clusters are schools. In other common applications cluster dependence has been
assumed within individual classrooms, families, villages, regions, and within larger units such as indus-
tries and states. This choice is up to the researcher though the justification will depend on the context,
the nature of the data, and will reflect information and assumptions on the dependence structure across
observations.

The model is a linear regression under the assumption

E
£
eg | X g

§
= 0. (4.45)

This is the same as assuming that the individual errors are conditionally mean zero

E
£
ei g | X g

§
= 0

or that the conditional mean of y g given X g is linear. As in the independent case equation (4.45) means
that the linear regression model is correctly specified. In the clustered regression model this requires that
all all interaction effects within clusters have been accounted for in the specification of the individual
regressors x i g .

In the regression (4.41) the conditional mean is necessarily linear and satisfies (4.45) since the regres-
sor Trackingg is a dummy variable at the cluster level. In the regression (4.42) with individual controls
(4.45) requires that the achievement of any student is unaffected by the individual controls (e.g. age,
gender and initial test score) of other students within the same school.

Given (4.45) we can calculate the mean of the OLS estimator. Substituting (4.43) into (4.44) we find

bØ°Ø=
√

GX

g=1
X

0
g X g

!°1 √
GX

g=1
X

0
g eg

!

.
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The mean of bØ°Ø conditioning on all the regressors is

E
£bØ°Ø | X

§
=

√
GX

g=1
X

0
g X g

!°1 √
GX

g=1
X

0
gE

£
eg | X

§
!

=
√

GX

g=1
X

0
g X g

!°1 √
GX

g=1
X

0
gE

£
eg | X g

§
!

= 0.

The first equality holds by linearity, the second by Assumption 4.4, and the third by (4.45).
This shows that OLS is unbiased under clustering if the conditional mean is linear.

Theorem 4.8 In the clustered linear regression model (Assumption 4.4
and (4.45))

E
£bØ | X

§
=Ø.

Now consider the covariance matrix of bØ. Let

ßg = E
h

eg e
0
g | X g

i

denote the ng £ng conditional covariance matrix of the errors within the g th cluster. Since the observa-
tions are independent across clusters,

var

"√
GX

g=1
X

0
g eg

!

| X

#

=
GX

g=1
var

h
X

0
g eg | X g
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GX
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X

0
gE

h
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0
g | X g

i
X g

=
GX

g=1
X

0
gßg X g

de f= ≠n . (4.46)

It follows that

V bØ = var
£bØ | X

§

=
°

X
0
X

¢°1
≠n

°
X

0
X

¢°1 . (4.47)

This differs from the formula in the independent case due to the correlation between observations
within clusters. The magnitude of the difference depends on the degree of correlation between observa-
tions within clusters and the number of observations within clusters. To see this, suppose that all clusters

have the same number of observations ng = N , E
h

e2
i g | x g

i
= æ2, E

£
ei g e`g | x g

§
= æ2Ω for i 6= `, and the

regressors x i g do not vary within a cluster. In this case the exact variance of the OLS estimator equals6

(after some calculations)
V bØ =

°
X

0
X

¢°1
æ2 °

1+Ω (N °1)
¢

. (4.48)

6This formula is due to Moulton (1990).
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If Ω > 0 the exact variance is appropriately a multiple ΩN of the conventional formula. In the Kenyan
school example the average cluster size is 48. If Ω = 0.25 this means the exact variance exceeds the con-
ventional formula by a factor of about twelve. In this case the correct standard errors (the square root of
the variance) are a multiple of about three times the conventional formula. This is a substantial differ-
ence and should not be neglected.

Arellano (1987) proposed a cluster-robust covariance matrix estimator which is an extension of the
White estimator. Recall that the insight of the White covariance estimator is that the squared error
e2

i is unbiased for E
£
e2

i | x i
§
= æ2

i . Similarly with cluster dependence the matrix eg e
0
g is unbiased for

E

h
eg e

0
g | X g

i
=ßg . This means that an unbiased estimator for (4.46) is e≠n =PG

g=1 X
0
g eg e

0
g X g . This is not

feasible, but we can replace the unknown errors by the OLS residuals to obtain Arellano’s estimator

b≠n =
GX

g=1
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g beg be 0

g X g
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. (4.49)

The three expressions in (4.49) give three equivalent formulae which could be used to calculate b≠n . The
final expression writes b≠n in terms of the cluster sums

Png

`=1 x`g be`g which is the basis for our example R
and MATLAB codes shown below.

Given the expressions (4.46)-(4.47) a natural cluster covariance matrix estimator takes the form

bV bØ = an
°

X
0
X

¢°1 b≠n
°

X
0
X

¢°1 (4.50)

where an is a possible finite-sample adjustment. The Stata cluster command uses

an =
µ

n °1
n °k

∂µ
G

G °1

∂
.

The factor G/(G°1) was derived by Chris Hansen (2007) in the context of equal-sized clusters to improve
performance when the number of clusters G is small. The factor (n°1)/(n°k) is an ad hoc generalization
which nests the adjustment used in (4.32) since G = n implies the simplification an = n/(n °k).

Alternative cluster-robust covariance matrix estimators can be constructed using cluster-level pre-
diction errors such as

eeg = y g °X g bØ(°g )

where bØ(°g ) is the least-squares estimator omitting cluster g . Similarly as in Section 3.20, we can show
that

eeg =
≥

I ng °X g
°

X
0
X

¢°1
X

0
g

¥°1
beg (4.51)

and
bØ(°g ) = bØ°

°
X

0
X

¢°1
X

0
g eeg . (4.52)

We then have the robust covariance matrix estimator

bV CR3
bØ =

°
X

0
X

¢°1

√
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g=1
X

0
g eeg ee 0

g X g

!
°

X
0
X

¢°1 . (4.53)

The label “CR” refers to “cluster-robust” and “CR3” refers to the analogous formula for the HC3 estimator.
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Similarly to the heteroskedastic-robust case you can show that CR3 is a conservative estimator for
V bØ in the sense that the conditional expectation of bV CR3

bØ exceeds V bØ. This covariance matrix estimator
may be more cumbersome to implement, however, as the cluster-level prediction errors (4.51) cannot be
calculated in a simple linear operation and appear to require a loop (across clusters) to calculate.

To illustrate in the context of the Kenyan schooling example we present the regression of student test
scores on the school-level tracking dummy with two standard errors displayed. The first (in parenthesis)
is the conventional robust standard error. The second [in square brackets] is the clustered standard error
where clustering is at the level of the school.

TestScorei g =° 0.071
(0.019)
[0.054]

+ 0.138
(0.026)
[0.078]

Trackingg +ei g . (4.54)

We can see that the cluster-robust standard errors are roughly three times the conventional robust
standard errors. Consequently, confidence intervals for the coefficients are greatly affected by the choice.

For illustration, we list here the commands needed to produce the regression results with clustered
standard errors in Stata, R, and MATLAB.

Stata do File

* Load data:
use "DDK2011.dta"
* Standard the test score variable to have mean zero and unit variance:
egen testscore = std(totalscore)
* Regression with standard errors clustered at the school level:
reg testscore tracking, cluster(schoolid)

You can see that clustered standard errors are simple to calculate in Stata.
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R Program File

# Load the data and create variables
data <- read.table("DDK2011.txt",header=TRUE,sep="\ t")
y <- scale(as.matrix(data$totalscore))
n <- nrow(y)
x <- cbind(as.matrix(data$tracking),matrix(1,n,1))
schoolid <- as.matrix(data$schoolid)
k <- ncol(x)
xx <- t(x)%*%x
invx <- solve(xx)
beta <- solve(xx,t(x)%*%y)
xe <- x*rep(y-x%*%beta,times=k)
# Clustered robust standard error
xe_sum <- rowsum(xe,schoolid)
G <- nrow(xe_sum)
omega <- t(xe_sum)%*%xe_sum
scale <- G/(G-1)*(n-1)/(n-k)
V_clustered <- scale*invx%*%omega%*%invx
se_clustered <- sqrt(diag(V_clustered))
print(beta)
print(se_clustered)

Programming clustered standard errors in R is also relatively easy due to the convenient com-
mand which sums variables within clusters.
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MATLAB Program File

% Load the data and create variables
data = xlsread(’DDK2011.xlsx’);
schoolid = data(:,2);
tracking = data(:,7);
totalscore = data(:,62);
y = (totalscore - mean(totalscore))./std(totalscore);
x = [tracking,ones(size(y,1),1)];
[n,k] = size(x);
xx = x’*x;
invx = inv(xx);
beta = xx\
e = y - x*beta;
% Clustered robust standard error
[schools,~,schoolidx] = unique(schoolid);
G = size(schools,1);
cluster_sums = zeros(G,k);
for j = 1:k
cluster_sums(:,j) = accumarray(schoolidx,x(:,j).*e);
end
omega = cluster_sums’*cluster_sums;
scale = G/(G-1)*(n-1)/(n-k);
V_clustered = scale*invx*omega*invx;
se_clustered = sqrt(diag(V_clustered));
display(beta);
display(se_clustered);

Here we see that programming clustered standard errors in MATLAB is less convenient than the other
packages but still can be executed with just a few lines of code. This example uses the
command which is similar to the command in R but only can be applied to vectors (hence the
loop across the regressors) and works best if the clusterid variable are indices (which is why the original
schoolid variable is transformed into indices in schoolidx. Application of these commands requires care
and attention.

4.23 Inference with Clustered Samples

In this section we give some cautionary remarks and general advice about cluster-robust inference
in econometric practice. There has been remarkably little theoretical research about the properties of
cluster-robust methods – until quite recently – so these remarks may become dated rather quickly.

In many respects cluster-robust inference should be viewed similarly to heteroskedaticity-robust in-
ference where a “cluster” in the cluster-robust case is interpreted similarly to an “observation” in the
heteroskedasticity-robust case. In particular, the effective sample size should be viewed as the number
of clusters not the “sample size” n. This is because the cluster-robust covariance matrix estimator ef-
fectively treats each cluster as a single observation and estimates the covariance matrix based on the
variation across cluster means. Hence if there are only G = 50 clusters inference should be viewed as
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(at best) similar to heteroskedasticity-robust inference with n = 50 observations. This is a bit unsettling
for if the number of regressors is large (say k = 20), then the covariance matrix will be estimated quite
imprecisely.

Furthermore, most cluster-robust theory (for example, the work of Chris Hansen (2007)) assumes
that the clusters are homogeneous including the assumption that the cluster sizes are all identical. This
turns out to be a very important simplication. When this is violated – when, for example, cluster sizes are
highly heterogeneous – the regression should be viewed as roughly equivalent to the heteroskedasticity-
robust case with an extremely high degree of heteroskedasticity. Cluster sums have variances which are
proportional to the cluster sizes so if the latter is heterogeneous so will be the variances of the clus-
ter sums. This also has a large effect on finite sample inference. When clusters are heterogeneous then
cluster-robust inference is similar to heteroskedasticity-robust inference with highly heteroskedastic ob-
servations.

Put together, if the number of clusters G is small and the number of observations per cluster is highly
varied then we should interpret inferential statements with a great degree of caution. Unfortunately,
small G with heterogeneous cluster sizes is commonplace. Many empirical studies on U.S. data cluster
at the “state” level meaning that there are 50 or 51 clusters (the District of Columbia is typically treated
as a state). The number of observations vary considerably across states since the populations are highly
unequal. Thus when you read empirical papers with individual-level data but clustered at the “state”
level you should be cautious and recognize that this is equivalent to inference with a small number of
extremely heterogeneous observations.

A further complication occurs when we are interested in treatment as in the tracking example given
in the previous section. In many cases (including Duflo, Dupas and Kremer (2011)) the interest is in the
effect of a treatment applied at the cluster level (e.g., schools). In many cases (not, however, Duflo, Dupas
and Kremer (2011)), the number of treated clusters is small relative to the total number of clusters; in an
extreme case there is just a single treated cluster. Based on the reasoning given above these applications
should be interpreted as equivalent to heteroskedasticity-robust inference with a sparse dummy variable
as discussed in Section 4.17. As discussed there, standard error estimates can be erroneously small.
In the extreme of a single treated cluster (in the example, if only a single school was tracked) then the
estimated coefficient on tracking will be very imprecisely estimated yet will have a misleadingly small
cluster standard error. In general, reported standard errors will greatly understate the imprecision of
parameter estimates.

4.24 At What Level to Cluster?

A practical question which arises in the context of cluster-robust inference is “At what level should
we cluster?” In some examples you could cluster at a very fine level, such as families or classrooms, or
at higher levels of aggregation, such as neighborhoods, schools, towns, counties, or states. What is the
correct level at which to cluster? Rules of thumb have been advocated by practitioners but at present
there is little formal analysis to provide useful guidance. What do we know?

First, suppose cluster dependence is ignored or imposed at too fine a level (e.g. clustering by house-
holds instead of villages). Then variance estimators will be biased as they will omit covariance terms. As
correlation is typically positive, this suggests that standard errors will be too small giving rise to spurious
indications of significance and precision.

Second, suppose cluster dependence is imposed at too aggregate a measure (e.g. clustering by states
rather than villages). This does not cause bias. But the variance estimators will contain many extra
components so the precision of the covariance matrix estimator will be poor. This means that reported
standard errors will be imprecise – more random – than if clustering had been less aggregate.
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These considerations show that there is a trade-off between bias and variance in the estimation of the
covariance matrix by cluster-robust methods. It is not at all clear – based on current theory – what to do.
I state this emphatically. We really do not know what is the “correct” level at which to do cluster-robust
inference. This is a very interesting question and should certainly be explored by econometric research.

One challenge is that in empirical practice many people have observed: “Clustering is important.
Standard errors change a lot whether or not we properly cluster. Therefore we should only report clus-
tered standard errors.” The flaw in this reasoning is that we do not know why in a specific empirical
example the standard errors change under clustering. One possibility is that clustering reduces bias and
thus is more accurate. The other possibility is that clustering adds sampling noise and is thus less accu-
rate. In reality it is likely that both factors are present.

In any event a researcher should be aware of the number of clusters used in the reported calculations
and should treat the number of clusters as the effective sample size for assessing inference. If the number
of clusters is, say, G = 20, this should be treated as a very small sample.

To illustrate the thought experiment consider the empirical example of Duflo, Dupas and Kremer
(2011). They reported standard errors clustered at the school level and the application uses 111 schools.
Thus G = 111 is the effective sample size. The number of observations (students) ranges from 19 to 62,
which is reasonably homogeneous. This seems like a well balanced application of clustered variance
estimation. However, one could imagine clustering at a different level of aggregation. We might consider
clustering at a less aggregate level such as the classroom level, but this cannot be done in this particular
application as there was only one classroom per school. Clustering at a more aggregate level could be
done in this application at the level of the “zone”. However, there are only 9 zones. Thus if we cluster by
zone, G = 9 is the effective sample size which would lead to imprecise standard errors. In this particular
example clustering at the school level (as done by the authors) is indeed the prudent choice.
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4.25 Technical Proofs*

Proof of Theorem 4.6 The proof technique is to calculate the Cramér-Rao bound from a carefully crafted
parametric model. (For the Cramér-Rao Theorem, see, for example, Chapter 10 of Introduction to Econo-
metrics.) We use a conditional version of the Cramér-Rao Theorem: If f

°
y | x ,µ

¢
is a correctly specified

probability model which depends on a finite dimensional parameter µ 2 £, the support of y does not
depend on µ, µ lies in the interior of £, and if eµ is an unbiased estimator of µ based on a sample of size
n, then var

£eµ | X
§
∏

°Pn
i=1 Iµ(x i )

¢°1 where Iµ(x) is the information matrix for model f
°
y | x ,µ

¢
.

For ease of exposition we focus on the case where ei has a conditional density f (e | x). (The same
argument applies to the discrete case using instead the probability mass function.)

The idea is as follows. The Cramér-Rao Theorem shows that within a parametric model an unbi-
ased estimator cannot have lower variance than the inverse information matrix. This is true for any
correctly-specified parametric model – which means any parametric model which includes the true dis-
tribution as a special case. Thus any correctly-specified parametric model produces a valid variance
lower bound. The best bound is the supremum across these variance lower bounds. Rather than com-
puting that directly we recognize that our goal is to produce a model with the specific variance lower
bound

°
X

0
D

°1
X

¢°1. This is achieved if the information matrix equals X
0
D

°1
X , which is achieved if the

model has the likelihood score x i eiæ
°2
i . This suggests the parametric model for the error ei

f (e | x ,µ) = f (e | x)
µ
1+ µ0xe

æ2(x)

∂

where f (e | x) is the true conditional density. This model does not quite work, however, since this den-
sity is not necessarily non-negative. Consequently we use a technically more detailed argument using
trimming to ensure a non-negative density.

For some 0 < c <1 define
æ2(x) = E

£
e2

i (|ei |∑ c/2) | x i = x
§

and æ2
i = æ2(x i ). Notice that as c ! 1, æ2

i ! æ2
i for each i . Set ± > 0. Pick c sufficiently large so that

æ2
i ∏ ± for all i . Let M = maxi∑n kx ik.

Define the trimmed error

ui = ei (|ei |∑ c/2)°E [ei (|ei |∑ c/2) | x i ] .

Notice that ui satisfies |ui |∑ c, E [ui | x i ] = 0, and æ2
i = E [ei ui | x i = x] .

Consider the parametric model for e given x

f (e | x ,µ) = f (e | x)
µ
1+ µ0xu

æ2(x)

∂

where the parameter µ 2Rk takes values in the set
Ω
kµk ∑ ±

cM

æ
.

This model for e implies that y has the parameteric density f
°
y °x

0Ø | x ,µ
¢
.

The assumed bounds imply that

ØØØØ
µ0x i ui

æ2(x i )

ØØØØ∑
kµkkx ik |ui |

±
∑ 1.
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This implies
0 ∑ f (e | x ,µ) ∑ 2 f (e | x) .

We calculate that
Z

f (e | x ,µ)d y =
Z

f (e | x)de +
Z

f (e | x)
µ0xu

æ2(x)
de = 1+ µ0x

æ2(x)
E [u | x] = 1.

the last equality since E [u | x] = 0. Together, these facts imply that f
°
y | x ,µ

¢
is a valid conditional density

function.
The bound f (e | x ,µ) ∑ 2 f (e | x) means that any moment which is finite under f (e | x) is also finite

under f (e | x ,µ). In particular, using the notation Eµ [· | x] to denote expectation under the conditional
density f (e | x ,µ) and Eµ [·] under the the unconditional distribution, this implies that

Eµ

£
e2

i | x i
§
∑ 2E

£
e2

i | x i
§
<1

and thus
Eµ

£
e2

i

§
= E

£
Eµ

£
e2

i | x i
§§

∑ 2E
£
E
£
e2

i | x i
§§

= 2E
£
e2

i

§
<1

so the model f (e | x ,µ) has a finite second moment.
The conditional mean of yi in this model is

Eµ

£
y | x

§
=

Z
y f

°
y °x

0Ø | x ,µ
¢

d y

= x
0Ø+

Z
e f (e | x)de + µ0x

æ2(x)

Z
eu f (e | x)de

= x
0 °Ø+µ

¢
.

Thus the conditional mean is linear in x , and Ø+µ corresponds to the regression coefficient.
When µ = 0, f (e | x ,µ) = f (e | x) equals the true conditional density of e. Thus f (e | x ,µ) is a correctly

specified model with true parameter value µ = 0.
Together, we have shown that the parametric model f (e | x ,µ) satisfies the conditions of the stated

theorem as well as the Cramér-Rao Theorem. Suppose we have an estimator eØ which is unbiased for Ø.
Set eµ = eØ°Ø. This is unbiased for µ, and eµ and eØ have the same variance. Since eµ is unbiased its variance
is bounded below by the inverse Fisher information. Consequently eØ has the same variance bound.

We now calculate the Fisher information. The score is

S = @

@µ
log f (e | x ,µ)

ØØØØ
µ=0

= xu/æ2(x)

1+µ0xu/æ2(x)

ØØØØØ
µ=0

= xuæ°2(x).

The information matrix for the i th observation is

Iµ(x i ) = var(S i ) = var
°
x i uiæ

°2
i | x i

¢
= x i x

0
iæ

°4
i v2

i

where v2
i = E

£
u2

i | x i
§
. That for the full sample is

nX

i=1
Iµ(x i ) =

nX

i=1
x i x

0
iæ

°4
i v2

i .

By the Cramér-Rao theorem,

var
£eØ | X

§
= var

£eµ | X
§
∏

√
nX

i=1
x i x

0
iæ

°4
i v2

i

!°1

.
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This holds for any c. As c !1 we have æ°4
i v2

i !æ°2
i . We deduce

var
£eØ | X

§
∏

√
nX

i=1
x i x

0
iæ

°2
i

!°1

=
°

X
0
D

°1
X

¢°1
.

This is the stated bound. Á
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Exercises

Exercise 4.1 For some integer k, set µk = E[yk ].

(a) Construct an estimator bµk for µk .

(b) Show that bµk is unbiased for µk .

(c) Calculate the variance of bµk , say var
£
bµk

§
. What assumption is needed for var

£
bµk

§
to be finite?

(d) Propose an estimator of var
£
bµk

§
.

Exercise 4.2 Calculate E
h°

y °µ
¢3

i
, the skewness of y . Under what condition is it zero?

Exercise 4.3 Explain the difference between y and µ. Explain the difference between n°1 Pn
i=1 x i x

0
i and

E
£

x i x
0
i

§
.

Exercise 4.4 True or False. If yi = xiØ+ei , xi 2R, E [ei | xi ] = 0, and bei is the OLS residual from the regres-
sion of yi on xi , then

Pn
i=1 x2

i bei = 0.

Exercise 4.5 Prove (4.15) and (4.16)

Exercise 4.6 Prove Theorem 4.5.

Exercise 4.7 Let eØ be the GLS estimator (4.17) under the assumptions (4.13) and (4.14). Assume that
≠= c2ßwith ß known and c2 unknown. Define the residual vector ee = y °X eØ, and an estimator for c2

ec2 = 1
n °k

ee 0ß°1ee.

(a) Show (4.18).

(b) Show (4.19).

(c) Prove that ee = M 1e, where M 1 = I °X
°

X
0ß°1

X
¢°1

X
0ß°1.

(d) Prove that M
0
1ß

°1
M 1 =ß°1 °ß°1

X
°

X
0ß°1

X
¢°1

X
0ß°1.

(e) Find E
£
ec2 | X

§
.

(f) Is ec2 a reasonable estimator for c2?

Exercise 4.8 Let (yi , x i ) be a random sample with E
£

y | X
§
= XØ. Consider the Weighted Least Squares

(WLS) estimator of Ø
eØwls =

°
X

0
W X

¢°1 °
X

0
W y

¢

where W = diag(w1, ..., wn) and wi = x°2
j i , where x j i is one of the x i .

(a) In which contexts would eØwls be a good estimator?

(b) Using your intuition, in which situations do you expect eØwls to perform better than OLS?

Exercise 4.9 Show (4.27) in the homoskedastic regression model.
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Exercise 4.10 Prove (4.35).

Exercise 4.11 Show (4.36) in the homoskedastic regression model.

Exercise 4.12 Let µ= E
£

yi
§

, æ2 = E
h°

yi °µ
¢2

i
and µ3 = E

h°
yi °µ

¢3
i

and consider the sample mean y =
1
n

Pn
i=1 yi . Find E

h°
y °µ

¢3
i

as a function of µ, æ2, µ3 and n.

Exercise 4.13 Take the simple regression model yi = xiØ+ ei , xi 2R, E [ei | xi ] = 0. Define æ2
i = E

£
e2

i | xi
§

and µ3i = E
£
e3

i | xi
§

and consider the OLS coefficient bØ. Find E
h° bØ°Ø

¢3 | X

i
.

Exercise 4.14 Take a regression model with i.i.d. observations (yi , xi ) and scalar xi

yi = xiØ+ei

E [ei | xi ] = 0.

The parameter of interest is µ =Ø2. Consider the OLS estimates bØ and bµ = bØ2.

(a) Find E
£bµ | X

§
using our knowledge of E

£ bØ | X
§

and V bØ = var
£ bØ | X

§
. Is bµ biased for µ?

(b) Suggest an (approximate) biased-corrected estimator bµ§ using an estimator bV bØ for V bØ.

(c) For bµ§ to be potentially unbiased, which estimator of V bØ is most appropriate?

Under which conditions is bµ§ unbiased?

Exercise 4.15 Consider an i.i.d. sample {yi , x i } i = 1, ...,n where x i is k£1. Assume the linear conditional
expectation model

yi = x
0
iØ+ei

E [ei | x i ] = 0

Assume that n°1
X

0
X = I k (orthonormal regressors). Consider the OLS estimator bØ for Ø.

(a) Find V bØ = var
£bØ

§

(b) In general, are bØ j and bØ` for j 6= ` correlated or uncorrelated?

(c) Find a sufficient condition so that bØ j and bØ` for j 6= ` are uncorrelated.

Exercise 4.16 Take the linear homoskedastic CEF

y§
i = x

0
iØ+ei (4.55)

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2

and suppose that y§
i is measured with error. Instead of y§

i , we observe yi which satisfies

yi = y§
i +ui

where ui is measurement error. Suppose that ei and ui are independent and

E [ui | x i ] = 0

E
£
u2

i | x i
§
=æ2

u(x i )
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(a) Derive an equation for yi as a function of x i . Be explicit to write the error term as a function of the
structural errors ei and ui . What is the effect of this measurement error on the model (4.55)?

(b) Describe the effect of this measurement error on OLS estimation of Ø in the feasible regression of
the observed yi on x i .

(c) Describe the effect (if any) of this measurement error on standard error calculation for bØ.

Exercise 4.17 Suppose that for a pair of observables (yi , xi ) with xi > 0 that an economic model implies

E
£

yi | xi
§
=

°
∞+µxi

¢1/2 . (4.56)

A friend suggests that (given an iid sample) you estimate ∞ and µ by the linear regression of y2
i on xi , that

is, to estimate the equation
y2

i =Æ+Øxi +ei . (4.57)

(a) Investigate your friend’s suggestion. Define ui = yi °
°
∞+µxi

¢1/2 . Show that E [ui | xi ] = 0 is implied
by (4.56).

(b) Use yi =
°
∞+µxi

¢1/2+ui to calculate E
£

y2
i | xi

§
. What does this tell you about the implied equation

(4.57)?

(c) Can you recover either ∞ and/or µ from estimation of (4.57)? Are additional assumptions required?

(d) Is this a reasonable suggestion?

Exercise 4.18 Take the model

yi = x
0
1iØ1 +x

0
2iØ2 +ei

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2

where x i = (x1i , x2i ), with x1i k1 £1 and x2i k2 £1. Consider the short regression

yi = x
0
1i

bØ1 + bei

and define the error variance estimator

s2 = 1
n °k1

nX

i=1
be2

i .

Find E
£
s2 | X

§
.

Exercise 4.19 Let y be n £1, X be n £k, and X
§ = XC where C is k £k and full-rank. Let bØ be the least-

squares estimator from the regression of y on X , and let bV be the estimate of its asymptotic covariance
matrix. Let bØ§

and bV §
be those from the regression of y on X

§. Derive an expression for bV §
as a function

of bV .

Exercise 4.20 Take the model

y = XØ+e

E [e | X ] = 0

E
£
ee

0 | X
§
=≠.
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Assume for simplicity that ≠ is known. Consider the OLS and GLS estimators bØ =
°

X
0
X

¢°1 °
X

0
y
¢

and
eØ=

°
X

0≠°1
X

¢°1 °
X

0≠°1
y
¢

. Compute the (conditional) covariance between bØ and eØ :

E

h°bØ°Ø
¢°eØ°Ø

¢0 | X

i

Find the (conditional) covariance matrix for bØ° eØ :

E

h°bØ° eØ
¢°bØ° eØ

¢0 | X

i
.

Exercise 4.21 The model is

yi = x
0
iØ+ei

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2

i

≠= diag{æ2
1, ...,æ2

n}.

The parameter Ø is estimated both by OLS bØ =
°

X
0
X

¢°1
X

0
y and GLS eØ =

°
X

0≠°1
X

¢°1
X

0≠°1
y . Let

be = y °X bØ and ee = y °X eØ denote the residuals. Let bR2 = 1°be 0be/(y
§0

y
§) and eR2 = 1°ee 0ee/(y

§0
y
§) denote

the equation R2 where y
§ = y ° y . If the error ei is truly heteroskedastic will bR2 or eR2 be smaller?

Exercise 4.22 An economist friend tells you that the assumption that the observations (yi , x i ) are i.i.d.
implies that the regression yi = x

0
iØ+ ei is homoskedastic. Do you agree with your friend? How would

you explain your position?

Exercise 4.23 Take the linear regression model with E
£

y | X
§
= XØ. Define the ridge regression estimator

bØ=
°

X
0
X + I k∏

¢°1
X

0
y

where ∏> 0 is a fixed constant. Find E
£bØ | X

§
. Is bØ biased for Ø?

Exercise 4.24 Continue the empirical analysis in Exercise 3.24.

(a) Calculate standard errors using the homoskedasticity formula and using the four covariance ma-
trices from Section 4.15.

(b) Repeat in your second programming language. Are they identical?

Exercise 4.25 Continue the empirical analysis in Exercise 3.26. Calculate standard errors using the HC3
method. Repeat in your second programming language. Are they identical?

Exercise 4.26 Extend the empirical analysis reported in Section 4.22. Do a regression of standardized
test score (totalscore normalized to have zero mean and variance 1) on tracking, age, gender, being as-
signed to the contract teacher, and student’s percentile in the initial distribution. (The sample size will
be smaller as some observations have missing variables.) Calculate standard errors using both the con-
ventional robust formula, and clustering based on the school.

(a) Compare the two sets of standard errors. Which standard error changes the most by clustering?
Which changes the least?

(b) How does the coefficient on tracking change by inclusion of the individual controls (in compari-
son to the results from (4.54))?



Chapter 5

Normal Regression

5.1 Introduction

This chapter introduces the normal regression model, which is a special case of the linear regression
model. It is important as normality allows precise distributional characterizations and sharp inferences.
It also provides a baseline for comparison with alternative inference methods, such as asymptotic ap-
proximations and the bootstrap.

The normal regression model is a fully parametric setting where maximum likelihood estimation
is appropriate. Therefore in this chapter we introduce likelihood methods. The method of maximum
likelihood is a powerful statistical method for parametric models (such as the normal regression model)
and is widely used in econometric practice.

We start the chapter with a review of the definition and properties of the normal distribution. For
detail and mathematical proofs see Chapter 5 of Introduction to Econometrics.

5.2 The Normal Distribution

We say that a random variable Z has the standard normal distribution, or Gaussian, written Z ª
N(0,1) , if it has the density

¡(z) = 1
p

2º
exp

µ
° z2

2

∂
, °1< z <1.

The standard normal density is typically written with the symbol¡(z) and the corresponding distribution
function by ©(z). Plots of the standard normal density function ¡(z) and distribution function ©(z) are
displayed in Figure 5.1.

144
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(a) Normal Density
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(b) Normal Distribution

Figure 5.1: Standard Normal Density and Distribution

Theorem 5.1 If Z ª N(0,1) then

1. All integer moments of Z are finite.

2. All odd moments of Z equal 0.

3. For any positive integer m

E
£

Z 2m§
= (2m °1)!! = (2m °1)£ (2m °3)£ · · ·£1.

4. For any r > 0

E |Z |r = 2r /2

p
º
°

µ
r +1

2

∂

where °(t ) =
R1

0 ut°1e°udu is the gamma function.

If Z ª N(0,1) and X = µ+æZ for µ 2 R and æ ∏ 0 then X has the univariate normal distribution,
written X ª N

°
µ,æ2¢. By change-of-variables X has the density

f (x) = 1
p

2ºæ2
exp

√

°
°
x °µ

¢2

2æ2

!

, °1< x <1.

The mean and variance of X are µ and æ2, respectively.
The normal distribution and its relatives (the chi-square, student t, F, non-central chi-square and F)

are frequently used for inference to calculate critical values and p-values. This involves evaluating the
normal cdf ©(x) and its inverse. Since the cdf ©(x) is not available in closed form statistical textbooks
have traditionally provided tables for this purpose. Such tables are not used currently as now these cal-
culations are embedded in statistical software. For convenience, we list the appropriate commands in
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MATLAB, R, and Stata to compute the cumulative distribution function of commonly used statistical
distributions.

Numerical Cumulative Distribution Function
To calculate P(Z ∑ x) for given x

MATLAB R Stata
N(0,1)
¬2

r
tr

Fr,k

¬2
r (d)

Fr,k (d)

Here we list the appropriate commands to compute the inverse probabilities (quantiles) of the same
distributions.

Numerical Quantile Function
To calculate x which solves p =P(Z ∑ x) for given p

MATLAB R Stata
N(0,1)
¬2

r
tr

Fr,k

¬2
r (d)

Fr,k (d)

5.3 Multivariate Normal Distribution

We say that the k-vector Z has a multivariate standard normal distribution, written Z ª N(0, I k ) , if
it has the joint density

f (z) = 1

(2º)k/2
exp

µ
° z

0
z

2

∂
, z 2Rk .

The mean and covariance matrix of Z are 0 and I k , respectively. Since this joint density factors, you can
check that the elements of Z are independent standard normal random variables.

If Z ª N(0, I k ) and X =µ+B Z then the k-vector X has a multivariate normal distribution, written
X ª N

°
µ,ß

¢
where ß= B B

0 > 0. By change-of-variables X has the joint density function

f (x) = 1

(2º)k/2 det(ß)1/2
exp

√

°
°
x °µ

¢0
ß°1 °

x °µ
¢

2

!

, x 2Rk .
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The mean and covariance matrix of X are µ and ß, respectively. By setting k = 1 you can check that the
multivariate normal simplifies to the univariate normal.

An important property of normal random vectors is that affine functions are multivariate normal.

Theorem 5.2 If X ª N
°
µ,ß

¢
and Y = a +B X , then Y ª N

°
a +Bµ,BßB

0¢ .

One simple implication of Theorem 5.2 is that if X is multivariate normal then each component of X

is univariate normal.
Another useful property of the multivariate normal distribution is that uncorrelatedness is the same

as independence. That is, if a vector is multivariate normal, subsets of variables are independent if and
only if they are uncorrelated.

Theorem 5.3 Properties of the Multivariate Normal Distribution

1. The mean and covariance matrix of X ª N
°
µ,ß

¢
are E [X ] = µ and

var(X ) =ß.

2. If (X ,Y ) are multivariate normal, X and Y are uncorrelated if and only if
they are independent.

3. If X ª N
°
µ,ß

¢
and Y = a +B X , then Y ª N

°
a +Bµ,BßB

0¢ .

4. If X ª N(0, I k ) then X
0
X ª¬2

k , chi-square with k degrees of freedom.

5. If X ª N(0,ß) with ß> 0 then X
0ß°1

X ª¬2
k where k = dim(X ) .

6. If X ª N(µ, A) with A > 0, r £ r , then X
0
A
°1

X ª¬2
r (∏) where ∏=µ0

A
°1µ.

7. If Z ª N(0,1) and Q ª ¬2
k are independent then Z /

p
Q/K ª tk , student t

with k degrees of freedom.

8. If (Y ,X ) are multivariate normal

µ
Y

X

∂
ª N

µµ
µ

Y

µ
X

∂
,
µ
ßY Y ßY X

ßX Y ßX X

∂∂

with ßY Y > 0 and ßX X > 0 then the conditional distributions are

Y | X ª N
°
µ

Y
+ßY Xß

°1
X X

°
X °µ

X

¢
,ßY Y °ßY Xß

°1
X X
ßX Y

¢

X | Y ª N
°
µ

X
+ßX Yß

°1
Y Y

°
Y °µ

Y

¢
,ßX X °ßX Yß

°1
Y Y
ßY X

¢
.
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5.4 Joint Normality and Linear Regression

Suppose the variables (y, x) are jointly normally distributed. Consider the best linear predictor of y
given x

y = x
0Ø+Æ+e.

By the properties of the best linear predictor, E [xe] = 0 and E [e] = 0, so x and e are uncorrelated. Since
(e, x) is an affine transformation of the normal vector (y, x) it follows that (e, x) is jointly normal (Theorem
5.2). Since (e, x) is jointly normal and uncorrelated they are independent (Theorem 5.3). Independence
implies that

E [e | x] = E [e] = 0

and
E
£
e2 | x

§
= E

£
e2§=æ2

which are properties of a homoskedastic linear CEF.
We have shown that when (y, x) are jointly normally distributed they satisfy a normal linear CEF

y = x
0Ø+Æ+e

where
e ª N(0,æ2)

is independent of x . This result can also be deduced from Theorem 5.3.7.
This is a classical motivation for the linear regression model.

5.5 Normal Regression Model

The normal regression model is the linear regression model with an independent normal error

y = x
0Ø+e (5.1)

e ª N(0,æ2).

As we learned in Section 5.4 the normal regression model holds when (y, x) are jointly normally dis-
tributed. Normal regression, however, does not require joint normality. All that is required is that the
conditional distribution of y given x is normal (the marginal distribution of x is unrestricted). In this
sense the normal regression model is broader than joint normality. Notice that for notational conve-
nience we have written (5.1) so that x contains the intercept.

Normal regression is a parametric model where likelihood methods can be used for estimation, test-
ing, and distribution theory. The likelihood is the name for the joint probability density of the data,
evaluated at the observed sample, and viewed as a function of the parameters. The maximum likelihood
estimator is the value which maximizes this likelihood function. Let us now derive the likelihood of the
normal regression model.

First, observe that model (5.1) is equivalent to the statement that the conditional density of y given
x takes the form

f
°
y | x

¢
= 1

°
2ºæ2

¢1/2
exp

µ
° 1

2æ2

°
y °x

0Ø
¢2

∂
.
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Under the assumption that the observations are mutually independent this implies that the conditional
density of (y1, ..., yn) given (x1, ..., xn) is

f
°
y1, ..., yn | x1, ..., xn

¢
=

nY

i=1
f
°
yi | x i

¢

=
nY

i=1

1
°
2ºæ2

¢1/2
exp

µ
° 1

2æ2

°
yi °x

0
iØ

¢2
∂

= 1
°
2ºæ2

¢n/2
exp

√

° 1
2æ2

nX

i=1

°
yi °x

0
iØ

¢2

!

de f= Ln(Ø,æ2)

and is called the likelihood function.
For convenience it is typical to work with the natural logarithm

logLn(Ø,æ2) =°n
2

log(2ºæ2)° 1
2æ2

nX

i=1

°
yi °x

0
iØ

¢2

de f= `n(Ø,æ2) (5.2)

which is called the log-likelihood function.
The maximum likelihood estimator (MLE) (bØmle, bæ2

mle) is the value which maximizes the log-likelihood.
(It is equivalent to maximize the likelihood or the log-likelihood. See Exercise 5.4.) We can write the max-
imization problem as

(bØmle, bæ2
mle) = argmax

Ø2Rk , æ2>0
`n(Ø,æ2). (5.3)

In most applications of maximum likelihood the MLE must be found by numerical methods. However in
the case of the normal regression model we can find an explicit expression for bØmle and bæ2

mle as functions
of the data.

The maximizers (bØmle, bæ2
mle) of (5.3) jointly solve the first-order conditions (FOC)

0 = @

@Ø
`n(Ø,æ2)

ØØØØ
Ø=bØmle,æ2=bæ2

mle

= 1

bæ2
mle

nX

i=1
x i

°
yi °x

0
i
bØmle

¢
(5.4)

0 = @

@æ2`n(Ø,æ2)
ØØØØ
Ø=bØmle,æ2=bæ2

mle

=° n

2bæ2
mle

+ 1

2bæ4
mle

nX

i=1

°
yi °x

0
i
bØmle

¢2
. (5.5)

The first FOC (5.4) is proportional to the first-order conditions for the least-squares minimization prob-
lem of Section 3.6. It follows that the MLE satisfies

bØmle =
√

nX

i=1
x i x

0
i

!°1 √
nX

i=1
x i yi

!

= bØols.

That is, the MLE for Ø is algebraically identical to the OLS estimator.
Solving the second FOC (5.5) for bæ2

mle we find

bæ2
mle =

1
n

nX

i=1

°
yi °x

0
i
bØmle

¢2 = 1
n

nX

i=1

°
yi °x

0
i
bØols

¢2 = 1
n

nX

i=1
be2

i = bæ2
ols.

Thus the MLE for æ2 is identical to the OLS/moment estimator from (3.27).
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Since the OLS estimator and MLE under normality are equivalent, bØ is described by some authors as
the maximum likelihood estimator, and by other authors as the least-squares estimator. It is important
to remember, however, that bØ is only the MLE when the error e has a known normal distribution and not
otherwise.

Plugging the estimators into (5.2) we obtain the maximized log-likelihood

`n
°bØmle, bæ2

mle

¢
=°n

2
log

°
2ºbæ2

mle

¢
° n

2
. (5.6)

The log-likelihood is typically reported as a measure of fit.
It may seem surprising that the MLE bØmle is numerically equal to the OLS estimator despite emerging

from quite different motivations. It is not completely accidental. The least-squares estimator minimizes
a particular sample loss function – the sum of squared error criterion – and most loss functions are equiv-
alent to the likelihood of a specific parametric distribution, in this case the normal regression model. In
this sense it is not surprising that the least-squares estimator can be motivated as either the minimizer
of a sample loss function or as the maximizer of a likelihood function.

Carl Friedrich Gauss

The mathematician Carl Friedrich Gauss (1777-1855) proposed the normal re-
gression model, and derived the least squares estimator as the maximum like-
lihood estimator for this model. He claimed to have discovered the method in
1795 at the age of eighteen but did not publish the result until 1809. Interest
in Gauss’s approach was reinforced by Laplace’s simultaneous discovery of the
central limit theorem, which provided a justification for viewing random distur-
bances as approximately normal.

5.6 Distribution of OLS Coefficient Vector

In the normal linear regression model we can derive exact sampling distributions for the OLS/MLE
estimator, residuals, and variance estimator. In this section we derive the distribution of the OLS coeffi-
cient estimator.

The normality assumption ei | x i ª N
°
0,æ2¢ combined with independence of the observations has

the multivariate implication
e | X ª N

°
0, I næ

2¢ .

That is, the error vector e is independent of X and is normally distributed.
Recall that the OLS estimator satisfies

bØ°Ø=
°

X
0
X

¢°1
X

0
e

which is a linear function of e. Since linear functions of normals are also normal (Theorem 5.2) this
implies that conditional on X ,

bØ°Ø | X ª
°

X
0
X

¢°1
X

0N
°
0, I næ

2¢

ª N
≥
0,æ2 °

X
0
X

¢°1
X

0
X

°
X

0
X

¢°1
¥

= N
≥
0,æ2 °

X
0
X

¢°1
¥

.
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An alternative way of writing this is

bØ | X ª N
≥
Ø,æ2 °

X
0
X

¢°1
¥

.

This shows that under the assumption of normal errors the OLS estimator has an exact normal dis-
tribution.

Theorem 5.4 In the linear regression model,

bØ | X ª N
≥
Ø,æ2 °

X
0
X

¢°1
¥

.

Theorems 5.2 and 5.4 imply that any affine function of the OLS estimator is also normally distributed
including individual components. Letting Ø j and bØ j denote the j th elements of Ø and bØ, we have

bØ j | X ª N
µ
Ø j ,æ2

h°
X

0
X

¢°1
i

j j

∂
. (5.7)

Theorem 5.4 is a statement about the conditional distribution. What about the unconditional distri-
bution? In Section 4.7 we presented Kinal’s theorem about the existence of moments for the joint normal
regression model. We re-state the result here.

Theorem 5.5 Kinal (1980)
Assume y ,x are jointly normal. For any r , E

∞∞bØ
∞∞r <1 if and only if r < n°k+1.

5.7 Distribution of OLS Residual Vector

Consider the OLS residual vector. Recall from (3.25) that be = Me where M = I n ° X
°

X
0
X

¢°1
X

0. This
shows that be is linear in e. So conditional on X

be = Me | X ª N
°
0,æ2

M M
¢
= N

°
0,æ2

M
¢

the final equality since M is idempotent (see Section 3.12). This shows that the residual vector has an
exact normal distribution.

Furthermore, it is useful to understand the joint distribution of bØ and be. This is easiest done by
writing the two as a stacked linear function of the error e. Indeed,

µ bØ°Ø
be

∂
=

√ °
X

0
X

¢°1
X

0
e

Me

!

=
√ °

X
0
X

¢°1
X

0

M

!

e

which is is a linear function of e. The vector thus has a joint normal distribution with covariance matrix
√
æ2 °

X
0
X

¢°1 0
0 æ2

M

!

.

The off-diagonal block is zero because X
0
M = 0 from (3.22). Since this is zero it follows that bØ and be are

statistically independent (Theorem 5.3.2).
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Theorem 5.6 In the linear regression model be | X ª N
°
0,æ2

M
¢

and is indepen-
dent of bØ.

The fact that bØ and be are independent implies that bØ is independent of any function of the residual
vector including individual residuals bei and the variance estimate s2 and bæ2.

5.8 Distribution of Variance Estimator

Next, consider the variance estimator s2 from (4.26). Using (3.29) it satisfies (n °k) s2 = be 0be = e
0
Me.

The spectral decomposition of M (see equation (A.4)) is M = H§H
0 where H

0
H = I n and § is diagonal

with the eigenvalues of M on the diagonal. Since M is idempotent with rank n °k (see Section 3.12) it
has n °k eigenvalues equalling 1 and k eigenvalues equalling 0, so

§=
∑

I n°k 0
0 0k

∏
.

Let u = H
0
e ª N

°
0, I næ

2¢ (see Exercise 5.2) and partition u =
°
u
0
1,u

0
2

¢0 where u1 ª N
°
0, I n°kæ

2¢. Then

(n °k) s2 = e
0
Me

= e
0
H

∑
I n°k 0

0 0

∏
H

0
e

= u
0
∑

I n°k 0
0 0

∏
u

= u
0
1u1

ªæ2¬2
n°k .

We see that in the normal regression model the exact distribution of s2 is a scaled chi-square.
Since be is independent of bØ it follows that s2 is independent of bØ as well.

Theorem 5.7 In the linear regression model,

(n °k) s2

æ2 ª¬2
n°k

and is independent of bØ.

5.9 t-statistic

An alternative way of writing (5.7) is

bØ j °Ø j
r
æ2

h°
X

0
X

¢°1
i

j j

ª N(0,1) .
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This is sometimes called a standardized statistic as the distribution is the standard normal.
Now take the standardized statistic and replace the unknown variance æ2 with its estimator s2. We

call this a t-ratio or t-statistic

T =
bØ j °Ø j

r
s2

h°
X

0
X

¢°1
i

j j

=
bØ j °Ø j

s( bØ j )

where s( bØ j ) is the classical (homoskedastic) standard error for bØ j from (4.37). We will sometimes write
the t-statistic as T (Ø j ) to explicitly indicate its dependence on the parameter value Ø j , and sometimes
will simplify notation and write the t-statistic as T when the dependence is clear from the context.

By some algebraic re-scaling we can write the t-statistic as the ratio of the standardized statistic and
the square root of the scaled variance estimator. Since the distributions of these two components are
normal and chi-square, respectively, and independent, we can deduce that the t-statistic has the distri-
bution

T =
bØ j °Ø j

r
æ2

h°
X

0
X

¢°1
i

j j

,s
(n °k)s2

æ2

¡
(n °k)

ª N(0,1)
q
¬2

n°k

±
(n °k)

ª tn°k

a student t distribution with n °k degrees of freedom.
This derivation shows that the t-ratio has a sampling distribution which depends only on the quantity

n°k. The distribution does not depend on any other features of the data. In this context, we say that the
distribution of the t-ratio is pivotal, meaning that it does not depend on unknowns.

The trick behind this result is scaling the centered coefficient by its standard error, and recognizing
that each depends on the unknown æ only through scale. Thus the ratio of the two does not depend on
æ. This trick (scaling to eliminate dependence on unknowns) is known as studentization.

Theorem 5.8 In the normal regression model, T ª tn°k .

An important caveat about Theorem 5.8 is that it only applies to the t-statistic constructed with the
homoskedastic (old-fashioned) standard error estimator. It does not apply to a t-statistic constructed
with any of the robust standard error estimators. In fact, the robust t-statistics can have finite sample
distributions which deviate considerably from tn°k even when the regression errors are independent
N (0,æ2). Thus the distributional result in Theorem 5.8 and the use of the t distribution in finite samples
should only be applied to classical t-statistics.

5.10 Confidence Intervals for Regression Coefficients

The OLS estimator bØ is a point estimator for a coefficient Ø. A broader concept is a set or interval
estimator which takes the form bC = [bL, bU ]. The goal of an interval estimator bC is to contain the true
value, e.g. Ø 2 bC , with high probability.

The interval estimator bC is a function of the data and hence is random.
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An interval estimator bC is called a 1°Æ confidence interval whenP
£
Ø 2 bC

§
= 1°Æ for a selected value

of Æ. The value 1°Æ is called the coverage probability. Typical choices for the coverage probability 1°Æ
are 0.95 or 0.90.

The probability calculation P
£
Ø 2 bC

§
is easily mis-interpreted as treating Ø as random and bC as fixed.

(The probability that Ø is in bC .) This is not the appropriate interpretation. Instead, the correct inter-
pretation is that the probability P

£
Ø 2 bC

§
treats the point Ø as fixed and the set bC as random. It is the

probability that the random set bC covers (or contains) the fixed true coefficient Ø.
There is not a unique method to construct confidence intervals. For example, one simple (yet silly)

interval is

bC =
Ω

R with probability 1°Æ© bØ
™

with probability Æ
.

If bØ has a continuous distribution, then by construction P
£
Ø 2 bC

§
= 1°Æ, so this confidence interval has

perfect coverage. However, bC is uninformative about bØ and is therefore not useful.
Instead, a good choice for a confidence interval for the regression coefficient Ø is obtained by adding

and subtracting from the estimator bØ a fixed multiple of its standard error:

bC =
£ bØ° c · s( bØ), bØ+ c · s( bØ)

§
(5.8)

where c > 0 is a pre-specified constant. This confidence interval is symmetric about the point estimator
bØ and its length is proportional to the standard error s( bØ).

Equivalently, bC is the set of parameter values forØ such that the t-statistic T (Ø) is smaller (in absolute
value) than c, that is

bC =
©
Ø :

ØØT (Ø)
ØØ∑ c

™
=

(

Ø : °c ∑
bØ°Ø
s( bØ)

∑ c

)

.

The coverage probability of this confidence interval is

P
£
Ø 2 bC

§
=P

£ØØT (Ø)
ØØ∑ c

§

=P
£
°c ∑ T (Ø) ∑ c

§
. (5.9)

Since the t-statistic T (Ø) has the tn°k distribution (5.9) equals F (c)°F (°c), where F (u) is the student t
distribution function with n°k degrees of freedom. Since F (°c) = 1°F (c) (see Exercise 5.8) we can write
(5.9) as

P
£
Ø 2 bC

§
= 2F (c)°1.

This is the coverage probability of the interval bC , and only depends on the constant c.
As we mentioned before, a confidence interval has the coverage probability 1°Æ. This requires se-

lecting the constant c so that F (c) = 1°Æ/2. This holds if c equals the 1°Æ/2 quantile of the tn°k distri-
bution. As there is no closed form expression for these quantiles we compute their values numerically.
For example, by in MATLAB. With this choice the confidence interval (5.8) has
exact coverage probability 1°Æ. By default, Stata reports 95% confidence intervals bC for each estimated
regression coefficient using the same formula.

Theorem 5.9 In the normal regression model, (5.8) with c = F°1(1°Æ/2) has
coverage probability P

£
Ø 2 bC

§
= 1°Æ.
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When the degree of freedom is large the distinction between the student t and the normal distribu-
tion is negligible. In particular, for n °k ∏ 61 we have c ∑ 2.00 for a 95% interval. Using this value we
obtain the most commonly used confidence interval in applied econometric practice:

bC =
£ bØ°2s( bØ), bØ+2s( bØ)

§
. (5.10)

This is a useful rule-of-thumb. This 95% confidence interval bC is simple to compute and can be easily
calculated from coefficient estimates and standard errors.

Theorem 5.10 In the normal regression model, if n ° k ∏ 61 then (5.10) has
coverage probability P

£
Ø 2 bC

§
∏ 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When reading
a set of empirical results look at the estimated coefficient estimates and the standard errors. For a pa-
rameter of interest compute the confidence interval bC and consider the meaning of the spread of the
suggested values. If the range of values in the confidence interval are too wide to learn about Ø then do
not jump to a conclusion about Ø based on the point estimate alone.

5.11 Confidence Intervals for Error Variance

We can also construct a confidence interval for the regression error variance æ2 using the sampling
distribution of s2 from Theorem 5.7. This states that in the normal regression model

(n °k) s2

æ2 ª¬2
n°k . (5.11)

Let F (u) denote the ¬2
n°k distribution function and for some Æ set c1 = F°1(Æ/2) and c2 = F°1(1°Æ/2)

(the Æ/2 and 1°Æ/2 quantiles of the ¬2
n°k distribution). Equation (5.11) implies that

P

∑
c1 ∑

(n °k) s2

æ2 ∑ c2

∏
= F (c2)°F (c1) = 1°Æ.

Rewriting the inequalities we find

P

∑
(n °k) s2

c2
∑æ2 ∑ (n °k) s2

c1

∏
= 1°Æ.

This shows that an exact 1°Æ confidence interval for æ2 is

C =
∑

(n °k) s2

c2
,

(n °k) s2

c1

∏
. (5.12)

Theorem 5.11 In the normal regression model (5.12) has coverage probability
P

£
æ2 2C

§
= 1°Æ.

The confidence interval (5.12) for æ2 is asymmetric about the point estimate s2 due to the latter’s
asymmetric sampling distribution.



CHAPTER 5. NORMAL REGRESSION 156

5.12 t Test

A typical goal in an econometric exercise is to assess whether or not a coefficient Ø equals a specific
value Ø0. Often the specific value to be tested is Ø0 = 0 but this is not essential. This is called hypothesis
testing, a subject which will be explored in detail in Chapter 9. In this section and the following we give
a short introduction specific to the normal regression model.

For simplicity write the coefficient to be tested as Ø. The null hypothesis is

H0 :Ø=Ø0. (5.13)

This states that the hypothesis is that the true value of Ø equals the hypothesized value Ø0.
The alternative hypothesis is the complement of H0, and is written as

H1 :Ø 6=Ø0.

This states that the true value of Ø does not equal the hypothesized value.
We are interested in testing H0 against H1. The method is to design a statistic which is informative

aboutH1. If the observed value of the statistic is consistent with random variation under the assumption
that H0 is true, then we deduce that there is no evidence against H0 and consequently do not reject H0.
However, if the statistic takes a value which is unlikely to occur under the assumption that H0 is true,
then we deduce that there is evidence againstH0 and consequently we rejectH0 in favor ofH1. The main
steps are to design a test statistic and to characterize its sampling distribution.

The standard statistic to test H0 against H1 is the absolute value of the t-statistic

|T | =
ØØØØØ
bØ°Ø0

s( bØ)

ØØØØØ . (5.14)

If H0 is true then we expect |T | to be small, but if H1 is true then we would expect |T | to be large. Hence
the standard rule is to reject H0 in favor of H1 for large values of the t-statistic |T | and otherwise fail to
reject H0. Thus the hypothesis test takes the form

Reject H0 if |T | > c.

The constant c which appears in the statement of the test is called the critical value. Its value is
selected to control the probability of false rejections. When the null hypothesis is true |T | has an exact
student t distribution (with n °k degrees of freedom) in the normal regression model. Thus for a given
value of c the probability of false rejection is

P
£
Reject H0 |H0

§
=P [|T | > c |H0]

=P [T > c |H0]+P [T <°c |H0]

= 1°F (c)+F (°c)

= 2(1°F (c))

where F (u) is the tn°k distribution function. This is the probability of false rejection and is decreasing
in the critical value c. We select the value c so that this probability equals a pre-selected value called the
significance level which is typically written as Æ. It is conventional to set Æ = 0.05, though this is not a
hard rule. We then select c so that F (c) = 1°Æ/2, which means that c is the 1°Æ/2 quantile (inverse
CDF) of the tn°k distribution, the same as used for confidence intervals. With this choice the decision
rule “Reject H0 if |T | > c” has a significance level (false rejection probability) of Æ.
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Theorem 5.12 In the normal regression model if the null hypothesis (5.13) is
true, then for |T | defined in (5.14) |T | ª tn°k . If c is set so that P [|tn°k |∏ c] =
Æ then the test “Reject H0 in favor of H1 if |T | > c” has significance level Æ.

To report the result of a hypothesis test we need to pre-determine the significance level Æ in order to
calculate the critical value c. This can be inconvenient and arbitrary. A simplification is to report what
is known as the p-value of the test. In general, when a test takes the form “Reject H0 if S > c” and S has
null distribution G(u) then the p-value of the test is p = 1°G(S). A test with significance level Æ can
be restated as “Reject H0 if p < Æ”. It is sufficient to report the p-value p and we can interpret the value
of p as indexing the test’s strength of rejection of the null hypothesis. Thus a p-value of 0.07 might be
interpreted as “nearly significant”, 0.05 as “borderline significant”, and 0.001 as “highly significant”. In
the context of the normal regression model the p-value of a t-statistic |T | is p = 2(1°Fn°k (|T |)) where
Fn°k is the CDF of the student t with n°k degrees of freedom. For example, in MATLAB the calculation is

. In Stata, the default is that for any estimated regression, t-statistics for each
estimated coefficient are reported along with their p-values calculated using this same formula. These
t-statistics test the hypotheses that each coefficient is zero.

A p-value reports the strength of evidence against H0 but is not itself a probability. A common mis-
understanding is that the p-value is the “probability that the null hypothesis is true”. This is an incorrect
interpretation. It is a statistic, and is random, and is a measure of the evidence againstH0, nothing more.

5.13 Likelihood Ratio Test

In the previous section we described the t-test as the standard method to test a hypothesis on a
single coefficient in a regression. In many contexts, however, we want to simultaneously assess a set of
coefficients. In the normal regression model, this can be done by an F test which can be derived from
the likelihood ratio test.

Partition the regressors as x i = (x
0
1i , x

0
2i ) and similarly partition the coefficient vector as Ø= (Ø0

1,Ø0
2)0.

Then the regression model can be written as

yi = x
0
1iØ1 +x

0
2iØ2 +ei . (5.15)

Let k = dim(x i ), k1 = dim(x1i ), and q = dim(x2i ), so that k = k1 + q . Partition the variables so that the
hypothesis is that the second set of coefficients are zero, or

H0 :Ø2 = 0. (5.16)

IfH0 is true then the regressors x2i can be omitted from the regression. In this case we can write (5.15) as

yi = x
0
1iØ1 +ei . (5.17)

We call (5.17) the null model. The alternative hypothesis is that at least one element of Ø2 is non-zero
and is written as

H1 :Ø2 6= 0.

When models are estimated by maximum likelihood a well-accepted testing procedure is to reject
H0 in favor of H1 for large values of the Likelihood Ratio – the ratio of the maximized likelihood function
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under H1 and H0, respectively. We now construct this statistic in the normal regression model. Recall
from (5.6) that the maximized log-likelihood equals

`n(bØ, bæ2) =°n
2

log
°
2ºbæ2¢° n

2
.

We similarly need to calculate the maximized log-likelihood for the constrained model (5.17). By the
same steps for derivation of the unconstrained MLE we can find that the MLE for (5.17) is OLS of yi on
x1i . We can write this estimator as

eØ1 =
°

X
0
1X 1

¢°1
X

0
1 y

with residual
eei = yi °x

0
1i

eØ1

and error variance estimate

eæ2 = 1
n

nX

i=1
ee2

i .

We use the tildes “~” rather than the hats “^” above the constrained estimates to distinguish them from
the unconstrained estimates. You can calculate similar to (5.6) that the maximized constrained log-
likelihood is

`n(eØ1, eæ2) =°n
2

log
°
2ºeæ2¢° n

2
.

A classic testing procedure is to reject H0 for large values of the ratio of the maximized likelihoods.
Equivalently the test rejects H0 for large values of twice the difference in the log-likelihood functions.
(Multiplying the likelihood difference by two turns out to be a useful scaling.) This equals

LR = 2
°
`n(bØ, bæ2)°`n(eØ1, eæ2)

¢

= 2
≥≥
°n

2
log

°
2ºbæ2¢° n

2

¥
°

≥
°n

2
log

°
2ºeæ2¢° n

2

¥¥

= n log
µ
eæ2

bæ2

∂
. (5.18)

The likelihood ratio test rejects for large values of LR, or equivalently (see Exercise 5.10) for large values
of

F =
°
eæ2 ° bæ2¢/q

bæ2/(n °k)
. (5.19)

This is known as the F statistic for the test of hypothesis H0 against H1.
To develop an appropriate critical value we need the null distribution of F. Recall from (3.29) that

n bæ2 = e
0
Me where M = I n °P with P = X

°
X

0
X

¢°1
X

0. Similarly, under H0, n eæ2 = e
0
M 1e where M =

I n °P 1 with P 1 = X 1
°

X
0
1X 1

¢°1
X

0
1. You can calculate that M 1 °M = P °P 1 is idempotent with rank q .

Furthermore, (M 1 °M) M = 0. It follows that e
0 (M 1 °M)e ª¬2

q and is independent of e
0
Me. Hence

F = e
0 (M 1 °M)e/q
e 0Me/(n °k)

ª
¬2

q /q

¬2
n°k /(n °k)

ª Fq,n°k

an exact F distribution with degrees of freedom q and n °k, respectively. Thus under H0, the F statistic
has an exact F distribution.

The critical values are selected from the upper tail of the F distribution. For a given significance level
Æ (typically Æ = 0.05) we select the critical value c so that P

£
Fq,n°k ∏ c

§
= Æ. (For example, in MATLAB

the expression is Æ .) The test rejects H0 in favor of H1 if F > c and does not reject H0
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otherwise. The p-value of the test is p = 1°Gq,n°k (F ) where Gq,n°k (u) is the Fq,n°k distribution function.
(In MATLAB, the p-value is computed as .) It is equivalent to rejectH0 if F > c or p <Æ.

In Stata, the command to test multiple coefficients takes the form ‘test X1 X2’ where X1 and X2 are the
names of the variables whose coefficients are tested. Stata then reports the F statistic for the hypothesis
that the coefficients are jointly zero along with the p-value calculated using the F distribution.

Theorem 5.13 In the normal regression model if the null hypothesis (5.16) is
true then for F defined in (5.19) F ª Fq,n°k . If c is set so that P

£
Fq,n°k ∏ c

§
=Æ

then the test “Reject H0 in favor of H1 if F > c” has significance level Æ.

Theorem 5.13 justifies the F test in the normal regression model with critical values taken from the F
distribution.

5.14 Information Bound for Normal Regression

This section requires a familiarity with the theory of Cramér-Rao Lower Bound. See Chapter 10 of
Statistical Theory for Econometricians.

The likelihood scores for the normal regression model are

@

@Ø
`n(Ø,æ2) = 1

æ2

nX

i=1
x i

°
yi °x

0
iØ

¢

= 1
æ2

nX

i=1
x i ei

and

@

@æ2`n(Ø,æ2) =° n
2æ2 + 1

2æ4

nX

i=1

°
yi °x

0
iØ

¢2

= 1
2æ4

nX

i=1

°
e2

i °æ
2¢ .

It follows that the information matrix is

I = var

"
@
@Ø`(Ø,æ2)
@
@æ2`(Ø,æ2)

| X

#

=
µ 1

æ2 X
0
X 0

0 n
2æ4

∂
(5.20)

(see Exercise 5.11). The Cramér-Rao Lower Bound is

I°1 =
√
æ2 °

X
0
X

¢°1 0
0 2æ4

n

!

.

This shows that the lower bound for estimation of Ø is æ2 °
X

0
X

¢°1 and the lower bound for æ2 is 2æ4/n.
Since in the homoskedastic linear regression model the OLS estimator is unbiased and has variance

æ2 °
X

0
X

¢°1 it follows that the OLS coefficient estimator is Cramér-Rao efficient in the normal regression
model. Cramér-Rao efficiency means that no unbiased estimator has a lower variance matrix. This ex-
pands on the Gauss-Markov theorem which stated that no linear unbiased estimator has a lower variance



CHAPTER 5. NORMAL REGRESSION 160

matrix in the homoskedastic regression model. Notice that that the results are complementary. Gauss-
Markov efficiency concerns a more narrow class of estimators (linear) but allows a broader model class
(linear homoskedastic rather than normal regression). The Cramér-Rao efficiency result is more power-
ful in that it does not restrict the class of estimators (beyond unbiasedness) but is more restrictive in the
class of models allowed (normal regression).

In contrast, the unbiased estimator s2 ofæ2 has variance 2æ4/(n°k) (see Exercise 5.12) which is larger
than the Cramér-Rao lower bound 2æ4/n. Thus in contrast to the coefficient estimator, the variance
estimator is not Cramér-Rao efficient.
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Exercises

Exercise 5.1 Show that if Q ª¬2
r , then E [Q] = r and var[Q] = 2r.

Hint: Use the representation Q =Pn
i=1 Z 2

i with Zi independent N(0,1) .

Exercise 5.2 Show that if e ª N
°
0, I næ

2¢ and H
0
H = I n then u = H

0
e ª N

°
0, I næ

2¢ .

Exercise 5.3 Show that if e ª N(0,ß) and ß= A A
0 then u = A

°1
e ª N(0, I n) .

Exercise 5.4 Show that bµ = argmaxµ2£`n(µ) = argmaxµ2£Ln(µ).

Exercise 5.5 For the regression in-sample predicted values byi show that byi | X ª N
°
x
0
iØ,æ2hi i

¢
where hi i

are the leverage values (3.41).

Exercise 5.6 In the normal regression model show that the leave-one out prediction errors eei and the
standardized residuals ēi are independent of bØ , conditional on X .

Hint: Use (3.46) and (4.24).

Exercise 5.7 In the normal regression model show that the robust covariance matrices bV HC0
bØ , bV HC1

bØ ,

bV HC2
bØ , and bV HC3

bØ are independent of the OLS estimator bØ, conditional on X .

Exercise 5.8 Let F (u) be the distribution function of a random variable X whose density is symmetric
about zero. (This includes the standard normal and the student t .) Show that F (°u) = 1°F (u).

Exercise 5.9 Let CØ = [L,U ] be a 1°Æ confidence interval forØ, and consider the transformation µ = g (Ø)
where g (·) is monotonically increasing. Consider the confidence interval Cµ = [g (L), g (U )] for µ. Show
that P [µ 2Cµ] =P

£
Ø 2CØ

§
. Use this result to develop a confidence interval for æ.

Exercise 5.10 Show that the test “Reject H0 if LR ∏ c1” for LR defined in (5.18), and the test “Reject H0 if
F ∏ c2” for F defined in (5.19), yield the same decisions if c2 =

°
exp(c1/n)°1

¢
(n °k)/q . Does this mean

that the two tests are equivalent?

Exercise 5.11 Show (5.20).

Exercise 5.12 In the normal regression model let s2 be the unbiased estimator of the error variance æ2

from (4.26).

(a) Show that var
£
s2§= 2æ4/(n °k).

(b) Show that var
£
s2§ is strictly larger than the Cramér-Rao Lower Bound for æ2.
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Chapter 6

A Review of Large Sample Asymptotics

6.1 Introduction

The most widely-used tool in sampling theory is large sample asymptotics. By “asymptotics” we
mean approximating a finite-sample sampling distribution by taking its limit as the sample size diverges
to infinite. In this chapter we provide a brief review of the main results of large sample asymptotics. It
is meant as a reference, not as a teaching guide. Asymptotic theory is covered in detail in Chapters 7-9
of Introduction to Econometrics. If you have not previous studied asymptotic theory in detail you should
study these chapters before proceeding.

6.2 Modes of Convergence

Definition 6.1 A random variable zn 2 R converges in probability to z as n !
1, denoted zn °!

p
z or alternatively plimn!1 zn = z, if for all ±> 0,

lim
n!1

P [|zn ° z|∑ ±] = 1. (6.1)

We call z the probability limit (or plim) of zn .

Definition 6.2 Let zn be a random vector with distribution Fn(u) =P [zn ∑ u] .
We say that zn converges in distribution to z as n ! 1, denoted zn °!

d
z , if

for all u at which F (u) = P [z ∑ u] is continuous, Fn(u) ! F (u) as n !1. We
refer to z and its distribution F (u) as the asymptotic distribution, large sample
distribution, or limit distribution of zn .
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6.3 Weak Law of Large Numbers

Theorem 6.1 Weak Law of Large Numbers (WLLN)
If y i are i.i.d. and E

∞∞y

∞∞<1, then as n !1,

y = 1
n

nX

i=1
y i °!p E

£
y
§

.

The WLLN shows that the sample mean y converges in probability to the true population mean µ.
The result applies to any transformation of a random vector with a finite mean.

Theorem 6.2 If y i are i.i.d. and E
∞∞h

°
y
¢∞∞ <1, then bµ = 1

n
Pn

i=1 h
°

y i
¢
°!

p
µ =

E
£
h

°
y
¢§

as n !1.

In general, an estimator which converges in probability to the population value is called consistent.

Definition 6.3 An estimator bµ of µ is consistent if bµ °!
p

µ as n !1.

6.4 Central Limit Theorem

Theorem 6.3 Multivariate Lindeberg-Lévy Central Limit Theorem (CLT). If
y i 2Rk are i.i.d. and E

∞∞y i

∞∞2 <1, then as n !1
p

n
°

y °µ
¢
°!

d
N(0,V )

where µ= E
£

y
§

and V = E
h°

y °µ
¢°

y °µ
¢0i .

The central limit theorem shows that the distribution of the sample mean is approximately normal
in large samples. The following two generalizations allow for heterogeneous random variables.
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Theorem 6.4 Multivariate Lindeberg CLT. Suppose that for all n, y ni 2Rk , i =
1, ...,rn , are independent but not necessarily identically distributed with mean
E
£

y ni
§
= 0 and variance matrices V ni = E

£
y ni y

0
ni

§
. Set V n =Pn

i=1 V ni . Suppose
∫2

n =∏min(V n) > 0 and for all "> 0

lim
n!1

1

∫2
n

rnX

i=1
E

h∞∞y ni

∞∞2
≥∞∞y ni

∞∞2 ∏ "∫2
n

¥i
= 0. (6.2)

Then as n !1
V

°1/2
n

rnX

i=1
y ni °!d N(0, I k ) .

Theorem 6.5 Suppose y ni 2 R
k are independent but not necessarily iden-

tically distributed with means E
£

y ni
§
= 0 and variance matrices V ni =

E
£

y ni y
0
ni

§
. Suppose

1
n

nX

i=1
V ni !V > 0

and for some ±> 0
sup
n,i

E

∞∞y ni

∞∞2+± <1. (6.3)

Then as n !1 p
n y °!

d
N(0,V ) .

6.5 Continuous Mapping Theorem and Delta Method

Continuous functions are limit-preserving. There are two forms of the continuous mapping theorem,
for convergence in probability and convergence in distribution.

Theorem 6.6 Continuous Mapping Theorem (CMT). If zn °!
p

c as n !1 and

g (u) is continuous at c then g (zn) °!
p

g (c) as n !1.

Theorem 6.7 Continuous Mapping Theorem
If zn °!

d
z as n ! 1 and g : Rm ! R

k has the set of discontinuity points Dg

such that P
£

z 2 Dg
§
= 0 then g (zn) °!

d
g (z) as n !1.
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Differentiable functions of asymptotically normal random estimators are also asymptotically nor-
mal.

Theorem 6.8 Delta Method
If

p
n

°
bµ°µ

¢
°!

d
ª, where g (u) is continuously differentiable in a neighbor-

hood of µ, then as n !1
p

n
°
g

°
bµ
¢
°g (µ)

¢
°!

d
G

0ª (6.4)

where G(u) = @
@u

g (u)0 and G =G(µ). In particular, if ªª N(0,V ) then as n !1
p

n
°
g

°
bµ
¢
°g (µ)

¢
°!

d
N

°
0,G

0
V G

¢
. (6.5)

6.6 Smooth Function Model

The smooth function model is

µ= E
£
h

°
y
¢§

µ = g
°
µ

¢

where g
°
µ

¢
is smooth in a suitable sense. The parameter of interest µ is a smooth function of a popula-

tion mean µ.
The parameter µ = g

°
µ

¢
is not a population moment so it does not have a direct moment estimator.

Instead, it is common to use a plug-in estimator formed by replacing the unknown µ with its point
estimator bµ and then “plugging” this into the expression for µ. The first step is the sample mean

bµ= 1
n

nX

i=1
h

°
y i

¢
.

The second step is the transformation
bµ = g

°
bµ
¢

.

The hat “^” indicates that bµ is a sample estimator of µ. The smooth function model includes a broad
class of estimators including sample variances and the least-squares estimator.

Theorem 6.9 If y i are i.i.d., E
∞∞h

°
y
¢∞∞ < 1, and g (u) is continuous at µ, then

bµ °!
p
µ as n !1.
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Theorem 6.10 If y i are i.i.d., E
∞∞h

°
y
¢∞∞2 <1, and G (u) = @

@u
g (u)0 is continu-

ous in a neighborhood of µ, then as n !1
p

n
°bµ°µ

¢
°!

d
N(0,V µ)

where V µ =G
0
V G , V = E

h°
h

°
y
¢
°µ

¢°
h

°
y
¢
°µ

¢0i, and G =G
°
µ

¢
.

Theorem 6.9 establishes the consistency of bµ for µ and Theorem 6.10 establishes its asymptotic nor-
mality. It is instructive to compare the conditions required for these results. Consistency requires that
h

°
y
¢

have a finite mean while asymptotic normality requires that h
°

y
¢

has a finite variance. Consistency
requires that g (u) be continuous asymptotic normality requires that g (u) is continuously differentiable.

6.7 Best Unbiased Estimation

This section presents efficiency bounds for the mean and the smooth function model. The results
are finite-sample rather than asymptotic, but are convenient to introduce at this point since the bounds
are identical to the asymptotic variance matrices.

Our first result is for the mean.

Theorem 6.11 Suppose y i are i.i.d., µ = E
£
h

°
y
¢§

, and E

∞∞h
°

y
¢∞∞2 < 1. If eµ is

unbiased for µ then
var

£
eµ
§
∏ n°1

V

where V = E
h°

h
°

y
¢
°µ

¢°
h

°
y
¢
°µ

¢0i .

The second result is for the smooth function model.

Theorem 6.12 Suppose y i are i.i.d., µ = E
£
h

°
y
¢§

, µ = g
°
µ

¢
, E

∞∞h
°

y
¢∞∞2 < 1,

and G (u) = @

@u
g (u)0 is continuous in a neighborhood of µ. If eµ is unbiased for

µ then
var

£eµ
§
∏ n°1

V µ

where V µ =G
0
V G , V = E

h°
h

°
y
¢
°µ

¢°
h

°
y
¢
°µ

¢0i and G =G
°
µ

¢
.

For details and proofs see Section 11.6 of Introduction to Econometrics. Theorems 6.11 and 6.12 are
analogs and extensions of the Cramér-Rao lower bound theory to semiparametric estimation. The re-
sults show that the asymptotic variances from Theorems 6.3 and 6.10 are the best possible in any finite
sample among unbiased estimators. Theorem 6.11 is sharp, since the sample mean has the finite sample
variance n°1

V .



CHAPTER 6. A REVIEW OF LARGE SAMPLE ASYMPTOTICS 168

6.8 Stochastic Order Symbols

It is convenient to have simple symbols for random variables and vectors which converge in prob-
ability to zero or are stochastically bounded. In this section we introduce some of the most commonly
found notation.

Let zn and an , n = 1,2, ... be sequences of random variables. (In most applications an is non-random.)
The notation

zn = op (1)

(“small oh-P-one”) means that zn °!
p

0 as n !1. We also write

zn = op (an)

if a°1
n zn = op (1).
Similarly, the notation zn =Op (1) (“big oh-P-one”) means that zn is bounded in probability. Precisely,

for any "> 0 there is a constant M" <1 such that

limsup
n!1

P [|zn | > M"] ∑ ".

Furthermore, we write
zn =Op (an)

if a°1
n zn =Op (1).
Op (1) is weaker than op (1) in the sense that zn = op (1) implies zn = Op (1) but not the reverse. How-

ever, if zn =Op (an) then zn = op (bn) for any bn such that an/bn ! 0.
A random sequence with a bounded moment is stochastically bounded.

Theorem 6.13 If zn is a random vector which satisfies

Ekznk± =O (an)

for some sequence an and ±> 0, then

zn =Op (a1/±
n ).

Similarly, Ekznk± = o (an) implies zn = op (a1/±
n ).

There are many simple rules for manipulating op (1) and Op (1) sequences which can be deduced
from the continuous mapping theorem. For example,

op (1)+op (1) = op (1)

op (1)+Op (1) =Op (1)

Op (1)+Op (1) =Op (1)

op (1)op (1) = op (1)

op (1)Op (1) = op (1)

Op (1)Op (1) =Op (1).
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6.9 Convergence of Moments

We give a sufficient condition for the existence of the mean of the asymptotic distribution, define
uniform integrability, provide a primitive condition for uniform integrability, and show that uniform
integrability is the key condition under which E [zn] converges to E [z].

Theorem 6.14 If zn °!
d

z and Ekznk ∑C then Ekzk ∑C .

Definition 6.4 The random vector zn is uniformly integrable as n !1 if

lim
M!1

limsup
n!1

E [kznk (kznk> M)] = 0.

Theorem 6.15 If for some ±> 0, Ekznk1+± ∑C <1, then zn is uniformly inte-
grable.

Theorem 6.16 If zn °!
d

z and zn is uniformly integrable then E [zn] °! E [z] .

6.10 Uniform Stochastic Bounds

Theorem 6.17 If
ØØyi

ØØr is uniformly integrable, then as n !1

n°1/r max
1∑i∑n

ØØyi
ØØ°!

p
0. (6.6)

Equation (6.6) says that if y has r finite moments then the largest observation will diverge at a rate
slower than n1/r . The higher the moments, the slower the rate of divergence.



Chapter 7

Asymptotic Theory for Least Squares

7.1 Introduction

It turns out that the asymptotic theory of least-squares estimation applies equally to the projection
model and the linear CEF model. Therefore the results in this chapter will be stated for the broader
projection model described in Section 2.18. Recall that the model is

yi = x
0
iØ+ei

for i = 1, ...,n, where the linear projection coefficient Ø is

Ø=
°
E
£

xi x
0
i

§¢°1
E
£

x i yi
§

.

Maintained assumptions in this chapter will be random sampling (Assumption 1.2) and finite second
moments (Assumption 2.1). We restate these conditions here for clarity.

Assumption 7.1

1. The observations (yi , xi ), i = 1, ...,n, are i.i.d.

2. E
£

y2§<1.

3. Ekxk2 <1.

4. Qx x = E
£

x x
0§ is positive definite.

The distributional results will require a strengthening of these assumptions to finite fourth moments.
We discuss the specific conditions in Section 7.3.

7.2 Consistency of Least-Squares Estimator

In this section we use the weak law of large numbers (WLLN, Theorem 6.1 and Theorem 6.2) and con-
tinuous mapping theorem (CMT, Theorem 6.6) to show that the least-squares estimator bØ is consistent
for the projection coefficient Ø.
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This derivation is based on three key components. First, the OLS estimator can be written as a con-
tinuous function of a set of sample moments. Second, the WLLN shows that sample moments converge
in probability to population moments. And third, the CMT states that continuous functions preserve
convergence in probability. We now explain each step in brief and then in greater detail.

First, observe that the OLS estimator

bØ=
√

1
n

nX

i=1
x i x

0
i

!°1 √
1
n

nX

i=1
x i yi

!

= bQ°1
x x

bQ x y

is a function of the sample moments bQ x x = 1
n

Pn
i=1 x i x

0
i and bQ x y = 1

n
Pn

i=1 x i yi .
Second, by an application of the WLLN these sample moments converge in probability to the popu-

lation moments. Specifically, the fact that
°
yi , x i

¢
are mutually i.i.d. implies that any function of

°
yi , x i

¢

is i.i.d., including x i x
0
i and x i yi . These variables also have finite expectations under Assumption 7.1.

Under these conditions, the WLLN (Theorem 6.2) implies that as n !1,

bQ x x = 1
n

nX

i=1
x i x

0
i °!p E

£
x i x

0
i

§
=Q x x (7.1)

and
bQ x y =

1
n

nX

i=1
x i yi °!p E

£
x i yi

§
=Q x y .

Third, the CMT (Theorem 6.6) allows us to combine these equations to show that bØ converges in
probability to Ø. Specifically, as n !1,

bØ= bQ°1
x x

bQ x y °!
p

Q
°1
x x

Q x y =Ø. (7.2)

We have shown that bØ °!
p

Ø as n ! 1. In words, the OLS estimator converges in probability to the

projection coefficient vector Ø as the sample size n gets large.
To fully understand the application of the CMT we walk through it in detail. We can write

bØ= g
°bQ x x , bQ x y

¢

where g (A,b) = A
°1

b is a function of A and b. The function g (A,b) is a continuous function of A and b

at all values of the arguments such that A
°1 exists. Assumption 7.1 specifies that Q x x is positive definite,

which means that Q
°1
x x

exists. Thus g (A,b) is continuous at A =Q x x . This justifies the application of the
CMT in (7.2).

For a slightly different demonstration of (7.2) recall that (4.6) implies that

bØ°Ø= bQ°1
x x

bQ xe (7.3)

where
bQ xe =

1
n

nX

i=1
x i ei .

The WLLN and (2.24) imply
bQ xe °!p E [x i ei ] = 0.

Therefore
bØ°Ø= bQ°1

x x
bQ xe °!p Q

°1
x x

0 = 0

which is the same as bØ°!
p
Ø.
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Theorem 7.1 Consistency of Least-Squares
Under Assumption 7.1, bQ x x °!

p
Q x x , bQ x y °!p Q x y , bQ°1

x x
°!

p
Q

°1
x x

, bQ xe °!p 0, and

bØ°!
p
Ø as n !1.

Theorem 7.1 states that the OLS estimator bØ converges in probability to Ø as n increases and thus bØ
is consistent for Ø. In the stochastic order notation, Theorem 7.1 can be equivalently written as

bØ=Ø+op (1). (7.4)

To illustrate the effect of sample size on the least-squares estimator consider the least-squares re-
gression

log(wagei ) =Ø1educationi +Ø2experiencei +Ø3experience2
i +Ø4 +ei .

We use the sample of 24,344 white men from the March 2009 CPS. We randomly sorted the observations
and sequentially estimated the model by least-squares starting with the first 5 observations and contin-
uing until the full sample is used. The sequence of estimates are displayed in Figure 7.1. You can see
how the least-squares estimate changes with the sample size. As the number of observations increases it
settles down to the full-sample estimate bØ1 = 0.114.

Number of Observations

β̂ 1

5000 10000 15000 20000

0.
11

0
0.

11
5

0.
12

0
0.

12
5

Figure 7.1: The Least-Squares Estimator bØ1 as a Function of Sample Size n

7.3 Asymptotic Normality

We started this chapter discussing the need for an approximation to the distribution of the OLS esti-
mator bØ. In Section 7.2 we showed that bØ converges in probability to Ø. Consistency is a good first step,
but in itself does not describe the distribution of the estimator. In this section we derive an approxima-
tion typically called the asymptotic distribution.
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The derivation starts by writing the estimator as a function of sample moments. One of the moments
must be written as a sum of zero-mean random vectors and normalized so that the central limit theorem
can be applied. The steps are as follows.

Take equation (7.3) and multiply it by
p

n. This yields the expression

p
n

°bØ°Ø
¢
=

√
1
n

nX

i=1
x i x

0
i

!°1 √
1
p

n

nX

i=1
x i ei

!

. (7.5)

This shows that the normalized and centered estimator
p

n
°bØ°Ø

¢
is a function of the sample average

1
n

Pn
i=1 x i x

0
i and the normalized sample average 1p

n

Pn
i=1 x i ei . Furthermore, the latter has mean zero so

the central limit theorem (Theorem 6.3) applies.
The product x i ei is i.i.d. (since the observations (yi , x i ) are i.i.d.) and mean zero (since E [x i ei ] = 0).

Define the k £k covariance matrix
≠= E

£
x i x

0
i e2

i

§
.

The CLT requires the elements of≠ to be finite, written≠<1. This requires a strengthing of Assumption
7.1. We state the required conditions here.

Assumption 7.2

1. The observations (yi , xi ), i = 1, ...,n, are i.i.d..

2. E
£

y4§<1.

3. Ekxk4 <1.

4. Qx x = E
°
x x

0¢ is positive definite.

Assumption 7.2 implies that ≠ < 1. To see this, take the j`th element of ≠, E
£
x j i x`i e2

i

§
. By the

expectation inequality (B.30) the j`th element of≠ is bounded by
ØØE

£
x j i x`i e2

i

§ØØ∑ E
ØØx j i x`i e2

i

ØØ= E
£ØØx j i

ØØ |x`i |e2
i

§
.

By two applications of the Cauchy-Schwarz inequality (B.32) this is smaller than

≥
E

h
x2

j i x2
`i

i¥1/2 °
E
£
e4

i

§¢1/2 ∑
≥
E

h
x4

j i

i¥1/4 °
E
£
x4
`i

§¢1/4 °
E
£
e4

i

§¢1/2 <1

where the finiteness holds under Assumption 7.2.2 and 7.2.3. Thus≠<1.
An alternative way to show that the elements of ≠ are finite is by using a matrix norm k·k (See Ap-

pendix A.23). Then by the expectation inequality, the Cauchy-Schwarz inequality, and Assumption 7.2

k≠k ∑ E
∞∞x i x

0
i e2

i

∞∞= E
£
kx ik2 e2

i

§
∑

°
Ekx ik4¢1/2 °

E
£
e4

i

§¢1/2 <1.

This is a more compact argument (often described as more elegant) but such manipulations should not
be done without understanding the notation and the applicability of each step of the argument.

Regardless, the finiteness of the covariance matrix means that we can then apply the multivariate
CLT (Theorem 6.3).
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Theorem 7.2 Under Assumption 7.2,

≠<1 (7.6)

and
1
p

n

nX

i=1
x i ei °!

d
N(0,≠) (7.7)

as n !1.

Putting together (7.1), (7.5), and (7.7),
p

n
°bØ°Ø

¢
°!

d
Q

°1
x x

N(0,≠)

= N
°
0,Q

°1
x x
≠Q

°1
x x

¢

as n !1. The final equality follows from the property that linear combinations of normal vectors are
also normal (Theorem 5.2).

We have derived the asymptotic normal approximation to the distribution of the least-squares esti-
mator.

Theorem 7.3 Asymptotic Normality of Least-Squares Estimator
Under Assumption 7.2, as n !1

p
n

°bØ°Ø
¢
°!

d
N

°
0,V Ø

¢

where
V Ø =Q

°1
x x
≠Q

°1
x x

, (7.8)

Q x x = E
£

x i x
0
i

§
, and≠= E

£
x i x

0
i e2

i

§
.

In the stochastic order notation, Theorem 7.3 implies that

bØ=Ø+Op (n°1/2)

which is stronger than (7.4).
The matrix V Ø =Q

°1
x x
≠Q

°1
x x

is the variance of the asymptotic distribution of
p

n
°bØ°Ø

¢
. Consequently,

V Ø is often referred to as the asymptotic covariance matrix of bØ. The expression V Ø =Q
°1
x x
≠Q

°1
x x

is called
a sandwich form as the matrix≠ is sandwiched between two copies of Q

°1
x x

.
It is useful to compare the variance of the asymptotic distribution given in (7.8) and the finite-sample

conditional variance in the CEF model as given in (4.10):

V bØ = var
£bØ | X

§
=

°
X

0
X

¢°1 °
X

0
D X

¢°
X

0
X

¢°1 . (7.9)

Notice that V bØ is the exact conditional variance of bØ and V Ø is the asymptotic variance of
p

n
°bØ°Ø

¢
.

Thus V Ø should be (roughly) n times as large as V bØ, or V Ø º nV bØ. Indeed, multiplying (7.9) by n and
distributing we find

nV bØ =
µ

1
n

X
0
X

∂°1 µ
1
n

X
0
D X

∂µ
1
n

X
0
X

∂°1
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which looks like an estimator of V Ø. Indeed, as n !1

nV bØ °!
p

V Ø.

The expression V bØ is useful for practical inference (such as computation of standard errors and tests)

since it is the variance of the estimator bØ , while V Ø is useful for asymptotic theory as it is well defined in
the limit as n goes to infinity. We will make use of both symbols and it will be advisable to adhere to this
convention.

There is a special case where≠ and V Ø simplify. Suppose that

cov(x i x
0
i ,e2

i ) = 0. (7.10)

Condition (7.10) holds in the homoskedastic linear regression model, but is somewhat broader. Under
(7.10) the asymptotic variance formulae simplify as

≠= E
£

x i x
0
i

§
E
£
e2

i

§
=Q x xæ

2

V Ø =Q
°1
x x
≠Q

°1
x x

=Q
°1
x x
æ2 ¥V

0
Ø. (7.11)

In (7.11) we define V
0
Ø
= Q

°1
x x
æ2 whether (7.10) is true or false. When (7.10) is true then V Ø = V

0
Ø

, other-

wise V Ø 6=V
0
Ø

. We call V
0
Ø

the homoskedastic asymptotic covariance matrix.
Theorem 7.3 states that the sampling distribution of the least-squares estimator, after rescaling, is

approximately normal when the sample size n is sufficiently large. This holds true for all joint distribu-
tions of (yi , x i ) which satisfy the conditions of Assumption 7.2. Consequently, asymptotic normality is
routinely used to approximate the finite sample distribution of

p
n

°bØ°Ø
¢

.
A difficulty is that for any fixed n the sampling distribution of bØ can be arbitrarily far from the normal

distribution. The normal approximation improves as n increases, but how large should n be in order for
the approximation to be useful? Unfortunately, there is no simple answer to this reasonable question.
The trouble is that no matter how large is the sample size the normal approximation is arbitrarily poor
for some data distribution satisfying the assumptions. We illustrate this problem using a simulation.
Let yi = Ø1xi +Ø2 + ei where xi is N(0,1) and ei is independent of xi with the Double Pareto density
f (e) = Æ

2 |e|°Æ°1 , |e| ∏ 1. If Æ > 2 the error ei has zero mean and variance Æ/(Æ°2). As Æ approaches 2,
however, its variance diverges to infinity. In this context the normalized least-squares slope estimatorq

n Æ°2
Æ

° bØ1 °Ø1
¢

has the N(0,1) asymptotic distribution for any Æ > 2. In Figure 7.2(a) we display the

finite sample densities of the normalized estimator
q

n Æ°2
Æ

° bØ1 °Ø1
¢

, setting n = 100 and varying the
parameter Æ. For Æ = 3.0 the density is very close to the N(0,1) density. As Æ diminishes the density
changes significantly, concentrating most of the probability mass around zero.

Another example is shown in Figure 7.2(b). Here the model is yi =Ø+ei where

ei =
ur

i °E
£
ur

i

§

≥
E
£
u2r

i

§
°

°
E
£
ur

i

§¢2
¥1/2

(7.12)

and ui ª N(0,1). We show the sampling distribution of
p

n
° bØ°Ø

¢
for n = 100, varying r = 1, 4, 6 and 8. As

r increases, the sampling distribution becomes highly skewed and non-normal. The lesson from Figure
7.2 is that the N(0,1) asymptotic approximation is never guaranteed to be accurate.
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Figure 7.2: Density of Normalized OLS Estimator

7.4 Joint Distribution

Theorem 7.3 gives the joint asymptotic distribution of the coefficient estimators. We can use the
result to study the covariance between the coefficient estimators. For simplicity, take the case of two
regressors, no intercept, and homoskedastic error. Assume the regressors are mean zero, variance one,
with correlation Ω. Then using the formula for inversion of a 2£2 matrix,

V
0
Ø =æ2

Q
°1
x x

= æ2

1°Ω2

∑
1 °Ω
°Ω 1

∏
.

Thus if x1i and x2i are positively correlated (Ω > 0) then bØ1 and bØ2 are negatively correlated (and vice-
versa).

For illustration, Figure 7.3(a) displays the probability contours of the joint asymptotic distribution of
bØ1 °Ø1 and bØ2 °Ø2 when Ø1 = Ø2 = 0 and Ω = 0.5. The coefficient estimators are negatively correlated
since the regressors are positively correlated. This means that if bØ1 is unusually negative, it is likely that
bØ2 is unusually positive, or conversely. It is also unlikely that we will observe both bØ1 and bØ2 unusually
large and of the same sign.

This finding that the correlation of the regressors is of opposite sign of the correlation of the coeffi-
cient estimates is sensitive to the assumption of homoskedasticity. If the errors are heteroskedastic then
this relationship is not guaranteed.

This can be seen through a simple constructed example. Suppose that x1i and x2i only take the
values {°1,+1}, symmetrically, with P [x1i = x2i = 1] = P [x1i = x2i =°1] = 3/8, and P [x1i = 1, x2i =°1] =
P [x1i =°1, x2i = 1] = 1/8. You can check that the regressors are mean zero, unit variance and correlation
0.5, which is identical with the setting displayed in Figure 7.3(a).

Now suppose that the error is heteroskedastic. Specifically, suppose that E
£
e2

i | x1i = x2i
§
= 5

4
and
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(b) Heteroskedastic Case

Figure 7.3: Contours of Joint Distribution of (bØ1, bØ2)

E
£
e2

i | x1i 6= x2i
§
= 1

4
. You can check that E

£
e2

i

§
= 1, E

£
x2

1i e2
i

§
= E

£
x2

2i e2
i

§
= 1 and E

£
x1i x2i e2

i

§
= 7

8
. Therefore

V Ø =Q
°1
x x
≠Q

°1
x x

= 9
16

2

64
1 °1

2
°1

2
1

3

75

2

64
1

7
8

7
8

1

3

75

2

64
1 °1

2
°1

2
1

3

75

= 4
3

2

64
1

1
4

1
4

1

3

75 .

Thus the coefficient estimators bØ1 and bØ2 are positively correlated (their correlation is 1/4.) The joint
probability contours of their asymptotic distribution is displayed in Figure 7.3(b). We can see how the
two estimators are positively associated.

What we found through this example is that in the presence of heteroskedasticity there is no simple
relationship between the correlation of the regressors and the correlation of the parameter estimators.

We can extend the above analysis to study the covariance between coefficient sub-vectors. For ex-
ample, partitioning x

0
i =

°
x
0
1i , x

0
2i

¢
and Ø0 =

°
Ø0

1,Ø0
2

¢
, we can write the general model as

yi = x
0
1iØ1 +x

0
2iØ2 +ei

and the coefficient estimates as bØ0 =
≥
bØ0

1, bØ0
2

¥
. Make the partitions

Q x x =
∑

Q11 Q12
Q21 Q22

∏
, ≠=

∑
≠11 ≠12

≠21 ≠22

∏
.

From (2.42)

Q
°1
x x

=
∑

Q
°1
11·2 °Q

°1
11·2Q12Q

°1
22

°Q
°1
22·1Q21Q

°1
11 Q

°1
22·1

∏
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where Q11·2 =Q11 °Q12Q
°1
22 Q21 and Q22·1 =Q22 °Q21Q

°1
11 Q12. Thus when the error is homoskedastic

cov
°bØ1, bØ2

¢
=°æ2

Q
°1
11·2Q12Q

°1
22

which is a matrix generalization of the two-regressor case.
In general you can show that (Exercise 7.5)

V Ø =
∑

V 11 V 12

V 21 V 22

∏
(7.13)

where

V 11 =Q
°1
11·2

°
≠11 °Q12Q

°1
22≠21 °≠12Q

°1
22 Q21 +Q12Q

°1
22≠22Q

°1
22 Q21

¢
Q

°1
11·2 (7.14)

V 21 =Q
°1
22·1

°
≠21 °Q21Q

°1
11≠11 °≠22Q

°1
22 Q21 +Q21Q

°1
11≠12Q

°1
22 Q21

¢
Q

°1
11·2 (7.15)

V 22 =Q
°1
22·1

°
≠22 °Q21Q

°1
11≠12 °≠21Q

°1
11 Q12 +Q21Q

°1
11≠11Q

°1
11 Q12

¢
Q

°1
22·1 (7.16)

Unfortunately, these expressions are not easily interpretable.

7.5 Consistency of Error Variance Estimators

Using the methods of Section 7.2 we can show that the estimators bæ2 = 1
n

Pn
i=1 be2

i and s2 = 1
n°k

Pn
i=1 be2

i
are consistent for æ2.

The trick is to write the residual bei as equal to the error ei plus a deviation

bei = yi °x
0
i
bØ

= ei +x
0
iØ°x 0

i
bØ

= ei °x
0
i

°bØ°Ø
¢

.

Thus the squared residual equals the squared error plus a deviation

be2
i = e2

i °2ei x
0
i

°bØ°Ø
¢
+

°bØ°Ø
¢0

x i x
0
i

°bØ°Ø
¢

. (7.17)

So when we take the average of the squared residuals we obtain the average of the squared errors, plus
two terms which are (hopefully) asymptotically negligible.

bæ2 = 1
n

nX

i=1
e2

i °2

√
1
n

nX

i=1
ei x

0
i

!
°bØ°Ø

¢
(7.18)

+
°bØ°Ø

¢0
√

1
n

nX

i=1
x i x

0
i

!
°bØ°Ø

¢
.

Indeed, the WLLN shows that

1
n

nX

i=1
e2

i °!p æ2

1
n

nX

i=1
ei x

0
i °!p E

£
ei x

0
i

§
= 0

1
n

nX

i=1
x i x

0
i °!p E

£
x i x

0
i

§
=Q x x .
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Theorem 7.1 shows that bØ°!
p
Ø. Hence (7.18) converges in probability to æ2 as desired.

Finally, since n/(n °k) ! 1 as n !1 it follows that

s2 =
≥ n

n °k

¥
bæ2 °!

p
æ2.

Thus both estimators are consistent.

Theorem 7.4 Under Assumption 7.1, bæ2 °!
p

æ2 and s2 °!
p

æ2 as n !1.

7.6 Homoskedastic Covariance Matrix Estimation

Theorem 7.3 shows that
p

n
°bØ°Ø

¢
is asymptotically normal with asymptotic covariance matrix V Ø.

For asymptotic inference (confidence intervals and tests) we need a consistent estimator of V Ø. Under
homoskedasticity V Ø simplifies to V

0
Ø
=Q

°1
x x
æ2 and in this section we consider the simplified problem of

estimating V
0
Ø

.

The standard moment estimator of Q x x is bQ x x defined in (7.1) and thus an estimator for Q
°1
x x

is bQ°1
x x

.
Also, the standard estimator of æ2 is the unbiased estimator s2 defined in (4.26). Thus a natural plug-in
estimator for V

0
Ø
=Q

°1
x x
æ2 is bV 0

Ø = bQ°1
x x

s2.

Consistency of bV 0
Ø for V

0
Ø

follows from consistency of the moment estimators bQ x x and s2 and an

application of the continuous mapping theorem. Specifically, Theorem 7.1 established that bQ x x °!
p

Q x x ,

and Theorem 7.4 established s2 °!
p

æ2. The function V
0
Ø
=Q

°1
x x
æ2 is a continuous function of Q x x and æ2

so long as Q x x > 0, which holds true under Assumption 7.1.4. It follows by the CMT that

bV 0
Ø = bQ°1

x x
s2 °!

p
Q

°1
x x
æ2 =V

0
Ø

so that bV 0
Ø is consistent for V

0
Ø

as desired.

Theorem 7.5 Under Assumption 7.1, bV 0
Ø °!

p
V

0
Ø

as n !1.

It is instructive to notice that Theorem 7.5 does not require the assumption of homoskedasticity. That
is, bV 0

Ø is consistent for V
0
Ø

regardless if the regression is homoskedastic or heteroskedastic. However,

V
0
Ø
= V Ø = avar(bØ) only under homoskedasticity. Thus in the general case bV 0

Ø is consistent for a well-
defined but non-useful object.
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7.7 Heteroskedastic Covariance Matrix Estimation

Theorems 7.3 established that the asymptotic covariance matrix of
p

n
°bØ°Ø

¢
is V Ø =Q

°1
x x
≠Q

°1
x x

. We
now consider estimation of this covariance matrix without imposing homoskedasticity. The standard
approach is to use a plug-in estimator which replaces the unknowns with sample moments.

As described in the previous section a natural estimator for Q
°1
x x

is bQ°1
x x

, where bQ x x defined in (7.1).
The moment estimator for≠ is

b≠= 1
n

nX

i=1
x i x

0
i be

2
i ,

leading to the plug-in covariance matrix estimator

bV HC0
Ø = bQ°1

x x
b≠bQ°1

x x
. (7.19)

You can check that bV HC0
Ø = n bV HC0

bØ where bV HC0
bØ is the HC0 covariance matrix estimator introduced in

(4.31).
As shown in Theorem 7.1, bQ°1

xx °!
p

Q
°1
xx , so we just need to verify the consistency of b≠. The key is to

replace the squared residual be2
i with the squared error e2

i , and then show that the difference is asymptot-
ically negligible.

Specifically, observe that

b≠= 1
n

nX

i=1
x i x

0
i be

2
i

= 1
n

nX

i=1
x i x

0
i e2

i +
1
n

nX

i=1
x i x

0
i

°
be2

i °e2
i

¢
.

The first term is an average of the i.i.d. random variables x i x
0
i e2

i , and therefore by the WLLN converges
in probability to its expectation, namely,

1
n

nX

i=1
x i x

0
i e2

i °!p E
£

x i x
0
i e2

i

§
=≠.

Technically, this requires that≠ has finite elements, which was shown in (7.6).
So to establish that b≠ is consistent for≠ it remains to show that

1
n

nX

i=1
x i x

0
i

°
be2

i °e2
i

¢
°!

p
0. (7.20)

There are multiple ways to do this. A reasonable straightforward yet slightly tedious derivation is to start
by applying the triangle inequality (B.16) using a matrix norm:

∞∞∞∞∞
1
n

nX

i=1
x i x

0
i

°
be2

i °e2
i

¢
∞∞∞∞∞∑ 1

n

nX

i=1

∞∞x i x
0
i

°
be2

i °e2
i

¢∞∞

= 1
n

nX

i=1
kx ik2 ØØbe2

i °e2
i

ØØ . (7.21)

Then recalling the expression for the squared residual (7.17), apply the triangle inequality (B.1) and then
the Schwarz inequality (B.12) twice

ØØbe2
i °e2

i

ØØ∑ 2
ØØei x

0
i

°bØ°Ø
¢ØØ+

°bØ°Ø
¢0

x i x
0
i

°bØ°Ø
¢

= 2 |ei |
ØØx

0
i

°bØ°Ø
¢ØØ+

ØØØ
°bØ°Ø

¢0
x i

ØØØ
2

∑ 2 |ei |kx ik
∞∞bØ°Ø

∞∞+kx ik2 ∞∞bØ°Ø
∞∞2

. (7.22)



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 181

Combining (7.21) and (7.22), we find
∞∞∞∞∞

1
n

nX

i=1
x i x

0
i

°
be2

i °e2
i

¢
∞∞∞∞∞∑ 2

√
1
n

nX

i=1
kx ik3 |ei |

!
∞∞bØ°Ø

∞∞+
√

1
n

nX

i=1
kx ik4

!
∞∞bØ°Ø

∞∞2

= op (1). (7.23)

The expression is op (1) because
∞∞bØ°Ø

∞∞ °!
p

0 and both averages in parenthesis are averages of random

variables with finite mean under Assumption 7.2 (and are thus Op (1)). Indeed, by Hölder’s inequality
(B.31)

E
£
kx ik3 |ei |

§
∑

≥
E

h°
kx ik3¢4/3

i¥3/4 °
E
£
e4

i

§¢1/4

=
°
Ekx ik4¢3/4 °

E
£
e4

i

§¢1/4 <1.

We have established (7.20) as desired.

Theorem 7.6 Under Assumption 7.2, as n !1, b≠°!
p
≠ and bV HC0

Ø °!
p

V Ø.

For an alternative proof of this result, see Section 7.21.

7.8 Summary of Covariance Matrix Notation

The notation we have introduced may be somewhat confusing so it is helpful to write it down in one
place. The exact variance of bØ (under the assumptions of the linear regression model) and the asymptotic
variance of

p
n

°bØ°Ø
¢

(under the more general assumptions of the linear projection model) are

V bØ = var
°bØ | X

¢
=

°
X

0
X

¢°1 °
X

0
D X

¢°
X

0
X

¢°1

V Ø = avar
°p

n
°bØ°Ø

¢¢
=Q

°1
x x
≠Q

°1
x x

.

The HC0 estimators of these two covariance matrices are

bV HC0
bØ =

°
X

0
X

¢°1

√
nX

i=1
x i x

0
i be

2
i

!
°

X
0
X

¢°1

bV HC0
Ø = bQ°1

x x
b≠bQ°1

x x

and satisfy the simple relationship bV HC0
Ø = n bV HC0

bØ .
Similarly, under the assumption of homoskedasticity the exact and asymptotic variances simplify to

V
0
bØ
=

°
X

0
X

¢°1
æ2

V
0
Ø =Q

°1
x x
æ2.

Their standard estimators are

bV 0
bØ =

°
X

0
X

¢°1 s2

bV 0
Ø = bQ°1

x x
s2

which also satisfy the relationship bV 0
Ø = n bV 0

bØ. The exact formula and estimators are useful when con-
structing test statistics and standard errors. However, for theoretical purposes the asymptotic formula
(variances and their estimates) are more useful as these retain non-generate limits as the sample sizes
diverge. That is why both sets of notation are useful.



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 182

7.9 Alternative Covariance Matrix Estimators*

In Section 7.7 we introduced bV HC0
Ø as an estimator of V Ø. bV HC0

Ø is a scaled version of bV HC0
bØ from

Section 4.15, where we also introduced the alternative HC1, HC2 and HC3 heteroskedasticity-robust
covariance matrix estimators. We now discuss the consistency properties of these estimators.

To do so we introduce their scaled versions, e.g. bV HC1
Ø = n bV HC1

bØ , bV HC2
Ø = n bV HC2

bØ , and bV HC3
Ø = n bV HC3

bØ .
These are (alternative) estimators of the asymptotic covariance matrix V Ø.

First, consider bV HC1
Ø . Notice that bV HC1

Ø = n bV HC1
bØ = n

n°k
bV HC0
Ø where bV HC0

Ø was defined in (7.19) and
shown consistent for V Ø in Theorem 7.6. If k is fixed as n !1, then n

n°k ! 1 and thus

bV HC1
Ø = (1+o(1))bV HC0

Ø °!
p

V Ø.

Thus bV HC1
Ø is consistent for V Ø.

The alternative estimators bV HC2
Ø and bV HC3

Ø take the form (7.19) but with b≠ replaced by

e≠= 1
n

nX

i=1
(1°hi i )°2

x i x
0
i be

2
i

and

≠= 1
n

nX

i=1
(1°hi i )°1

x i x
0
i be

2
i ,

respectively. To show that these estimators also consistent for V Ø given b≠ °!
p
≠ it is sufficient to show

that the differences e≠° b≠ and≠° b≠ converge in probability to zero as n !1.
The trick is to use the fact that the leverage values are asymptotically negligible:

h§
n = max

1∑i∑n
hi i = op (1). (7.24)

(See Theorem 7.19 in Section 7.22.) Then using the triangle inequality (B.16)

∞∞∞≠° b≠
∞∞∞∑ 1

n

nX

i=1

∞∞x i x
0
i

∞∞ be2
i

ØØ(1°hi i )°1 °1
ØØ

∑
√

1
n

nX

i=1
kx ik2 be2

i

!ØØØ
°
1°h§

n
¢°1 °1

ØØØ .

The sum in parenthesis can be shown to be Op (1) under Assumption 7.2 by the same argument as in in
the proof of Theorem 7.6. (In fact, it can be shown to converge in probability to E

£
kx ik2 e2

i

§
.) The term in

absolute values is op (1) by (7.24). Thus the product is op (1) which means that≠= b≠+op (1) °!
p
≠.

Similarly,

∞∞e≠° b≠
∞∞∑ 1

n

nX

i=1

∞∞x i x
0
i

∞∞ be2
i

ØØ(1°hi i )°2 °1
ØØ

∑
√

1
n

nX

i=1
kx ik2 be2

i

!ØØØ
°
1°h§

n
¢°2 °1

ØØØ

= op (1).
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Theorem 7.7 Under Assumption 7.2, as n !1, e≠ °!
p
≠, ≠ °!

p
≠, bV HC1

Ø °!
p

V Ø, bV HC2
Ø °!

p
V Ø, and bV HC3

Ø °!
p

V Ø.

Theorem 7.7 shows that the alternative covariance matrix estimators are also consistent for the asymp-
totic covariance matrix.

To simplify notation, for the remainder of the chapter we will use the notation bV Ø and bV bØ to refer
to any of the heteroskedasticity-consistent covariance matrix estimators HC0, HC1, HC2 and HC3, since
they all have the same asymptotic limits.

7.10 Functions of Parameters

In most serious applications the researcher is actually interested in a specific transformation of the
coefficient vector Ø= (Ø1, ...,Øk ). For example, the researcher may be interested in a single coefficient Ø j

or a ratio Ø j /Øl . More generally, interest may focus on a quantity such as consumer surplus which could
be a complicated function of the coefficients. In any of these cases we can write the parameter of interest
µ as a function of the coefficients, e.g. µ = r (Ø) for some function r :Rk !R

q . The estimate of µ is

bµ = r (bØ).

By the continuous mapping theorem (Theorem 6.6) and the fact bØ °!
p
Ø we can deduce that bµ is

consistent for µ (if the function r (·) is continuous).

Theorem 7.8 Under Assumption 7.1, if r (Ø) is continuous at the true value of
Ø, then as n !1, bµ °!

p
µ.

Furthermore, if the transformation is sufficiently smooth, by the Delta Method (Theorem 6.8) we can
show that bµ is asymptotically normal.

Assumption 7.3 r (Ø) :Rk !R
q is continuously differentiable at the true value

of Ø and R = @
@Ør (Ø)0 has rank q.

Theorem 7.9 Asymptotic Distribution of Functions of Parameters
Under Assumptions 7.2 and 7.3, as n !1,

p
n

°bµ°µ
¢
°!

d
N(0,V µ) (7.25)

where V µ = R
0
VØR .
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In many cases the function r (Ø) is linear:

r (Ø) = R
0Ø

for some k £q matrix R . In particular if R is a “selector matrix”

R =
µ

I

0

∂

then we can partition Ø= (Ø0
1,Ø0

2)0 so that R
0Ø=Ø1 for Ø= (Ø0

1,Ø0
2)0. Then

V µ =
°

I 0
¢

V Ø

µ
I

0

∂
=V 11,

the upper-left sub-matrix of V 11 given in (7.14). In this case (7.25) states that

p
n

°bØ1 °Ø1
¢
°!

d
N(0,V 11) .

That is, subsets of bØ are approximately normal with variances given by the conformable subcomponents
of V .

To illustrate the case of a nonlinear transformation take the example µ =Ø j /Øl for j 6= l . Then

R = @

@Ø
r (Ø) =

0

BBBBBBBBBBBBBB@

@
@Ø1

°
Ø j /Øl

¢

...
@
@Ø j

°
Ø j /Øl

¢

...
@
@Ø`

°
Ø j /Øl

¢

...
@
@Øk

°
Ø j /Øl

¢

1

CCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

0
...

1/Øl
...

°Ø j /Ø2
l

...
0

1

CCCCCCCCCCCCA

(7.26)

so
V µ =V j j /Ø2

l +V l lØ
2
j /Ø4

l °2V j lØ j /Ø3
l

where V ab denotes the abth element of V Ø.
For inference we need an estimator of the asymptotic variance matrix V µ = R

0
VØR . For this it is

typical to use the plug-in estimator

bR = @

@Ø
r (bØ)0. (7.27)

The derivative in (7.27) may be calculated analytically or numerically. By analytically, we mean working
out for the formula for the derivative and replacing the unknowns by point estimates. For example, if
µ =Ø j /Øl then @

@Ør (Ø) is (7.26). However in some cases the function r (Ø) may be extremely complicated
and a formula for the analytic derivative may not be easily available. In this case calculation by numerical
differentiation may be preferable. Let ±l = (0 · · · 1 · · · 0)0 be the unit vector with the “1” in the l th place.
Then the j l th element of a numerical derivative bR is

bR j l =
r j (bØ+±l")° r j (bØ)

"

for some small ".
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The estimator of V µ is
bV µ = bR 0 bV ØbR . (7.28)

Alternatively, the homoskedastic covariance matrix estimator could be used leading to a homoskedastic
covariance matrix estimator for µ.

bV 0
µ = bR 0 bV 0

Ø
bR = bR 0 bQ°1

x x
bR s2. (7.29)

Given (7.27), (7.28) and (7.29) are simple to calculate using matrix operations.
As the primary justification for bV µ is the asymptotic approximation (7.25), bV µ is often called an

asymptotic covariance matrix estimator.
The estimator bV µ is consistent for V µ under the conditions of Theorem 7.9 since bV Ø °!

p
VØ by The-

orem 7.6 and
bR = @

@Ø
r (bØ)0 °!

p

@

@Ø
r (Ø)0 = R

since bØ°!
p
Ø and the function @

@Ør (Ø)0 is continuous in Ø.

Theorem 7.10 Under Assumptions 7.2 and 7.3, as n !1

bV µ °!p V µ.

Theorem 7.10 shows that bV µ is consistent for V µ and thus may be used for asymptotic inference. In
practice we may set

bV bµ = bR 0 bV bØ
bR = n°1 bR 0 bV ØbR (7.30)

as an estimator of the variance of bµ.

7.11 Best Unbiased Estimation

In Sections 4.8-4.10 we presented three versions of the Gauss-Markov theorem, producing lower
bounds on the conditional variance of estimation in the linear regression model. In this section we
introduce a lower bound on the unconditional finite sample variance of estimation in the projection
model. These results are complementary. The results presented here also are extended to functions of
the regression coefficients.

Theorem 7.11 Under Assumption 7.2,if eØ is unbiased for Ø then

var
£eØ

§
∏ n°1

Q
°1
x x
≠Q

°1
x x
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Theorem 7.12 Under Assumptions 7.2 and 7.3, if eµ is unbiased for µ then

var
£eµ

§
∏ n°1

R
0
Q

°1
x x
≠Q

°1
x x

R

The results show that the asymptotic variances from Theorems 7.3 and 7.9 are the best possible in
any finite sample, when we restrict estimation to unbiased estimators.

7.12 Asymptotic Standard Errors

As described in Section 4.16 a standard error is an estimator of the standard deviation of the distri-
bution of an estimator. Thus if bV bØ is an estimator of the covariance matrix of bØ then standard errors are
the square roots of the diagonal elements of this matrix. These take the form

s( bØ j ) =
q

bV bØ j
=

rh
bV bØ

i

j j
.

Standard errors for bµ are constructed similarly. Supposing that µ = h(Ø) is real-valued then the standard
error for bµ is the square root of (7.30)

s(bµ) =
r

bR 0 bV bØ
bR =

q
n°1 bR 0 bV ØbR .

When the justification is based on asymptotic theory we call s( bØ j ) or s(bµ) an asymptotic standard error
for bØ j or bµ. When reporting your results it is good practice to report standard errors for each reported
estimate and this includes functions and transformations of your parameter estimates. This helps users
of the work (including yourself) assess the estimation precision.

We illustrate using the log wage regression

log(wage) =Ø1 education+Ø2 experience+Ø3 experience2/100+Ø4 +e.

Consider the following three parameters of interest.

1. Percentage return to education:
µ1 = 100Ø1

(100 times the partial derivative of the conditional expectation of log(wage) with respect to educa-
tion.)

2. Percentage return to experience for individuals with 10 years of experience:

µ2 = 100Ø2 +20Ø3

(100 times the partial derivative of the conditional expectation of log wages with respect to experi-
ence, evaluated at experience= 10.)

3. Experience level which maximizes expected log wages:

µ3 =°50Ø2/Ø3

(The level of experience at which the partial derivative of the conditional expectation of log(wage)
with respect to experience equals 0.)
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The 4£1 vector R for these three parameters is

R =

0

BBB@

100
0
0
0

1

CCCA ,

0

BBB@

0
100
20
0

1

CCCA ,

0

BBB@

0
°50/Ø3

50Ø2/Ø2
3

0

1

CCCA ,

respectively.
We use the subsample of married black women (all experience levels) which has 982 observations.

The point estimates and standard errors are

·log(wage) = 0.118
(0.008)

education+ 0.016
(0.006)

experience° 0.022
(0.012)

experience2/100+ 0.947
(0.157)

. (7.31)

The standard errors are the square roots of the Horn-Horn-Duncan covariance matrix estimate

V bØ =

0

BBB@

0.632 0.131 °0.143 °11.1
0.131 0.390 °0.731 °6.25
°0.143 °0.731 1.48 9.43
°11.1 °6.25 9.43 246

1

CCCA£10°4. (7.32)

We calculate that
bµ1 = 100 bØ1 = 100£0.118 = 11.8

s(bµ1) =
p

1002 £0.632£10°4 = 0.8

bµ2 = 100 bØ2 +20 bØ3 = 100£0.016°20£0.022 = 1.16

s(bµ2) =
s

°
100 20

¢µ 0.390 °0.731
°0.731 1.48

∂µ
100
20

∂
£10°4 = 0.55

bµ3 =°50 bØ2/ bØ3 = 50£0.016/0.022 = 35.2

s(bµ3) =
s

°
°50/ bØ3 50 bØ2/ bØ2

3

¢µ 0.390 °0.731
°0.731 1.48

∂µ
°50/ bØ3

50 bØ2/ bØ2
3

∂
£10°4 = 7.0.

The calculations show that the estimate of the percentage return to education (for married black
women) is 12% per year with a standard error of 0.8. The estimate of the percentage return to experience
for those with 10 years of experience is 1.2% per year with a standard error of 0.6. The estimate of the
experience level which maximizes expected log wages is 35 years with a standard error of 7.

In Stata the command can be used after estimation to perform the same calculations. To illus-
trate, after estimation of (7.31) use the commands given below. In each case, Stata reports the coefficient
estimate, asymptotic standard error and 95% confidence interval.

Stata Commands

nlcom 100*_b[education]
nlcom 100*_b[experience]+20*_b[exp2]
nlcom -50*_b[experience]/_b[exp2]
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7.13 t-statistic

Let µ = r (Ø) :Rk !R be a parameter of interest, bµ its estimator and s(bµ) its asymptotic standard error.
Consider the statistic

T (µ) =
bµ°µ
s(bµ)

. (7.33)

Different writers have called (7.33) a t-statistic, a t-ratio, a z-statistic or a studentized statistic, some-
times using the different labels to distinguish between finite-sample and asymptotic inference. As the
statistics themselves are always (7.33) we won’t make this distinction and will simply refer to T (µ) as a
t-statistic or a t-ratio. We also often suppress the parameter dependence, writing it as T. The t-statistic is
a function of the estimator, its standard error, and the parameter.

By Theorems 7.9 and 7.10,
p

n
°bµ°µ

¢
°!

d
N(0,Vµ) and bVµ °!p Vµ. Thus

T (µ) =
bµ°µ
s(bµ)

=
p

n
°bµ°µ

¢
q

bVµ

°!
d

N(0,Vµ)
p

Vµ

= Z ª N(0,1) .

The last equality is the property that affine functions of normal variables are normal (Theorem 5.2).
This calculation also requires that Vµ > 0, otherwise the continuous mapping theorem cannot be

employed. In practice this is an innocuous requirement as it only excludes degenerate sampling distri-
butions. Formally we add the following assumption.

Assumption 7.4 V µ = R
0
VØR > 0.

Assumption 7.4 states that V µ is positive definite. Since R is full rank under Assumption 7.3 a suffi-
cient condition is that VØ > 0. Since Q x x > 0 a sufficient condition is≠> 0. Thus Assumption 7.4 could
be replaced by the assumption≠> 0. Assumption 7.4 is weaker so this is what we use.

Thus the asymptotic distribution of the t-ratio T (µ) is standard normal. Since this distribution does
not depend on the parameters we say that T (µ) is asymptotically pivotal. In finite samples T (µ) is not
necessarily pivotal but the property means that the dependence on unknowns diminishes as n increases.

As we will see in the next section it is also useful to consider the distribution of the absolute t-ratio
|T (µ)| . Since T (µ) °!

d
Z the continuous mapping theorem yields |T (µ)| °!

d
|Z| . Letting ©(u) = P [Z ∑ u]

denote the standard normal distribution function we can calculate that the distribution function of |Z| is

P [|Z|∑ u] =P [°u ∑ Z ∑ u]

=P [Z ∑ u]°P [Z <°u]

=©(u)°©(°u)

= 2©(u)°1. (7.34)
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Theorem 7.13 Under Assumptions 7.2, 7.3 and 7.4, T (µ) °!
d

Z ª N(0,1) and

|tn(µ)|°!
d

|Z| .

The asymptotic normality of Theorem 7.13 is used to justify confidence intervals and tests for the
parameters.

7.14 Confidence Intervals

The estimator bµ is a point estimator for µ meaning that bµ is a single value in Rq . A broader concept
is a set estimator bC which is a collection of values in Rq . When the parameter µ is real-valued then it is
common to focus on sets of the form bC = [bL, bU ] which is called an interval estimator for µ.

An interval estimate bC is a function of the data and hence is random. The coverage probability
of the interval bC = [bL, bU ] is P(µ 2 bC ). The randomness comes from bC as the parameter µ is treated as
fixed. In Section 5.10 we introduced confidence intervals for the normal regression model which used
the finite sample distribution of the t-statistic to construct exact confidence intervals for the regression
coefficients. When we are outside the normal regression model we cannot rely on the exact normal distri-
bution theory but instead use asymptotic approximations. A benefit is that we can construct confidence
intervals for general parameters of interest µ not just regression coefficients.

An interval estimator bC is called a confidence interval when the goal is to set the coverage prob-
ability to equal a pre-specified target such as 90% or 95%. bC is called a 1 °Æ confidence interval if
infµPµ

£
µ 2 bC

§
= 1°Æ.

When bµ is asymptotically normal with standard error s(bµ) the conventional confidence interval for µ
takes the form

bC =
£bµ° c £ s(bµ), bµ+ c £ s(bµ)

§
(7.35)

where c equals the 1°Æ quantile of the distribution of |Z|. Using (7.34) we calculate that c is equivalently
the 1°Æ/2 quantile of the standard normal distribution. Thus, c solves

2©(c)°1 = 1°Æ.

This can be computed by, for example, Æ/2 in MATLAB. The confidence interval (7.35) is
symmetric about the point estimator bµ and its length is proportional to the standard error s(bµ).

Equivalently, (7.35) is the set of parameter values for µ such that the t-statistic T (µ) is smaller (in
absolute value) than c, that is

bC = {µ : |T (µ)|∑ c} =
(

µ : °c ∑
bµ°µ
s(bµ)

∑ c

)

.

The coverage probability of this confidence interval is

P
£
µ 2 bC

§
=P [|T (µ)|∑ c] !P [|Z|∑ c] = 1°Æ

where the limit is taken as n !1, and holds since T (µ) is asymptotically |Z| by Theorem 7.13. We call
the limit the asymptotic coverage probability and call bC an asymptotic 1°Æ% confidence interval for
µ. Since the t-ratio is asymptotically pivotal the asymptotic coverage probability is independent of the
parameter µ.
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It is useful to contrast the confidence interval (7.35) with (5.8) for the normal regression model. They
are similar but there are differences. The normal regression interval (5.8) only applies to regression co-
efficients Ø not to functions µ of the coefficients. The normal interval (5.8) also is constructed with the
homoskedastic standard error, while (7.35) can be constructed with a heteroskedastic-robust standard
error. Furthermore, the constants c in (5.8) are calculated using the student t distribution, while c in
(7.35) are calculated using the normal distribution. The difference between the student t and normal
values are typically small in practice (since sample sizes are large in typical economic applications).
However, since the student t values are larger it results in slightly larger confidence intervals which is
reasonable. (A practical rule of thumb is that if the sample sizes are sufficiently small that it makes a
difference then neither (5.8) nor (7.35) should be trusted.) Despite these differences the coincidence of
the intervals means that inference on regression coefficients is generally robust to using either the exact
normal sampling assumption or the asymptotic large sample approximation, at least in large samples.

In Stata, by default the program reports 95% confidence intervals for each coefficient where the crit-
ical values c are calculated using the tn°k distribution. This is done for all standard error methods even
though it is only exact for homoskedastic standard errors and under normality.

The standard coverage probability for confidence intervals is 95%, leading to the choice c = 1.96 for
the constant in (7.35). Rounding 1.96 to 2, we obtain what might be the most commonly used confidence
interval in applied econometric practice

bC =
£bµ°2s(bµ), bµ+2s(bµ)

§
.

This is a useful rule-of thumb. This asymptotic 95% confidence interval bC is simple to compute and
can be roughly calculated from tables of coefficient estimates and standard errors. (Technically, it is an
asymptotic 95.4% interval due to the substitution of 2.0 for 1.96 but this distinction is overly precise.)

Theorem 7.14 Under Assumptions 7.2, 7.3 and 7.4, for bC defined in (7.35) with
c =©°1(1°Æ/2), P

£
µ 2 bC

§
! 1°Æ. For c = 1.96, P

£
µ 2 bC

§
! 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When reading
a set of empirical results look at the estimated coefficient estimates and the standard errors. For a pa-
rameter of interest compute the confidence interval Cn and consider the meaning of the spread of the
suggested values. If the range of values in the confidence interval are too wide to learn about µ then do
not jump to a conclusion about µ based on the point estimate alone.

For illustration, consider the three examples presented in Section 7.12 based on the log wage regres-
sion for married black women.

Percentage return to education. A 95% asymptotic confidence interval is 11.8± 1.96£ 0.8 = [10.2,
13.3].

Percentage return to experience for individuals with 10 years experience. A 90% asymptotic confi-
dence interval is 1.1±1.645£0.4 = [0.5, 1.8].

Experience level which maximizes expected log wages. An 80% asymptotic confidence interval is
35±1.28£7 = [26, 44].

7.15 Regression Intervals

In the linear regression model the conditional mean of yi given x i = x is

m(x) = E
£

yi | x i = x
§
= x

0Ø.
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In some cases we want to estimate m(x) at a particular point x . Notice that this is a linear function of

Ø. Letting r (Ø) = x
0Ø and µ = r (Ø) we see that bm(x) = bµ = x

0bØ and R = x so s(bµ) =
q

x 0 bV bØx . Thus an
asymptotic 95% confidence interval for m(x) is

h
x
0bØ±1.96

q
x 0 bV bØx

i
.

It is interesting to observe that if this is viewed as a function of x the width of the confidence interval is
dependent on x .

To illustrate we return to the log wage regression (3.13) of Section 3.7. The estimated regression
equation is

·log(wage) = x
0bØ= 0.155x +0.698

where x =education. The covariance matrix estimate from (4.38) is

bV bØ =
µ

0.001 °0.015
°0.015 0.243

∂
.

Thus the 95% confidence interval for the regression is

0.155x +0.698±1.96
p

0.001x2 °0.030x +0.243.

The estimated regression and 95% intervals are shown in Figure 7.4(a). Notice that the confidence
bands take a hyperbolic shape. This means that the regression line is less precisely estimated for very
large and very small values of education.

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Education

lo
g(
wa
ge
)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Wage on Education

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

2.
8

Experience

lo
g(
wa
ge
)

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Wage on Experience

Figure 7.4: Wage on Education Regression Intervals

Plots of the estimated regression line and confidence intervals are especially useful when the re-
gression includes nonlinear terms. To illustrate consider the log wage regression (7.31) which includes
experience and its square and covariance matrix estimate (7.32). We are interested in plotting the re-
gression estimate and regression intervals as a function of experience. Since the regression also includes
education, to plot the estimates in a simple graph we need to fix education at a specific value. We select
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education=12. This only affects the level of the estimated regression since education enters without an
interaction. Define the points of evaluation

z(x) =

0

BBB@

12
x

x2/100
1

1

CCCA

where x =experience.
Thus the 95% regression interval for education=12 as a function of x =experience is

0.118£12 +0.016 x °0.022 x2/100+0.947

±1.96

vuuuuuut
z(x)0

0

BBB@

0.632 0.131 °0.143 °11.1
0.131 0.390 °0.731 °6.25
°0.143 °0.731 1.48 9.43
°11.1 °6.25 9.43 246

1

CCCAz(x)£10°4

= 0.016 x ° .00022 x2 +2.36

±0.0196
p

70.608°9.356 x +0.54428 x2 °0.01462 x3 +0.000148 x4.

The estimated regression and 95% intervals are shown in Figure 7.4(b). The regression interval widens
greatly for small and large values of experience indicating considerable uncertainty about the effect of
experience on mean wages for this population. The confidence bands take a more complicated shape
than in Figure 7.4(a) due to the nonlinear specification.

7.16 Forecast Intervals

Suppose we are given a value of the regressor vector xn+1 for an individual outside the sample and
we want to forecast (guess) yn+1 for this individual. This is equivalent to forecasting yn+1 given xn+1 = x

which will generally be a function of x . A reasonable forecasting rule is the conditional mean m(x) as it
is the mean-square-minimizing forecast. A point forecast is the estimated conditional mean bm(x) = x

0bØ.
We would also like a measure of uncertainty for the forecast.

The forecast error is ben+1 = yn+1 ° bm(x) = en+1 ° x
0 °bØ°Ø

¢
. As the out-of-sample error en+1 is inde-

pendent of the in-sample estimate bØ this has conditional variance

E
£
be2

n+1|xn+1 = x
§
= E

h
e2

n+1 °2x
0 °bØ°Ø

¢
en+1 +x

0 °bØ°Ø
¢°bØ°Ø

¢0
x |xn+1 = x

i

= E
£
e2

n+1 | xn+1 = x
§
+x

0
E

h°bØ°Ø
¢°bØ°Ø

¢0i
x

=æ2(x)+x
0
VbØx . (7.36)

Under homoskedasticity E
£
e2

n+1 | xn+1
§
= æ2. In this case a simple estimator of (7.36) is bæ2 + x

0 bV bØx so a

standard error for the forecast is bs(x) =
q

bæ2 +x 0 bV bØx . Notice that this is different from the standard error
for the conditional mean.

The conventional 95% forecast interval for yn+1 uses a normal approximation and sets

£
x
0bØ±2bs(x)

§
.
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It is difficult, however, to fully justify this choice. It would be correct if we have a normal approximation
to the ratio

en+1 °x
0 °bØ°Ø

¢

bs(x)
.

The difficulty is that the equation error en+1 is generally non-normal and asymptotic theory cannot be
applied to a single observation. The only special exception is the case where en+1 has the exact distribu-
tion N(0,æ2) which is generally invalid.

To get an accurate forecast interval we need to estimate the conditional distribution of en+1 given
xn+1 = x , which is a more difficult task. Perhaps due to this difficulty many applied forecasters use the
simple approximate interval

£
x
0bØ±2bs(x)

§
despite the lack of a convincing justification.

7.17 Wald Statistic

Let µ = r (Ø) : Rk ! R
q be any parameter vector of interest, bµ its estimator, and bV bµ its covariance

matrix estimator. Consider the quadratic form

W (µ) =
°bµ°µ

¢0 bV °1
bµ

°bµ°µ
¢
= n

°bµ°µ
¢0 bV °1

µ

°bµ°µ
¢

. (7.37)

where bV µ = n bV bµ. When q = 1, then W (µ) = T (µ)2 is the square of the t-ratio. When q > 1, W (µ) is typically
called a Wald statistic as it was proposed by Wald (1943). We are interested in its sampling distribution.

The asymptotic distribution of W (µ) is simple to derive given Theorem 7.9 and Theorem 7.10. They
show that p

n
°bµ°µ

¢
°!

d
Z ª N(0,V µ)

and
bV µ °!p V µ.

It follows that
W (µ) =

p
n

°bµ°µ
¢0 bV °1

µ

p
n

°bµ°µ
¢
°!

d
Z0

V
°1
µ Z

a quadratic in the normal random vector Z. As shown in Theorem 5.3.5 the distribution of this quadratic
form is ¬2

q , a chi-square random variable with q degrees of freedom.

Theorem 7.15 Under Assumptions 7.2, 7.3 and 7.4, as n !1,

W (µ) °!
d

¬2
q .

Theorem 7.15 is used to justify multivariate confidence regions and multivariate hypothesis tests.

7.18 Homoskedastic Wald Statistic

Under the conditional homoskedasticity assumption E
£
e2

i | x i
§
=æ2 we can construct the Wald statis-

tic using the homoskedastic covariance matrix estimator bV 0
µ defined in (7.29). This yields a homoskedas-

tic Wald statistic
W 0(µ) =

°bµ°µ
¢0 ≥bV 0

bµ

¥°1 °bµ°µ
¢
= n

°bµ°µ
¢0 ≥bV 0

µ

¥°1 °bµ°µ
¢

. (7.38)
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Under the additional assumption of conditional homoskedasticity it has the same asymptotic distri-
bution as W (µ).

Theorem 7.16 Under Assumptions 7.2, 7.3, and E
£
e2

i | x i
§
=æ2 > 0, as n !1,

W 0(µ) °!
d

¬2
q .

7.19 Confidence Regions

A confidence region bC is a set estimator for µ 2 Rq when q > 1. A confidence region bC is a set in R
q

intended to cover the true parameter value with a pre-selected probability 1°Æ. Thus an ideal confidence
region has the coverage probability P

£
µ 2 bC

§
= 1°Æ. In practice it is typically not possible to construct a

region with exact coverage but we can calculate its asymptotic coverage.
When the parameter estimator satisfies the conditions of Theorem 7.15 a good choice for a confi-

dence region is the ellipse
bC = {µ : W (µ) ∑ c1°Æ}

with c1°Æ the 1°Æ quantile of the ¬2
q distribution. (Thus Fq (c1°Æ) = 1°Æ.) It can be computed by, for

example, Æ in MATLAB.
Theorem 7.15 implies

P
£
µ 2 bC

§
!P

h
¬2

q ∑ c1°Æ
i
= 1°Æ

which shows that bC has asymptotic coverage 1°Æ.
To illustrate the construction of a confidence region, consider the estimated regression (7.31) of

·log(wage) =Ø1 education+Ø2 experience+Ø3 experience2/100+Ø4.

Suppose that the two parameters of interest are the percentage return to education µ1 = 100Ø1 and the
percentage return to experience for individuals with 10 years experience µ2 = 100Ø2 +20Ø3. These two
parameters are a linear transformation of the regression parameters with point estimates

bµ =
µ

100 0 0 0
0 100 20 0

∂
bØ=

µ
11.8
1.2

∂
,

and have the covariance matrix estimate

bV bµ =
µ

0 100 0 0
0 0 100 20

∂
bV bØ

0

BBB@

0 0
100 0

0 100
0 20

1

CCCA

=
µ

0.632 0.103
0.103 0.157

∂

with inverse

bV °1
bµ =

µ
1.77 °1.16
°1.16 7.13

∂
.
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Thus the Wald statistic is

W (µ) =
°bµ°µ

¢0 bV °1
bµ

°bµ°µ
¢

=
µ

11.8°µ1

1.2°µ2

∂0 µ
1.77 °1.16
°1.16 7.13

∂µ
11.8°µ1

1.2°µ2

∂

= 1.77(11.8°µ1)2 °2.32(11.8°µ1)(1.2°µ2)+7.13(1.2°µ2)2 .

The 90% quantile of the ¬2
2 distribution is 4.605 (we use the ¬2

2 distribution as the dimension of µ is
two) so an asymptotic 90% confidence region for the two parameters is the interior of the ellipse W (µ) =
4.605 which is displayed in Figure 7.5. Since the estimated correlation of the two coefficient estimates is
modest (about 0.3) the region is modestly elliptical.

●

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Return to Education (%)

R
et

ur
n 

to
 E

xp
er

ie
nc

e 
(%

)

10 11 12 13 14

● β̂

Figure 7.5: Confidence Region for Return to Experience and Return to Education

7.20 Edgeworth Expansion*

Theorem 7.13 showed that the t-ratio T (µ) is asymptotically normal. In practice this means that
we use the normal distribution to approximate the finite sample distribution of T . How good is this
approximation? Some insight into the accuracy of the normal approximation can be obtained by an
Edgeworth expansion which is a higher-order approximation to the distribution of T . The following
result is an application of Theorem 9.11 of Introduction to Econometrics.
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Theorem 7.17 Under Assumptions 7.2, 7.3, ≠ > 0, Ekek16 < 1, Ekxk16 <
1, g

°
Ø

¢
has five continuous derivatives in a neighborhood of Ø, and

E
£
exp

°
t
°
kek4 +kxk4¢¢§∑ B < 1, as n !1

P [T (µ) ∑ x] =©(x)+n°1/2p1(x)¡(x)+n°1p2(x)¡(x)+o
°
n°1¢

uniformly in x, where p1(x) is an even polynomial of order 2 and p2(x) is an
odd polynomial of degree 5 with coefficients depending on the moments of e

and x up to order 16.

Theorem 7.17 shows that the finite sample distribution of the t-ratio can be approximated up to
o(n°1) by the sum of three terms, the first being the standard normal distribution, the second a O

°
n°1/2¢

adjustment, and the third a O
°
n°1¢ adjustment.

Consider a one-sided confidence interval C =
£bµ° z1°Æs(bµ),1

¢
where z1°Æ is the 1°Æth quantile of

Z ª N(0,1), thus©(z1°Æ)°1°Æ. Then

P [µ 2C ] =P [T (µ) ∑ z1°Æ]

=©(z1°Æ)+n°1/2p1(z1°Æ)¡(z1°Æ)+O
°
n°1¢

= 1°Æ+O
°
n°1/2¢ .

This means that the actual coverage is within O
°
n°1/2¢ of the desired 1°Æ level.

Now consider a two-sided interval C =
£bµ° z1°Æ/2s(bµ), bµ+ z1°Æ/2s(bµ)

§
. It has coverage

P [µ 2C ] =P [|T (µ)|∑ z1°Æ/2]

= 2©(z1°Æ/2)°1+n°12p2(z1°Æ/2)¡(z1°Æ/2)+o
°
n°1¢

= 1°Æ+O
°
n°1¢ .

This means that the actual coverage is within O
°
n°1¢ of the desired 1°Æ level. The accuracy is better

than the one-sided interval because the O
°
n°1/2¢ term in the Edgeworth expansion has offsetting effects

in the two tails of the distribution.

7.21 Uniformly Consistent Residuals*

It seems natural to view the residuals bei as estimators of the unknown errors ei . Are they consistent?
In this section we develop an appropriate convergence result. This is not a widely-used technique and
can safely be skipped by most readers.

Notice that we can write the residual as

bei = yi °x
0
i
bØ

= ei +x
0
iØ°x 0

i
bØ

= ei °x
0
i

°bØ°Ø
¢

. (7.39)

Since bØ°Ø°!
p

it seems reasonable to guess that bei will be close to ei if n is large.

We can bound the difference in (7.39) using the Schwarz inequality (B.12) to find

|bei °ei | =
ØØx

0
i

°bØ°Ø
¢ØØ∑ kx ik

∞∞bØ°Ø
∞∞ . (7.40)
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To bound (7.40) we can use
∞∞bØ°Ø

∞∞=Op (n°1/2) from Theorem 7.3 but we also need to bound the random
variable kx ik. If the regressor is bounded, that is, kx ik ∑ B <1, then |bei °ei | ∑ B

∞∞bØ°Ø
∞∞ = Op (n°1/2).

However if the regressor does not have bounded support then we have to be more careful.
The key is Theorem 6.17 which shows that Ekx ikr <1 implies x i = op

°
n1/r ¢

uniformly in i , or

n°1/r max
1∑i∑n

kx ik °!p 0.

Applied to (7.40) we obtain

max
1∑i∑n

|bei °ei |∑ max
1∑i∑n

kx ik
∞∞bØ°Ø

∞∞

= op (n°1/2+1/r ).

We have shown the following.

Theorem 7.18 Under Assumption 7.2 and Ekx ikr <1, then

max
1∑i∑n

|bei °ei | = op (n°1/2+1/r ). (7.41)

The rate of convergence in (7.41) depends on r. Assumption 7.2 requires r ∏ 4 so the rate of conver-
gence is at least op (n°1/4). As r increases the rate improves.

We mentioned in Section 7.7 that there are multiple ways to prove the consistency of the covariance
matrix estimator b≠. We now show that Theorem 7.18 provides one simple method to establish (7.23) and
thus Theorem 7.6. Let qn = max1∑i∑n |bei °ei | = op (n°1/4). Since

be2
i °e2

i = 2ei (bei °ei )+ (bei °ei )2 ,

then

∞∞∞∞∞
1
n

nX

i=1
x i x

0
i

°
be2

i °e2
i

¢
∞∞∞∞∞∑ 1

n

nX

i=1

∞∞x i x
0
i

∞∞ØØbe2
i °e2

i

ØØ

∑ 2
n

nX

i=1
kx ik2 |ei | |bei °ei |+

1
n

nX

i=1
kx ik2 |bei °ei |2

∑ 2
n

nX

i=1
kx ik2 |ei |qn + 1

n

nX

i=1
kx ik2 q2

n

∑ op (n°1/4).

7.22 Asymptotic Leverage*

Recall the definition of leverage from (3.41)

hi i = x
0
i

°
X

0
X

¢°1
x i .

These are the diagonal elements of the projection matrix P and appear in the formula for leave-one-
out prediction errors and HC2 and HC3 covariance matrix estimators. We can show that under i.i.d.
sampling the leverage values are uniformly asymptotically small.
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Let ∏min(A) and ∏max(A) denote the smallest and largest eigenvalues of a symmetric square matrix A

and note that ∏max(A
°1) = (∏min(A))°1 .

Since 1
n X

0
X °!

p
Q x x > 0, by the CMT∏min

° 1
n X

0
X

¢
°!

p
∏min

°
Q x x

¢
> 0. (The latter is positive since Q x x

is positive definite and thus all its eigenvalues are positive.) Then by the Quadratic Inequality (B.18)

hi i = x
0
i

°
X

0
X

¢°1
x i

∑∏max

≥°
X

0
X

¢°1
¥°

x
0
i x i

¢

=
µ
∏min

µ
1
n

X
0
X

∂∂°1 1
n
kx ik2

∑
°
∏min

°
Q x x

¢
+op (1)

¢°1 1
n

max
1∑i∑n

kx ik2 . (7.42)

Theorem 6.17 shows that Ekx ikr < 1 implies max
1∑i∑n

kx ik2 =
µ

max
1∑i∑n

kx ik
∂2

= op
°
n2/r ¢

and thus (7.42) is

op
°
n2/r°1¢.

Theorem 7.19 If x i is i.i.d., Q x x > 0, and Ekx ikr < 1 for some r ∏ 2, then
max

1∑i∑n
hi i = op

°
n2/r°1¢ .

For any r ∏ 2 then hi i = op (1) (uniformly in i ∑ n). Larger r implies a stronger rate of convergence.
For example r = 4 implies hi i = op

°
n°1/2¢ .

Theorem (7.19) implies that under random sampling with finite variances and large samples no indi-
vidual observation should have a large leverage value. Consequently individual observations should not
be influential unless one of these conditions is violated.
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Exercises

Exercise 7.1 Take the model yi = x
0
1iØ1 + x

0
2iØ2 + ei with E [x i ei ] = 0. Suppose that Ø1 is estimated by

regressing yi on x1i only. Find the probability limit of this estimator. In general, is it consistent for Ø1? If
not, under what conditions is this estimator consistent for Ø1?

Exercise 7.2 Let y be n £1, X be n £k (rank k). y = XØ+ e with E(x i ei ) = 0. Define the ridge regression
estimator

bØ=
√

nX

i=1
x i x

0
i +∏I k

!°1 √
nX

i=1
x i yi

!

(7.43)

here ∏> 0 is a fixed constant. Find the probability limit of bØ as n !1. Is bØ consistent for Ø?

Exercise 7.3 For the ridge regression estimator (7.43), set ∏= cn where c > 0 is fixed as n !1. Find the
probability limit of bØ as n !1.

Exercise 7.4 Verify some of the calculations reported in Section 7.4. Specifically, suppose that x1i and
x2i only take the values {°1,+1}, symmetrically, with

P [x1i = x2i = 1] =P [x1i = x2i =°1] = 3/8

P [x1i = 1, x2i =°1] =P [x1i =°1, x2i = 1] = 1/8

E
£
e2

i | x1i = x2i
§
= 5

4

E
£
e2

i | x1i 6= x2i
§
= 1

4
.

Verify the following:

(a) E [x1i ] = 0

(b) E
£
x2

1i

§
= 1

(c) E [x1i x2i ] = 1
2

(d) E
£
e2

i

§
= 1

(e) E
£
x2

1i e2
i

§
= 1

(f) E
£
x1i x2i e2

i

§
= 7

8
.

Exercise 7.5 Show (7.13)-(7.16).

Exercise 7.6 The model is

yi = x
0
iØ+ei

E [x i ei ] = 0

≠= E
£

x i x
0
i e2

i

§
.

Find the method of moments estimators (bØ, b≠) for
°
Ø,≠

¢
.
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(a) In this model, are (bØ, b≠) efficient estimators of
°
Ø,≠

¢
?

(b) If so, in what sense are they efficient?

Exercise 7.7 Of the variables (y§
i , yi , x i ) only the pair (yi , x i ) are observed. In this case we say that y§

i is
a latent variable. Suppose

y§
i = x

0
iØ+ei

E [x i ei ] = 0

yi = y§
i +ui

where ui is a measurement error satisfying

E [x i ui ] = 0

E
£

y§
i ui

§
= 0.

Let bØ denote the OLS coefficient from the regression of yi on x i .

(a) Is Ø the coefficient from the linear projection of yi on x i ?

(b) Is bØ consistent for Ø as n !1?

(c) Find the asymptotic distribution of
p

n
°bØ°Ø

¢
as n !1.

Exercise 7.8 Find the asymptotic distribution of
p

n
°
bæ2 °æ2¢ as n !1.

Exercise 7.9 The model is

yi = xiØ+ei

E [ei | xi ] = 0

where xi 2R. Consider the two estimators

bØ=
Pn

i=1 xi yi
Pn

i=1 x2
i

eØ= 1
n

nX

i=1

yi

xi
.

(a) Under the stated assumptions are both estimators consistent for Ø?

(b) Are there conditions under which either estimator is efficient?

Exercise 7.10 In the homoskedastic regression model y = XØ+ e with E [ei | x i ] = 0 and E
£
e2

i | x i
§
= æ2

suppose bØ is the OLS estimator of Ø with covariance matrix estimator bV bØ based on a sample of size n.

Let bæ2 be the estimator of æ2. You wish to forecast an out-of-sample value of yn+1 given that xn+1 = x .
Thus the available information is the sample (y , X ), the estimates (bØ, bV bØ, bæ2), the residuals be, and the
out-of-sample value of the regressors xn+1.

(a) Find a point forecast of yn+1.

(b) Find an estimator of the variance of this forecast.
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Exercise 7.11 Take a regression model with i.i.d. observations (yi , xi ) and scalar xi

yi = xiØ+ei

E [ei | xi ] = 0

≠= E
£
x2

i e2
i

§
.

Let bØ be the OLS estimator of Ø with residuals bei = yi °xi bØ. Consider the estimators of≠

e≠= 1
n

nX

i=1
x2

i e2
i

b≠= 1
n

nX

i=1
x2

i be2
i .

(a) Find the asymptotic distribution of
p

n
°e≠°≠

¢
as n !1.

(b) Find the asymptotic distribution of
p

n
°b≠°≠

¢
as n !1.

(c) How do you use the regression assumption E [ei | xi ] = 0 in your answer to (b)?

Exercise 7.12 Consider the model

yi =Æ+Øxi +ei

E [ei ] = 0

E [xi ei ] = 0

with both yi and xi scalar. Assuming Æ> 0 and Ø< 0 suppose the parameter of interest is the area under
the regression curve (e.g. consumer surplus), which is A =°Æ2/2Ø.

Let bµ = (bÆ, bØ)0 be the least-squares estimators of µ = (Æ,Ø)0 so that
p

n
°bµ°µ

¢
!d N (0,V µ) and let bV µ

be a standard consistent estimator for V µ.

(a) Given the above describe an estimator of A.

(b) Construct an asymptotic (1°¥) confidence interval for A.

Exercise 7.13 Consider an i.i.d. sample {yi , xi } i = 1, ...,n where yi and xi are scalar. Consider the reverse
projection model

xi = yi∞+ui

E
£

yi ui
§
= 0

and define the parameter of interest as µ = 1/∞.

(a) Propose an estimator b∞ of ∞.

(b) Propose an estimator bµ of µ.

(c) Find the asymptotic distribution of bµ.

(d) Find an asymptotic standard error for bµ.
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Exercise 7.14 Take the model

yi = x1iØ1 +x2iØ2 +ei

E [xi ei ] = 0

with both Ø1 2R and Ø2 2R, and define the parameter

µ =Ø1Ø2.

(a) What is the appropriate estimator bµ for µ?

(b) Find the asymptotic distribution of bµ under standard regularity conditions.

(c) Show how to calculate an asymptotic 95% confidence interval for µ.

Exercise 7.15 Take the linear model

yi = xiØ+ei

E [ei | xi ] = 0

with n observations and xi is scalar (real-valued). Consider the estimator

bØ=
Pn

i=1 x3
i yi

Pn
i=1 x4

i

.

Find the asymptotic distribution of
p

n
° bØ°Ø

¢
as n !1.

Exercise 7.16 From an i.i.d. sample (yi , x i ) of size n you randomly take half the observations. You esti-
mate a least-squares regression of yi on x i using only this sub-sample. Is the estimated slope coefficient
bØ consistent for the population projection coefficient? Explain your reasoning.

Exercise 7.17 An economist reports a set of parameter estimates, including the coefficient estimates
bØ1 = 1.0, bØ2 = 0.8, and standard errors s( bØ1) = 0.07 and s( bØ2) = 0.07. The author writes “The estimates
show that Ø1 is larger than Ø2.”

(a) Write down the formula for an asymptotic 95% confidence interval for µ = Ø1 °Ø2, expressed as a
function of bØ1, bØ2, s( bØ1), s( bØ2) and bΩ, where bΩ is the estimated correlation between bØ1 and bØ2.

(b) Can bΩ be calculated from the reported information?

(c) Is the author correct? Does the reported information support the author’s claim?

Exercise 7.18 Suppose an economic model suggests

g (x) = E
£

yi | xi = x
§
=Ø0 +Ø1x +Ø2x2

where xi 2R. You have a random sample (yi , xi ), i = 1, ...,n.

(a) Describe how to estimate g (x) at a given value x.

(b) Describe (be specific) an appropriate confidence interval for g (x).
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Exercise 7.19 Take the model

yi = x
0
iØ+ei

E [x i ei ] = 0

and suppose you have observations i = 1, ...,2n. (The number of observations is 2n.) You randomly split
the sample in half, (each has n observations), calculate bØ1 by least-squares on the first sample, and bØ2
by least-squares on the second sample. What is the asymptotic distribution of

p
n

°bØ1 ° bØ2
¢
?

Exercise 7.20 The data {yi , x i , wi } is from a random sample, i = 1, ...,n. The parameter Ø is estimated by
minimizing the criterion function

S(Ø) =
nX

i=1
wi

°
yi °x

0
iØ

¢2

That is bØ= argminØS(Ø).

(a) Find an explicit expression for bØ.

(b) What population parameter Ø is bØ estimating? (Be explicit about any assumptions you need to
impose. But don’t make more assumptions than necessary.)

(c) Find the probability limit for bØ as n !1.

(d) Find the asymptotic distribution of
p

n
°bØ°Ø

¢
as n !1.

Exercise 7.21 Take the model

yi = x
0
iØ+ei

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2

i = z
0
i∞

where z i is a (vector) function of x i . The sample is i = 1, ...,n with i.i.d. observations. For simplicity,
assume that z

0
i∞> 0 for all z i . Suppose you are interested in forecasting yn+1 given xn+1 = x and zn+1 = z

for some out-of-sample observation n + 1. Describe how you would construct a point forecast and a
forecast interval for yn+1.

Exercise 7.22 Take the model

yi = x
0
iØ+ei

E [ei | x i ] = 0

zi =
°
x
0
iØ

¢
∞+ui

E [ui | x i ] = 0

Your goal is to estimate ∞. (Note that ∞ is scalar.) You use a two-step estimator:

• Estimate bØ by least-squares of yi on x i .

• Estimate b∞ by least-squares of zi on x
0
i
bØ.

(a) Show that b∞ is consistent for ∞.
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(b) Find the asymptotic distribution of b∞ when ∞= 0.

Exercise 7.23 The model is

yi = xiØ+ei

E [ei | xi ] = 0

where xi 2R. Consider the the estimator

eØ= 1
n

nX

i=1

yi

xi
.

Find conditions under which eØ is consistent for Ø as n !1.

Exercise 7.24 The parameter Ø is defined in the model

yi = x§
i Ø+ei

where ei is independent of x§
i , E [ei ] = 0, E

£
e2

i

§
=æ2. The observables are (yi , xi ) where

xi = x§
i vi

and vi > 0 is random measurement error. Assume that vi is independent of x§
i and ei . Also assume that

xi and x§
i are non-negative and real-valued. Consider the least-squares estimator bØ for Ø.

(a) Find the plim of bØ expressed in terms of Ø and moments of (xi , vi ,ei ).

(b) Can you find a non-trivial condition under which bØ is consisent for Ø? (By non-trivial we mean
something other than vi = 1.)

Exercise 7.25 Take the standard model

yi = x
0
iØ+ei

E [x i ei ] = 0.

For a positive function w(x) let wi = w(x i ). Consider the estimator

eØ=
√

nX

i=1
wi x i x

0
i

!°1 √
nX

i=1
wi x i yi

!

.

Find the probability limit (as n !1) of eØ. (Do you need to add an assumption?) Is eØ consistent for eØ? If
not, under what assumption is eØ consistent for Ø?

Exercise 7.26 Take the regression model

yi = x
0
iØ+ei

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2

i

with x i 2Rk . Assume that P [ei = 0] = 0. Consider the infeasible estimator

eØ=
√

nX

i=1
e°2

i x i x
0
i

!°1 √
nX

i=1
e°2

i x i yi

!

.

This is a WLS estimator using the weights e°2
i .
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(a) Find the asymptotic distribution of eØ.

(b) Contrast your result with the asymptotic distribution of infeasible GLS.

Exercise 7.27 The model is

yi = x
0
iØ+ei

E [ei | x i ] = 0.

An econometrician is worried about the impact of some unusually large values of the regressors. The
model is thus estimated on the subsample for which |x i | ∑ c for some fixed c. Let eØ denote the OLS
estimator on this subsample. It equals

eØ=
√

nX

i=1
x i x

0
i (|x i |∑ c)

!°1 √
nX

i=1
x i yi (|x i |∑ c)

!

.

(a) Show that eØ°!
p
Ø.

(b) Find the asymptotic distribution of
p

n
°eØ°Ø

¢
.

Exercise 7.28 As in Exercise 3.26, use the CPS dataset and the subsample of white male Hispanics. Esti-
mate the regression

·log(wage) =Ø1 education+Ø2 experience+Ø3 experience2/100+Ø4.

(a) Report the coefficient estimates and robust standard errors.

(b) Let µ be the ratio of the return to one year of education to the return to one year of experience.
Write µ as a function of the regression coefficients and variables. Compute bµ from the estimated
model.

(c) Write out the formula for the asymptotic standard error for bµ as a function of the covariance matrix
for bØ. Compute s(bµ) from the estimated model.

(d) Construct a 90% asymptotic confidence interval for µ from the estimated model.

(e) Compute the regression function at education= 12 and experience= 20. Compute a 95% confidence
interval for the regression function at this point.

(f) Consider an out-of-sample individual with 16 years of education and 5 years experience. Construct
an 80% forecast interval for their log wage and wage. [To obtain the forecast interval for the wage,
apply the exponential function to both endpoints.]



Chapter 8

Restricted Estimation

8.1 Introduction

In the linear projection model

yi = x
0
iØ+ei

E [x i ei ] = 0

a common task is to impose a constraint on the coefficient vector Ø. For example, partitioning x
0
i =°

x
0
1i , x

0
2i

¢
and Ø0 =

°
Ø0

1,Ø0
2

¢
a typical constraint is an exclusion restriction of the form Ø2 = 0. In this case

the constrained model is

yi = x
0
1iØ1 +ei

E [x i ei ] = 0.

At first glance this appears the same as the linear projection model but there is one important difference:
the error ei is uncorrelated with the entire regressor vector x

0
i =

°
x
0
1i , x

0
2i

¢
not just the included regressor

x1i .
In general, a set of q linear constraints on Ø takes the form

R
0Ø= c (8.1)

where R is k £q, rank(R) = q < k, and c is q £1. The assumption that R is full rank means that the con-
straints are linearly independent (there are no redundant or contradictory constraints). We can define
the restricted parameter space B R as the set of values of Ø which satisfy (8.1), that is

B R =
©
Ø : R

0Ø= c
™

.

Sometimes we will call (8.1) a constraint and sometimes a restriction. They are the same thing.
Similarly sometimes we will call estimators which satisfy (8.1) constrained estimators and sometimes
restricted estimators. They mean the same thing.

The constraint Ø2 = 0 discussed above is a special case of the constraint (8.1) with

R =
µ

0
I k2

∂
, (8.2)

a selector matrix, and c = 0.

206
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Another common restriction is that a set of coefficients sum to a known constant, i.e. Ø1 +Ø2 = 1.
For example, this constraint arises in a constant-return-to-scale production function. Other common
restrictions include the equality of coefficients Ø1 =Ø2, and equal and offsetting coefficients Ø1 =°Ø2.

A typical reason to impose a constraint is that we believe (or have information) that the constraint
is true. By imposing the constraint we hope to improve estimation efficiency. The goal is to obtain
consistent estimates with reduced variance relative to the unconstrained estimator.

The questions then arise: How should we estimate the coefficient vector Ø imposing the linear re-
striction (8.1)? If we impose such constraints what is the sampling distribution of the resulting estimator?
How should we calculate standard errors? These are the questions explored in this chapter.

8.2 Constrained Least Squares

An intuitively appealing method to estimate a constrained linear projection is to minimize the least-
squares criterion subject to the constraint R

0Ø= c .
The constrained least-squares estimator is

eØcls = argmin
R

0Ø=c

SSE(Ø) (8.3)

where

SSE(Ø) =
nX

i=1

°
yi °x

0
iØ

¢2 = y
0
y °2y

0
XØ+Ø0

X
0
XØ. (8.4)

The estimator eØcls minimizes the sum of squared errors over all Ø such that Ø 2 B R , or equivalently such
that the restriction (8.1) holds. We call eØcls the constrained least-squares (CLS) estimator. We follow
the convention of using a tilde “~” rather than a hat “^” to indicate that eØcls is a restricted estimator in
contrast to the unrestricted least-squares estimator bØ and write it as eØcls to be clear that the estimation
method is CLS.

One method to find the solution to (8.3) uses the technique of Lagrange multipliers. The problem
(8.3) is equivalent to the minimization of the Lagrangian

L (Ø,∏) = 1
2

SSE(Ø)+∏0 °
R

0Ø°c
¢

(8.5)

over (Ø,∏) where∏ is an s£1 vector of Lagrange multipliers. The first-order conditions for minimization
of (8.5) are

@

@Ø
L (eØcls, e∏cls) =°X

0
y +X

0
X eØcls +R e∏cls = 0 (8.6)

and
@

@∏
L (eØcls, e∏cls) = R

0eØ°c = 0. (8.7)

Premultiplying (8.6) by R
0 °

X
0
X

¢°1 we obtain

°R
0bØ+R

0eØcls +R
0 °

X
0
X

¢°1
R e∏cls = 0

where bØ=
°

X
0
X

¢°1
X

0
y is the unrestricted least-squares estimator. Imposing R

0eØcls°c = 0 from (8.7) and
solving for e∏cls we find

e∏cls =
h

R
0 °

X
0
X

¢°1
R

i°1 °
R

0bØ°c
¢

.

Notice that
°

X
0
X

¢°1 > 0 and R full rank imply that R
0 °

X
0
X

¢°1
R > 0 and is hence invertible. (See Section

A.10.)
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Substituting this expression into (8.6) and solving for eØcls we find the solution to the constrained
minimization problem (8.3)

eØcls = bØols °
°

X
0
X

¢°1
R

h
R

0 °
X

0
X

¢°1
R

i°1 °
R

0bØols °c
¢

. (8.8)

(See Exercise 8.5 to verify that (8.8) satisfies (8.1).)
This is a general formula for the CLS estimator. It also can be written as

eØcls = bØols ° bQ°1
x x

R

≥
R

0 bQ°1
x x

R

¥°1 °
R

0bØols °c
¢

. (8.9)

The CLS residuals are
eei = yi °x

0
i
eØcls

and the n £1 vector of residuals are written in vector notation as ee.
To illustrate we generated a random sample of 100 observations for the variables (yi , x1i , x2i ) and

calculated the sum of squared errors function for the regression of yi on x1i and x2i . Figure 8.1 displays
contour plots of the sum of squared errors function. The center of the contour plots is the least squares
minimizer bØols = (0.33,0.26)0. Suppose it is desired to estimate the coefficients subject to the constraint
Ø1 +Ø2 = 1. This constraint is displayed in the figure by the straight line. The constrained least squares
estimator is the point on this straight line which yields the smallest sum of squared errors. This is the
point which intersects with the lowest contour plot. The solution is the point where a contour plot is
tangent to the constraint line and is marked as eØcls = (0.52,0.48)0.

β1

β 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● β̂ols

●
β~cls

Figure 8.1: Imposing a Constraint on the Least Squares Criterion

In Stata constrained least squares is implemented using the command.

8.3 Exclusion Restriction

While (8.8) is a general formula for the CLS estimator in most cases the estimator can be found by
applying least-squares to a reparameterized equation. To illustrate let us return to the first example
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presented at the beginning of the chapter – a simple exclusion restriction. Recall that the unconstrained
model is

yi = x
0
1iØ1 +x

0
2iØ2 +ei , (8.10)

the exclusion restriction is Ø2 = 0, and the constrained equation is

yi = x
0
1iØ1 +ei . (8.11)

In this setting the CLS estimator is OLS of yi on x1i . (See Exercise 8.1.) We can write this as

eØ1 =
√

nX

i=1
x1i x

0
1i

!°1 √
nX

i=1
x1i yi

!

. (8.12)

The CLS estimator of the entire vector Ø0 =
°
Ø0

1,Ø0
2

¢
is

eØ=
µ eØ1

0

∂
. (8.13)

It is not immediately obvious but (8.8) and (8.13) are algebraically identical. To see this the first compo-
nent of (8.8) with (8.2) is

eØ1 =
°

I k2 0
¢
"
bØ° bQ°1

x x

µ
0

I k2

∂∑°
0 I k2

¢ bQ°1
x x

µ
0

I k2

∂∏°1 °
0 I k2

¢ bØ

#

.

Using (3.40) this equals

eØ1 = bØ1 ° bQ12
≥
bQ22

¥°1 bØ2

= bØ1 + bQ°1
11·2 bQ12

bQ°1
22

bQ22·1bØ2

= bQ°1
11·2

≥
bQ1y ° bQ12

bQ°1
22

bQ2y

¥

+ bQ°1
11·2 bQ12

bQ°1
22

bQ22·1 bQ°1
22·1

≥
bQ2y ° bQ21

bQ°1
11

bQ1y

¥

= bQ°1
11·2

≥
bQ1y ° bQ12

bQ°1
22

bQ21
bQ°1

11
bQ1y

¥

= bQ°1
11·2

≥
bQ11 ° bQ12

bQ°1
22

bQ21

¥
bQ°1

11
bQ1y

= bQ°1
11

bQ1y

which is (8.13) as originally claimed.

8.4 Finite Sample Properties

In this section we explore some of the properties of the CLS estimator in the linear regression model

yi = x
0
iØ+ei (8.14)

E (ei | x i ) = 0. (8.15)

First, it is useful to write the estimator and the residuals as linear functions of the error vector. These
are algebraic relationships and do not rely on the linear regression assumptions.
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Theorem 8.1 Define P = X
°

X
0
X

¢°1
X

0 and

A =
°

X
0
X

¢°1
R

≥
R

0 °
X

0
X

¢°1
R

¥°1
R

0 °
X

0
X

¢°1 .

Then

1. R
0bØ°c = R

0 °
X

0
X

¢°1
X

0
e

2. eØcls °Ø=
≥°

X
0
X

¢°1
X

0 ° AX
0
¥

e

3. ee =
°

I °P +X AX
0¢

e

4. I n °P +X AX
0 is symmetric and idempotent

5. tr
°

I n °P +X AX
0¢= n °k +q.

For a proof see Exercise 8.6.
Given the linearity of Theorem 8.1.2 it is not hard to show that the CLS estimator is unbiased for Ø.

Theorem 8.2 In the linear regression model (8.14)-(8.15) under (8.1),
E
£eØcls | X

§
=Ø.

For a proof see Exercise 8.7.
Given the linearity we can also calculate the variance matrix of eØcls. For this we will add the assump-

tion of conditional homoskedasticity to simplify the expression.

Theorem 8.3 In the homoskedastic linear regression model (8.14)-(8.15) with
E
£
e2

i | x i
§
=æ2, under (8.1),

V
0
eØ
= var

°eØcls | X
¢

=
µ°

X
0
X

¢°1 °
°

X
0
X

¢°1
R

≥
R

0 °
X

0
X

¢°1
R

¥°1
R

0 °
X

0
X

¢°1
∂
æ2.

For a proof see Exercise 8.8.
We use the V

0
eØ

notation to emphasize that this is the variance matrix under the assumption of con-

ditional homoskedasticity.
For inference we need an estimate of V

0
eØ

. A natural estimator is

bV 0
eØ =

µ°
X

0
X

¢°1 °
°

X
0
X

¢°1
R

≥
R

0 °
X

0
X

¢°1
R

¥°1
R

0 °
X

0
X

¢°1
∂

s2
cls
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where

s2
cls =

1
n °k +q

nX

i=1
ee2

i (8.16)

is a biased-corrected estimator of æ2. Standard errors for the components of Ø are then found by taking
the squares roots of the diagonal elements of bV eØ, for example

s( bØ j ) =
rh

bV 0
eØ

i

j j
.

The estimator (8.16) has the property that it is unbiased for æ2 under conditional homoskedasticity.
To see this, using the properties of Theorem 8.1,

°
n °k +q

¢
s2

cls = ee 0ee
= e

0 °
I n °P +X AX

0¢°
I n °P +X AX

0¢
e

= e
0 °

I n °P +X AX
0¢

e. (8.17)

We defer the remainder of the proof to Exercise 8.9.

Theorem 8.4 In the homoskedastic linear regression model (8.14)-(8.15) with

E
£
e2

i | x i
§
=æ2, under (8.1), E

£
s2

cls | X
§
=æ2 and E

h
bV 0

eØ | X

i
=V

0
eØ

.

Now consider the distributional properties in the normal regression model

yi = x
0
iØ+ei

ei ª N(0,æ2).

By the linearity of Theorem 8.1.2, conditional on X , eØcls °Ø is normal. Given Theorems 8.2 and 8.3 we
deduce that eØcls ª N(Ø,V

0
eØ

).

Similarly, from Exericise 8.1 we know ee =
°

I n °P +X AX
0¢

e is linear in e so is also conditionally nor-

mal. Furthermore, since
°

I n °P +X AX
0¢

≥
X

°
X

0
X

¢°1 °X A

¥
= 0, ee and eØcls are uncorrelated and thus

independent. Thus s2
cls and eØcls are independent.

From (8.17) and the fact that I n °P +X AX
0 is idempotent with rank n °k +q it follows that

s2
cls ªæ2¬2

n°k+q /
°
n °k +q

¢
.

It follows that the t-statistic has the exact distribution

T =
bØ j °Ø j

s( bØ j )

ª N(0,1)
r
¬2

n°k+q

.
(n °k +q)

ª tn°k+q

a student t distribution with n °k +q degrees of freedom.
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The relevance of this calculation is that the “degrees of freedom” for a CLS regression problem equal
n°k+q rather than n°k as in the OLS regression problem. Essentially the model has k°q free parame-
ters instead of k. Another way of thinking about this is that estimation of a model with k coefficients and
q restrictions is equivalent to estimation with k °q coefficients.

We summarize the properties of the normal regression model.

Theorem 8.5 In the normal linear regression model (8.14)-(8.15), with con-
straint (8.1),

eØcls ª N(Ø,V
0
eØ

)
°
n °k +q

¢
s2

cls

æ2 ª¬2
n°k+q

T ª tn°k+q .

An interesting relationship is that in the homoskedastic regression model
≥

X
°

X
0
X

¢°1 °X A

¥

cov
°bØols ° eØcls, eØcls | X

¢
= E

h°bØols ° eØcls
¢°eØcls °Ø

¢0 | X

i

= E
h

AX
0
ee

0
≥

X
°

X
0
X

¢°1 °X A

¥
| X

i

= AX
0
≥

X
°

X
0
X

¢°1 °X A

¥
æ2 = 0.

This means that bØols°eØcls and eØcls are conditionally uncorrelated and hence independent. One corollary
is

cov
°bØols, eØcls | X

¢
= var

£eØcls | X
§

.

A second corollary is

var
£bØols ° eØcls | X

§
= var

£bØols | X
§
°var

£eØcls | X
§

(8.18)

=
°

X
0
X

¢°1
R

≥
R

0 °
X

0
X

¢°1
R

¥°1
R

0 °
X

0
X

¢°1
æ2.

This also shows us the difference between the CLS and OLS variances matrices

var
£bØols | X

§
°var

£eØcls | X
§
=

°
X

0
X

¢°1
R

≥
R

0 °
X

0
X

¢°1
R

¥°1
R

0 °
X

0
X

¢°1
æ2 ∏ 0

the final equality meaning positive semi-definite. It follows that var
£bØols | X

§
∏ var

£eØcls | X
§

in the posi-
tive definite sense, and thus CLS is more efficient than OLS. Both estimators are unbiased (in the linear
regression model) and CLS has a lower variance matrix (in the linear homoskedastic regression model).

The relationship (8.18) is rather interesting and will appear again. The expression says that the vari-
ance of the difference between the estimators is equal to the difference between the variances. This is
rather special. It occurs (generically) when we are comparing an efficient and an inefficient estimator.
We call (8.18) the Hausman Equality as it was first pointed out in econometrics by Hausman (1978).
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8.5 Minimum Distance

The previous section explored the finite sample distribution theory under the assumptions of the
linear regression model, homoskedastic regression model, and normal regression model. We now return
to the general projection model where we do not impose linearity, homoskedasticity, nor normality. We
are interested in the question: Can we do better than CLS in this setting?

A minimum distance estimator tries to find a parameter value which satisfies the constraint which is
as close as possible to the unconstrained estimate. Let bØ be the unconstrained least-squares estimator,
and for some k £k positive definite weight matrix cW > 0 define the quadratic criterion function

J
°
Ø

¢
= n

°bØ°Ø
¢0 cW

°bØ°Ø
¢

. (8.19)

This is a (squared) weighted Euclidean distance between bØ and Ø. J
°
Ø

¢
is small if Ø is close to bØ, and is

minimized at zero only if Ø = bØ. A minimum distance estimator eØmd for Ø minimizes J
°
Ø

¢
subject to

the constraint (8.1), that is,
eØmd = argmin

R
0Ø=c

J
°
Ø

¢
.

The CLS estimator is the special case when cW = bQ x x and we write this criterion function as

J 0 °
Ø

¢
= n

°bØ°Ø
¢0 bQ x x

°bØ°Ø
¢

. (8.20)

To see the equality of CLS and minimum distance rewrite the least-squares criterion as follows. Substi-
tute the unconstrained least-squares fitted equation yi = x

0
i
bØ+ bei into SSE(Ø) to obtain

SSE(Ø) =
nX

i=1

°
yi °x

0
iØ

¢2

=
nX

i=1

°
x
0
i
bØ+ bei °x

0
iØ

¢2

=
nX

i=1
be2

i +
°bØ°Ø

¢0
√

nX

i=1
x i x

0
i

!
°bØ°Ø

¢

= n bæ2 + J 0 °
Ø

¢
(8.21)

where the third equality uses the fact that
Pn

i=1 x i bei = 0, and the last line uses
Pn

i=1 x i x
0
i = n bQ x x . The ex-

pression (8.21) only depends onØ through J 0 °
Ø

¢
. Thus minimization of SSE(Ø) and J 0 °

Ø
¢

are equivalent,
and hence eØmd = eØcls when cW = bQ x x .

We can solve for eØmd explicitly by the method of Lagrange multipliers. The Lagrangian is

L (Ø,∏) = 1
2

J
°
Ø, cW

¢
+∏0 °

R
0Ø°c

¢

which is minimized over (Ø,∏). The solution is

e∏md = n
≥
R

0cW °1
R

¥°1 °
R

0bØ°c
¢

(8.22)

eØmd = bØ°cW °1
R

≥
R

0cW °1
R

¥°1 °
R

0bØ°c
¢

. (8.23)

(See Exercise 8.10.) Comparing (8.23) with (8.9) we can see that eØmd specializes to eØcls when we set
cW = bQ x x .

An obvious question is which weight matrix cW is best. We will address this question after we derive
the asymptotic distribution for a general weight matrix.
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8.6 Asymptotic Distribution

We first show that the class of minimum distance estimators are consistent for the population pa-
rameters when the constraints are valid.

Assumption 8.1 R
0Ø= c where R is k £q with rank(R) = q.

Assumption 8.2 cW °!
p

W > 0.

Theorem 8.6 Consistency
Under Assumptions 7.1, 8.1, and 8.2, eØmd °!

p
Ø as n !1.

For a proof see Exercise 8.11.
Theorem 8.6 shows that consistency holds for any weight matrix with a positive definite limit so the

result includes the CLS estimator.
Similarly, the constrained estimators are asymptotically normally distributed.

Theorem 8.7 Asymptotic Normality
Under Assumptions 7.2, 8.1, and 8.2,

p
n

°eØmd °Ø
¢
°!

d
N

°
0,V Ø(W )

¢

as n !1, where

V Ø(W ) =V Ø°W
°1

R
°
R

0
W

°1
R

¢°1
R

0
V Ø

°V ØR
°
R

0
W

°1
R

¢°1
R

0
W

°1

+W
°1

R
°
R

0
W

°1
R

¢°1
R

0
V ØR

°
R

0
W

°1
R

¢°1
R

0
W

°1 (8.24)

and V Ø =Q
°1
x x
≠Q

°1
x x

.

For a proof see Exercise 8.12.
Theorem 8.7 shows that the minimum distance estimator is asymptotically normal for all positive

definite weight matrices. The asymptotic variance depends on W . The theorem includes the CLS esti-
mator as a special case by setting W =Q x x .
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Theorem 8.8 Asymptotic Distribution of CLS Estimator
Under Assumptions 7.2 and 8.1, as n !1

p
n

°eØcls °Ø
¢
°!

d
N(0,V cls)

where

V cls =V Ø°Q
°1
x x

R
°
R

0
Q

°1
x x

R
¢°1

R
0
V Ø

°V ØR
°
R

0
Q

°1
x x

R
¢°1

R
0
Q

°1
x x

+Q
°1
x x

R
°
R

0
Q

°1
x x

R
¢°1

R
0
V ØR

°
R

0
Q

°1
x x

R
¢°1

R
0
Q

°1
x x

.

For a proof see Exercise 8.13.

8.7 Variance Estimation and Standard Errors

Earlier we introduced the covariance matrix estimator under the assumption of conditional homoskedas-
ticity. We now introduce an estimator which does not impose homoskedasticity.

The asymptotic covariance matrix V cls may be estimated by replacing V Ø with a consistent estima-
tor such as bV Ø. A more efficient estimator can be obtained by using the restricted coefficient estimator
which we now show. Given the constrained least-squares squares residuals eei = yi ° x

0
i
eØcls we can esti-

mate the matrix≠= E
£

x i x
0
i e2

i

§
by

e≠= 1
n °k +q

nX

i=1
x i x

0
i ee

2
i .

Notice that we have used an adjusted degrees of freedom. This is an ad hoc adjustment designed to
mimic that used for estimation of the error variance æ2. The moment estimator of V Ø is

eV Ø = bQ°1
x x

e≠bQ°1
x x

and that for V cls is

eV cls = eV Ø° bQ°1
x x

R

≥
R

0 bQ°1
xx R

¥°1
R

0 eV Ø

° eV ØR

≥
R

0 bQ°1
x x

R

¥°1
R

0 bQ°1
x x

+ bQ°1
x x

R

≥
R

0 bQ°1
x x

R

¥°1
R

0 eV ØR

≥
R

0 bQ°1
x x

R

¥°1
R

0 bQ°1
x x

.

We can calculate standard errors for any linear combination h
0eØcls such that h does not lie in the

range space of R . A standard error for h
0eØ is

s
°
h
0eØcls

¢
=

°
n°1

h
0 eV clsh

¢1/2
.

8.8 Efficient Minimum Distance Estimator

Theorem 8.7 shows that minimum distance estimators, which include CLS as a special case, are
asymptotically normal with an asymptotic covariance matrix which depends on the weight matrix W .
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The asymptotically optimal weight matrix is the one which minimizes the asymptotic variance V Ø(W ).
This turns out to be W =V

°1
Ø

as is shown in Theorem 8.9 below. Since V
°1
Ø

is unknown this weight matrix

cannot be used for a feasible estimator but we can replace V
°1
Ø

with a consistent estimate bV °1
Ø and the

asymptotic distribution (and efficiency) are unchanged. We call the minimum distance estimator with
cW = bV °1

Ø the efficient minimum distance estimator and takes the form

eØemd = bØ° bV ØR
°
R

0 bV ØR
¢°1 °

R
0bØ°c

¢
. (8.25)

The asymptotic distribution of (8.25) can be deduced from Theorem 8.7. (See Exercises 8.14 and 8.15,
and the proof in Section 8.16.)

Theorem 8.9 Efficient Minimum Distance Estimator
Under Assumptions 7.2 and 8.1,

p
n

°eØemd °Ø
¢
°!

d
N

°
0,V Ø,emd

¢

as n !1, where

V Ø,emd =V Ø°V ØR
°
R

0
V ØR

¢°1
R

0
V Ø. (8.26)

Since
V Ø,emd ∑V Ø (8.27)

the estimator (8.25) has lower asymptotic variance than the unrestricted esti-
mator. Furthermore, for any W ,

V Ø,emd ∑V Ø(W ) (8.28)

so (8.25) is asymptotically efficient in the class of minimum distance estima-
tors.

Theorem 8.9 shows that the minimum distance estimator with the smallest asymptotic variance is
(8.25). One implication is that the constrained least squares estimator is generally inefficient. The inter-
esting exception is the case of conditional homoskedasticity in which case the optimal weight matrix is

W =
≥
V

0
Ø

¥°1
so in this case CLS is an efficient minimum distance estimator. Otherwise when the error

is conditionally heteroskedastic there are asymptotic efficiency gains by using minimum distance rather
than least squares.

The fact that CLS is generally inefficient is counter-intuitive and requires some reflection to under-
stand. Standard intuition suggests to apply the same estimation method (least squares) to the uncon-
strained and constrained models and this is the most common empirical practice. But Theorem 8.9
shows that this is not the efficient estimation method. Instead, the efficient minimum distance estima-
tor has a smaller asymptotic variance. Why? The reason is that the least-squares estimator does not
make use of the regressor x2i . It ignores the information E [x2i ei ] = 0. This information is relevant when
the error is heteroskedastic and the excluded regressors are correlated with the included regressors.

Inequality (8.27) shows that the efficient minimum distance estimator eØemd has a smaller asymptotic
variance than the unrestricted least squares estimator bØ. This means that efficient estimation is attained
by imposing correct restrictions when we use the minimum distance method.
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8.9 Exclusion Restriction Revisited

We return to the example of estimation with a simple exclusion restriction. The model is

yi = x
0
1iØ1 +x

0
2iØ2 +ei

with the exclusion restriction Ø2 = 0. We have introduced three estimators of Ø1. The first is uncon-
strained least-squares applied to (8.10) which can be written as

bØ1 = bQ°1
11·2 bQ1y ·2.

From Theorem 7.25 and equation (7.14) its asymptotic variance is

avar
£bØ1

§
=Q

°1
11·2

°
≠11 °Q12Q

°1
22≠21 °≠12Q

°1
22 Q21 +Q12Q

°1
22≠22Q

°1
22 Q21

¢
Q

°1
11·2.

The second estimator of Ø1 is CLS, which can be written as

eØ1 = bQ°1
11

bQ1y .

Its asymptotic variance can be deduced from Theorem 8.8, but it is simpler to apply the CLT directly to
show that

avar
£eØ1

§
=Q

°1
11≠11Q

°1
11 . (8.29)

The third estimator of Ø1 is efficient minimum distance. Applying (8.25), it equals

Ø1 = bØ1 ° bV 12 bV °1
22

bØ2 (8.30)

where we have partitioned

bV Ø =
∑ bV 11 bV 12

bV 21 bV 22

∏
.

From Theorem 8.9 its asymptotic variance is

avar
h
Ø1

i
=V 11 °V 12V

°1
22 V 21. (8.31)

See Exercise 8.16 to verify equations (8.29), (8.30), and (8.31).
In general the three estimators are different and they have different asymptotic variances. It is in-

structive to compare the variances to assess whether or not the constrained estimator is more efficient
than the unconstrained estimator.

First, assume conditional homoskedasticity. In this case the two covariance matrices simplify to

avar
£bØ1

§
=æ2

Q
°1
11·2

and
avar

£eØ1
§
=æ2

Q
°1
11 .

If Q12 = 0 (so x1i and x2i are orthogonal) then these two variance matrices are equal and the two estima-
tors have equal asymptotic efficiency. Otherwise, since Q12Q

°1
22 Q21 ∏ 0, then Q11 ∏Q11°Q12Q

°1
22 Q21 and

consequently
Q

°1
11 æ

2 ∑
°
Q11 °Q12Q

°1
22 Q21

¢°1
æ2.

This means that under conditional homoskedasticity eØ1 has a lower asymptotic variance matrix than bØ1.
Therefore in this context constrained least-squares is more efficient than unconstrained least-squares.
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This is consistent with our intuition that imposing a correct restriction (excluding an irrelevant regressor)
improves estimation efficiency.

However, in the general case of conditional heteroskedasticity this ranking is not guaranteed. In fact
what is really amazing is that the variance ranking can be reversed. The CLS estimator can have a larger
asymptotic variance than the unconstrained least squares estimator.

To see this let’s use the simple heteroskedastic example from Section 7.4. In that example, Q11 =
Q22 = 1, Q12 =

1
2

,≠11 =≠22 = 1, and≠12 =
7
8

. We can calculate (see Exercise 8.17) that Q11·2 =
3
4

and

avar
£bØ1

§
= 2

3
(8.32)

avar
£eØ1

§
= 1 (8.33)

avar
h
Ø1

i
= 5

8
. (8.34)

Thus the restricted least-squares estimator eØ1 has a larger variance than the unrestricted least-squares
estimator bØ1! The minimum distance estimator has the smallest variance of the three, as expected.

What we have found is that when the estimation method is least-squares, deleting the irrelevant
variable x2i can actually increase estimation variance, or equivalently, adding an irrelevant variable can
decrease the estimation variance.

To repeat this unexpected finding, we have shown in a very simple example that it is possible for least-
squares applied to the short regression (8.11) to be less efficient for estimation of Ø1 than least-squares
applied to the long regression (8.10) even though the constraint Ø2 = 0 is valid! This result is strongly
counter-intuitive. It seems to contradict our initial motivation for pursuing constrained estimation – to
improve estimation efficiency.

It turns out that a more refined answer is appropriate. Constrained estimation is desirable but not
constrained least-squares estimation. While least-squares is asymptotically efficient for estimation of
the unconstrained projection model it is not an efficient estimator of the constrained projection model.

8.10 Variance and Standard Error Estimation

We have discussed covariance matrix estimation for CLS but not yet for the EMD estimator.
The asymptotic covariance matrix (8.26) may be estimated by replacing V Ø with a consistent esti-

mate. It is best to construct the variance estimate using eØemd. The EMD residuals are eei = yi ° x
0
i
eØemd.

Using these we can estimate the matrix≠= E
£

x i x
0
i e2

i

§
by

e≠= 1
n °k +q

nX

i=1
x i x

0
i ee

2
i .

Following the formula for CLS we recommend an adjusted degrees of freedom. Given e≠ the moment
estimator of V Ø is

eV Ø = bQ°1
x x

e≠bQ°1
x x

Given this, we construct the variance estimator

eV Ø,emd = eV Ø° eV ØR
°
R

0 eV ØR
¢°1

R
0 eV Ø. (8.35)

A standard error for h
0eØ is then

s
°
h
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h
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¢1/2
. (8.36)
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8.11 Hausman Equality

Form (8.25) we have
p
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It follows that the asymptotic variances of the estimators satisfy the relationship

avar
£bØols ° eØemd

§
= avar

£bØols
§
°avar

£eØemd
§

. (8.37)

We call (8.37) the Hausman Equality: the asymptotic variance of the difference between an efficient and
another estimator is the difference in the asymptotic variances.

8.12 Example: Mankiw, Romer and Weil (1992)

We illustrate the methods by replicating some of the estimates reported in a well-known paper by
Mankiw, Romer, and Weil (1992). The paper investigates the implications of the Solow growth model
using cross-country regressions. A key equation in their paper regresses the change between 1960 and
1985 in log GDP per capita on (1) log GDP in 1960, (2) the log of the ratio of aggregate investment to
GDP, (3) the log of the sum of the population growth rate n, the technological growth rate g , and the rate
of depreciation ±, and (4) the log of the percentage of the working-age population that is in secondary
school (School), the latter a proxy for human-capital accumulation.

Table 8.1: Estimates of Solow Growth Model

bØols bØcls bØemd

logGDP1960 °0.29
(0.05)

°0.30
(0.05)

°0.30
(0.05)

log I
GDP 0.52

(0.11)
0.50

(0.09)
0.46

(0.08)

log
°
n + g +±

¢
°0.51
(0.24)

°0.74
(0.08)

°0.71
(0.07)

logSchool 0.23
(0.07)

0.24
(0.07)

0.25
(0.06)

Intercept 3.02
(0.74)

2.46
(0.44)

2.48
(0.44)

Standard errors are heteroskedasticity-consistent

The data is available on the textbook webpage in the file .
The sample is 98 non-oil-producing countries and the data was reported in the published paper.

As g and ± were unknown the authors set g +± = 0.05. We report least-squares estimates in the first
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column of Table 8.1. The estimates are consistent with the Solow theory due to the positive coefficients
on investment and human capital and negative coefficient for population growth. The estimates are
also consistent with the convergence hypothesis (that income levels tend towards a common mean over
time) as the coefficient on intial GDP is negative.

The authors show that in the Solow model the 2nd , 3r d and 4th coefficients sum to zero. They rees-
timated the equation imposing this contraint. We present constrained least-squares estimates in the
second column of Table 8.1 and efficient minimum distance estimates in the third column. Most of the
coefficients and standard errors only exhibit small changes by imposing the constraint. The one excep-
tion is the coefficient on log population growth which increases in magnitude and its standard error
decreases substantially. The differences between the CLS and EMD estimates are modest.

We now present Stata, R and MATLAB code which implements these estimates.
You may notice that the Stata code has a section which uses the Mata matrix programming language.

This is used because Stata does not implement the efficient minimum distance estimator, so needs to be
separately programmed. As illustrated here, the Mata language allows a Stata user to implement methods
using commands which are quite similar to MATLAB.
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Stata do File

use "MRW1992.dta", clear
gen lndY = log(Y85)-log(Y60)
gen lnY60 = log(Y60)
gen lnI = log(invest/100)
gen lnG = log(pop_growth/100+0.05)
gen lnS = log(school/100)
* Unrestricted regression
reg lndY lnY60 lnI lnG lnS if N==1, r
* Store result for efficient minimum distance
mat b = e(b)’
scalar k = e(rank)
mat V = e(V)
* Constrained regression
constraint define 1 lnI+lnG+lnS=0
cnsreg lndY lnY60 lnI lnG lnS if N==1, constraints(1) r
* Efficient minimum distance
mata{

data = st_data(.,("lnY60","lnI","lnG","lnS","lndY","N"))
data_select = select(data,data[.,6]:==1)
y = data_select[.,5]
n = rows(y)
x = (data_select[.,1..4],J(n,1,1))
k = cols(x)
invx = invsym(x’*x)
b_ols = st_matrix("b")
V_ols = st_matrix("V")
R = (0 \ 1 \ 1 \ 1 \ 0)
b_emd = b_ols-V_ols*R*invsym(R’*V_ols*R)*R’*b_ols
e_emd = J(1,k,y-x*b_emd)
xe_emd = x:*e_emd
xe_emd’*xe_emd
V2 = (n/(n-k+1))*invx*(xe_emd’*xe_emd)*invx
V_emd = V2 - V2*R*invsym(R’*V2*R)*R’*V2
se_emd = diagonal(sqrt(V_emd))
st_matrix("b_emd",b_emd)
st_matrix("se_emd",se_emd)}

mat list b_emd
mat list se_emd
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R Program File

data <- read.table("MRW1992.txt",header=TRUE)
N <- matrix(data$N,ncol=1)
lndY <- matrix(log(data$Y85)-log(data$Y60),ncol=1)
lnY60 <- matrix(log(data$Y60),ncol=1)
lnI <- matrix(log(data$invest/100),ncol=1)
lnG <- matrix(log(data$pop_growth/100+0.05),ncol=1)
lnS <- matrix(log(data$school/100),ncol=1)
xx <- as.matrix(cbind(lnY60,lnI,lnG,lnS,matrix(1,nrow(lndY),1)))
x <- xx[N==1,]
y <- lndY[N==1]
n <- nrow(x)
k <- ncol(x)
# Unrestricted regression
invx <-solve(t(x)%*%x)
b_ols <- solve((t(x)%*%x),(t(x)%*%y))
e_ols <- rep((y-x%*%beta_ols),times=k)
xe_ols <- x*e_ols
V_ols <- (n/(n-k))*invx%*%(t(xe_ols)%*%xe_ols)%*%invx
se_ols <- sqrt(diag(V_ols))
print(beta_ols)
print(se_ols)
# Constrained regression
R <- c(0,1,1,1,0)
iR <- invx%*%R%*%solve(t(R)%*%invx%*%R)%*%t(R)
b_cls <- b_ols - iR%*%b_ols
e_cls <- rep((y-x%*%b_cls),times=k)
xe_cls <- x*e_cls
V_tilde <- (n/(n-k+1))*invx%*%(t(xe_cls)%*%xe_cls)%*%invx
V_cls <- V_tilde - iR%*%V_tilde - V_tilde%*%t(iR) +iR%*%V_tilde%*%t(iR)
print(b_cls)print(se_cls)
# Efficient minimum distance
Vr <- V_ols%*%R%*%solve(t(R)%*%V_ols%*%R)%*%t(R)
b_emd <- b_ols - Vr%*%b_ols
e_emd <- rep((y-x%*%b_emd),times=k)
xe_emd <- x*e_emd
V2 <- (n/(n-k+1))*invx%*%(t(xe_emd)%*%xe_emd)%*%invx
V_emd <- V2 - V2%*%R%*%solve(t(R)%*%V2%*%R)%*%t(R)%*%V2
se_emd <- sqrt(diag(V_emd))



CHAPTER 8. RESTRICTED ESTIMATION 223

MATLAB Program File

data = xlsread(’MRW1992.xlsx’);
N = data(:,1);
Y60 = data(:,4);
Y85 = data(:,5);
pop_growth = data(:,7);
invest = data(:,8);
school = data(:,9);
lndY = log(Y85)-log(Y60);
lnY60 = log(Y60);
lnI = log(invest/100);
lnG = log(pop_growth/100+0.05);
lnS = log(school/100);
xx = [lnY60,lnI,lnG,lnS,ones(size(lndY,1),1)];
x = xx(N==1,:);
y = lndY(N==1);
[n,k] = size(x);
% Unrestricted regression
invx = inv(x’*x);
beta_ols = (x’*x)\(x’*y);
e_ols = repmat((y-x*beta_ols),1,k);
xe_ols = x.*e_ols;
V_ols = (n/(n-k))*invx*(xe_ols’*xe_ols)*invx;
se_ols = sqrt(diag(V_ols));
display(beta_ols);
display(se_ols);
% Constrained regression
R = [0;1;1;1;0];
iR = invx*R*inv(R’*invx*R)*R’;
beta_cls = beta_ols - iR*beta_ols;
e_cls = repmat((y-x*beta_cls),1,k);
xe_cls = x.*e_cls;
V_tilde = (n/(n-k+1))*invx*(xe_cls’*xe_cls)*invx;
V_cls = V_tilde - iR*V_tilde - V_tilde*(iR’)...
+ iR*V_tilde*(iR’);
se_cls = sqrt(diag(V_cls));
display(beta_cls);
display(se_cls);
% Efficient minimum distance
beta_emd = beta_ols-V_ols*R*inv(R’*V_ols*R)*R’*beta_ols;
e_emd = repmat((y-x*beta_emd),1,k);
xe_emd = x.*e_emd;
V2 = (n/(n-k+1))*invx*(xe_emd’*xe_emd)*invx;
V_emd = V2 - V2*R*inv(R’*V2*R)*R’*V2;
se_emd = sqrt(diag(V_emd));
display(beta_emd);
display(se_emd);
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8.13 Misspecification

What are the consequences for a constrained estimator eØ if the constraint (8.1) is incorrect? To be
specific suppose that the truth is

R
0Ø= c

§

where c
§ is not necessarily equal to c .

This situation is a generalization of the analysis of “omitted variable bias” from Section 2.24 where
we found that the short regression (e.g. (8.12)) is estimating a different projection coefficient than the
long regression (e.g. (8.10)).

One mechanical answer is that we can use the formula (8.23) for the minimum distance estimator to
find that
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. (8.38)

The second term, W
°1

R
°
R

0
W

°1
R

¢°1 (c
§ °c), shows that imposing an incorrect constraint leads to in-

consistency – an asymptotic bias. We can call the limiting value Ø§
md the minimum-distance projection

coefficient or the pseudo-true value implied by the restriction.
However, we can say more.
For example, we can describe some characteristics of the approximating projections. The CLS esti-

mator projection coefficient has the representation
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the best linear predictor subject to the constraint (8.1). The minimum distance estimator converges in
probability to

Ø§
md = argmin

R
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Ø°Ø0

¢0
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Ø°Ø0

¢

where Ø0 is the true coefficient. That is, Ø§
md is the coefficient vector satisfying (8.1) closest to the true

value in the weighted Euclidean norm. These calculations show that the constrained estimators are still
reasonable in the sense that they produce good approximations to the true coefficient conditional on
being required to satisfy the constraint.

We can also show that eØmd has an asymptotic normal distribution. The trick is to define the pseudo-
true value
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(Note that (8.38) and (8.39) are different!) Then
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In particular p
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°eØemd °Ø§
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.

This means that even when the constraint (8.1) is misspecified the conventional covariance matrix es-
timator (8.35) and standard errors (8.36) are appropriate measures of the sampling variance though the
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distributions are centered at the pseudo-true values (projections) Ø§
n rather than Ø. The fact that the

estimators are biased is an unavoidable consequence of misspecification.
An alternative approach to the asymptotic distribution theory under misspecification uses the con-

cept of local alternatives. It is a technical device which might seem a bit artificial but it is a powerful
method to derive useful distributional approximations in a wide variety of contexts. The idea is to index
the true coefficient Øn by n via the relationship

R
0Øn = c +±n°1/2. (8.41)

Equation (8.41) specifies that Øn violates (8.1) and thus the constraint is misspecified. However, the
constraint is “close” to correct as the difference R

0Øn °c =±n°1/2 is “small” in the sense that it decreases
with the sample size n. We call (8.41) local misspecification.

The asymptotic theory is derived as n !1 under the sequence of probability distributions with the
coefficients Øn . The way to think about this is that the true value of the parameter is Øn and it is “close”
to satisfying (8.1). The reason why the deviation is proportional to n°1/2 is because this is the only choice
under which the localizing parameter ± appears in the asymptotic distribution but does not dominate it.
The best way to see this is to work through the asymptotic approximation.

SinceØn is the true coefficient value, then yi = x
0
iØn +ei and we have the standard representation for

the unconstrained estimator, namely
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There is no difference under fixed (classical) or local asymptotics since the right-hand-side is indepen-
dent of the coefficient Øn .

A difference arises for the constrained estimator. Using (8.41), c = R
0Øn °±n°1/2 so
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It follows that
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The first term is asymptotically normal (from 8.42)). The second term converges in probability to a con-
stant. This is because the n°1/2 local scaling in (8.41) is exactly balanced by the

p
n scaling of the estima-

tor. No alternative rate would have produced this result.
Consequently we find that the asymptotic distribution equals

p
n

°eØmd °Øn
¢
°!

d
N

°
0,V Ø

¢
+W

°1
R

°
R

0
W

°1
R

¢°1
±= N

°
±§,V Ø(W )

¢
(8.43)

where ±§ =W
°1

R
°
R

0
W

°1
R

¢°1
±.
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The asymptotic distribution (8.43) is an approximation of the sampling distribution of the restricted
estimator under misspecification. The distribution (8.43) contains an asymptotic bias component ±§.
The approximation is not fundamentally different from (8.40) – they both have the same asymptotic
variances and both reflect the bias due to misspecification. The difference is that (8.40) puts the bias on
the left-side of the convergence arrow while (8.43) has the bias on the right-side. There is no substantive
difference between the two. However, (8.43) is more convenient for some purposes such as the analysis
of the power of tests as we will explore in the next chapter.

8.14 Nonlinear Constraints

In some cases it is desirable to impose nonlinear constraints on the parameter vector Ø. They can be
written as

r (Ø) = 0 (8.44)

where r :Rk !R
q . This includes the linear constraints (8.1) as a special case. An example of (8.44) which

cannot be written as (8.1) is Ø1Ø2 = 1, which is (8.44) with r (Ø) =Ø1Ø2 °1.
The constrained least-squares and minimum distance estimators ofØ subject to (8.44) solve the min-

imization problems
eØcls = argmin

r (Ø)=0
SSE(Ø) (8.45)

eØmd = argmin
r (Ø)=0

J
°
Ø

¢
(8.46)

where SSE(Ø) and J
°
Ø

¢
are defined in (8.4) and (8.19), respectively. The solutions minimize the La-

grangians

L (Ø,∏) = 1
2

SSE(Ø)+∏0
r (Ø)

or

L (Ø,∏) = 1
2

J
°
Ø

¢
+∏0

r (Ø) (8.47)

over (Ø,∏).
Computationally there is no general closed-form solution for the estimator so they must be found

numerically. Algorithms to numerically solve (8.45) and (8.46) are known as constrained optimization
methods and are available in programming languages including MATLAB, GAUSS and R. See Chapter 12
of Introduction to Econometrics.

Assumption 8.3

1. r (Ø) = 0, r (Ø) is continuously differentiable at the true Ø.

2. rank(R) = q, where R = @

@Ø
r (Ø)0.

The asymptotic distribution is a simple generalization of the case of a linear constraint but the proof
is more delicate.
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Theorem 8.10 Under Assumptions 7.2, 8.2, and 8.3, for eØ = eØmd and eØ = eØcls
defined in (8.45) and (8.46),

p
n

°eØ°Ø
¢
°!

d
N

°
0,V Ø(W )

¢

as n !1 where V Ø(W ) i s defined in (8.24). For eØcls, W = Q x x and V Ø(W ) =
V cls as defined in Theorem 8.8. V Ø(W ) is minimized with W = V

°1
Ø

in which
case the asymptotic variance is

V
§
Ø =V Ø°V ØR

°
R

0
V ØR

¢°1
R

0
V Ø.

The asymptotic variance matrix for the efficient minimum distance estimator can be estimated by

bV §
Ø = bV Ø° bV ØbR

≥
bR 0 bV ØbR

¥°1 bR 0 bV Ø

where
bR = @

@Ø
r (eØmd)0. (8.48)

Standard errors for the elements of eØmd are the square roots of the diagonal elements of bV §
eØ = n°1 bV §

Ø.

8.15 Inequality Restrictions

Inequality constraints on the parameter vector Ø take the form

r (Ø) ∏ 0 (8.49)

for some function r :Rk !R
q . The most common example is a non-negative constraint

Ø1 ∏ 0.

The constrained least-squares and minimum distance estimators can be written as

eØcls = argmin
r (Ø)∏0

SSE(Ø) (8.50)

and
eØmd = argmin

r (Ø)∏0
J
°
Ø

¢
. (8.51)

Except in special cases the constrained estimators do not have simple algebraic solutions. An impor-
tant exception is when there is a single non-negativity constraint, e.g. Ø1 ∏ 0 with q = 1. In this case the
constrained estimator can be found by the following approach. Compute the uncontrained estimator bØ.
If bØ1 ∏ 0 then eØ= bØ. Otherwise if bØ1 < 0 then impose Ø1 = 0 (eliminate the regressor X1) and re-estimate.
This method yields the constrained least-squares estimator. While this method works when there is a
single non-negativity constraint, it does not immediately generalize to other contexts.

The computational problems (8.50) and (8.51) are examples of quadratic programming problems.
Quick and easy computer algorithms are available in programming languages including MATLAB, GAUSS
and R.
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Inference on inequality-constrained estimators is unfortunately quite challenging. The conventional
asymptotic theory gives rise to the following dichotomy. If the true parameter satisfies the strict in-
equality r (Ø) > 0 then asymptotically the estimator is not subject to the constraint and the inequality-
constrained estimator has an asymptotic distribution equal to the unconstrained case. However if the
true parameter is on the boundary, e.g. r (Ø) = 0, then the estimator has a truncated structure. This is
easiest to see in the one-dimensional case. If we have an estimator bØ which satisfies

p
n

° bØ°Ø
¢
°!

d
Z =

N
°
0,VØ

¢
and Ø = 0, then the constrained estimator eØ = max[ bØ,0] will have the asymptotic distributionp

n eØ°!
d

max[Z,0], a “half-normal” distribution.
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8.16 Technical Proofs*

Proof of Theorem 8.9, equation (8.28) Let R? be a full rank k £
°
k °q

¢
matrix satisfying R

0
?V ØR = 0 and

then set C = [R ,R?] which is full rank and invertible. Then we can calculate that

C
0
V

§
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§
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R R
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R R
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=
∑
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0
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∏
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C
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=
"

R
0
V

§
Ø

(W )R R
0
V
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Ø(W )R?

R
0
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"
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°
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.

Thus

C
0
≥
V Ø(W )°V

§
Ø

¥
C

=C
0
V Ø(W )C °C

0
V

§
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=
"

0 0
0 R

0
?W R

°
R

0
W R

¢°1
R

0
V ØR

°
R

0
W R

¢°1
R

0
W R?

#

∏ 0

Since C is invertible it follows that V Ø(W )°V
§
Ø
∏ 0 which is (8.28). Á

Proof of Theorem 8.10 We show the result for the minimum distance estimator eØ = eØmd as the proof
for the constrained least-squares estimator is similar. For simplicity we assume that the constrained
estimator is consistent eØ °!

p
Ø. This can be shown with more effort, but requires a deeper treatment

than appropriate for this textbook.
For each element r j (Ø) of the q-vector r (Ø), by the mean value theorem there exists a Ø§

j on the line

segment joining eØ and Ø such that

r j (eØ) = r j (Ø)+ @

@Ø
r j (Ø§

j )0
°eØ°Ø

¢
. (8.52)

Let R
§
n be the k £q matrix

R
§ =

∑
@

@Ø
r 1(Ø§

1 )
@

@Ø
r 2(Ø§

2 ) · · · @

@Ø
r q (Ø§

q )
∏

.

Since eØ°!
p
Ø it follows that Ø§

j °!p Ø, and by the CMT, R
§ °!

p
R . Stacking the (8.52), we obtain

r (eØ) = r (Ø)+R
§0 °eØ°Ø

¢
.

Since r
°eØ

¢
= 0 by construction and r (Ø) = 0 by Assumption 8.1 this implies

0 = R
§0 °eØ°Ø

¢
. (8.53)
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The first-order condition for (8.47) is

cW
°bØ° eØ

¢
= bR e∏.

where bR is defined in (8.48).
Premultiplying by R

§0cW °1
, inverting, and using (8.53), we find

e∏=
≥
R

§0cW °1 bR
¥°1

R
§0 °bØ° eØ

¢
=

≥
R

§0cW °1 bR
¥°1

R
§0 °bØ°Ø

¢
.

Thus
eØ°Ø=

µ
I °cW °1 bR

≥
R

§0
n

cW °1 bR
¥°1

R
§0
n

∂°bØ°Ø
¢

. (8.54)

From Theorem 7.3 and Theorem 7.6 we find
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Á
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Exercises

Exercise 8.1 In the model y = X 1Ø1+X 2Ø2+e, show directly from definition (8.3) that the CLS estimate
of Ø= (Ø1,Ø2) subject to the constraint that Ø2 = 0 is the OLS regression of y on X 1.

Exercise 8.2 In the model y = X 1Ø1+X 2Ø2+e, show directly from definition (8.3) that the CLS estimate
of Ø = (Ø1,Ø2) subject to the constraint that Ø1 = c (where c is some given vector) is the OLS regression
of y °X 1c on X 2.

Exercise 8.3 In the model y = X 1Ø1 + X 2Ø2 + e, with X 1 and X 2 each n £ k, find the CLS estimate of
Ø= (Ø1,Ø2) subject to the constraint that Ø1 =°Ø2.

Exercise 8.4 In the linear projection model yi =Æ+x
0
iØ+ei consider the restriction Ø= 0.

(a) Find the constrained least-squares (CLS) estimator of Æ under the restriction Ø= 0.

(b) Find an expression for the efficient minimum distance estimator of Æ under the restriction Ø= 0.

Exercise 8.5 Verify that for eØcls defined in (8.8) that R
0eØcls = c .

Exercise 8.6 Prove Theorem 8.1.

Exercise 8.7 Prove Theorem 8.2, that is, E
£eØcls | X

§
= Ø, under the assumptions of the linear regression

regression model and (8.1).
Hint: Use Theorem 8.1.

Exercise 8.8 Prove Theorem 8.3.

Exercise 8.9 Prove Theorem 8.4. That is, show E
£
s2

cls | X
§
=æ2 under the assumptions of the homoskedas-

tic regression model and (8.1).

Exercise 8.10 Verify (8.22), (8.23), and that the minimum distance estimator eØmd with cW = bQ xx equals
the CLS estimator.

Exercise 8.11 Prove Theorem 8.6.

Exercise 8.12 Prove Theorem 8.7.

Exercise 8.13 Prove Theorem 8.8. (Hint: Use that CLS is a special case of Theorem 8.7.)

Exercise 8.14 Verify that (8.26) is V Ø(W ) with W =V
°1
Ø

.

Exercise 8.15 Prove (8.27). Hint: Use (8.26).

Exercise 8.16 Verify (8.29), (8.30) and (8.31).

Exercise 8.17 Verify (8.32), (8.33), and (8.34).
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Exercise 8.18 Suppose you have two independent samples

y1i = x
0
1iØ1 +e1i

and
y2i = x

0
2iØ2 +e2i

both of sample size n, and both x1i and x2i are k £1. You estimate Ø1 and Ø2 by OLS on each sample,
bØ1 and bØ2, say, with asymptotic covariance matrix estimators bV Ø1

and bV Ø2
(which are consistent for the

asymptotic covariance matrices V Ø1
and V Ø2

). Consider efficient minimum distance estimation under
the restriction Ø1 =Ø2.

(a) Find the estimator eØ of Ø=Ø1 =Ø2.

(b) Find the asymptotic distribution of eØ.

(c) How would you approach the problem if the sample sizes are different, say n1 and n2?

Exercise 8.19 As in Exercise 7.28 and 3.26, use the CPS dataset and the subsample of white male His-
panics.

(a) Estimate the regression

·log(wage) =Ø1 education+Ø2 experience+Ø3 experience2/100+Ø4married1

+Ø5married2 +Ø6married3 +Ø7widowed+Ø8divorced+Ø9separated+Ø10

where married1, married2, and married3 are the first three marital status codes listed in Section
3.22.

(b) Estimate the equation using constrained least-squares, imposing the constraints Ø4 =Ø7 and Ø8 =
Ø9, and report the estimates and standard errors.

(c) Estimate the equation using efficient minimum distance imposing the same constraints. Report
the estimates and standard errors.

(d) Under what constraint on the coefficients is the wage equation non-decreasing in experience for
experience up to 50?

(e) Estimate the equation imposing Ø4 =Ø7, Ø8 =Ø9, and the inequality from part (d).

Exercise 8.20 Take the model

yi = m(xi )+ei

m(x) =Ø0 +Ø1x +Ø2x2 +·· ·+Øp xp

E [zi ei ] = 0

zi = (1, xi , ..., xp
i )0

g (x) = d
d x

m(x)

with i.i.d. observations (yi , xi ), i = 1, ...,n. The order of the polynomial p is known.

(a) How should we interpret the function m(x) given the projection assumption? How should we in-
terpret g (x)? (Briefly)



CHAPTER 8. RESTRICTED ESTIMATION 233

(b) Describe an estimator bg (x) of g (x).

(c) Find the asymptotic distribution of
p

n
°
bg (x)° g (x)

¢
as n !1.

(d) Show how to construct an asymptotic 95% confidence interval for g (x) (for a single x).

(e) Assume p = 2. Describe how to estimate g (x) imposing the constraint that m(x) is concave.

(f) Assume p = 2. Describe how to estimate g (x) imposing the constraint that m(u) is increasing on
the region u 2 [xL , xU ].

Exercise 8.21 Take the linear model with restrictions

yi = x
0
iØ+ei

E [x i ei ] = 0

R
0Ø= c

with n observations. Consider three estimators for Ø

• bØ the unconstrained least squares estimator

• eØ the constrained least squares estimator

• Ø the constrained efficient minimum distance estimator

For each estimator define the residuals bei = yi ° x
0
i
bØ, eei = yi ° x

0
i
eØ, ei = yi ° x

0
iØ, and variance esti-

mators bæ2 = 1
n

Pn
i=1 be2

i , eæ2 = 1
n

Pn
i=1 ee2

i , and æ2 = 1
n

Pn
i=1 e2

i .

(a) As Ø is the most efficient estimator and bØ the least, do you expect that æ2 < eæ2 < bæ2 in large sam-
ples?

(b) Consider the statistic

Tn = bæ°2
nX

i=1
(bei ° eei )2 .

Find the asymptotic distribution for Tn when R
0Ø= c is true.

(c) Does the result of the previous question simplify when the error ei is homoskedastic?

Exercise 8.22 Take the linear model

yi = x1iØ1 +x2iØ2 +ei

E [x i ei ] = 0

with n observations. Consider the restriction

Ø1

Ø2
= 2.

(a) Find an explicit expression for the constrained least-squares (CLS) estimator eØ = ( eØ1, eØ2) of Ø =
(Ø1,Ø2) under the restriction. Your answer should be specific to the restriction. It should not be a
generic formula for an abstract general restriction.

(b) Derive the asymptotic distribution of eØ1 under the assumption that the restriction is true.



Chapter 9

Hypothesis Testing

In Chapter 5 we briefly introduced hypothesis testing in the context of the normal regression model.
In this chapter we explore hypothesis testing in greater detail, with a particular emphasis on asymptotic
inference. For more detail on the foundations see Chapter 13 of Introduction to Econometrics.

9.1 Hypotheses

In Chapter 8 we discussed estimation subject to restrictions, including linear restrictions (8.1), non-
linear restrictions (8.44), and inequality restrictions (8.49). In this chapter we discuss tests of such re-
strictions.

Hypothesis tests attempt to assess whether there is evidence to contradict a proposed parametric
restriction. Let

µ = r (Ø)

be a q £1 parameter of interest where r : Rk !£Ω Rq is some transformation. For example, µ may be a
single coefficient, e.g. µ =Ø j , the difference between two coefficients, e.g. µ =Ø j °Ø`, or the ratio of two
coefficients, e.g. µ =Ø j /Ø`.

A point hypothesis concerning µ is a proposed restriction such as

µ = µ0 (9.1)

where µ0 is a hypothesized (known) value.
More generally, letting Ø 2 B Ω Rk be the parameter space, a hypothesis is a restriction Ø 2 B 0 where

B 0 is a proper subset of B . This specializes to (9.1) by setting B 0 =
©
Ø 2 B : r (Ø) = µ0

™
.

In this chapter we will focus exclusively on point hypotheses of the form (9.1) as they are the most
common and relatively simple to handle.

The hypothesis to be tested is called the null hypothesis.

Definition 9.1 The null hypothesis, written H0, is the restriction µ = µ0 or Ø 2
B 0.

We often write the null hypothesis as H0 : µ = µ0 or H0 : r (Ø) = µ0.
The complement of the null hypothesis (the collection of parameter values which do not satisfy the

null hypothesis) is called the alternative hypothesis.

234



CHAPTER 9. HYPOTHESIS TESTING 235

Definition 9.2 The alternative hypothesis, written H1, is the set
{µ 2£ : µ 6= µ0} or

©
Ø 2 B :Ø › B 0

™
.

We often write the alternative hypothesis asH1 : µ 6= µ0 orH1 : r (Ø) 6= µ0. For simplicity, we often refer
to the hypotheses as “the null” and “the alternative”. Figure 9.1(a) illustrates the division of the parameter
space into null and alternative hypotheses.

H0

H1

(a) Null and Alternative Hypotheses

T < c

T > c

S0

S1

(b) Acceptance and Rejection Regions

Figure 9.1: Hypothesis Testing

In hypothesis testing, we assume that there is a true (but unknown) value of µ and this value either
satisfiesH0 or does not satisfyH0. The goal of hypothesis testing is to assess whether or notH0 is true, by
asking if H0 is consistent with the observed data.

To be specific, take our example of wage determination and consider the question: Does union mem-
bership affect wages? We can turn this into a hypothesis test by specifying the null as the restriction that
a coefficient on union membership is zero in a wage regression. Consider, for example, the estimates
reported in Table 4.1. The coefficient for “Male Union Member” is 0.095 (a wage premium of 9.5%) and
the coefficient for “Female Union Member” is 0.022 (a wage premium of 2.2%). These are estimates,
not the true values. The question is: Are the true coefficients zero? To answer this question, the testing
method asks the question: Are the observed estimates compatible with the hypothesis, in the sense that
the deviation from the hypothesis can be reasonably explained by stochastic variation? Or are the ob-
served estimates incompatible with the hypothesis, in the sense that that the observed estimates would
be highly unlikely if the hypothesis were true?

9.2 Acceptance and Rejection

A hypothesis test either accepts the null hypothesis or rejects the null hypothesis in favor of the alter-
native hypothesis. We can describe these two decisions as “Accept H0” and “Reject H0”. In the example
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given in the previous section, the decision would be either to accept the hypothesis that union member-
ship does not affect wages, or to reject the hypothesis in favor of the alternative that union membership
does affect wages.

The decision is based on the data, and so is a mapping from the sample space to the decision set.
This splits the sample space into two regions S0 and S1 such that if the observed sample falls into S0 we
accept H0, while if the sample falls into S1 we reject H0. The set S0 is called the acceptance region and
the set S1 the rejection or critical region.

It is convenient to express this mapping as a real-valued function called a test statistic

T = T
°°

y1, x1
¢

, ...,
°
yn , xn

¢¢

relative to a critical value c. The hypothesis test then consists of the decision rule

1. Accept H0 if T ∑ c.

2. Reject H0 if T > c.

Figure 9.1(b) illustrates the division of the sample space into acceptance and rejection regions.
A test statistic T should be designed so that small values are likely when H0 is true and large values

are likely when H1 is true. There is a well developed statistical theory concerning the design of optimal
tests. We will not review that theory here, but instead refer the reader to Lehmann and Romano (2005).
In this chapter we will summarize the main approaches to the design of test statistics.

The most commonly used test statistic is the absolute value of the t-statistic

T = |T (µ0)| (9.2)

where

T (µ) =
bµ°µ
s(bµ)

(9.3)

is the t-statistic from (7.33), bµ is a point estimate, and s(bµ) its standard error. T is an appropriate statistic
when testing hypotheses on individual coefficients or real-valued parameters µ = h(Ø) and µ0 is the hy-
pothesized value. Quite typically, µ0 = 0, as interest focuses on whether or not a coefficient equals zero,
but this is not the only possibility. For example, interest may focus on whether an elasticity µ equals 1, in
which case we may wish to test H0 : µ = 1.

9.3 Type I Error

A false rejection of the null hypothesis H0 (rejecting H0 when H0 is true) is called a Type I error. The
probability of a Type I error is called the size of the test.

P
£
Reject H0 |H0 true

§
=P [T > c |H0 true] . (9.4)

The uniform size of the test is the supremum of (9.4) across all data distributions which satisfy H0. A
primary goal of test construction is to limit the incidence of Type I error by bounding the size of the test.

For the reasons discussed in Chapter 7, in typical econometric models the exact sampling distribu-
tions of estimators and test statistics are unknown and hence we cannot explicitly calculate (9.4). In-
stead, we typically rely on asymptotic approximations. Suppose that the test statistic has an asymptotic
distribution under H0. That is, when H0 is true

T °!
d

ª (9.5)
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as n !1 for some continuously-distributed random variable ª. This is not a substantive restriction as
most conventional econometric tests satisfy (9.5). Let G(u) = P [ª∑ u] denote the distribution of ª. We
call ª (or G) the asymptotic null distribution.

It is generally desirable to design test statistics T whose asymptotic null distribution G is known
and does not depend on unknown parameters. In this case we say that the statistic T is asymptotically
pivotal.

For example, if the test statistic equals the absolute t-statistic from (9.2), then we know from Theorem
7.13 that if µ = µ0 (that is, the null hypothesis holds), then T °!

d
|Z| as n ! 1 where Z ª N(0,1). This

means that G(u) = P [|Z|∑ u] = 2©(u)°1, the distribution of the absolute value of the standard normal
as shown in (7.34). This distribution does not depend on unknowns and is pivotal.

We define the asymptotic size of the test as the asymptotic probability of a Type I error:

lim
n!1

P [T > c |H0 true] =P (ª> c) = 1°G(c).

We see that the asymptotic size of the test is a simple function of the asymptotic null distribution G and
the critical value c. For example, the asymptotic size of a test based on the absolute t-statistic with critical
value c is 2(1°©(c)) .

In the dominant approach to hypothesis testing, the researcher pre-selects a significance level Æ 2
(0,1) and then selects c so that the (asymptotic) size is no larger than Æ. When the asymptotic null distri-
bution G is pivotal, we can accomplish this by setting c equal to the 1°Æ quantile of the distribution G .
(If the distribution G is not pivotal, more complicated methods must be used, pointing out the great con-
venience of using asymptotically pivotal test statistics.) We call c the asymptotic critical value because
it has been selected from the asymptotic null distribution. For example, since 2(1°©(1.96)) = 0.05, it
follows that the 5% asymptotic critical value for the absolute t-statistic is c = 1.96. Calculation of nor-
mal critical values is done numerically in statistical software. For example, in MATLAB the command is

Æ/2).

9.4 t tests

As we mentioned earlier, the most common test of the one-dimensional hypothesis

H0 : µ = µ0

against the alternative
H1 : µ 6= µ0

is the absolute value of the t-statistic (9.3). We now formally state its asymptotic null distribution, which
is a simple application of Theorem 7.13.

Theorem 9.1 Under Assumptions 7.2, 7.3, and H0 : µ = µ0,

T (µ0) °!
d

Z.

For c satisfying Æ= 2(1°©(c)) ,

P [|T (µ0)| > c |H0] !Æ,

and the test “Reject H0 if |T (µ0)| > c” has asymptotic size Æ.
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The theorem shows that asymptotic critical values can be taken from the normal distribution. As in
our discussion of asymptotic confidence intervals (Section 7.14), the critical value could alternatively be
taken from the student t distribution, which would be the exact test in the normal regression model (Sec-
tion 5.12). Indeed, t critical values are the default in packages such as Stata. Since the critical values from
the student t distribution are (slightly) larger than those from the normal distribution, using student t
critical values decreases the rejection probability of the test. In practical applications the difference is
typically unimportant unless the sample size is quite small (in which case the asymptotic approximation
should be questioned as well).

The alternative hypothesis µ 6= µ0 is sometimes called a “two-sided” alternative. In contrast, some-
times we are interested in testing for one-sided alternatives such as

H1 : µ > µ0

or
H1 : µ < µ0.

Tests of µ = µ0 against µ > µ0 or µ < µ0 are based on the signed t-statistic T = T (µ0). The hypothesis
µ = µ0 is rejected in favor of µ > µ0 if T > c where c satisfies Æ = 1°©(c). Negative values of T are not
taken as evidence against H0, as point estimates bµ less than µ0 do not point to µ > µ0. Since the critical
values are taken from the single tail of the normal distribution, they are smaller than for two-sided tests.
Specifically, the asymptotic 5% critical value is c = 1.645. Thus, we reject µ = µ0 in favor of µ > µ0 if
T > 1.645.

Conversely, tests of µ = µ0 against µ < µ0 reject H0 for negative t-statistics, e.g. if T ∑ °c. For this
alternative large positive values of T are not evidence against H0. An asymptotic 5% test rejects if T <
°1.645.

There seems to be an ambiguity. Should we use the two-sided critical value 1.96 or the one-sided
critical value 1.645? The answer is that in most cases the two-sided critical value is appropriate. We
should use the one-sided critical values only when the parameter space is known to satisfy a one-sided
restriction such as µ ∏ µ0. This is when the test of µ = µ0 against µ > µ0 makes sense. If the restriction
µ ∏ µ0 is not known a priori, then imposing this restriction to test µ = µ0 against µ > µ0 does not makes
sense. Since linear regression coefficients typically do not have a priori sign restrictions, the standard
convention is to use two-sided critical values.

This may seem contrary to the way testing is presented in statistical textbooks, which often focus on
one-sided alternative hypotheses. The latter focus is primarily for pedagogy, as the one-sided theoretical
problem is cleaner and easier to understand.

9.5 Type II Error and Power

A false acceptance of the null hypothesis H0 (accepting H0 when H1 is true) is called a Type II error.
The rejection probability under the alternative hypothesis is called the power of the test, and equals 1
minus the probability of a Type II error:

º(µ) =P
£
Reject H0 |H1 true

§
=P [T > c |H1 true] .

We call º(µ) the power function and is written as a function of µ to indicate its dependence on the true
value of the parameter µ.

In the dominant approach to hypothesis testing, the goal of test construction is to have high power
subject to the constraint that the size of the test is lower than the pre-specified significance level. Gen-
erally, the power of a test depends on the true value of the parameter µ, and for a well behaved test the
power is increasing both as µ moves away from the null hypothesis µ0 and as the sample size n increases.
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Given the two possible states of the world (H0 or H1) and the two possible decisions (Accept H0 or
Reject H0), there are four possible pairings of states and decisions as is depicted in Table 9.1.

Table 9.1: Hypothesis Testing Decisions

Accept H0 Reject H0

H0 true Correct Decision Type I Error
H1 true Type II Error Correct Decision

Given a test statistic T , increasing the critical value c increases the acceptance region S0 while de-
creasing the rejection region S1. This decreases the likelihood of a Type I error (decreases the size) but
increases the likelihood of a Type II error (decreases the power). Thus the choice of c involves a trade-off
between size and the power. This is why the significance levelÆ of the test cannot be set arbitrarily small.
(Otherwise the test will not have meaningful power.)

It is important to consider the power of a test when interpreting hypothesis tests, as an overly narrow
focus on size can lead to poor decisions. For example, it is easy to design a test which has perfect size
yet has trivial power. Specifically, for any hypothesis we can use the following test: Generate a random
variable U ª U [0,1] and reject H0 if U < Æ. This test has exact size of Æ. Yet the test also has power
precisely equal to Æ. When the power of a test equals the size, we say that the test has trivial power.
Nothing is learned from such a test.

9.6 Statistical Significance

Testing requires a pre-selected choice of significance level Æ, yet there is no objective scientific basis
for choice of Æ. Nevertheless the common practice is to set Æ= 0.05 (5%). Alternative values are Æ= 0.10
(10%) and Æ = 0.01 (1%). These choices are somewhat the by-product of traditional tables of critical
values and statistical software.

The informal reasoning behind the choice of a 5% critical value is to ensure that Type I errors should
be relatively unlikely – that the decision “Reject H0” has scientific strength – yet the test retains power
against reasonable alternatives. The decision “Reject H0” means that the evidence is inconsistent with
the null hypothesis, in the sense that it is relatively unlikely (1 in 20) that data generated by the null
hypothesis would yield the observed test result.

In contrast, the decision “Accept H0” is not a strong statement. It does not mean that the evidence
supports H0, only that there is insufficient evidence to reject H0. Because of this, it is more accurate to
use the label “Do not Reject H0” instead of “Accept H0”.

When a test rejectsH0 at the 5% significance level it is common to say that the statistic is statistically
significant and if the test accepts H0 it is common to say that the statistic is not statistically significant
or that it is statistically insignificant. It is helpful to remember that this is simply a compact way of
saying “Using the statistic T , the hypothesis H0 can [cannot] be rejected at the asymptotic 5% level.”
Furthermore, when the null hypothesis H0 : µ = 0 is rejected it is common to say that the coefficient µ is
statistically significant, because the test has rejected the hypothesis that the coefficient is equal to zero.

Let us return to the example about the union wage premium as measured in Table 4.1. The absolute
t-statistic for the coefficient on “Male Union Member” is 0.095/0.020 = 4.7, which is greater than the 5%
asymptotic critical value of 1.96. Therefore we reject the hypothesis that union membership does not
affect wages for men. In this case, we can say that union membership is statistically significant for men.
However, the absolute t-statistic for the coefficient on “Female Union Member” is 0.023/0.020 = 1.2,
which is less than 1.96 and therefore we do not reject the hypothesis that union membership does not
affect wages for women. In this case we find that membership for women is not statistically significant.
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When a test accepts a null hypothesis (when a test is not statistically significant) a common misin-
terpretation is that this is evidence that the null hypothesis is true. This is incorrect. Failure to reject is
by itself not evidence. Without an analysis of power, we do not know the likelihood of making a Type II
error, and thus are uncertain. In our wage example, it would be a mistake to write that “the regression
finds that female union membership has no effect on wages”. This is an incorrect and most unfortunate
interpretation. The test has failed to reject the hypothesis that the coefficient is zero, but that does not
mean that the coefficient is actually zero.

When a test rejects a null hypothesis (when a test is statistically significant) it is strong evidence
against the hypothesis (since if the hypothesis were true then rejection is an unlikely event). Rejection
should be taken as evidence against the null hypothesis. However, we can never conclude that the null
hypothesis is indeed false, as we cannot exclude the possibility that we are making a Type I error.

Perhaps more importantly, there is an important distinction between statistical and economic sig-
nificance. If we correctly reject the hypothesis H0 : µ = 0 it means that the true value of µ is non-zero.
This includes the possibility that µ may be non-zero but close to zero in magnitude. This only makes
sense if we interpret the parameters in the context of their relevant models. In our wage regression ex-
ample, we might consider wage effects of 1% magnitude or less as being “close to zero”. In a log wage
regression this corresponds to a dummy variable with a coefficient less than 0.01. If the standard error
is sufficiently small (less than 0.005) then a coefficient estimate of 0.01 will be statistically significant but
not economically significant. This occurs frequently in applications with very large sample sizes where
standard errors can be quite small.

The solution is to focus whenever possible on confidence intervals and the economic meaning of the
coefficients. For example, if the coefficient estimate is 0.005 with a standard error of 0.002 then a 95%
confidence interval would be [0.001, 0.009] indicating that the true effect is likely between 0% and 1%,
and hence is slightly positive but small. This is much more informative than the misleading statement
“the effect is statistically positive”.

9.7 P-Values

Continuing with the wage regression estimates reported in Table 4.1, consider another question:
Does marriage status affect wages? To test the hypothesis that marriage status has no effect on wages,
we examine the t-statistics for the coefficients on “Married Male” and “Married Female” in Table 4.1,
which are 0.211/0.010 = 22 and 0.016/0.010 = 1.7, respectively. The first exceeds the asymptotic 5% criti-
cal value of 1.96, so we reject the hypothesis for men. The second is smaller than 1.96, so we fail to reject
the hypothesis for women. Taking a second look at the statistics, we see that the statistic for men (22)
is exceptionally high, and that for women (1.7) is only slightly below the critical value. Suppose that the
t-statistic for women were slightly increased to 2.0. This is larger than the critical value so would lead to
the decision “Reject H0” rather than “Accept H0”. Should we really be making a different decision if the
t-statistic is 2.0 rather than 1.7? The difference in values is small, shouldn’t the difference in the decision
be also small? Thinking through these examples it seems unsatisfactory to simply report “Accept H0” or
“Reject H0”. These two decisions do not summarize the evidence. Instead, the magnitude of the statistic
T suggests a “degree of evidence” against H0. How can we take this into account?

The answer is to report what is known as the asymptotic p-value

p = 1°G(T ).

Since the distribution function G is monotonically increasing, the p-value is a monotonically decreasing
function of T and is an equivalent test statistic. Instead of rejectingH0 at the significance level Æ if T > c,
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we can rejectH0 if p <Æ. Thus it is sufficient to report p, and let the reader decide. In practice, the p-value
is calculated numerically. For example, in MATLAB the command is .

In is instructive to interpret p as the marginal significance level: the smallest value of Æ for which
the test T “rejects” the null hypothesis. That is, p = 0.11 means that T rejectsH0 for all significance levels
greater than 0.11, but fails to reject H0 for significance levels less than 0.11.

Furthermore, the asymptotic p-value has a very convenient asymptotic null distribution. Since T °!
d

ª under H0, then p = 1°G(T ) °!
d

1°G(ª), which has the distribution

P [1°G(ª) ∑ u] =P [1°u ∑G(ª)]

= 1°P
£
ª∑G°1(1°u)

§

= 1°G
°
G°1(1°u)

¢

= 1° (1°u)

= u,

which is the uniform distribution on [0,1]. (This calculation assumes that G(u) is strictly increasing
which is true for conventional asymptotic distributions such as the normal.) Thus p °!

d
U[0,1]. This

means that the “unusualness” of p is easier to interpret than the “unusualness” of T.
An important caveat is that the p-value p should not be interpreted as the probability that either

hypothesis is true. A common mis-interpretation is that p is the probability “that the null hypothesis
is true.” This is incorrect. Rather, p is the marginal significance level – a measure of the strength of
information against the null hypothesis.

For a t-statistic, the p-value can be calculated either using the normal distribution or the student t
distribution, the latter presented in Section 5.12. p-values calculated using the student t will be slightly
larger, though the difference is small when the sample size is large.

Returning to our empirical example, for the test that the coefficient on “Married Male” is zero, the p-
value is 0.000. This means that it would be nearly impossible to observe a t-statistic as large as 22 when
the true value of the coefficient is zero. When presented with such evidence we can say that we “strongly
reject” the null hypothesis, that the test is “highly significant”, or that “the test rejects at any conventional
critical value”. In contrast, the p-value for the coefficient on “Married Female” is 0.094. In this context it
is typical to say that the test is “close to significant”, meaning that the p-value is larger than 0.05, but not
too much larger.

A related (but inferior) empirical practice is to append asterisks (*) to coefficient estimates or test
statistics to indicate the level of significance. A common practice to to append a single asterisk (*) for an
estimate or test statistic which exceeds the 10% critical value (i.e., is significant at the 10% level), append
a double asterisk (**) for a test which exceeds the 5% critical value, and append a triple asterisk (***) for
a test which exceeds the 1% critical value. Such a practice can be better than a table of raw test statistics
as the asterisks permit a quick interpretation of significance. On the other hand, asterisks are inferior to
p-values, which are also easy and quick to interpret. The goal is essentially the same; it seems wiser to
report p-values whenever possible and avoid the use of asterisks.

Our recommendation is that the best empirical practice is to compute and report the asymptotic p-
value p rather than simply the test statistic T , the binary decision Accept/Reject, or appending asterisks.
The p-value is a simple statistic, easy to interpret, and contains more information than the other choices.

We now summarize the main features of hypothesis testing.

1. Select a significance level Æ.

2. Select a test statistic T with asymptotic distribution T °!
d

ª under H0.
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3. Set the asymptotic critical value c so that 1°G(c) =Æ, where G is the distribution function of ª.

4. Calculate the asymptotic p-value p = 1°G(T ).

5. Reject H0 if T > c, or equivalently p <Æ.

6. Accept H0 if T ∑ c, or equivalently p ∏Æ.

7. Report p to summarize the evidence concerning H0 versus H1.

9.8 t-ratios and the Abuse of Testing

In Section 4.20, we argued that a good applied practice is to report coefficient estimates bµ and stan-
dard errors s(bµ) for all coefficients of interest in estimated models. With bµ and s(bµ) the reader can easily
construct confidence intervals [bµ±2s(bµ)] and t-statistics

°bµ°µ0
¢

/s(bµ) for hypotheses of interest.
Some applied papers (especially older ones) report t-ratios T = bµ/s(bµ) instead of standard errors.

This is poor econometric practice. While the same information is being reported (you can back out
standard errors by division, e.g. s(bµ) = bµ/T ), standard errors are generally more helpful to readers than
t-ratios. Standard errors help the reader focus on the estimation precision and confidence intervals,
while t-ratios focus attention on statistical significance. While statistical significance is important, it
is less important that the parameter estimates themselves and their confidence intervals. The focus
should be on the meaning of the parameter estimates, their magnitudes, and their interpretation, not
on listing which variables have significant (e.g. non-zero) coefficients. In many modern applications,
sample sizes are very large so standard errors can be very small. Consequently t-ratios can be large
even if the coefficient estimates are economically small. In such contexts it may not be interesting to
announce “The coefficient is non-zero!” Instead, what is interesting to announce is that “The coefficient
estimate is economically interesting!”

In particular, some applied papers report coefficient estimates and t-ratios, and limit their discussion
of the results to describing which variables are “significant” (meaning that their t-ratios exceed 2) and the
signs of the coefficient estimates. This is very poor empirical work, and should be studiously avoided. It
is also a recipe for banishment of your work to lower tier economics journals.

Fundamentally, the common t-ratio is a test for the hypothesis that a coefficient equals zero. This
should be reported and discussed when this is an interesting economic hypothesis of interest. But if this
is not the case, it is distracting.

One problem is that standard packages, such as Stata, by default report t-statistics and p-values for
every estimated coefficient. While this can be useful (as a user doesn’t need to explicitly ask to test a
desired coefficient) it can be misleading as it may unintentionally suggest that the entire list of t-statistics
and p-values are important. Instead, a user should focus on tests of scientifically motivated hypotheses.

In general, when a coefficient µ is of interest, it is constructive to focus on the point estimate, its
standard error, and its confidence interval. The point estimate gives our “best guess” for the value. The
standard error is a measure of precision. The confidence interval gives us the range of values consistent
with the data. If the standard error is large then the point estimate is not a good summary about µ. The
endpoints of the confidence interval describe the bounds on the likely possibilities. If the confidence
interval embraces too broad a set of values for µ, then the dataset is not sufficiently informative to ren-
der useful inferences about µ. On the other hand if the confidence interval is tight, then the data have
produced an accurate estimate, and the focus should be on the value and interpretation of this estimate.
In contrast, the statement “the t-ratio is highly significant” has little interpretive value.
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The above discussion requires that the researcher knows what the coefficient µ means (in terms of
the economic problem) and can interpret values and magnitudes, not just signs. This is critical for good
applied econometric practice.

For example, consider the question about the effect of marriage status on mean log wages. We had
found that the effect is “highly significant” for men and “close to significant” for women. Now, let’s con-
struct asymptotic 95% confidence intervals for the coefficients. The one for men is [0.19, 0.23] and that
for women is [°0.00, 0.03]. This shows that average wages for married men are about 19-23% higher than
for unmarried men, which is substantial, while the difference for women is about 0-3%, which is small.
These magnitudes are more informative than the results of the hypothesis tests.

9.9 Wald Tests

The t-test is appropriate when the null hypothesis is a real-valued restriction. More generally, there
may be multiple restrictions on the coefficient vector Ø. Suppose that we have q > 1 restrictions which
can be written in the form (9.1). It is natural to estimate µ = r (Ø) by the plug-in estimator bµ = r

°bØ
¢

. To
test H0 : µ = µ0 against H1 : µ 6= µ0 one approach is to measure the magnitude of the discrepancy bµ°µ0.
As this is a vector, there is more than one measure of its length. One simple measure is the weighted
quadratic form known as the Wald statistic. This is (7.37) evaluated at the null hypothesis

W =W (µ0) =
°bµ°µ0

¢0 bV °1
bµ

°bµ°µ0
¢

(9.6)

where bV bµ = bR 0 bV bØ
bR is an estimator of V bµ and bR = @

@Ø
r (bØ)0. Notice that we can write W alternatively as

W = n
°bµ°µ0

¢0 bV °1
µ

°bµ°µ0
¢

using the asymptotic variance estimator bV µ, or we can write it directly as a function of bØ as

W =
°
r (bØ)°µ0

¢0 ≥bR 0 bV bØ
bR
¥°1 °

r (bØ)°µ0
¢

.

Also, when r (Ø) = R
0Ø is a linear function of Ø, then the Wald statistic simplifies to

W =
°
R

0bØ°µ0
¢0 ≥

R
0 bV bØR

¥°1 °
R

0bØ°µ0
¢

.

The Wald statistic W is a weighted Euclidean measure of the length of the vector bµ°µ0. When q = 1
then W = T 2, the square of the t-statistic, so hypothesis tests based on W and |T | are equivalent. The
Wald statistic (9.6) is a generalization of the t-statistic to the case of multiple restrictions. As the Wald
statistic is symmetric in the argument bµ°µ0 it treats positive and negative alternatives symmetrically.
Thus the inherent alternative is always two-sided.

As shown in Theorem 7.15, when Ø satisfies r (Ø) = µ0 then W °!
d

¬2
q , a chi-square random variable

with q degrees of freedom. Let Gq (u) denote the ¬2
q distribution function. For a given significance level

Æ, the asymptotic critical value c satisfies Æ = 1°Gq (c). For example, the 5% critical values for q = 1,
q = 2, and q = 3 are 3.84, 5.99, and 7.82, respectively, and in general the level Æ critical value can be
calculated in MATLAB as Æ . An asymptotic test rejectsH0 in favor ofH1 if W > c. As with
t-tests, it is conventional to describe a Wald test as “significant” if W exceeds the 5% asymptotic critical
value.
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Theorem 9.2 Under Assumptions 7.2, 7.3, 7.4, and H0 : µ = µ0, then

W °!
d

¬2
q ,

and for c satisfying Æ= 1°Gq (c),

P (W > c |H0) °!Æ

so the test “Reject H0 if W > c” has asymptotic size Æ.

Notice that the asymptotic distribution in Theorem 9.2 depends solely on q , the number of restric-
tions being tested. It does not depend on k, the number of parameters estimated.

The asymptotic p-value for W is p = 1°Gq (W ), and this is particularly useful when testing multiple
restrictions. For example, if you write that a Wald test on eight restrictions (q = 8) has the value W =
11.2, it is difficult for a reader to assess the magnitude of this statistic unless they have quick access to a
statistical table or software. Instead, if you write that the p-value is p = 0.19 (as is the case for W = 11.2
and q = 8) then it is simple for a reader to interpret its magnitude as “insignificant”. To calculate the
asymptotic p-value for a Wald statistic in MATLAB, use the command .

Some packages (including Stata) and papers report F versions of Wald statistics. That is, for any Wald
statistic W which tests a q-dimensional restriction, the F version of the test is

F =W /q.

When F is reported, it is conventional to use Fq,n°k critical values and p-values rather than¬2
q values. The

connection between Wald and F statistics is demonstrated in Section 9.14 we show that when Wald statis-
tics are calculated using a homoskedastic covariance matrix, then F =W /q is identicial to the F statistic
of (5.19). While there is no formal justification to using the Fq,n°k distribution for non-homoskedastic
covariance matrices, the Fq,n°k distribution provides continuity with the exact distribution theory under
normality and is a bit more conservative than the ¬2

q distribution. (Furthermore, the difference is small
when n °k is moderately large.)

To implement a test of zero restrictions in Stata, an easy method is to use the command “test X1
X2” where X1 and X2 are the names of the variables whose coefficients are hypothesized to equal zero.
This command should be executed after executing a regression command. The F version of the Wald
statistic is reported, using the covariance matrix calculated using the method specified in the regression
command. A p-value is reported, calculated using the Fq,n°k distribution.

To illustrate, consider the empirical results presented in Table 4.1. The hypothesis “Union mem-
bership does not affect wages” is the joint restriction that both coefficients on “Male Union Member”
and “Female Union Member” are zero. We calculate the Wald statistic for this joint hypothesis and find
W = 23 (or F = 12.5) with a p-value of p = 0.000. Thus we reject the null hypothesis in favor of the al-
ternative that at least one of the coefficients is non-zero. This does not mean that both coefficients are
non-zero, just that one of the two is non-zero. Therefore examining both the joint Wald statistic and the
individual t-statistics is useful for interpretation.

As a second example from the same regression, take the hypothesis that married status has no effect
on mean wages for women. This is the joint restriction that the coefficients on “Married Female” and
“Formerly Married Female” are zero. The Wald statistic for this hypothesis is W = 6.4 (F = 3.2) with a
p-value of 0.04. Such a p-value is typically called “marginally significant”, in the sense that it is slightly
smaller than 0.05.

The Wald statistic was proposed by Wald (1943).
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Abraham Wald

The Hungarian mathematician/statistician/econometrician Abraham Wald
(1902-1950) developed an optimality property for the Wald test in terms of
weighted average power. He also developed the field of sequential testing and
the design of experiments.

9.10 Homoskedastic Wald Tests

If the error is known to be homoskedastic, then it is appropriate to use the homoskedastic Wald
statistic (7.38) which replaces bV bµ with the homoskedastic estimator bV 0

bµ. This statistic equals

W 0 =
°bµ°µ0

¢0 ≥bV 0
bµ

¥°1 °bµ°µ0
¢

=
°
r (bØ)°µ0

¢0 ≥
R

0 °
X

0
X

¢°1 bR
¥°1 °

r (bØ)°µ0
¢

/s2.

In the case of linear hypotheses H0 : R
0Ø= µ0 we can write this as

W 0 =
°
R

0bØ°µ0
¢0 ≥

R
0 °

X
0
X

¢°1
R

¥°1 °
R

0bØ°µ0
¢

/s2. (9.7)

We call either a homoskedastic Wald statistic as it is an appropriate test when the errors are conditionally
homoskedastic.

As for W, when q = 1 then W 0 = T 2, the square of the t-statistic where the latter is computed with a
homoskedastic standard error.

Theorem 9.3 Under Assumptions 7.2 and 7.3, E
£
e2

i | x i
§
= æ2 > 0, and H0 : µ =

µ0, then
W 0 °!

d
¬2

q ,

and for c satisfying Æ= 1°Gq (c),

P
£
W 0 > c |H0

§
°!Æ

so the test “Reject H0 if W 0 > c” has asymptotic size Æ.

9.11 Criterion-Based Tests

The Wald statistic is based on the length of the vector bµ°µ0: the discrepancy between the estimate
bµ = r (bØ) and the hypothesized value µ0. An alternative class of tests is based on the discrepancy between
the criterion function minimized with and without the restriction.

Criterion-based testing applies when we have a criterion function, say J (Ø) with Ø 2 B , which is
minimized for estimation, and the goal is to testH0 :Ø 2 B 0 versusH1 :Ø › B 0 where B 0 Ω B . Minimizing
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the criterion function over B and B 0 we obtain the unrestricted and restricted estimators

bØ= argmin
Ø2B

J
°
Ø

¢

eØ= argmin
Ø2B 0

J
°
Ø

¢
.

The criterion-based statistic for H0 versus H1 is proportional to

J = min
Ø2B 0

J
°
Ø

¢
°min
Ø2B

J
°
Ø

¢

= J (eØ)° J (bØ).

The criterion-based statistic J is sometimes called a distance statistic, a minimum-distance statistic,
or a likelihood-ratio-like statistic.

Since B 0 is a subset of B , J (eØ) ∏ J (bØ) and thus J ∏ 0. The statistic J measures the cost (on the criterion)
of imposing the null restriction Ø 2 B 0.

9.12 Minimum Distance Tests

The minimum distance test is a criterion-based test where J
°
Ø

¢
is the minimum distance criterion

(8.19)
J
°
Ø

¢
= n

°bØ°Ø
¢0 cW

°bØ°Ø
¢

(9.8)

with bØ the unrestricted (LS) estimator. The restricted estimator eØmd minimizes (9.8) subject to Ø 2 B 0.
Observing that J (bØ) = 0, the minimum distance statistic simplifies to

J = J (eØmd) = n
°bØ° eØmd

¢0 cW
°bØ° eØmd

¢
. (9.9)

The efficient minimum distance estimator eØemd is obtained by setting cW = bV °1
Ø in (9.8) and (9.9).

The efficient minimum distance statistic for H0 :Ø 2 B 0 is therefore

J§ = n
°bØ° eØemd

¢0 bV °1
Ø

°bØ° eØemd
¢

. (9.10)

Consider the class of linear hypotheses H0 : R
0Ø = µ0. In this case we know from (8.25) that the effi-

cient minimum distance estimator eØemd subject to the constraint R
0Ø= µ0 is

eØemd = bØ° bV ØR
°
R

0 bV ØR
¢°1 °

R
0bØ°µ0

¢

and thus
bØ° eØemd = bV ØR

°
R

0 bV ØR
¢°1 °

R
0bØ°µ0

¢
.

Substituting into (9.10) we find

J§ = n
°
R

0bØ°µ0
¢0 °

R
0 bV ØR

¢°1
R

0 bV Ø bV °1
Ø

bV ØR
°
R

0 bV ØR
¢°1 °

R
0bØ°µ0

¢

= n
°
R

0bØ°µ0
¢0 °

R
0 bV ØR

¢°1 °
R

0bØ°µ0
¢

=W,

which is the Wald statistic (9.6).
Thus for linear hypotheses H0 : R

0Ø = µ0, the efficient minimum distance statistic J§ is identical to
the Wald statistic (9.6). For non-linear hypotheses, however, the Wald and minimum distance statistics
are different.

Newey and West (1987a) established the asymptotic null distribution of J§ for linear and non-linear
hypotheses.
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Theorem 9.4 Under Assumptions 7.2, 7.3, 7.4, and H0 : µ = µ0, then J§ °!
d

¬2
q .

Testing using the minimum distance statistic J§ is similar to testing using the Wald statistic W . Criti-
cal values and p-values are computed using the ¬2

q distribution. H0 is rejected in favor ofH1 if J§ exceeds
the level Æ critical value, which can be calculated in MATLAB as Æ . The asymptotic p-
value is p = 1°Gq (J§). In MATLAB, use the command .

We now demonstrate Theorem 9.4. The conditions of Theorem 8.10 hold, since H0 implies Assump-
tion 8.1. From (8.54) with cW = bV Ø, we see that

p
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¢
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0N(0,V Ø) =V ØR Z

where Z ª N(0,
°
R

0
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¢°1). Thus
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°bØ° eØemd

¢0 bV °1
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°bØ° eØemd
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R
0
V ØR

¢
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as claimed.

9.13 Minimum Distance Tests Under Homoskedasticity

If we set cW = bQ x x /s2 in (9.8) we obtain the criterion (8.20)

J 0 °
Ø

¢
= n

°bØ°Ø
¢0 bQ x x

°bØ°Ø
¢

/s2.

A minimum distance statistic for H0 :Ø 2 B 0 is

J 0 = min
Ø2B 0

J 0 °
Ø

¢
.

Equation (8.21) showed that
SSE(Ø) = n bæ2 + s2 J 0 °

Ø
¢

and so the minimizers of SSE(Ø) and J 0 °
Ø

¢
are identical. Thus the constrained minimizer of J 0 °

Ø
¢

is
constrained least-squares

eØcls = argmin
Ø2B 0

J 0 °
Ø

¢
= argmin

Ø2B 0

SSE(Ø) (9.11)

and therefore
J 0

n = J 0
n(eØcls) = n

°bØ° eØcls
¢0 bQ x x

°bØ° eØcls
¢

/s2.

In the special case of linear hypothesesH0 : R
0Ø= µ0, the constrained least-squares estimator subject

to R
0Ø= µ0 has the solution (8.9)

eØcls = bØ° bQ°1
x x

R

≥
R

0 bQ°1
x x

R

¥°1 °
R

0bØ°µ0
¢

and solving we find

J 0 = n
°
R

0bØ°µ0
¢0 ≥

R
0 bQ°1

x x
R

¥°1 °
R

0bØ°µ0
¢

/s2 =W 0.

This is the homoskedastic Wald statistic (9.7). Thus for testing linear hypotheses, homoskedastic mini-
mum distance and Wald statistics agree.

For nonlinear hypotheses they disagree, but have the same null asymptotic distribution.
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Theorem 9.5 Under Assumptions 7.2 and 7.3, E
£
e2

i | x i
§
= æ2 > 0, and H0 : µ =

µ0, then J 0 °!
d

¬2
q .

9.14 F Tests

In Section 5.13 we introduced the F test for exclusion restrictions in the normal regression model.
More generally, the F statistic for testing H0 :Ø 2 B 0 is

F =
°
eæ2 ° bæ2¢/q

bæ2/(n °k)
(9.12)

where

bæ2 = 1
n

nX

i=1

°
yi °x

0
i
bØ
¢2

and bØ are the unconstrained estimators of Ø and æ2,

eæ2 = 1
n

nX

i=1

°
yi °x

0
i
eØcls

¢2

and eØcls are the constrained least-squares estimators from (9.11), q is the number of restrictions, and k
is the number of unconstrained coefficients.

We can alternatively write

F =
SSE(eØcls)°SSE(bØ)

qs2 (9.13)

where

SSE(Ø) =
nX

i=1

°
yi °x

0
iØ

¢2

is the sum-of-squared errors. Thus F is a criterion-based statistic. Using (8.21) we can also write

F = J 0/q,

so the F statistic is identical to the homoskedastic minimum distance statistic divided by the number of
restrictions q.

As we discussed in the previous section, in the special case of linear hypotheses H0 : R
0Ø = µ0,

J 0 = W 0. It follows that in this case F = W 0/q . Thus for linear restrictions the F statistic equals the
homoskedastic Wald statistic divided by q. It follows that they are equivalent tests for H0 against H1.

Theorem 9.6 For tests of linear hypotheses H0 : R
0Ø= µ0,

F =W 0/q

the F statistic equals the homoskedastic Wald statistic divided by the degrees
of freedom. Thus under 7.2, E

£
e2

i | x i
§
=æ2 > 0, and H0 : µ = µ0, then

F °!
d

¬2
q /q.
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When using an F statistic, it is conventional to use the Fq,n°k distribution for critical values and p-
values. Critical values are given in MATLAB by Æ , and p-values by .
Alternatively, the ¬2

q /q distribution can be used, using Æ and , re-
spectively. Using the Fq,n°k distribution is a prudent small sample adjustment which yields exact an-
swers if the errors are normal, and otherwise slightly increasing the critical values and p-values relative
to the asymptotic approximation. Once again, if the sample size is small enough that the choice makes a
difference, then probably we shouldn’t be trusting the asymptotic approximation anyway!

An elegant feature about (9.12) or (9.13) is that they are directly computable from the standard output
from two simple OLS regressions, as the sum of squared errors (or regression variance) is a typical printed
output from statistical packages, and is often reported in applied tables. Thus F can be calculated by
hand from standard reported statistics even if you don’t have the original data (or if you are sitting in a
seminar and listening to a presentation!).

If you are presented with an F statistic (or a Wald statistic, as you can just divide by q) but don’t have
access to critical values, a useful rule of thumb is to know that for large n, the 5% asymptotic critical value
is decreasing as q increases, and is less than 2 for q ∏ 7.

A word of warning: In many statistical packages, when an OLS regression is estimated an “F -statistic”
is automatically reported, even though no hypothesis test was requested. What the package is reporting
is an F statistic of the hypothesis that all slope coefficients1 are zero. This was a popular statistic in the
early days of econometric reporting when sample sizes were very small and researchers wanted to know
if there was “any explanatory power” to their regression. This is rarely an issue today, as sample sizes are
typically sufficiently large that this F statistic is nearly always highly significant. While there are special
cases where this F statistic is useful, these cases are not typical. As a general rule, there is no reason to
report this F statistic.

9.15 Hausman Tests

Hausman (1978) introduced a general idea about how to test a hypothesisH0. If you have two estima-
tors, one which is efficient under H0 but inconsistent under H1, and another which is consistent under
H1, then construct a test as a quadratic form in the differences of the estimators. In the case of testing a
hypothesis H0 : r (Ø) = µ0 let bØols denote the unconstrained least-squares estimator and let eØemd denote
the efficient minimum distance estimator which imposes r (Ø) = µ0. Both estimators are consistent un-
der H0, but eØemd is asymptotically efficient. Under H1, bØols is consistent for Ø but eØemd is inconsistent.
The difference has the asymptotic distribution

p
n

°bØols ° eØemd
¢
°!

d
N

≥
0,V ØR

°
R

0
V ØR

¢°1
R

0
V Ø

¥
.

Let A
° denote the Moore-Penrose generalized inverse. The Hausman statistic for H0 is

H =
°bØols ° eØemd

¢0Åavar
°bØols ° eØemd

¢° °bØols ° eØemd
¢

= n
°bØols ° eØemd

¢0
µ
bV ØbR

≥
bR 0 bV ØbR

¥°1 bR 0 bV Ø

∂° °bØols ° eØemd
¢

.

1All coefficients except the intercept.



CHAPTER 9. HYPOTHESIS TESTING 250

The matrix bV 1/2
Ø

bR
≥
bR 0 bV ØbR

¥°1 bR 0 bV 1/2
Ø idempotent so its generalized inverse is itself. (See Section A.11.) It

follows that
µ
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Thus the Hausman statistic is

H = n
°bØols ° eØemd

¢0 bR
≥
bR 0 bV ØbR

¥°1 bR 0 °bØols ° eØemd
¢

.

In the context of linear restrictions, bR = R and R
0eØ= µ0 so the statistic takes the form

H = n
°
R

0bØols °µ0
¢0 bR

°
R

0 bV ØR
¢°1 °

R
0bØols °µ0

¢
,

which is precisely the Wald statistic. With nonlinear restrictions W and H can differ.
In either case we see that that the asymptotic null distribution of the Hausman statistic H is ¬2

q , so
the appropriate test is to reject H0 in favor of H1 if H > c where c is a critical value taken from the ¬2

q
distribution.

Theorem 9.7 For general hypotheses the Hausman test statistic is

H = n
°bØols ° eØemd

¢0 bR
≥
bR 0 bV ØbR

¥°1 bR 0 °bØols ° eØemd
¢

.

Under Assumptions 7.2, 7.3, 7.4, and H0 : r (Ø) = µ0,

H °!
d

¬2
q .

9.16 Score Tests

Score tests are traditionally derived in likelihood analysis, but can more generally be constructed
from first-order conditions evaluated at restricted estimates. We focus on the likelihood derivation.

Given the log likelihood function logL(Ø,æ2), a restrictionH0 : r
°
Ø

¢
= µ0, and restricted estimators eØ

and eæ2, the score statistic for H0 is defined as

S =
µ
@

@Ø
logL(eØ, eæ2)

∂0 µ
° @2

@Ø@Ø0 logL(eØ, eæ2)
∂°1 µ

@

@Ø
logL(eØ, eæ2)

∂
.

The idea is that if the restriction is true, then the restricted estimators should be close to the maximum
of the log-likelihood where the derivative is zero. However if the restriction is false then the restricted
estimators should be distant from the maximum and the derivative should be large. Hence small values
of S are expected under H0 and large values under H1. Tests of H0 reject for large values of S.
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We explore the score statistic in the context of the normal regression model and linear hypotheses
r

°
Ø

¢
= R

0Ø. Recall that in the normal regression log-likelihood function is

logL(Ø,æ2) =°n
2

log(2ºæ2)° 1
2æ2
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°
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0
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¢2 .

The constrained MLE under linear hypotheses is constrained least squares
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°
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We can calculate that the derivative and Hessian are
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Since ee = y °X eØ we can further calculate that
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Together we find that
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This is identical to the homoskedastic Wald statistic, with s2 replaced by eæ2. We can also write S as a
monotonic transformation of the F statistic, since

S = n

°
eæ2 ° bæ2¢

eæ2 = n
µ
1° bæ2

eæ2

∂
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√

1° 1

1+ q
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!

.

The test “Reject H0 for large values of S” is identical to the test “Reject H0 for large values of F ”, so they
are identical tests. Since for the normal regression model the exact distribution of F is known, it is better
to use the F statistic with F p-values.

In more complicated settings a potential advantage of score tests is that they are calculated using the
restricted parameter estimates eØ rather than the unrestricted estimates bØ. Thus when eØ is relatively easy
to calculate there can be a preference for score statistics. This is not a concern for linear restrictions.

More generally, score and score-like statistics can be constructed from first-order conditions evalu-
ated at restricted parameter estimates. Also, when test statistics are constructed using covariance ma-
trix estimators which are calculated using restricted parameter estimates (e.g. restricted residuals) then
these are often described as score tests.

An example of the latter is the Wald-type statistic

W =
°
r (bØ)°µ0

¢0 ≥bR 0 eV bØ
bR
¥°1 °

r (bØ)°µ0
¢

where the covariance matrix estimate eV bØ is calculated using the restricted residuals eei = yi ° x
0
i
eØ. This

may be done when Ø and µ are high-dimensional, so there is worry that the estimator bV bØ is imprecise.
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9.17 Problems with Tests of Nonlinear Hypotheses

While the t and Wald tests work well when the hypothesis is a linear restriction on Ø, they can work
quite poorly when the restrictions are nonlinear. This can be seen by a simple example introduced by
Lafontaine and White (1986). Take the model

yi =Ø+ei

ei ª N(0,æ2)

and consider the hypothesis
H0 :Ø= 1.

Let bØ and bæ2 be the sample mean and variance of yi . The standard Wald test for H0 is

W = n

° bØ°1
¢2

bæ2 .

Now notice that H0 is equivalent to the hypothesis

H0(s) :Øs = 1

for any positive integer s. Letting r (Ø) =Øs , and noting R = sØs°1, we find that the standard Wald test for
H0(s) is

W (s) = n

° bØs °1
¢2

bæ2s2 bØ2s°2
.

While the hypothesis Øs = 1 is unaffected by the choice of s, the statistic W (s) varies with s. This is an
unfortunate feature of the Wald statistic.

To demonstrate this effect, we have plotted in Figure 9.2 the Wald statistic W (s) as a function of s,
setting n/bæ2 = 10. The increasing solid line is for the case bØ = 0.8. The decreasing dashed line is for the
case bØ = 1.6. It is easy to see that in each case there are values of s for which the test statistic is signifi-
cant relative to asymptotic critical values, while there are other values of s for which the test statistic is
insignificant. This is distressing since the choice of s is arbitrary and irrelevant to the actual hypothesis.

Our first-order asymptotic theory is not useful to help pick s, as W (s) °!
d

¬2
1 under H0 for any s. This

is a context where Monte Carlo simulation can be quite useful as a tool to study and compare the exact
distributions of statistical procedures in finite samples. The method uses random simulation to create
artificial datasets, to which we apply the statistical tools of interest. This produces random draws from
the statistic’s sampling distribution. Through repetition, features of this distribution can be calculated.

In the present context of the Wald statistic, one feature of importance is the Type I error of the test
using the asymptotic 5% critical value 3.84 – the probability of a false rejection, P

°
W (s) > 3.84 |Ø= 1

¢
.

Given the simplicity of the model, this probability depends only on s, n, and æ2. In Table 9.2 we report
the results of a Monte Carlo simulation where we vary these three parameters. The value of s is varied
from 1 to 10, n is varied among 20, 100 and 500, and æ is varied among 1 and 3. The Table reports the
simulation estimate of the Type I error probability from 50,000 random samples. Each row of the table
corresponds to a different value of s – and thus corresponds to a particular choice of test statistic. The
second through seventh columns contain the Type I error probabilities for different combinations of n
and æ. These probabilities are calculated as the percentage of the 50,000 simulated Wald statistics W (s)
which are larger than 3.84. The null hypothesis Øs = 1 is true, so these probabilities are Type I error.

To interpret the table, remember that the ideal Type I error probability is 5% (.05) with deviations
indicating distortion. Type I error rates between 3% and 8% are considered reasonable. Error rates above
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Figure 9.2: Wald Statistic as a Function of s

10% are considered excessive. Rates above 20% are unacceptable. When comparing statistical proce-
dures, we compare the rates row by row, looking for tests for which rejection rates are close to 5% and
rarely fall outside of the 3%-8% range. For this particular example the only test which meets this criterion
is the conventional W = W (1) test. Any other choice of s leads to a test with unacceptable Type I error
probabilities.

Table 9.2: Type I Error Probability of Asymptotic 5% W (s) Test

s æ= 1 æ= 3
n = 20 n = 100 n = 500 n = 20 n = 100 n = 500

1 0.05 0.05 0.05 0.05 0.05 0.05
2 0.07 0.06 0.05 0.14 0.08 0.06
3 0.09 0.06 0.05 0.21 0.12 0.07
4 0.12 0.07 0.05 0.25 0.15 0.08
5 0.14 0.08 0.06 0.27 0.18 0.10
6 0.16 0.09 0.06 0.30 0.20 0.12
7 0.18 0.10 0.06 0.32 0.22 0.13
8 0.20 0.12 0.07 0.33 0.24 0.14
9 0.21 0.13 0.07 0.34 0.25 0.16

10 0.23 0.14 0.08 0.35 0.26 0.17

Rejection frequencies from 50,000 simulated random samples.

In Table 9.2 you can also see the impact of variation in sample size. In each case, the Type I error
probability improves towards 5% as the sample size n increases. There is, however, no magic choice of
n for which all tests perform uniformly well. Test performance deteriorates as s increases, which is not
surprising given the dependence of W (s) on s as shown in Figure 9.2.

In this example it is not surprising that the choice s = 1 yields the best test statistic. Other choices are
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arbitrary and would not be used in practice. While this is clear in this particular example, in other exam-
ples natural choices are not always obvious and the best choices may in fact appear counter-intuitive at
first.

This point can be illustrated through another example which is similar to one developed in Gregory
and Veall (1985). Take the model

yi =Ø0 +x1iØ1 +x2iØ2 +ei (9.14)

E [x i ei ] = 0

and the hypothesis

H0 :
Ø1

Ø2
= µ0

where µ0 is a known constant. Equivalently, define µ =Ø1/Ø2, so the hypothesis can be stated as H0 : µ =
µ0.

Let bØ = ( bØ0, bØ1, bØ2) be the least-squares estimator of (9.14), let bV bØ be an estimator of the covariance

matrix for bØ and set bµ = bØ1/ bØ2. Define

bR1 =
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1
bØ2

°
bØ1

bØ2
2

1

CCCCCCCCCCA

so that the standard error for bµ is s(bµ) =
≥
bR 0

1
bV bØ

bR
1

¥1/2
. In this case a t-statistic for H0 is

T1 =

≥ bØ1
bØ2
°µ0

¥

s(bµ)
.

An alternative statistic can be constructed through reformulating the null hypothesis as

H0 :Ø1 °µ0Ø2 = 0.

A t-statistic based on this formulation of the hypothesis is

T2 =
bØ1 °µ0 bØ2

≥
R

0
2
bV bØR

2

¥1/2

where

R2 =

0

@
0
1

°µ0

1

A .

To compare T1 and T2 we perform another simple Monte Carlo simulation. We let x1i and x2i be
mutually independent N(0,1) variables, ei be an independent N(0,æ2) draw with æ = 3, and normalize
Ø0 = 0 and Ø1 = 1. This leaves Ø2 as a free parameter, along with sample size n. We vary Ø2 among .1, .25,
.50, .75, and 1.0 and n among 100 and 500.

The one-sided Type I error probabilities P [T <°1.645] and P [T > 1.645] are calculated from 50,000
simulated samples. The results are presented in Table 9.3. Ideally, the entries in the table should be
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Table 9.3: Type I Error Probability of Asymptotic 5% t-tests

Ø2 n = 100 n = 500
P (T <°1.645) P (T > 1.645) P (T <°1.645) P (T > 1.645)
T1 T2 T1 T2 T1 T2 T1 T2

0.10 0.47 0.05 0.00 0.05 0.28 0.05 0.00 0.05
0.25 0.27 0.05 0.00 0.05 0.16 0.05 0.00 0.05
0.50 0.14 0.05 0.00 0.05 0.12 0.05 0.00 0.05
0.75 0.03 0.05 0.00 0.05 0.08 0.05 0.01 0.05
1.00 0.00 0.05 0.00 0.05 0.03 0.05 0.03 0.05

Rejection frequencies from 50,000 simulated random samples.

0.05. However, the rejection rates for the T1 statistic diverge greatly from this value, especially for small
values of Ø2. The left tail probabilities P [T1 <°1.645] greatly exceed 5%, while the right tail probabilities
P [T1 > 1.645] are close to zero in most cases. In contrast, the rejection rates for the linear T2 statistic are
invariant to the value of Ø2, and equal 5% for both sample sizes. The implication of Table 9.3 is that the
two t-ratios have dramatically different sampling behavior.

The common message from both examples is that Wald statistics are sensitive to the algebraic for-
mulation of the null hypothesis.

A simple solution is to use the minimum distance statistic J , which equals W with r = 1 in the first
example, and |T2| in the second example. The minimum distance statistic is invariant to the algebraic
formulation of the null hypothesis, so is immune to this problem. Whenever possible, the Wald statistic
should not be used to test nonlinear hypotheses.

Theoretical investigations of these issues include Park and Phillips (1988) and Dufour (1997).

9.18 Monte Carlo Simulation

In Section 9.17 we introduced the method of Monte Carlo simulation to illustrate the small sample
problems with tests of nonlinear hypotheses. In this section we describe the method in more detail.

Recall, our data consist of observations (yi , x i ) which are random draws from a population distribu-
tion F. Let µ be a parameter and let T = T

°°
y1, x1

¢
, ...,

°
yn , xn

¢
,µ

¢
be a statistic of interest, for example an

estimator bµ or a t-statistic (bµ°µ)/s(bµ). The exact distribution of T is

G(u,F ) =P [T ∑ u | F ] .

While the asymptotic distribution of T might be known, the exact (finite sample) distribution G is gen-
erally unknown.

Monte Carlo simulation uses numerical simulation to compute G(u,F ) for selected choices of F. This
is useful to investigate the performance of the statistic T in reasonable situations and sample sizes.
The basic idea is that for any given F, the distribution function G(u,F ) can be calculated numerically
through simulation. The name Monte Carlo derives from the famous Mediterranean gambling resort
where games of chance are played.

The method of Monte Carlo is quite simple to describe. The researcher chooses F (the distribution
of the data) and the sample size n. A “true” value of µ is implied by this choice, or equivalently the value
µ is selected directly by the researcher which implies restrictions on F .

Then the following experiment is conducted by computer simulation:



CHAPTER 9. HYPOTHESIS TESTING 256

1. n independent random pairs
°
y§

i , x
§
i

¢
, i = 1, ...,n, are drawn from the distribution F using the com-

puter’s random number generator.

2. The statistic T = T
°°

y§
1 , x

§
1

¢
, ...,

°
y§

n , x
§
n
¢

,µ
¢

is calculated on this pseudo data.

For step 1, computer packages have built-in random number procedures including U[0,1] and N(0,1).
From these most random variables can be constructed. (For example, a chi-square can be generated by
sums of squares of normals.)

For step 2, it is important that the statistic be evaluated at the “true” value of µ corresponding to the
choice of F.

The above experiment creates one random draw from the distribution G(u,F ). This is one obser-
vation from an unknown distribution. Clearly, from one observation very little can be said. So the re-
searcher repeats the experiment B times, where B is a large number. Typically, we set B = 1000 or
B = 5000. We will discuss this choice later.

Notationally, let the bth experiment result in the draw Tb , b = 1, ...,B. These results are stored. After
all B experiments have been calculated, these results constitute a random sample of size B from the
distribution of G(u,F ) =P [Tb ∑ u] =P [T ∑ u | F ] .

From a random sample, we can estimate any feature of interest using (typically) a method of mo-
ments estimator. We now describe some specific examples.

Suppose we are interested in the bias, mean-squared error (MSE), and/or variance of the distribution
of bµ°µ. We then set T = bµ°µ, run the above experiment, and calculate
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£b§
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BX

b=1
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B

BX

b=1
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B
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°bµb °µ
¢2

‡var
£b§
µ = ·mse

£b§
µ°

≥·bias
£b§
µ
¥2

Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided t-test. We
would then set T =

ØØbµ°µ
ØØ/s(bµ) and calculate

bP = 1
B

BX

b=1
(Tb ∏ 1.96) , (9.15)

the percentage of the simulated t-ratios which exceed the asymptotic 5% critical value.
Suppose we are interested in the 5% and 95% quantile of T = bµ or T =

°bµ°µ
¢

/s(bµ). We then compute
the 5% and 95% sample quantiles of the sample {Tb}. For details on quantile estimation see Section 11.13
of Introduction to Econometrics.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure in realistic settings. Generally, the performance will depend on n and F. In many cases, an
estimator or test may perform wonderfully for some values, and poorly for others. It is therefore useful
to conduct a variety of experiments, for a selection of choices of n and F.

As discussed above, the researcher must select the number of experiments, B. Often this is called
the number of replications. Quite simply, a larger B results in more precise estimates of the features
of interest of G , but requires more computational time. In practice, therefore, the choice of B is often
guided by the computational demands of the statistical procedure. Since the results of a Monte Carlo
experiment are estimates computed from a random sample of size B , it is straightforward to calculate
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standard errors for any quantity of interest. If the standard error is too large to make a reliable inference,
then B will have to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical tests, such
as the percentage estimate reported in (9.15). The random variable (Tb ∏ 1.96) is i.i.d. Bernoulli, equalling
1 with probability p = E [ (Tb ∏ 1.96)] . The average (9.15) is therefore an unbiased estimator of p with

standard error s
°
bp
¢
=

q
p

°
1°p

¢
/B . As p is unknown, this may be approximated by replacing p with

bp or with an hypothesized value. For example, if we are assessing an asymptotic 5% test, then we can
set s

°
bp
¢
=
p

(.05)(.95)/B ' .22/
p

B . Hence, standard errors for B = 100, 1000, and 5000, are, respectively,
s
°
bp
¢
= .022, .007, and .003.

Most papers in econometric methods and some empirical papers include the results of Monte Carlo
simulations to illustrate the performance of their methods. When extending existing results, it is good
practice to start by replicating existing (published) results. This is not exactly possible in the case of
simulation results, as they are inherently random. For example suppose a paper investigates a statistical
test, and reports a simulated rejection probability of 0.07 based on a simulation with B = 100 replications.
Suppose you attempt to replicate this result, and find a rejection probability of 0.03 (again using B = 100
simulation replications). Should you conclude that you have failed in your attempt? Absolutely not!
Under the hypothesis that both simulations are identical, you have two independent estimates, bp1 = 0.07
and bp2 = 0.03, of a common probability p. The asymptotic (as B !1) distribution of their difference isp

B
°
bp1 ° bp2

¢
°!

d
N(0,2p(1°p)), so a standard error for bp1 ° bp2 = 0.04 is bs =

p
2p(1°p)/B ' 0.03, using

the estimate p = ( bp1 + bp2)/2. Since the t-ratio 0.04/0.03 = 1.3 is not statistically significant, it is incorrect
to reject the null hypothesis that the two simulations are identical. The difference between the results
bp1 = 0.07 and bp2 = 0.03 is consistent with random variation.

What should be done? The first mistake was to copy the previous paper’s choice of B = 100. Instead,
suppose you set B = 10,000. Suppose you now obtain bp2 = 0.04. Then bp1° bp2 = 0.03 and a standard error
is bs =

p
p(1°p) (1/100+1/10000) ' 0.02. Still we cannot reject the hypothesis that the two simulations

are different. Even though the estimates (0.07 and 0.04) appear to be quite different, the difficulty is that
the original simulation used a very small number of replications (B = 100) so the reported estimate is
quite imprecise. In this case, it is appropriate to conclude that your results “replicate” the previous study,
as there is no statistical evidence to reject the hypothesis that they are equivalent.

Most journals have policies requiring authors to make available their data sets and computer pro-
grams required for empirical results. They do not have similar policies regarding simulations. Never-
theless, it is good professional practice to make your simulations available. The best practice is to post
your simulation code on your webpage. This invites others to build on and use your results, leading to
possible collaboration, citation, and/or advancement.

9.19 Confidence Intervals by Test Inversion

There is a close relationship between hypothesis tests and confidence intervals. We observed in Sec-
tion 7.14 that the standard 95% asymptotic confidence interval for a parameter µ is

bC =
£bµ°1.96£ s(bµ), bµ+1.96£ s(bµ)

§
(9.16)

= {µ : |T (µ)|∑ 1.96} .

That is, we can describe bC as “The point estimate plus or minus 2 standard errors” or “The set of param-
eter values not rejected by a two-sided t-test.” The second definition, known as test statistic inversion,
is a general method for finding confidence intervals, and typically produces confidence intervals with
excellent properties.
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Given a test statistic T (µ) and critical value c, the acceptance region “Accept if T (µ) ∑ c” is identical
to the confidence interval bC = {µ : T (µ) ∑ c}. Since the regions are identical, the probability of coverage
P

£
µ 2 bC

§
equals the probability of correct acceptance P

°
Accept|µ

¢
which is exactly 1 minus the Type I

error probability. Thus inverting a test with good Type I error probabilities yields a confidence interval
with good coverage probabilities.

Now suppose that the parameter of interest µ = r (Ø) is a nonlinear function of the coefficient vector
Ø. In this case the standard confidence interval for µ is the set bC as in (9.16) where bµ = r (bØ) is the point

estimator and s(bµ) =
q

bR 0 bV bØ
bR is the delta method standard error. This confidence interval is inverting

the t-test based on the nonlinear hypothesis r (Ø) = µ. The trouble is that in Section 9.17 we learned that
there is no unique t-statistic for tests of nonlinear hypotheses and that the choice of parameterization
matters greatly.

For example, if µ = Ø1/Ø2 then the coverage probability of the standard interval (9.16) is 1 minus the
probability of the Type I error, which as shown in Table 8.2 can be far from the nominal 5%.

In this example a good solution is the same as discussed in Section 9.17 – to rewrite the hypothesis as
a linear restriction. The hypothesis µ =Ø1/Ø2 is the same as µØ2 =Ø1. The t-statistic for this restriction is

T (µ) =
bØ1 ° bØ2µ

≥
R

0 bV bØR

¥1/2

where

R =
µ

1
°µ

∂

and bV bØ is the covariance matrix for ( bØ1 bØ2). A 95% confidence interval for µ =Ø1/Ø2 is the set of values of
µ such that |T (µ)|∑ 1.96. Since T (µ) is a non-linear function of µ one method to find the confidence set
is by grid search over µ.

For example, in the wage equation

log(wage) =Ø1experience+Ø2
2experience2/100+·· ·

the highest expected wage occurs at experience= °50Ø1/Ø2. From Table 4.1 we have the point estimate
bµ = 29.8 and we can calculate the standard error s(bµ) = 0.022 for a 95% confidence interval [29.8, 29.9].
However, if we instead invert the linear form of the test we can numerically find the interval [29.1, 30.6]
which is much larger. From the evidence presented in Section 9.17 we know the first interval can be quite
inaccurate and the second interval is greatly preferred.

9.20 Multiple Tests and Bonferroni Corrections

In most applications, economists examine a large number of estimates, test statistics, and p-values.
What does it mean (or does it mean anything) if one statistic appears to be “significant” after examining
a large number of statistics? This is known as the problem of multiple testing or multiple comparisons.

To be specific, suppose we examine a set of k coefficients, standard errors and t-ratios, and consider
the “significance” of each statistic. Based on conventional reasoning, for each coefficient we would reject
the hypothesis that the coefficient is zero with asymptotic size Æ if the absolute t-statistic exceeds the
1°Æ critical value of the normal distribution, or equivalently if the p-value for the t-statistic is smaller
than Æ. If we observe that one of the k statistics is “significant” based on this criteria, that means that
one of the p-values is smaller than Æ, or equivalently, that the smallest p-value is smaller than Æ. We
can then rephrase the question: Under the joint hypothesis that a set of k hypotheses are all true, what
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is the probability that the smallest p-value is smaller than Æ? In general, we cannot provide a precise
answer to this quesion, but the Bonferroni correction bounds this probability by Æk. The Bonferroni
method furthermore suggests that if we want the familywise error probability (the probability that one
of the tests falsely rejects) to be bounded belowÆ, then an appropriate rule is to reject only if the smallest
p-value is smaller than Æ/k. Equivalently, the Bonferroni familywise p-value is k min j∑k p j .

Formally, suppose we have k hypotheses H j , j = 1, ...,k. For each we have a test and associated p-
value p j with the property that when H j is true limn!1P

£
p j <Æ

§
=Æ. We then observe that among the

k tests, one of the k will appear “significant” if min j∑k p j <Æ. This event can be written as

Ω
min
j∑k

p j <Æ

æ
=

k[

j=1

©
p j <Æ

™
.

Boole’s inequality states that for any k events A j , P

"
k[

j=1
A j

#

∑Pk
j=1P [Ak ]. Thus

P

∑
min
j∑k

p j <Æ

∏
∑

kX

j=1
P

£
p j <Æ

§
! kÆ

as stated. This demonstates that the familywise rejection probability is at most k times the individual
rejection probability.

Furthermore,

P

∑
min
j∑k

p j <
Æ

k

∏
∑

kX

j=1
P

h
p j <

Æ

k

i
!Æ.

This demonstrates that the family rejection probability can be controlled (bounded below Æ) if each
individual test is subjected to the stricter standard that a p-value must be smaller than Æ/k to be labeled
as “significant.”

To illustrate, suppose we have two coefficient estimates, with individual p-values 0.04 and 0.15.
Based on a conventional 5% level, the standard individual tests would suggest that the first coefficient
estimate is “significant” but not the second. A Bonferroni 5% test, however, does not reject as it would re-
quire that the smallest p-value be smaller than 0.025, which is not the case in this example. Alternatively,
the Bonferroni familywise p-value is 0.08, which is not significant at the 5% level.

In contrast, if the two p-values are 0.01 and 0.15, then the Bonferroni familywise p-value is 0.02,
which is significant at the 5% level.

9.21 Power and Test Consistency

The power of a test is the probability of rejecting H0 when H1 is true.
For simplicity suppose that yi is i.i.d. N(µ,æ2) withæ2 known, consider the t-statistic T (µ) =

p
n

°
ȳ °µ

¢
/æ,

and tests of H0 : µ = 0 against H1 : µ > 0. We reject H0 if T = T (0) > c. Note that

T = T (µ)+
p

nµ/æ

and T (µ) has an exact N(0,1) distribution. This is because T (µ) is centered at the true mean µ, while the
test statistic T (0) is centered at the (false) hypothesized mean of 0.

The power of the test is

P [T > c | µ] =P
£
Z+

p
nµ/æ> c

§
= 1°©

°
c °

p
nµ/æ

¢
.
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This function is monotonically increasing in µ and n, and decreasing in æ and c.
Notice that for any c and µ 6= 0, the power increases to 1 as n !1. This means that for µ 2 H1, the

test will reject H0 with probability approaching 1 as the sample size gets large. We call this property test
consistency.

Definition 9.3 A test of H0 : µ 2 £0 is consistent against fixed alternatives if
for all µ 2£1, P

£
Reject H0 | µ

§
! 1 as n !1.

For tests of the form “Reject H0 if T > c”, a sufficient condition for test consistency is that the T
diverges to positive infinity with probability one for all µ 2£1.

Definition 9.4 We say that T °!
p

1 as n !1 if for all M <1, P [T ∑ M ] ! 0

as n ! 1. Similarly, we say that T °!
p

°1 as n ! 1 if for all M < 1,

P [T ∏°M ] ! 0 as n !1.

In general, t-tests and Wald tests are consistent against fixed alternatives. Take a t-statistic for a test
of H0 : µ = µ0

T =
bµ°µ0

s(bµ)

where µ0 is a known value and s(bµ) =
q

n°1 bVµ . Note that

T =
bµ°µ
s(bµ)

+
p

n (µ°µ0)
q

bVµ

.

The first term on the right-hand-side converges in distribution to N(0,1). The second term on the right-
hand-side equals zero if µ = µ0, converges in probability to +1 if µ > µ0, and converges in probability
to °1 if µ < µ0. Thus the two-sided t-test is consistent against H1 : µ 6= µ0, and one-sided t-tests are
consistent against the alternatives for which they are designed.

Theorem 9.8 Under Assumptions 7.2, 7.3, and 7.4, for µ = r (Ø) 6= µ0 and q = 1,
then |T | °!

p
1, so for any c < 1 the test “Reject H0 if |T | > c” i s consistent

against fixed alternatives.

The Wald statistic for H0 : µ = r (Ø) = µ0 against H1 : µ 6= µ0 is

W = n
°bµ°µ0

¢0 bV °1
µ

°bµ°µ0
¢

.

Under H1, bµ °!
p
µ 6= µ0. Thus

°bµ°µ0
¢0 bV °1

µ

°bµ°µ0
¢
°!

p
(µ°µ0)0V

°1
µ (µ°µ0) > 0. Hence under H1, W °!

p
1. Again, this implies that Wald tests are consistent tests.
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Theorem 9.9 Under Assumptions 7.2, 7.3, and 7.4, for µ = r (Ø) 6= µ0, then
W °!

p
1, so for any c <1 the test “Reject H0 if W > c” i s consistent against

fixed alternatives.

9.22 Asymptotic Local Power

Consistency is a good property for a test, but does not give a useful approximation to the power of a
test. To approximate the power function we need a distributional approximation.

The standard asymptotic method for power analysis uses what are called local alternatives. This is
similar to our analysis of restriction estimation under misspecification (Section 8.13). The technique is
to index the parameter by sample size so that the asymptotic distribution of the statistic is continuous
in a localizing parameter. In this section we consider t-tests on real-valued parameters and in the next
section consider Wald tests. Specifically, we consider parameter vectorsØn which are indexed by sample
size n and satisfy the real-valued relationship

µn = r (Øn) = µ0 +n°1/2h (9.17)

where the scalar h is called a localizing parameter. We index Øn and µn by sample size to indicate their
dependence on n. The way to think of (9.17) is that the true value of the parameters are Øn and µn . The
parameter µn is close to the hypothesized value µ0, with deviation n°1/2h.

The specification (9.17) states that for any fixed h, µn approaches µ0 as n gets large. Thus µn is “close”
or “local” to µ0. The concept of a localizing sequence (9.17) might seem odd since in the actual world the
sample size cannot mechanically affect the value of the parameter. Thus (9.17) should not be interpreted
literally. Instead, it should be interpreted as a technical device which allows the asymptotic distribution
to be continuous in the alternative hypothesis.

To evaluate the asymptotic distribution of the test statistic we start by examining the scaled estimate
centered at the hypothesized value µ0. Breaking it into a term centered at the true value µn and a remain-
der we find

p
n

°bµ°µ0
¢
=
p

n
°bµ°µn

¢
+
p

n (µn °µ0)

=
p

n
°bµ°µn

¢
+h

where the second equality is (9.17). The first term is asymptotically normal:
p

n
°bµ°µn

¢
°!

d

p
VµZ

where Z ª N(0,1). Therefore p
n

°bµ°µ0
¢
°!

d

p
VµZ+h ª N(h,Vµ).

This asymptotic distribution depends continuously on the localizing parameter h.
Applied to the t statistic we find

T =
bµ°µ0

s(bµ)
°!

d

p
VµZ+h
p

Vµ

ª Z+± (9.18)

where ±= h/
p

Vµ. This generalizes Theorem 9.1 (which assumesH0 is true) to allow for local alternatives
of the form (9.17).
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Consider a t-test of H0 against the one-sided alternative H1 : µ > µ0 which rejects H0 for T > c where
©(c) = 1°Æ. The asymptotic local power of this test is the limit (as the sample size diverges) of the
rejection probability under the local alternative (9.17)

lim
n!1

P
£
Reject H0

§
= lim

n!1
P [T > c]

=P [Z+±> c]

= 1°© (c °±)

=© (±° c)
de f= º(±).

We call º(±) the asymptotic local power function.
In Figure 9.3(a) we plot the local power functionº(±) as a function of ± 2 [°1,4] for tests of asymptotic

size Æ = 0.10, Æ = 0.05, and Æ = 0.01. ± = 0 corresponds to the null hypothesis so º(±) = Æ. The power
functions are monotonically increasing in ±. Note that the power is lower than Æ for ± < 0 due to the
one-sided nature of the test.
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Figure 9.3: Asymptotic Local Power Function

We can see that the three power functions are ranked by Æ so that the test with Æ = 0.10 has higher
power than the test with Æ= 0.01. This is the inherent trade-off between size and power. Decreasing size
induces a decrease in power, and conversely.

The coefficient ± can be interpreted as the parameter deviation measured as a multiple of the stan-

dard error s(bµ). To see this, recall that s(bµ) = n°1/2
q

bVµ ' n°1/2
p

Vµ and then note that

±= h
p

Vµ

' n°1/2h

s(bµ)
= µn °µ0

s(bµ)
.

Thus ± approximately equals the deviation µn°µ0 expressed as multiples of the standard error s(bµ). Thus
as we examine Figure 9.3(a), we can interpret the power function at ±= 1 (e.g. 26% for a 5% size test) as
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the power when the parameter µn is one standard error above the hypothesized value. For example, from
Table 4.1 the standard error for the coefficient on “Married Female” is 0.010. Thus in this example, ±= 1
corresponds to µn = 0.010 or an 1.0% wage premium for married females. Our calculations show that the
asymptotic power of a one-sided 5% test against this alternative is about 26%.

The difference between power functions can be measured either vertically or horizontally. For ex-
ample, in Figure 9.3(a) there is a vertical dotted line at ± = 1, showing that the asymptotic local power
function º(±) equals 39% for Æ = 0.10, equals 26% for Æ = 0.05 and equals 9% for Æ = 0.01. This is the
difference in power across tests of differing size, holding fixed the parameter in the alternative.

A horizontal comparison can also be illuminating. To illustrate, in Figure 9.3(a) there is a horizontal
dotted line at 50% power. 50% power is a useful benchmark, as it is the point where the test has equal
odds of rejection and acceptance. The dotted line crosses the three power curves at ± = 1.29 (Æ = 0.10),
± = 1.65 (Æ = 0.05), and ± = 2.33 (Æ = 0.01). This means that the parameter µ must be at least 1.65
standard errors above the hypothesized value for a one-sided 5% test to have 50% (approximate) power.

The ratio of these values (e.g. 1.65/1.29 = 1.28 for the asymptotic 5% versus 10% tests) measures the
relative parameter magnitude needed to achieve the same power. (Thus, for a 5% size test to achieve 50%
power, the parameter must be 28% larger than for a 10% size test.) Even more interesting, the square of
this ratio (e.g. (1.65/1.29)2 = 1.64) is the increase in sample size needed to achieve the same power under
fixed parameters. That is, to achieve 50% power, a 5% size test needs 64% more observations than a
10% size test. This interpretation follows by the following informal argument. By definition and (9.17)
±= h/

p
Vµ =

p
n (µn °µ0)/

p
Vµ. Thus holding µ and Vµ fixed, ±2 is proportional to n.

The analysis of a two-sided t test is similar. (9.18) implies that

T =
ØØØØØ
bµ°µ0

s(bµ)

ØØØØØ°!d |Z+±|

and thus the local power of a two-sided t test is

lim
n!1

P
£
Reject H0

§
= lim

n!1
P [T > c] =P [|Z+±| > c] =© (±° c)+© (°±° c)

which is monotonically increasing in |±|.

Theorem 9.10 Under Assumptions 7.2, 7.3, 7.4, and µn = r (Øn) = r0 +n°1/2h,
then

T (µ0) =
bµ°µ0

s(bµ)
°!

d
Z+±

where Z ª N(0,1) and ±= h/
p

Vµ. For c such that©(c) = 1°Æ,

P [T (µ0) > c] °!© (±° c) .

Furthermore, for c such that©(c) = 1°Æ/2,

P [|T (µ0)| > c] °!© (±° c)+© (°±° c) .
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9.23 Asymptotic Local Power, Vector Case

In this section we extend the local power analysis of the previous section to the case of vector-valued
alternatives. We generalize (9.17) to vector-valued µn . The local parameterization is

µn = r (Øn) = µ0 +n°1/2
h (9.19)

where h is q £1.
Under (9.19), p

n
°bµ°µ0

¢
=
p

n
°bµ°µn

¢
+h °!

d
Zh ª N(h,V µ),

a normal random vector with mean h and variance matrix V µ.
Applied to the Wald statistic we find

W = n
°bµ°µ0

¢0 bV °1
µ

°bµ°µ0
¢
°!

d
Z0

h
V

°1
µ Zh ª¬2

q (∏) (9.20)

where ∏= h
0
V

°1
h. ¬2

q (∏) is a non-central chi-square random variable with non-centrality parameter ∏.
(Theorem 5.3.6.)

The convergence (9.20) shows that under the local alternatives (9.19), W °!
d

¬2
q (∏). This generalizes

the null asymptotic distribution which obtains as the special case ∏= 0. We can use this result to obtain
a continuous asymptotic approximation to the power function. For any significance level Æ > 0 set the

asymptotic critical value c so that P
h
¬2

q > c
i
=Æ. Then as n !1,

P [W > c] °!P

h
¬2

q (∏) > c
i de f= º(∏).

The asymptotic local power function º(∏) depends only on Æ, q , and ∏.

Theorem 9.11 Under Assumptions 7.2, 7.3, 7.4, and µn = r (Øn) = µ0 +n°1/2
h,

then
W °!

d
¬2

q (∏)

where ∏= h
0
V

°1
µ

h. Furthermore, for c such that P
h
¬2

q > c
i
=Æ,

P [W > c] °!P

h
¬2

q (∏) > c
i

.

Figure 9.3(b) plots º(∏) as a function of ∏ for q = 1, q = 2, and q = 3, and Æ = 0.05. The asymptotic
power functions are monotonically increasing in ∏ and asymptote to one.

Figure 9.3(b) also shows the power loss for fixed non-centrality parameter ∏ as the dimensionality of
the test increases. The power curves shift to the right as q increases, resulting in a decrease in power.
This is illustrated by the dotted line at 50% power. The dotted line crosses the three power curves at
∏ = 3.85 (q = 1), ∏ = 4.96 (q = 2), and ∏ = 5.77 (q = 3). The ratio of these ∏ values correspond to the
relative sample sizes needed to obtain the same power. Thus increasing the dimension of the test from
q = 1 to q = 2 requires a 28% increase in sample size, or an increase from q = 1 to q = 3 requires a 50%
increase in sample size, to obtain a test with 50% power.
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Exercises

Exercise 9.1 Prove that if an additional regressor X k+1 is added to X , Theil’s adjusted R
2

increases if and
only if |Tk+1| > 1, where Tk+1 = bØk+1/s( bØk+1) is the t-ratio for bØk+1 and

s( bØk+1) =
°
s2[(X

0
X )°1]k+1,k+1

¢1/2

is the homoskedasticity-formula standard error.

Exercise 9.2 You have two independent samples (y 1, X 1) and (y 2, X 2) which satisfy y 1 = X 1Ø1 + e1 and
y 2 = X 2Ø2 + e2, where E [x1i e1i ] = 0 and E [x2i e2i ] = 0, and both X 1 and X 2 have k columns. Let bØ1 and
bØ2 be the OLS estimates of Ø1 and Ø2. For simplicity, you may assume that both samples have the same
number of observations n.

(a) Find the asymptotic distribution of
p

n
°°bØ2 ° bØ1

¢
°

°
Ø2 °Ø1

¢¢
as n !1.

(b) Find an appropriate test statistic for H0 :Ø2 =Ø1.

(c) Find the asymptotic distribution of this statistic under H0.

Exercise 9.3 Let T be a t-statistic for H0 : µ = 0 versus H1 : µ 6= 0. Since |T |!d |Z | under H0, someone
suggests the test “Reject H0 if |T | < c1 or |T | > c2, where c1 is the Æ/2 quantile of |Z | and c2 is the 1°Æ/2
quantile of |Z |.

(a) Show that the asymptotic size of the test is Æ.

(b) Is this a good test of H0 versus H1? Why or why not?

Exercise 9.4 Let W be a Wald statistic for H0 : µ = 0 versus H1 : µ 6= 0, where µ is q £1. Since W °!
d

¬2
q

under H0, someone suggests the test “Reject H0 if W < c1 or W > c2, where c1 is the Æ/2 quantile of ¬2
q

and c2 is the 1°Æ/2 quantile of ¬2
q .

(a) Show that the asymptotic size of the test is Æ.

(b) Is this a good test of H0 versus H1? Why or why not?

Exercise 9.5 Take the linear model

yi = x
0
1iØ1 +x

0
2iØ2 +ei

E [x i ei ] = 0

where both x1i and x2i are q £1. Show how to test the hypotheses H0 :Ø1 =Ø2 against H1 :Ø1 6=Ø2.

Exercise 9.6 Suppose a researcher wants to know which of a set of 20 regressors has an effect on a vari-
able testscore. He regresses testscore on the 20 regressors and reports the results. One of the 20 regressors
(studytime) has a large t-ratio (about 2.5), while other t-ratios are insignificant (smaller than 2 in absolute
value). He argues that the data show that studytime is the key predictor for testscore. Do you agree with
this conclusion? Is there a deficiency in his reasoning?
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Exercise 9.7 Take the model

yi = xiØ1 +x2
i Ø2 +ei

E [ei | xi ] = 0

where yi is wages (dollars per hour) and xi is age. Describe how you would test the hypothesis that the
expected wage for a 40-year-old worker is $20 an hour.

Exercise 9.8 You want to test H0 :Ø2 = 0 against H1 :Ø2 6= 0 in the model

yi = x
0
1iØ1 +x

0
2iØ2 +ei

E [x i ei ] = 0.

You read a paper which estimates model

yi = x
0
1i b∞1 + (x2i °x1i )0 b∞2 + bei

and reports a test of H0 :∞2 = 0 against H1 :∞2 6= 0. Is this related to the test you wanted to conduct?

Exercise 9.9 Suppose a researcher uses one dataset to test a specific hypothesisH0 againstH1, and finds
that he can reject H0. A second researcher gathers a similar but independent dataset, uses similar meth-
ods and finds that she cannot reject H0. How should we (as interested professionals) interpret these
mixed results?

Exercise 9.10 In Exercise 7.8, you showed that
p

n
°
bæ2 °æ2¢ !d N(0,V ) as n !1 for some V . Let bV be

an estimator of V .

(a) Using this result, construct a t-statistic for H0 :æ2 = 1 against H1 :æ2 6= 1.

(b) Using the Delta Method, find the asymptotic distribution of
p

n (bæ°æ).

(c) Use the previous result to construct a t-statistic for H0 :æ= 1 against H1 :æ 6= 1.

(d) Are the null hypotheses in (a) and (c) the same or are they different? Are the tests in (a) and (c) the
same or are they different? If they are different, describe a context in which the two tests would
give contradictory results.

Exercise 9.11 Consider a regression such as Table 4.1 where both experience and its square are included.
A researcher wants to test the hypothesis that experience does not affect mean wages, and does this by
computing the t-statistic for experience. Is this the correct approach? If not, what is the appropriate
testing method?

Exercise 9.12 A researcher estimates a regression and computes a test of H0 against H1 and finds a p-
value of p = 0.08, or “not significant”. She says “I need more data. If I had a larger sample the test will
have more power and then the test will reject.” Is this interpretation correct?

Exercise 9.13 A common view is that “If the sample size is large enough, any hypothesis will be rejected.”
What does this mean? Interpret and comment.
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Exercise 9.14 Take the model

yi = x
0
iØ+ei

E [x i ei ] = 0

with parameter of interest µ = R
0Ø with R k £1. Let bØ be the least-squares estimator and bV bØ its variance

estimator.

(a) Write down bC , the 95% asymptotic confidence interval for µ, in terms of bØ, bV bØ, R , and z = 1.96 (the
97.5% quantile of N(0,1)).

(b) Show that the decision “Reject H0 if µ0 › bC ” is an asymptotic 5% test of H0 : µ = µ0.

Exercise 9.15 You are at a seminar where a colleague presents a simulation study of a test of a hypothesis
H0 with nominal size 5%. Based on B = 100 simulation replications under H0 the estimated size is 7%.
Your colleague says: “Unfortunately the test over-rejects.”

(a) Do you agree or disagree with your colleague? Explain. Hint: Use an asymptotic (large B) approxi-
mation.

(b) Suppose the number of simulation replications were B = 1000 yet the estimated size is still 7%.
Does your answer change?

Exercise 9.16 You have n i.i.d. observations (yi , x1i , x2i ), and consider two alternative regression models

yi = x
0
1iØ1 +e1i (9.21)

E [x1i e1i ] = 0

yi = x
0
2iØ2 +e2i (9.22)

E [x2i e2i ] = 0

where x1i and x2i have at least some different regressors. (For example, (9.21) is a wage regression on
geographic variables and (2) is a wage regression on personal appearance measurements.) You want to
know if model (9.21) or model (9.22) fits the data better. Define æ2

1 = E
£
e2

1i

§
and æ2

2 = E
£
e2

2i

§
. You decide

that the model with the smaller variance fit (e.g., model (9.21) fits better ifæ2
1 <æ2

2.) You decide to test for
this by testing the hypothesis of equal fit H0 : æ2

1 = æ2
2 against the alternative of unequal fit H1 : æ2

1 6= æ2
2.

For simplicity, suppose that e1i and e2i are observed.

(a) Construct an estimator bµ of µ =æ2
1 °æ2

2.

(b) Find the asymptotic distribution of
p

n
°bµ°µ

¢
as n !1.

(c) Find an estimator of the asymptotic variance of bµ.

(d) Propose a test of asymptotic size Æ of H0 against H1.

(e) Suppose the test accepts H0. Briefly, what is your interpretation?
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Exercise 9.17 You have two regressors x1 and x2, and estimate a regression with all quadratic terms

yi =Æ+Ø1x1i +Ø2x2i +Ø3x2
1i +Ø4x2

2i +Ø5x1i x2i +ei .

One of your advisors asks: Can we exclude the variable x2i from this regression?
How do you translate this question into a statistical test? When answering these questions, be spe-

cific, not general.

(a) What is the relevant null and alternative hypotheses?

(b) What is an appropriate test statistic? Be specific.

(c) What is the appropriate asymptotic distribution for the statistic? Be specific.

(d) What is the rule for acceptance/rejection of the null hypothesis?

Exercise 9.18 The observed data is {yi , x i , z i } 2R£Rk£R`, k > 1 and `> 1, i = 1, ...,n. An econometrician
first estimates

yi = x
0
i
bØ+ bei

by least squares. The econometrician next regresses the residual bei on z i , which can be written as

bei = z
0
i e∞+ eui .

(a) Define the population parameter ∞ being estimated in this second regression.

(b) Find the probability limit for e∞.

(c) Suppose the econometrician constructs a Wald statistic Wn for H0 : ∞= 0 from the second regres-
sion, ignoring the regression. Write down the formula for Wn .

(d) Assuming E
£

z i x
0
i

§
= 0, find the asymptotic distribution for Wn under H0 :∞= 0.

(e) If E
£

z i x
0
i

§
6= 0 will your answer to (d) change?

Exercise 9.19 An economist estimates yi = x1iØ1 + x2iØ2 + ei by least-squares and tests the hypothesis
H0 :Ø2 = 0 against H1 :Ø2 6= 0. She obtains a Wald statistic Wn = 0.34. The sample size is n = 500.

(a) What is the correct degrees of freedom for the ¬2 distribution to evaluate the significance of the
Wald statistic?

(b) The Wald statistic Wn is very small. Indeed, is it less than the 1% quantile of the appropriate ¬2

distribution? If so, should you reject H0? Explain your reasoning.

Exercise 9.20 You are reading a paper, and it reports the results from two nested OLS regressions:

yi = x
0
1i

eØ1 + eei

yi = x
0
1i

bØ1 +x
0
2i

bØ2 + bei .

Some summary statistics are reported:

Short Regression Long Regression
R2 = .20 R2 = .26Pn

i=1 ee2
i = 106

Pn
i=1 be2

i = 100
# of coefficients=5 # of coefficients=8
n = 50 n = 50
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You are curious if the estimate bØ2 is statistically different from the zero vector. Is there a way to determine
an answer from this information? Do you have to make any assumptions (beyond the standard regularity
conditions) to justify your answer?

Exercise 9.21 Take the model

yi = x1iØ1 +x2iØ2 +x3iØ3 +x4iØ4 +ei

E [x i ei ] = 0

Describe how you would test

H0 :
Ø1

Ø2
= Ø3

Ø4

against

H1 :
Ø1

Ø2
6= Ø3

Ø4
.

Exercise 9.22 You have a random sample from the model

yi = xiØ1 +x2
i Ø2 +ei

E [ei | xi ] = 0

where yi is wages (dollars per hour) and xi is age. Describe how you would test the hypothesis that the
expected wage for a 40-year-old worker is $20 an hour.

Exercise 9.23 Let Tn be a test statistic such that under H0, Tn °!
d

¬2
3. Since P

°
¬2

3 > 7.815
¢
= 0.05, an

asymptotic 5% test of H0 rejects when Tn > 7.815. An econometrician is interested in the Type I error of
this test when n = 100 and the data structure is well specified. She performs the following Monte Carlo
experiment.

• B = 200 samples of size n = 100 are generated from a distribution satisfying H0.

• On each sample, the test statistic Tnb is calculated.

• She calculates bp = 1
B

PB
b=1 (Tnb > 7.815) = 0.070

• The econometrician concludes that the test Tn is oversized in this context – it rejects too frequently
under H0.

Is her conclusion correct, incorrect, or incomplete? Be specific in your answer.

Exercise 9.24 Do a Monte Carlo simulation. Take the model

yi =Æ+xiØ+ei

E [xi ei ] = 0

where the parameter of interest is µ = exp(Ø). Your data generating process (DGP) for the simulation is: xi

is U [0,1], ei is independent of xi and N(0,1), n = 50. Set Æ= 0 and Ø= 1. Generate B = 1000 independent
samples with Æ. On each, estimate the regression by least-squares, calculate the covariance matrix using
a standard (heteroskedasticity-robust) formula, and similarly estimate µ and its standard error. For each
replication, store bØ, bµ, tØ =

° bØ°Ø
¢

/s
° bØ

¢
, and tµ =

°bµ°µ
¢

/s
°bµ

¢
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(a) Does the value ofÆmatter? Explain why the described statistics are invariant toÆ and thus setting
Æ= 0 is irrelevant.

(b) From the 1000 replications estimate E
£ bØ

§
and E

£bµ
§
. Discuss if you see evidence if either estimator

is biased or unbiased.

(c) From the 1000 replications estimate P
£
tØ > 1.645

§
and P [tµ > 1.645]. What does asymptotic theory

predict these probabilities should be in large samples? What do your simulation results indicate?

Exercise 9.25 The data set on the textbook website contains data on 1962 U.S. firms ex-
tracted from Compustat and assembled by Bronwyn Hall. This particular dataset was used in Hall and
Hall (1993).

The variables we use in this exercise are

year year of the observation
inva Investment to Capital Ratio
vala Total Market Value to Asset Ratio (Tobin’s Q)
cfa Cash Flow to Asset Ratio
debta Long Term Debt to Asset Ratio

The flow variables are annual sums. The stock variables are beginning of year.

(a) Extract the sub-sample of observations for 1987. There should be 1028 observations. Estimate a
linear regression of I (investment to capital ratio) on the other variables. Calculate appropriate
standard errors.

(b) Calculate asymptotic confidence intervals for the coefficients.

(c) This regression is related to Tobin’s q theory of investment, which suggests that investment should
be predicted solely by Q (Tobin’s Q). This theory predicts that the coefficient on Q should be pos-
itive and the others should be zero. Test the joint hypothesis that the coefficients on cash flow
(C ) and debt (D) are zero. Test the hypothesis that the coefficient on Q is zero. Are the results
consistent with the predictions of the theory?

(d) Now try a non-linear (quadratic) specification. Regress I on Q, C , D, Q2, C 2, D2, QC , QD, C D. Test
the joint hypothesis that the six interaction and quadratic coefficients are zero.

Exercise 9.26 In a paper in 1963, Marc Nerlove analyzed a cost function for 145 American electric com-
panies. His data set is on the textbook website. The variables are

C Total Cost
Q Output
PL Unit price of labor
PK Unit price of capital
PF Unit price of fuel

Nerlov was interested in estimating a cost function: C = f (Q,PL,PF,PK ).

(a) First estimate an unrestricted Cobb-Douglass specification

logCi =Ø1 +Ø2 logQi +Ø3 logPLi +Ø4 logPKi +Ø5 logPFi +ei . (9.23)

Report parameter estimates and standard errors.
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(b) What is the economic meaning of the restriction H0 :Ø3 +Ø4 +Ø5 = 1?

(c) Estimate (9.23) by constrained least-squares imposing Ø3 +Ø4 +Ø5 = 1. Report your parameter
estimates and standard errors.

(d) Estimate (9.23) by efficient minimum distance imposing Ø3 +Ø4 +Ø5 = 1. Report your parameter
estimates and standard errors.

(e) Test H0 :Ø3 +Ø4 +Ø5 = 1 using a Wald statistic.

(f) Test H0 :Ø3 +Ø4 +Ø5 = 1 using a minimum distance statistic.

Exercise 9.27 In Section 8.12 we report estimates from Mankiw, Romer and Weil (1992). We reported
estimation both by unrestricted least-squares and by constrained estimation, imposing the constraint
that three coefficients (2nd , 3r d and 4th coefficients) sum to zero, as implied by the Solow growth theory.
Using the same dataset estimate the unrestricted model and test the hypothesis that the three
coefficients sum to zero.

Exercise 9.28 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2), test the
hypothesis that marriage status does not affect mean wages.

(a) Take the regression reported in Table 4.1. Which variables will need to be omitted to estimate a
regression for the subsample of blacks?

(b) Express the hypothesis “marriage status does not affect mean wages” as a restriction on the coeffi-
cients. How many restrictions is this?

(c) Find the Wald (or F) statistic for this hypothesis. What is the appropriate distribution for the test
statistic? Calculate the p-value of the test.

(d) What do you conclude?

Exercise 9.29 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2) and
whites (race code = 1), test the hypothesis that the returns to education is common across groups.

(a) Allow the return to education to vary across the four groups (white male, white female, black male,
black female) by interacting dummy variables with education. Estimate an appropriate version of
the regression reported in Table 4.1.

(b) Find the Wald (or F) statistic for this hypothessis. What is the appropriate distribution for the test
statistic? Calculate the p-value of the test.

(c) What do you conclude?



Chapter 10

Resampling Methods

10.1 Introduction

So far in this textbook we have discussed two approaches to inference: exact and asymptotic. Both
have their strengths and weaknesses. In this chapter we introduce a set of alternative approximation
methods which are based around the concept of resampling – which means using sampling information
extracted from the empirical distribution of the data. These are powerful methods, widely applicable,
and often more accurate than exact or asymptotic approximations. Two disadvantages, however, are
(1) resampling methods typically require more computation power; and (2) the theory is considerably
more challenging. A consequence of the computation requirement is that most empirical researchers use
asymptotic approximations for routine calculations, while resampling approximations are more typically
used for final reporting.

We will discuss two categories of resampling methods used in statistical and econometric practice:
jackknife and bootstrap. Most of our attention will be given to the bootstrap as it is the most commonly
used resampling method in econometric practice.

The jackknife is the distribution obtained from the n leave-one-out estimators (see Section 3.20).
The jackknife is most commonly used for variance estimation.

The bootstrap is the distribution obtained by estimation on samples created by i.i.d. sampling with
replacement from the dataset. (There are other variants of bootstrap sampling, including parametric
sampling and residual sampling.) The bootstrap is commonly used for variance estimation, confidence
interval construction, and hypothesis testing.

There is a third category of resampling methods known as sub-sampling which we will not cover in
this textbook. Sub-sampling is the distribution obtained by estimation on sub-samples (sampling with-
out replacement) of the dataset. Sub-sampling can be used for most of same purposes as the bootstrap.
See the excellent monograph by Politis, Romano and Wolf (1999).

10.2 Example

To motivate our discussion we focus on the application presented in Section 3.7, which is a bivariate
regression applied to the CPS subsample of married black female wage earners with 12 years potential
work experience and displayed in Table 3.1. The regression equation is

log(wage) =Ø1education+Ø2 +e.

272
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The estimates as reported in (4.39) are

log(wage) = 0.155
(0.031)

education+ 0.698
(0.493)

+ be

bæ2 = 0.144
(0.043)

n = 20.

We focus on four estimates constructed from this regression. The first two are the coefficient esti-
mates bØ1 and bØ2. The third is the variance estimate bæ2. The fourth is an estimate of the expected level of
wages for an individual with 16 years of education (a college graduate), which turns out to be a nonlinear
function of the parameters. Under the simplifying assumption that the error e is independent of the level
of education we find that the expected level of wages is

µ= E
£
wage | education = 16

§

= E
£
exp

°
16Ø1 +Ø2 +e

¢§

= exp
°
16Ø1 +Ø2

¢
E
£
exp(e)

§

= exp
°
16Ø1 +Ø2 +æ2/2

¢
.

The final equality holds under the further simplifying assumption that e ª N
°
0,æ2¢. (In this case, E

£
exp(e)

§
=

exp
°
æ2/2

¢
can be obtained from the moment generating function.) The parameter µ is a nonlinear func-

tion of the coefficients. The natural estimate of µ replaces the unknowns by the point estimates. Thus

bµ= exp
°
16 bØ1 + bØ2 + bæ2/2

¢
= 25.80

(2.29)

The standard error for bµ can be found by extending Exercise 7.8 to find the joint asymptotic distribution
of bæ2 and the slope estimates, and then applying the delta method.

We are interested in calculating standard errors for the four estimates described above and construct-
ing confidence intervals for the parameters. We are interested in going beyond exact and asymptotic
approximations, especially given the small sample, the use of robust covariance matrix estimates, and
the non-linear transformations. One of the challenges is that standard packages, such as Stata, provide
standard errors for the coefficient estimates bØ1 and bØ2 and smooth nonlinear functions of the coefficient
estimates, but not for the variance estimate bæ2 nor functionals of it such as bµ.

10.3 Jackknife Estimation of Variance

The jackknife estimates moments of estimators using the distribution of the leave-one-out estima-
tors. The jackknife estimator of bias was introduced by Quenouille (1949) and extended by Tukey (1958)
to the jackknife estimator of variance. The idea was expanded further in the monographs of Efron (1982)
and Shao and Tu (1995).

Let bµ be any estimator of a vector-valued parameter µ which is a function of a random sample of size
n. Let V bµ = var

£bµ
§

be the variance of bµ. Define the leave-one-out estimators bµ(°i ) which are computed
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using the formula for bµ except that observation i is deleted. Tukey’s jackknife estimator for V bµ is defined
as a scale of the sample variance of the leave-one-out estimators:

bV jack
bµ

= n °1
n

nX

i=1

≥
bµ(°i ) °µ

¥≥
bµ(°i ) °µ

¥0
(10.1)

where µ is the sample mean of the leave-one-out estimators

µ = 1
n

nX

i=1

bµ(°i ).

For scalar estimators bµ the jackknife standard error is the square root of (10.1).

sjack
bµ

=
r

bV jack
bµ

A convenient feature of the jackknife estimator bV jack
bµ

is that the formula (10.1) is quite general and
does not require any technical (exact or asymptotic) calculations. A downside is that can require n sepa-
rate estimations, which in some cases can be computationally costly.

In most cases bV jack
bµ

will be similar to a robust asymptotic variance matrix estimator. The main attrac-
tions of the jackknife estimator are that it can be used when an explicit asymptotic variance formula is
not available and that it can be used as a check on the reliability of an asymptotic formula.

The formula (10.1) is not immediately intuitive, so may benefit from some motivation. We start by
examining the sample mean y = 1

n
Pn

i=1 y i . The leave-one-out estimator is

y (°i ) =
1

n °1

X

j 6=i
y j =

n
n °1

y ° 1
n °1

y i . (10.2)

The sample mean of the leave-one-out estimators is

1
n

nX

i=1
y (°i ) =

n
n °1

y ° 1
n °1

y = y .

The difference is

y (°i ) ° y = 1
n °1

°
y ° y i

¢
.

The jackknife estimate of variance (10.1) is then

bV jack
y

= n °1
n

nX

i=1

µ
1

n °1

∂2 °
y ° y i

¢°
y ° y i

¢0

= 1
n

µ
1

n °1

∂ nX

i=1

°
y ° y i

¢°
y ° y i

¢0 . (10.3)

This is identical to the conventional estimator for the variance of y . Indeed, Tukey proposed the (n°1)/n

scaling in (10.1) so that bV jack
y

precisely equals the conventional estimator. This calculation shows that for
the sample mean, the jackknife estimate of variance is identical to the conventional estimator.

We next examine the case of least-squares regression coefficient estimates. Recall from (3.44) that
the leave-one-out OLS estimator equals

bØ(°i ) = bØ°
°

X
0
X

¢°1
x i eei (10.4)
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where eei = (1°hi i )°1 bei and hi i = x
0
i

°
X

0
X

¢°1
x i . The sample mean of the leave-one-out estimators is

Ø= bØ°
°

X
0
X

¢°1 eµ

where eµ= n°1 Pn
i=1 x i eei . Thus

bØ(°i ) °Ø=°
°

X
0
X

¢°1 °
x i eei ° eµ

¢
.

The jackknife estimate of variance for bØ is

bV jack
bØ

= n °1
n

nX

i=1

≥
bØ(°i ) °Ø

¥≥
bØ(°i ) °Ø

¥0

= n °1
n

°
X

0
X

¢°1

√
nX

i=1
x i x

0
i ee

2
i °neµeµ0

!
°

X
0
X

¢°1

= n °1
n

bV HC3
bØ ° (n °1)

°
X

0
X

¢°1 eµeµ0 °
X

0
X

¢°1 (10.5)

where bV HC3
bØ is the HC3 covariance estimator (4.34) based on prediction errors. The second term in (10.5)

is typically quite small since eµ is typically small in magnitude. Thus bV jack
bØ

' eV bØ. Indeed (4.34) was origi-

nally motivated as a simplification of the jackknife estimator. This shows that for regression coefficients
the jackknife estimator of variance is similar to a conventional robust estimator. This is accomplished
without the user “knowing” the form of the asymptotic covariance matrix. This is further confirmation
that the jackknife is making a reasonable calculation.

Third, we examine the jackknife estimator for a function bµ = r (bØ) of a least-squares estimator. The
leave-one-out estimator of µ is

bµ(°i ) = r (bØ(°i ))

= r

≥
bØ°

°
X

0
X

¢°1
x i eei

¥

' bµ° bR 0 °
X

0
X

¢°1
x i eei .

The second equality is (10.4). The final approximation is obtained by a mean-value expansion, using
r (bØ) = bµ and setting bR =

°
@/@Ø

¢
r (bØ)0. This approximation holds in large samples since bØ(°i ) are uni-

formly consistent for Ø. The jackknife variance estimator for bµ thus equals

bV jack
bµ

= n °1
n

nX

i=1

≥
bµ(°i ) °µ

¥≥
bµ(°i ) °µ

¥0

' n °1
n

bR 0 °
X

0
X

¢°1

√
nX

i=1
x i x

0
i ee

2
i °neµeµ0

!
°

X
0
X

¢°1 bR

= bR 0 bV jack
bØ

bR

' bR 0 eV bØ
bR .

The final line equals a delta-method estimator for the variance of bµ constructed with the covariance
estimator (4.34). This shows that the jackknife estimator of variance for bµ is approximately an asymptotic
delta-method estimator. While this is an asymptotic approximation, it again shows that the jackknife
produces an estimator which is asymptotically similar to one produced by asymptotic methods. This
is despite the fact that the jackknife estimator is calculated without reference to asymptotic theory and
does not require calculation of the derivatives of r (Ø).
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This argument extends directly to any “smooth function” estimator. Most of the estimators discussed
so far in this textbook take the form bµ = g

°
w

¢
where w = n°1 Pn

i=1 w i and w i is some vector-valued
function of the data. For any such estimator bµ, the leave-one-out estimator equals bµ(°i ) = g

°
w (°i )

¢
and

its jackknife estimator of variance is (10.1). Using (10.2) and a mean-value expansion, we have the large-
sample approximation

bµ(°i ) = g
°
w (°i )

¢

= g

µ
n

n °1
w ° 1

n °1
w i

∂

' g
°
w

¢
° 1

n °1
G

°
w

¢0
w i

where G (w ) = (@/@w ) g (w )0. Thus

bµ(°i ) °µ '° 1
n °1

G
°
w

¢0 °
w i °w

¢

and the jackknife estimator of the variance of bµ approximately equals

bV jack
bµ

= n °1
n

nX

i=1

°bµ(°i ) ° bµ(·)
¢°bµ(°i ) ° bµ(·)

¢0

' n °1
n

G
°
w

¢0
√

1

(n °1)2

nX

i=1

°
w i °w

¢°
w i °w

¢0
!

G
°
w

¢

=G
°
w

¢0 bV jack
w

G
°
w

¢

where bV jack
w

as defined in (10.3) is the conventional (and jackknife) estimator for the variance of w . Thus
bV jack

bµ
is approximately the delta-method estimator. Once again, we see that the jackknife estimator au-

tomatically calculates what is effectively the delta-method variance estimator, but without requiring the
user to explicitly calculate the derivative of g (w ).

10.4 Example

We illustrate by reporting the asymptotic and jackknife standard errors for the four parameters given
earlier. In Table 10.1 we report the actual values of the leave-one-out estimates for each of the twenty
observations in the sample. The jackknife standard errors are calculated as the scaled square roots of
the sample variances of these leave-one-out estimates and are reported in the second-to-last row. For
comparison the asymptotic standard errors are reported in the final row.

For all estimators the jackknife and asymptotic standard errors are quite similar. This reinforces the
credibility of both standard error estimates. The largest differences arise for bØ2 and bµ, whose jackknife
standard errors are about 5% larger than the asymptotic standard errors.

The take-away from our presentation is that the jackknife is a simple and flexible method for vari-
ance and standard error calculation. Circumventing technical asymptotic and exact calculations, the
jackknife produces estimates which in many cases are very similar to asymptotic delta-method counter-
parts. The jackknife is especially appealing in cases where asymptotic standard errors are not available
or are difficult to calculate. They can also be used as a double-check on the reasonability of asymptotic
delta-method calculations.

In Stata, jackknife standard errors for coefficient estimates in many models are simply obtained
by the option. For nonlinear functions of the coefficients or other estimators, the

command can be combined with any other command to obtain jackknife standard errors.
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Table 10.1: Leave-one-out Estimators and Jackknife Standard Errors

Observation bØ1(°i ) bØ2(°i ) bæ2
(°i ) bµ(°i )

1 0.150 0.764 0.150 25.63
2 0.148 0.798 0.149 25.48
3 0.153 0.739 0.151 25.97
4 0.156 0.695 0.144 26.31
5 0.154 0.701 0.146 25.38
6 0.158 0.655 0.151 26.05
7 0.152 0.705 0.114 24.32
8 0.146 0.822 0.147 25.37
9 0.162 0.588 0.151 25.75

10 0.157 0.693 0.139 26.40
11 0.168 0.510 0.141 26.40
12 0.158 0.691 0.118 26.48
13 0.139 0.974 0.141 26.56
14 0.169 0.451 0.131 26.26
15 0.146 0.852 0.150 24.93
16 0.156 0.696 0.148 26.06
17 0.165 0.513 0.140 25.22
18 0.155 0.698 0.151 25.90
19 0.152 0.742 0.151 25.73
20 0.155 0.697 0.151 25.95

sjack 0.032 0.514 0.046 2.39
sasy 0.031 0.493 0.043 2.29

To illustrate, below we list the Stata commands which will calculate the jackknife standard errors
listed above. The first line is least squares estimation with standard errors calculated by the jackknife.
The second line calculates the error variance estimate bæ2 with a jackknife standard error. The third line
does the same for the estimate bµ.

Stata Commands

reg wage education if mbf12 == 1, vce(jackknife)
jackknife (e(rss)/e(N)): reg wage education if mbf12 == 1
jackknife exp(16*_b[education]+_b[_cons]+e(rss)/e(N)/2): ///

reg wage education if mbf12 == 1

10.5 Jackknife for Clustered Observations

In Section 4.22 we introduced the clustered regression model, cluster-robust variance estimators,
and cluster-robust standard errors. Jackknife variance estimation can also be used for clustered samples,
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but with some natural modifications. Recall that the least-squares estimator in the clustered sample
context can be written as

bØ=
√

GX

g=1
X

0
g X g

!°1 √
GX

g=1
X

0
g y g

!

where g = 1, ...,G indexes the cluster. Instead of leave-one-out estimators, it is natural to use delete-
cluster estimators, which delete one cluster at a time. They take the form (4.52):

bØ(°g ) = bØ°
°

X
0
X

¢°1
X

0
g eeg
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0
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¥°1
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beg = y g °X g bØ.

The delete-cluster jackknife estimator of the variance of bØ is

bV jack
bØ

= G °1
G

GX

g=1

≥
bØ(°g ) °Ø

¥≥
bØ(°g ) °Ø

¥0

Ø= 1
G

GX

g=1

bØ(°g ).

We can also call bV jack
bØ

a cluster-robust jackknife estimator of variance.

Using the same approximations as the previous section, we can show that the delete-cluster jackknife
estimator is asymptotically equivalent to the cluster-robust covariance matrix estimator (4.53) calculated
with the delete-cluster prediction errors. This verifies that the delete-cluster jackknife is the appropriate
jackknife approach for clustered dependence.

For parameters which are functions bµ = r (bØ) of the least-squares estimator, the delete-cluster jack-
knife estimator of the variance of bµ is

bV jack
bµ

= G °1
G

GX

g=1

≥
bµ(°g ) °µ

¥≥
bµ(°g ) °µ

¥0

bµ(°i ) = r (bØ(°g ))

µ = 1
G

GX

g=1

bµ(°g ).

Using a mean-value expansion, we can show that this estimator is asymptotically equivalent to the delta-
method cluster-robust covariance matrix estimator for bµ. This shows that the jackknife estimator is ap-
propriate for covariance matrix estimation.

As in the context of i.i.d. samples, one advantage of the jackknife covariance matrix estimators is that
they do not require the user to make a technical calculation of the asymptotic distribution. A downside
is an increase in computation cost, as G separate regressions are effectively estimated.

In Stata, jackknife standard errors for coefficient estimates with clustered observations are obtained
by using the options where denotes the cluster variable.
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10.6 The Bootstrap Algorithm

The bootstrap is a powerful approach to inference, and is due to the pioneering work of Efron (1979).
There are many textbook and monograph treatments of the bootstrap, including Efron (1982), Hall (1992),
Efron and Tibshirani (1993), Shao and Tu (1995), and Davison and Hinkley (1997). Reviews for econome-
tricians are provided by Hall (1994) and Horowitz (2001)

There are several ways to describe or define the bootstrap, and there are several forms of the boot-
strap. We start in this section by describing the basic nonparametric bootstrap algorithm. In subsequent
sections we give more formal definitions of the bootstrap as well as theoretical justifications.

Briefly, the bootstrap distribution is obtained by estimation on independent samples created by i.i.d.
sampling (sampling with replacement) from the original dataset.

To understand this, it is useful to start with the concept of sampling with replacement from the
dataset. To continue the empirical example used earlier in the chapter, we focus on the dataset dis-
played in Table 3.1, which has n = 20 observations. Sampling from this distribution means randomly
selecting one row from this table. Mathematically this is the same as randomly selecting an integer from
the set {1,2, ...,20}. To illustrate, Matlab has a random integer generator (the function ), and using
the random number seed of 13 (an arbitrary choice) we obtain the random draw 16. This means that we
draw observation number 16 from Table 3.1. Examining the table, we can see that this is an individual
with wage $18.75 and education of 16 years. We repeat by drawing another random integer on the set
{1,2, ...,20} and this time obtain 5. This means we take observation 5 from Table 3.1, which is an indi-
vidual with wage $33.17 and education of 16 years. We continue until we have n = 20 such draws. This
random set of observations are {16, 5, 17, 20, 20, 10, 13, 16, 13, 15, 1, 6, 2, 18, 8, 14, 6, 7, 1, 8}. We call this
the bootstrap sample.

Notice that the observations 1, 6, 8, 13, 16, 20 each appear twice in the bootstrap sample, and the
observations 3, 4, 9, 11, 12, 19 do not appear at all. That is okay. In fact, it is necessary for the bootstrap to
work. This is because we are drawing with replacement. (If we instead made draws without replacement,
then the constructed dataset would have exactly the same observations as in Table 3.1, only in different
order.) We can also ask the question “What is the probability that an individual observation will appear
at least once in the bootstrap sample? The answer is

P
£
Observation in Bootstrap Sample

§
= 1°

µ
1° 1

n

∂n

(10.6)

! 1°e°1

' 0.632.

The limit holds as n !1. The approximation 0.632 is excellent even for small n. Indeed, for our example
with n = 20 the probability (10.6) is 0.641. These calculations show that an individual observation is in
the bootstrap sample with probability near 2/3, and is not in the bootstrap sample with probability near
1/3.

Once again, the bootstrap sample is the constructed dataset with the 20 observations drawn ran-
domly from the original sample. Notationally, we write the i th bootstrap observation as

°
y§

i , x
§
i

¢
and

the bootstrap sample as {
°
y§

1 , x
§
1

¢
, ...,

°
y§

n , x
§
n
¢
}. In our present example with y denoting the log wage, the

bootstrap sample is
{
°
y§

1 , x
§
1
¢

, ...,
°
y§

n , x
§
n
¢
} = {(2.93,16) , (3.50,16) ..., (3.76,18)}.

The bootstrap estimate bØ§
is then obtained applying the least-squares estimation formula to the boot-

strap sample. Thus we regress y§
i on x

§
i . The other bootstrap estimates, in our example bæ2§ and bµ§, are

obtained by applying the estimation formula to the bootstrap sample as well. Writing bµ§ =
° bØ§

1 , bØ§
2 , bæ§2, bµ§¢0
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we have the bootstrap estimate of the parameter vector µ =
°
Ø1,Ø2,æ2,µ

¢0. In our example (the bootstrap
sample described above) bµ§ = (0.195,0.113,0.107,26.7)0. This is one draw from the bootstrap distribution
of the estimates.

The estimate bµ§ as described is one random draw from the distribution of estimates obtained by
i.i.d. sampling from the original data. With one draw we can say relatively little. But we can repeat this
exercise to obtain multiple draws from this bootstrap distribution. To distinguish between these draws
we index the bootstrap samples by b = 1, ...,B , and write the bootstrap estimates as bµ§b or bµ§(b).

To continue our illustration, we draw 20 more random integers {19, 5, 7, 19, 1, 2, 13, 18, 1, 15, 17, 2,
14, 11, 10, 20, 1, 5, 15, 7} and construct a second bootstrap sample. On this sample we again estimate
the parameters, and obtain bµ§(2) = (0.175,0.52,0.124,29.3)0. This is a second random draw from the
distribution of bµ§. We repeat this B times, storing the parameter estimates bµ§(b). We have thus created a

new dataset of bootstrap draws
n
bµ§(b) : b = 1, ...,B

o
. By construction, the draws are independent across

b and identically distributed.
The number of bootstrap draws, B , is often called the “number of bootstrap replications”. Typical

choices for B are 1000, 5000, and 10,000. We discuss selecting B later, but roughly speaking, larger B
results in a more precise estimate at an increased computation cost. For our application we set B =
10,000.

To illustrate, Figure 13.1 displays the densities of the distributions of the bootstrap estimates bØ§
1 and

bµ§ across 10,000 draws. The dotted lines show the point estimate. You can notice that the density for bØ§
1

is slightly skewed to the left.
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Figure 10.1: Bootstrap Distributions of bØ§
1 and bµ§

10.7 Bootstrap Variance and Standard Errors

Given the bootstrap draws we can estimate features of the bootstrap distribution. The bootstrap
estimator of variance of an estimator bµ is the sample variance across the bootstrap draws bµ§(b). It
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equals

bV boot
bµ = 1

B °1

BX

b=1

≥
bµ§(b)°µ§

¥≥
bµ§(b)°µ§

¥0
(10.7)

µ
§ = 1

B

BX

b=1

bµ§(b).

For a scalar estimator bµ the bootstrap standard error is the square root of the bootstrap estimator of
variance:

sboot
bµ

=
q

bV boot
bµ .

This is a very simple statistic to calculate, and is the most common use of the bootstrap in applied econo-
metric practice. A caveat (discussed in more detail in Section 10.15) is that in many cases it is better to
use a trimmed estimator.

Standard errors are conventionally reported to convey the precision of the estimator. They are also
commonly used to construct confidence intervals. Bootstrap standard errors can be used for this pur-
pose. The normal-approximation bootstrap confidence interval is

C nb =
h
bµ° z1°Æ/2sboot

bµ
, bµ+ z1°Æ/2sboot

bµ

i

where z1°Æ/2 is the 1°Æ/2 quantile of the N(0,1) distribution. This interval C nb is identical in format
to an asymptotic confidence interval, but with the bootstrap standard error replacing the asymptotic
standard error. C nb is the default confidence interval reported by Stata when the bootstrap has been used
to calculate standard errors. However, the normal-approximation interval is in general a poor choice for
confidence interval construction as it relies on the normal approximation to the t-ratio which can be
inaccurate in finite samples. There are other methods – such as the bias-corrected percentile method
to be discussed in Section 10.17 – which are just as simple to compute but have better performance.
In general, bootstrap standard errors should be used as estimates of precision rather than as tools to
construct confidence intervals.

Since B is finite, all bootstrap statistics, such as bV boot
bµ , are estimates and hence random. Their values

will vary across different choices for B and simulation runs (depending on how the simulation seed is
set). Thus you should not expect to obtain the exact same bootstrap standard errors as other researchers
when replicating their results. They should be similar (up to simulation sampling error) but not precisely
the same.

In Table 10.2 we report the four parameter estimates introduced in Section 10.2, along with asymp-
totic, jackknife and bootstrap standard errors. We also report four bootstrap confidence intervals which
will be introduced in subsequent sections.

For these four estimators, we can see that the bootstrap standard errors are quite similar to the
asymptotic and jackknife standard errors. The most noticable difference arises for bØ2, where the boot-
strap standard error is about 10% larger than the asymptotic standard error.

In Stata, bootstrap standard errors for coefficient estimates in many models are simply obtained by
the option, where is the number of bootstrap replications. For nonlinear
functions of the coefficients or other estimators, the command can be combined with any
other command to obtain bootstrap standard errors. Synonyms for are and .

To illustrate, below we list the Stata commands which will calculate1 the bootstrap standard errors
listed above.

1They will not precisely replicate the standard errors, since those in Table 10.2 were produced in Matlab, which uses a differ-
ent random number sequence.
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Table 10.2: Comparison of Methods

bØ1 bØ2 bæ2 bµ
Estimate 0.155 0.698 0.144 25.80
Asymptotic s.e. (0.031) (0.493) (0.043) (2.29)
Jackknife s.e. (0.032) (0.514) (0.046) (2.39)
Bootstrap s.e. (0.034) (0.548) (0.041) (2.38)
95% Percentile Interval [0.08, 0.21] [°0.27, 1.91] [0.06, 0.22] [21.4, 30.7]
95% BC Percentile Interval [0.08, 0.21] [°0.25, 1.93] [0.09, 0.28] [22.0, 31.5]
95% BCa Percentile Interval [0.08, 0.21] [°0.25, 1.93] [0.09, 0.28] [22.0, 31.5]
95% Percentile-t Interval [0.09, 0.21] [°0.20, 1.81] [0.08, 0.34] [21.6, 32.2]

Stata Commands

reg wage education if mbf12 == 1, vce(bootstrap, reps(10000))
bs (e(rss)/e(N)), reps(10000): reg wage education if mbf12 == 1
bs (exp(16*_b[education]+_b[_cons]+e(rss)/e(N)/2)), reps(10000): ///

reg wage education if mbf12 == 1

10.8 Percentile Interval

The second most common use of bootstrap methods is for confidence intervals. There are multiple
bootstrap methods to form confidence intervals. A popular and simple method is called the percentile
interval. It is based on the quantiles of the bootstrap distribution.

In Section 10.6 we described the bootstrap algorithm, which creates an i.i.d. sample of bootstrap
estimates

©bµ§1 , bµ§2 , ..., bµ§B
™

corresponding to an estimator bµ of a parameter µ. We focus on the case of a
scalar parameter µ.

For any 0 < Æ < 1 we can calculate the empirical quantile q§
Æ of these bootstrap estimates. This is

the number such that nÆ bootstrap estimates are smaller than q§
Æ, and typically calculated by taking the

nÆth order statistic of the bµ§b . See Section 11.3 of Introduction to Econometrics for a precise discussion of
empirical quantiles and common quantile estimators.

The percentile bootstrap 100(1°Æ)% confidence interval is

C pc =
£
q§
Æ/2, q§

1°Æ/2

§
. (10.8)

For example, if B = 1000, Æ= 0.05, and the empirical quantile estimator is used, then C pc =
h
bµ§(25),

bµ§(975)

i
.

To illustrate, the 0.025 and 0.975 quantiles of the bootstrap distributions of bØ§
1 and bµ§ are indicated

in Figure 13.1 by the arrows. The intervals between the arrows are the 95% percentile interval.
The percentile interval has the convenience that it does not require calculation of a standard error.

This is particularly convenient in contexts where asymptotic standard error calculation is complicated,
burdensome, or unknown. C pc is a simple by-product of the bootstrap algorithm and does not require
meaningful computational cost above that required to calculate the bootstrap standard error.

The percentile interval has the useful property that it is transformation-respecting. The percentile
interval for any monotone parameter transformation ¡ = m(µ) is simply the percentile interval for µ
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mapped by m(µ). That is, if
£
q§
Æ/2, q§

1°Æ/2

§
is the percentile interval for µ, then

£
m

°
q§
Æ/2

¢
,m

°
q§

1°Æ/2

¢§
is

the percentile interval for ¡. This property follows directly from the equivariance property of sample
quantiles. Many confidence-interval methods, such as the delta-method asymptotic interval and the
normal-approximation interval C nb, do not share this property.

To illustrate the usefulness of the transformation-respecting property, consider the variance æ2. In
some cases it is useful to report the variance æ2, and in other cases it is useful to report the standard
deviation æ. Thus we may be interested in confidence intervals for æ2 or æ. To illustrate, the asymp-
totic 95% normal confidence interval for æ2 which we calculate from Table 13.2 is [0.060,0.228]. Taking
square roots we obtain an interval for æ of [0.244,0.477]. Alternatively, the delta method standard error
for bæ = 0.379 is 0.057, leading to an asymptotic 95% confidence interval for æ of [0.265,0.493] which is
different. This shows that the delta method is not transformation-respecting. In contrast, the 95% per-
centile interval foræ2 is [0.062, 0.220] and that foræ is [0.249, 0.469] which is identical to the square roots
of the interval for æ2.

The bootstrap percentile intervals for the four estimators are reported in Table 13.2.
In Stata, percentile confidence intervals can be obtained by using the command

or the command after an estimation command which calculates
standard errors via the bootstrap.

10.9 The Bootstrap Distribution

For applications, it is often sufficient if one understands the bootstrap as an algorithm. However, for
theory it is more useful to view the bootstrap as a specific estimator of the sampling distribution. For
this, it is useful to introduce some additional notation.

The key is that the distribution of any estimator or statistic is determined by the distribution of the
data. While the latter is unknown it can be estimated by the empirical distribution of the data. This is
what the bootstrap does.

To fix notation, let F denote the distribution of an individual observation w . (In regression, w is the
pair (y, x).) Let Gn(u,F ) denote the distribution of an estimator bµ. That is,

Gn(u,F ) =P
£bµ ∑ u | F

§
.

We write the distribution Gn as a function of n and F since they (generally) affect the distribution of
bµ. We are interested in the distribution Gn . For example, we want to know its variance to calculate a
standard error, or its quantiles to calculate a percentile interval.

In principle, if we knew the distribution F we should be able to determine the distribution Gn . In
practice there are two barriers to implementation. The first barrier is that the calculation of Gn(u,F )
is generally infeasible except in certain special cases such as the normal regression model. The second
barrier is that in general we do not know F .

The bootstrap simultaneously circumvents these two barriers by two clever ideas. First, the bootstrap
proposes estimation of F by the empirical distribution function (EDF) Fn , which is the simplest nonpara-
metric estimator of the joint distribution of the observations. The EDF is Fn(x) = 1

n
Pn

i=1 (Xi ∑ x) . (See
Section 11.2 of Introduction to Econometrics for details and properties.) Replacing F with Fn we obtain
the ideal bootstrap estimator of the distribution of bµ

G§
n(u) =Gn(u,Fn). (10.9)

G§
n is an idealized estimator of Gn . It is unknown in practice. The bootstrap proposes estimation of G§

n
by simulation. This is the bootstrap algorithm described in the previous sections. The essential idea is
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that simulation from Fn is sampling with replacement from the original data, and this is computationally
very simple. Applying the estimation formula for bµ, we obtain i.i.d. draws from the distribution G§

n(u).
By making a large number B of such draws, we can estimate any feature of G§

n of interest. The bootstrap
combines two ideas: (1) estimate Gn(u,F ) by Gn(u,Fn); (2) estimate Gn(u,Fn) by simulation. These ideas
are intertwined. Only by considering these steps together do we obtain a feasible method.

The way to think about the connection between Gn and G§
n is as follows. Gn is the distribution of the

estimator bµ obtained when the observations are sampled i.i.d. from the population distribution F . G§
n

is the distribution of the same statistic, denoted bµ§, obtained when the observations are sampled i.i.d.
from the empirical distribution Fn . It is useful to conceptualize the “universe” which separately generates
the dataset and the bootstrap sample. The “sampling universe” is the population distribution F . In this
universe the true parameter isµ. The “bootstrap universe” is the empircal distribution Fn . When drawing
from the bootstrap universe we are treating Fn as if it is the true distribution. Thus anything which is true
about Fn should be treated as true in the bootstrap universe. In the bootstrap universe, the “true” value
of the parameter µ is the value determined by the EDF Fn . In most cases this is the estimate bµ. It is the
true value of the coefficient when the true distribution is Fn .

We now carefully explain the connection with the bootstrap algorithm as previously described.
First, observe that sampling with replacement from the sample {y 1, ..., y n} is identical to sampling

from the EDF Fn . This is because the EDF is the probability distribution which puts probability mass
1/n on each observation. Thus sampling from Fn means sampling an observation with probability 1/n,
which is sampling with replacement.

Second, observe that the bootstrap estimator bµ§ described here is identical to the bootstrap algo-
rithm described in Section 10.6. That is, bµ§ is the random vector generated by applying the estimator
formula bµ to samples obtained by random sampling from Fn .

Third, observe that the distribution of these bootstrap estimators is the bootstrap distribution (10.9).
This is a precise equality. That is, the bootstrap algorithm generates i.i.d. samples from Fn , and when the
estimators are applied we obtain random variables bµ§ with the distribution G§

n .
Fourth, observe that the bootstrap statistics described earlier – bootstrap variance, standard error,

and quantiles – are estimators of the corresponding features of the bootstrap distribution G§
n .

This discussion is meant to carefully describe why the notation G§
n(u) is useful to help understand the

properties of the bootstrap algorithm. Since Fn is the natural nonparametric estimator of the unknown
distribution F , G§

n(u) =Gn(u,Fn) is the natural plug-in estimator of the unknown Gn(u,F ). Furthermore,
since Fn is uniformly consistent for F by the Glivenko-Cantelli Lemma (Theorem 11.6 in Introduction to
Econometrics) we also can expect G§

n(u) to be consistent for Gn(u). Making this precise it a bit challenging
since Fn and Gn are functions. In the next several sections we develop an asymptotic distribution theory
for the bootstrap distribution based on extending classical asymptotic theory to the case of conditional
distributions.

10.10 The Distribution of the Bootstrap Observations

Let y
§ be a random draw from the sample {y 1, ..., y n}. What is the distribution of y

§?
Since we are fixing the observations, the correct question is: What is the conditional distribution of

y
§, conditional on the observed data? The empirical distribution function Fn summarizes the informa-

tion in the sample, so equivalently we are talking about the distribution conditional on Fn . Consequently
we will write the bootstrap probability function and expectation as

P
§ £

y
§ ∑ x

§
=P

£
y
§ ∑ x | Fn

§

E
§ £

y
§§

= E
£

y
§ | Fn

§
.
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Notationally, the starred distribution and expectation are conditional given the data.
The (conditional) distribution of y

§ is the empirical distribution function Fn , which is a discrete
distribution with mass points 1/n on each observation y i . Thus even if the original data come from a
continuous distribution, the bootstrap data distribution is discrete.

The (conditional) mean and variance of y
§ are calculated from the EDF, and equal the sample mean

and variance of the data. The mean is

E
§ £

y
§§

=
nX

i=1
y iP

§ £
y
§ = y i

§
=

nX

i=1
y i

1
n
= y (10.10)

and the variance is
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To summarize, the conditional distribution of y
§, given Fn , is the discrete distribution on {y 1, ..., y n}, with

mean y and variance matrix bß.
We can extend this analysis to any integer moment r . Assume yi is scalar. The r th moment of y§ is

µ§0
r = E§

£
y§r §

=
nX

i=1
yr

i P
§ £

y§ = yi
§
= 1

n

nX

i=1
yr

i = bµ0
r ,

the r th sample moment. The r th central moment of y§ is

µ§
r = E§

£°
y§ ° y

¢r §
= 1

n

nX

i=1

°
yi ° y

¢r = bµr ,

the r th central sample moment. Similarly, the r th cumulant of y§ is ∑§r = b∑r , the r th sample cumulant.

10.11 The Distribution of the Bootstrap Sample Mean

The bootstrap sample mean is

y
§ = 1

n

nX

i=1
y
§
i .

We can calculate its (conditional) mean and variance. The mean is
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using (10.10). Thus the bootstrap sample mean y
§ has a distribution centered at the sample mean y .

This is because the bootstrap observations y
§
i are drawn from the bootstrap universe, which treats the

EDF as the truth, and the mean of the latter distribution is y .
The (conditional) variance of the bootstrap sample mean is

var§
£

y
§§

= var§
"

1
n

nX

i=1
y
§
i

#

= 1
n2

nX

i=1
var§

£
y
§
i

§
= 1

n2

nX

i=1

bß= 1
n

bß (10.13)
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using (10.11). In the scalar case, var§
£

y§§
= bæ2/n. This shows that the bootstrap variance of y

§ is pre-
cisely described by the sample variance of the original observations. Again, this is because the bootstrap
observations y

§
i are drawn from the bootstrap universe.

We can extend this to any integer moment r . Assume yi is scalar. Define the normalized bootstrap
sample mean z§

n =
p

n
°
y§ ° y

¢
. Using expressions from Section 6.17 of Introduction to Econometrics, the

3r d through 6th conditional moments of z§
n are

E
§ £

z§3
n

§
= b∑3/n1/2

E
§ £

z§4
n

§
= b∑4/n +3b∑2

2 (10.14)

E
§ £

z§5
n

§
= b∑5/n3/2 +10b∑3b∑2/n1/2

E
§ £

z§6
n

§
= b∑6/n2 +

°
15b∑4∑2 +10b∑2

3
¢

/n +15b∑3
2

where b∑r is the r th sample cumulant. Similar expressions can be derived for higher moments. The
moments (10.14) are exact, not approximations.

10.12 Bootstrap Asymptotics

The bootstrap mean y
§ is a sample average over n i.i.d. random variables, so we might expect it to

converge in probability to its expectation. Indeed, this is the case, but we have to be a bit careful since
the bootstrap mean has a conditional distribution (given the data) so we need to define convergence in
probability for conditional distributions.

Definition 10.1 We say that a random vector z
§
n converges in bootstrap prob-

ability to z as n !1, denoted z
§
n °!

p§
z , if for all "> 0

P
§ £∞∞z

§
n ° z

∞∞> "
§
°!

p
0.

To understand this definition recall that conventional convergence in probability zn °!
p

z means

that for a sufficiently large sample size n, the probability is high that zn is arbitrarily close to its limit z .
In contrast, Definition 10.1 says z

§
n °!

p§
z means that for a sufficiently large n, the probability is high that

the conditional probability that z
§
n is close to its limit z is high. Note that there are two uses of probability

– both unconditional and conditional.
Our label “convergence in bootstrap probability” is a bit unusual. The label used in much of the

statistical literature is “convergence in probability, in probability” but that seems like a mouthful. That
literature more often focuses on the related concept of “convergence in probability, almost surely” which
holds if we replace the “°!

p
” convergence with almost sure convergence. We do not use this concept in

this chapter as it is an unnecessary complication.
While we have stated Definition 10.1 for the specific conditional probability distribution P§, the idea

is more general and can be used for any conditional distribution and any sequence of random vectors.
The following may seem obvious, but it is useful to state for clarity. Its proof is given in Section 10.31.
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Theorem 10.1 If zn °!
p

z as n !1 then zn °!
p§

z .

Given Definition 10.1, we can establish a law of large numbers for the bootstrap sample mean.

Theorem 10.2 Bootstrap WLLN. If y i are independent and uniformly inte-
grable then y

§ ° y °!
p§

0 and y
§ °!

p§
µ= E

£
y i

§
as n !1.

The proof (presented in Section 10.31) is somewhat different from the classical case, as it is based on
the Marcinkiewicz WLLN (Theorem 10.20, presented in Section 10.31).

Notice that the conditions for the bootstrap WLLN are the same for the conventional WLLN. Notice
as well that we state two related but slightly different results. The first is that the difference between the
bootstrap sample mean y

§ and the sample mean y diminishes as the sample size diverges. The second
result is that the bootstrap sample mean converges to the population meanµ. The latter is not surprising
(since the sample mean y converges in probability to µ) but it is constructive to be precise since we are
dealing with a new convergence concept.

Theorem 10.3 Bootstrap Continuous Mapping Theorem. If z
§
n °!

p§
c as n !

1 and g (·) is continuous at c , then g (z
§
n) °!

p§
g (c) as n !1.

The proof is essentially identical to that of Theorem 6.6, so is omitted.
We next would like to show that the bootstrap sample mean is asymptotically normally distributed,

but for that we need a definition of convergence for conditional distributions.

Definition 10.2 Let z
§
n be a random vector with conditional distribution

G§
n(u) = P

§ £
z
§
n ∑ u

§
. We say that z

§
n converges in bootstrap distribution to z

as n !1, denoted z
§
n °!

d§
z , if for all u at which G(u) =P [z ∑ u] is continuous,

G§
n(u) °!

p
G(u) as n !1.

The difference with the conventional definition is that Definition 10.2 treats the conditional distribu-
tion as random. An alternative label for Definition 10.2 is “convergence in distribution, in probability”.

We now state a CLT for the bootstrap sample mean, with a proof given in Section 10.31.
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Theorem 10.4 Bootstrap CLT. If y i are independent,
∞∞y i

∞∞2 is uniformly inte-
grable, and ß= var

£
y
§
> 0 then

p
n

°
y
§ ° y

¢
°!
d§

N(0,ß)

as n !1.

Theorem 10.4 shows that the normalized bootstrap sample mean has the same asymptotic distribu-
tion as the sample mean. Thus the bootstrap distribution is asymptotically the same as the sampling
distribution. A notable difference, however, is that the bootstrap sample mean is normalized by center-
ing at the sample mean, not at the population mean. This is because y is the true mean in the bootstrap
universe.

We next state the distributional form of the continuous mapping theorem for bootstrap distributions
and the Bootstrap Delta Method.

Theorem 10.5 Bootstrap Continuous Mapping Theorem
If z

§
n °!

d§
z as n ! 1 and g : Rm ! R

k has the set of discontinuity points Dg

such that P§ £
z
§ 2 Dg

§
= 0, then g (z

§
n) °!

d§
g (z) as n !1.

Theorem 10.6 Bootstrap Delta Method:
If bµ°!

p
µ,

p
n

°
bµ§ ° bµ

¢
°!
d§

ª, and g (u) is continuously differentiable in a neigh-

borhood of µ, then as n !1
p

n
°
g

°
bµ§¢

°g (bµ)
¢
°!
d§

G
0ª

where G(u) = @
@u

g (u)0 and G =G(µ). In particular, if ªª N(0,V ) then as n !1
p

n
°
g

°
bµ§¢

°g (bµ)
¢
°!
d§

N
°
0,G

0
V G

¢
.

For a proof, see Exercise 10.7.
We state an analog of Theorem 6.10, which presented the asymptotic distribution for general smooth

functions of sample means, which covers most econometric estimators.
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Theorem 10.7 Under the assumptions of Theorem 6.10, that is, if y i is i.i.d.,

µ = E
£
h

°
y
¢§

, µ = g
°
µ

¢
, E

∞∞h
°

y
¢∞∞2 <1, and G (u) = @

@u
g (u)0 is continuous in

a neighborhood of µ, for bµ = g
°
bµ
¢

with bµ= 1
n

Pn
i=1 h

°
y i

¢
and bµ§ = g

°
bµ§¢

with
bµ§ = 1

n
Pn

i=1 h
°

y
§
i

¢
, as n !1

p
n

≥
bµ§ ° bµ

¥
°!
d§

N(0,V µ)

where V µ =G
0
V G , V = E

h°
h

°
y
¢
°µ

¢°
h

°
y
¢
°µ

¢0i and G =G
°
µ

¢
.

For a proof, see Exercise 10.8.
Theorem 10.7 shows that the asymptotic distribution of the bootstrap estimator bµ§ is identical to

that of the sample estimator bµ. This means that we can learn the distribution of bµ from the bootstrap
distribution, and hence perform asymptotically correct inference.

For some bootstrap applications we use bootstrap estimates of variance. The plug-in estimator of V µ

is bV µ = bG 0 bV bG where bG =G
°
bµ
¢

and

bV = 1
n

nX

i=1

°
h

°
y i

¢
° bµ

¢°
h

°
y i

¢
° bµ

¢0 .

The bootstrap version is

bV §
µ = bG§0 bV §bG§

bG§ =G
°
bµ§¢

bV § = 1
n

nX

i=1

°
h

°
y
§
i

¢
° bµ§¢°

h
°

y
§
i

¢
° bµ§¢0 .

Application of the bootstrap WLLN and bootstrap CMT show that bV §
µ is consistent for V µ.

Theorem 10.8 Under the assumptions of Theorem 10.7, bV §
µ °!p§

V µ as n !1.

For a proof, see Exercise 10.9.

10.13 Consistency of the Bootstrap Estimate of Variance

Recall the definition (10.7) of the bootstrap estimator of variance bV boot
bµ of an estimator bµ. In this

section we explore conditions under which bV boot
bµ is consistent for the asymptotic variance of bµ.

To do so, it is useful to focus on a normalized version of the estimator so that the asymptotic variance
is not degenerate. Suppose that for some sequence an we have

zn = an
°bµ°µ

¢
°!

d
ª (10.15)
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and
z§

n = an

≥
bµ§ ° bµ

¥
°!
d§

ª (10.16)

for some limit distribution ª. That is, for some normalization, both bµ and bµ§ have the same asymptotic
distribution. This is quite general as it includes the smooth function model. The conventional boot-
strap estimator of the variance of zn is the sample variance of the bootstrap draws

©
z§

n (b) : b = 1, ...,B
™
.

This equals the estimator (10.7) multiplied by a2
n . Thus it is equivalent (up to scale) whether we discuss

estimating the variance of bµ or zn .
The bootstrap estimator of variance of zn is

bV boot,B
µ = 1

B °1

BX

b=1

°
z§

n (b)° z§
n
¢°

z§
n (b)° z§

n
¢0

z§
n = 1

B

BX

b=1
z§

n (b).

Notice that we index the estimator by the number of bootstrap replications B .
Since z§

n converges in bootstrap distribution to the same asymptotic distribution as zn , it seems rea-
sonable to guess that the variance of z§

n will converge to that of ª. However, convergence in distribution
is not sufficient for convergence in moments. For the variance to converge it is also necessary for the
sequence z§

n to be uniformly square integrable.

Theorem 10.9 If (10.15) and (10.16) hold for some sequence an , and
∞∞z§

n

∞∞2 is
uniformly integrable, then as B !1

bV boot,B
µ °!

p§
bV boot
µ = var

£
z§

n
§

,

and as n !1
bV boot
µ °!

p§
V µ = var[ª] .

This raises the question: Is the normalized sequence zn uniformly integrable? We spend the re-
mainder of this section exploring this question, and then turn in the next section to trimmed variance
estimators which do not require uniform integrability.

This condition is reasonably straightforward to verify for the case of a scalar sample mean with a
finite variance. That is, suppose z§

n =
p

n
°
y§ ° y

¢
and E

£
y2§ < 1. In (10.14) we calculated the exact

fourth central moment of z§
n :

E
§ £

z§4
n

§
= b∑4

n
+3bæ4 = bµ4 °3bæ4

n
+3bæ4

where bæ2 = n°1 Pn
i=1

°
yi ° y

¢2 and bµ4 = n°1 Pn
i=1

°
yi ° y

¢4. The assumption E
£

y2§<1 implies that E
£
bæ2§=

O(1) so bæ2 =Op (1). Furthermore, n°1 bµ4 = n°2 Pn
i=1

°
yi ° y

¢4 = op (1) by the Marcinkiewicz WLLN (Theo-
rem 10.20). It follows that

E
§ £

z§4
n

§
= n2

E
§
h°

y§ ° y
¢4

i
=Op (1). (10.17)

Theorem 6.15 shows that this implies that z§2
n is uniformly integrable. Thus if yi has a finite variance,

the normalized bootstrap sample mean is uniformly square integrable, and the bootstrap estimate of
variance is consistent by Theorem 10.9.
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Now consider the smooth function model of Theorem 10.7. We can establish the following result.

Theorem 10.10 In the smooth function model of Theorem 10.7, if for some
p ∏ 1 the pth-order derivatives of g (u) are bounded, then z§

n =
p

n
≥
bµ§ ° bµ

¥
is

uniformly square integrable and the bootstrap estimator of variance is consis-
tent as in Theorem 10.9.

For a proof see Section 10.31.
This shows that the bootstrap estimate of variance is consistent for a reasonably broad class of esti-

mators. The class of functions g (u) covered by this result includes all pth-order polynomials.

10.14 Trimmed Estimator of Bootstrap Variance

Theorem 10.10 showed that the bootstrap estimate of variance is consistent for smooth functions
with a bounded pth order derivative. This is a fairly broad class, but excludes many important applica-
tions. As a leading example, consider µ =µ1/µ2 where µ1 = E

£
y1

§
and µ2 = E

£
y2

§
. This function does not

have a bounded derivative (unless µ2 is bounded away from zero) so is not covered by Theorem 10.10.
This is more than a technical issue. When (y1i , y2i ) are jointly normally distributed, then it is known

that the estimator bµ = y1/y2 does not possess a finite variance. Consequently we cannot expect the
bootstrap estimator of variance to perform well. (It is attempting to estimate the variance of bµ, which is
infinity.)

In these cases it is preferred to use a trimmed estimator of bootstrap variance. Let øn ! 1 be a
sequence of positive trimming numbers satisfying øn =O

°
en/8¢. Define the trimmed statistic

z§§
n = z§

n
°∞∞z§

n

∞∞∑ øn
¢

.

The trimmed bootstrap estimator of variance is

bV boot,B,ø
µ = 1

B °1

BX

b=1

°
z§§

n (b)° z§§
n

¢°
z§§

n (b)° z§§
n

¢0

z§§
n = 1

B

BX

b=1
z§§

n (b).

We first examine the behavior of bV boot,B
µ as the number of bootstrap replications B grows to infinity.

It is a sample variance of independent bounded random vectors. Thus by the bootstrap WLLN (Theorem

10.2) bV boot,B,ø
Ø converges in bootstrap probability to the variance of z§§

n .

Theorem 10.11 As B !1, bV boot,B,ø
µ °!

p§
bV boot,ø
µ = var

£
z§§

n
§

.

We next examine the behavior of the bootstrap estimator bV boot,ø
µ as n grows to infinity. We focus

on the smooth function model of Theorem 10.7, which showed that z§
n =

p
n

≥
bµ§ ° bµ

¥
°!
d§

Z ª N(0,V µ).
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Since the trimming is asymptotically negligible, it follows that z§§
n °!

d§
Z . If we can show that z§§

n is

uniformly square integrable, Theorem 10.9 will show that var
£
z§§

n
§
! var[Z ] = V µ as n ! 1. This is

shown in the following result, whose proof is presented in Section 10.31.

Theorem 10.12 Under the assumptions of Theorem 10.7, bV boot,ø
µ °!

p§
V µ.

Theorems 10.11 and 10.12 show that the trimmed bootstrap estimator of variance is consistent for
the asymptotic variance in the smooth function model, which includes most econometric estimators.
This justifies bootstrap standard errors as consistent estimators for the asymptotic distribution.

An important caveat is that these results critically rely on the use of the trimmed variance estimator
rather than the standard untrimmed version. This is a critical caveat as conventional statistical packages
(e.g. Stata) calculate bootstrap standard errors using the untrimmed estimator (10.7). Thus there is no
guarantee that the reported standard errors are consistent. The untrimmed variance estimator works in
the context of Theorem 10.10 and whenever the bootstrap statistic is uniformly square integrable, but
not necessarily in general applications.

In practice, it may be difficult to know how to select the trimming sequence øn . The rule øn =O
°
en/8¢

does not provide practical guidance. Instead, it may be useful to think about trimming in terms of per-
centages of the bootstrap draws. Thus we can set øn so that a given small percentage ∞n is trimmed. For
theoretical interpretation we would set ∞n ! 0 as n !1. In practice we might set ∞n = 1%.

10.15 Unreliability of Untrimmed Bootstrap Standard Errors

In the previous section we presented a trimmed bootstrap variance estimator which should be used
to form bootstrap standard errors for nonlinear estimators. Otherwise, the untrimmed estimator is po-
tentially unreliable.

This is an unfortunate situation, because reporting of bootstrap standard errors is very common-
place in contemporary applied econometric practice, and standard applications (including Stata) use
the untrimmed estimator.

To illustrate the seriousness of the problem, we use the simple wage regression (7.31) which we repeat
here. This is the subsample of married black women with 982 observations. The point estimates and
standard errors are

·log(wage) = 0.118
(0.008)

education+ 0.016
(0.006)

experience° 0.022
(0.012)

experience2/100+ 0.947
(0.157)

.

We are interested in the experience level which maximizes expected log wages µ3 =°50Ø2/Ø3. The point
estimate and standard errors calculated with different methods are reported in Table 10.3.3 below.

The point estimate of the experience level with maximum earnings is bµ3 = 35. The asymptotic and
jackknife standard errors are about 7. The bootstrap standard error, however, is 825! Confused by this
unusual value we rerun the bootstrap again and obtain a standard error of 544. Both were computed
with 10,000 bootstrap replications. The fact that the two bootstrap standard errors are considerably dif-
ferent when recomputed (with different starting seeds) is indicative of moment failure. When there is
an enormous discrepancy like this between the asymptotic and bootstrap standard error, and between
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bootstrap runs, it is a signal that there may be moment failure and consequently bootstrap standard
errors are unreliable.

A trimmed bootstrap with ø= 25 (set to slightly exceed three asymptotic standard errors) produces a
more reasonable standard error of 10.

One message from this application is that when different methods produce very different standard
errors we should be cautious about trusting any single method. The large discrepancies indicate poor
asymptotic approximations, rendering all methods inaccurate. Another message is to be cautious about
reporting conventional bootstrap standard errors. Trimmed versions are preferred, especially for non-
linear functions of estimated coefficients.

Table 10.3: Experience Level Which Maximizes Expected log Wages

Estimate 35.2
Asymptotic s.e. (7.0)
Jackknife s.e. (7.0)
Bootstrap s.e. (standard) (825)
Bootstrap s.e. (repeat) (544)
Bootstrap s.e. (trimmed) (10.1)

10.16 Consistency of the Percentile Interval

Recall the percentile interval (10.8). We now provide conditions under which it has asymptotically
correct coverage.

Theorem 10.13 Assume that for some sequence an

an
°bµ°µ

¢
°!

d
ª (10.18)

and
an

°bµ§ ° bµ
¢
°!
d§

ª (10.19)

where ª is continuously distributed and symmetric about zero. Then

P
£
µ 2C pc§! 1°Æ

as n !1.

The assumptions (10.18)-(10.19) hold for the smooth function model of Theorem 10.7, so this result
incorporates many applications. The beauty of Theorem 10.13 is that the very simple confidence interval
C pc – which does not require technical calculation of asymptotic standard errors – has asymptotically
valid coverage for any estimator which falls in the smooth function class, as well as any other estimator
satisfying the convergence results (10.18)-(10.19) with ª symmetrically distributed. The conditions are
weaker than those required for consistent bootstrap variance estimation (and normal-approximation
confidence intervals) because it is not necessary to verify that bµ§ is uniformly integrable, nor necessary
to employ trimming.
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The proof of Theorem 10.7 is not difficult. The convergence assumption (10.19) implies that the Æth

quantile of an
°bµ§ ° bµ

¢
, which is an

°
q§
Æ° bµ

¢
by quantile equivariance, converges in probability to the Æth

quantile of ª, which we can denote as qÆ. Thus

an
°
q§
Æ° bµ

¢
°!

p
qÆ. (10.20)

Let H(x) = P [ª∑ x] be the distribution function of ª. The assumption of symmetry implies H(°x) =
1°H(x). Then the percentile interval has coverage

P
£
µ 2C pc§=P

£
q§
Æ/2 ∑ µ ∑ q§

1°Æ/2

§

=P
£
°an

°
q§
Æ/2 ° bµ

¢
∏ an

°bµ°µ
¢
∏°an

°
q§

1°Æ/2 ° bµ
¢§

!P
£
°qÆ/2 ∏ ª∏°q1°Æ/2

§

= H
°
°qÆ/2

¢
°H

°
°q1°Æ/2

¢

= H
°
q1°Æ/2

¢
°H

°
qÆ/2

¢

= 1°Æ.

The convergence holds by (10.18) and (10.20). The following equality uses the definition of H , the next-
to-last is the symmetry of H , and the final equality is the definition of qÆ. This establishes Theorem
10.13.

Theorem 10.13 seems quite general, but it critically rests on the assumption that the asymptotic
distribution ª is symmetrically distributed about zero. This may seem innocuous, since conventional
asymptotic distributions are normal and hence symmetric, but it bears further scrutiny. It is not merely
a technical assumption – an examination of the steps in the preceeding argument isolate quite clearly
that if the symmetry assumption is violated, then the asymptotic coverage will not be 1°Æ. While Theo-
rem 10.13 does show that the percentile interval is asymptotically valid for a conventional asymptotically
normal estimator, the reliance on symmetry in the argument suggests that the percentile method will
work poorly when the finite sample distribution is asymmetric. This turns out to be the case, and will
lead us to consider alternative methods in the following sections.

It is also worthwhile to investigate a finite sample justification for the percentile interval, based on a
heuristic analogy due to Efron.

Assume that there exists an unknown but strictly increasing transformation √(µ) such that √(bµ)°
√(µ) has a pivotal distribution H(u) (does not vary with µ) which is symmetric about zero. For example,
if bµ ª N(µ,æ2) we can set √(µ) = µ/æ. Alternatively, if bµ = exp

°
bµ
¢

and bµª N(µ,æ2) then we can set √(µ) =
log(µ)/æ.

To assess the coverage of the percentile interval, observe that since the distribution H is pivotal the
bootstrap distribution √(bµ§)°√(bµ) also has distribution H(u). Let qÆ be the Æth quantile of the distri-
bution H . Since q§

Æ is the Æth quantile of the distribution of bµ§, and √(bµ§)°√(bµ) is a monotonic trans-
formation of bµ§, by the quantile equivariance property we deduce that qÆ+√(bµ) =√(q§

Æ). The percentile
interval has coverage

P
£
µ 2C pc§=P

£
q§
Æ/2 ∑ µ ∑ q§

1°Æ/2

§

=P
£
√(q§

Æ/2) ∑√ (µ) ∑√(q§
1°Æ/2)

§

=P
£
√(bµ)°√(q§

Æ/2) ∏√(bµ)°√ (µ) ∏√
°bµ

¢
°√(q§

1°Æ/2)
§

=P
£
°qÆ/2 ∏√(bµ)°√ (µ) ∏°q1°Æ/2

§

= H
°
°qÆ/2

¢
°H

°
°q1°Æ/2

¢

= H
°
q1°Æ/2

¢
°H

°
qÆ/2

¢

= 1°Æ.
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The second equality applies the monotonic transformation √(u) to all elements. The fourth uses the
relationship qÆ+√(bµ) =√(q§

Æ). The fifth uses the defintion of H . The sixth uses the symmetry property
of H , and the final is by the definition of qÆ as the Æth quantile of H .

This calculation shows that under these assumptions the percentile interval has exact coverage 1°Æ.
The nice thing about this argument is the introduction of the unknown transformation √(u) for which
the percentile interval automatically adapts. The unpleasant feature is the assumption of symmetry.
Similar to the asymptotic argument, the calculation strongly relies on the symmetry of the distribution
H(x). Without symmetry the coverage will be incorrect.

Intuitively, we expect that when the assumptions are approximately true, then the percentile interval
will have approximately correct coverage. Thus so long as there is a transformation√(u) such that√(bµ)°
√(µ) is approximately pivotal and symmetric about zero, then the percentile interval should work well.

This argument has the following application. Suppose that the parameter of interest is µ = exp(µ)
where µ = E

£
y
§

and suppose y has a pivotal symmetric distribution about µ. Then even though bµ =
exp(y) does not have a symmetric distribution, the percentile interval applied to bµ will have the correct
coverage, because the monotonic transformation log

°bµ
¢

has a pivotal symmetric distribution.

10.17 Bias-Corrected Percentile Interval

The accuracy of the percentile interval depends critically upon the assumption that the sampling
distribution is approximately symmetrically distributed. This excludes finite sample bias, for an esti-
mator which is biased cannot be symmetrically distributed. Many contexts in which we want to apply
bootstrap methods (rather than asymptotic) are when the parameter of interest is a nonlinear function
of the original estimates, and nonlinearity typically induces estimation bias. Consequently it is difficult
to expect the percentile method to generally have accurate coverage.

To remove the bias problem, Efron (1982) introduced the bias-corrected (BC) percentile interval.
The justification is heuristic, but there is considerable evidence that the bias-corrected method is an
important improvement on the percentile interval.

The construction is based on the assumption is that there is a an unknown but strictly increasing
transformation √(µ) and unknown constant z0 such that

Z =√(bµ)°√(µ)+ z0 ª N(0,1). (10.21)

(The assumption that Z is normal is not critical. It could be replaced by any known symmetric and
invertible distribution.) Let ©(x) denote the normal distribution function, ©°1(p) its quantile function,
and zÆ =©°1(Æ) the normal critical values. Then the BC interval can be constructed from the bootstrap
estimators bµ§b and bootstrap quantiles q§

Æ as follows. Set

p§ = 1
B

BX

b=1

°bµ§b ∑ bµ
¢

(10.22)

and
z§

0 =©°1(p§). (10.23)

p§ is a measure of median bias, and z0 is p§ transformed into normal units. If the bias of bµ is zero then
p§ = 0.5 and z§

0 = 0. If bµ is upwards biased then p§ < 0.5 and z§
0 < 0. Conversely if bµ is dowward biased

then p§ > 0.5 and z§
0 > 0. Define for any Æ an adjusted version

x(Æ) =©(zÆ+2z0). (10.24)
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If z0 = 0 then x(Æ) =Æ. If z0 > 0 then x(Æ) >Æ, and conversely when x(Æ) < 0. The BC interval is

C bc =
£
q§

x(Æ/2), q§
x(1°Æ/2)

§
. (10.25)

Essentially, rather than going from the 2.5% to 97.5% quantile, the BC interval uses adjusted quantiles,
with the degree of adjustment depending on the extent of the bias.

The construction of the BC interval is not intuitive. We now show that assumption (10.21) implies
that the BC interval has exact coverage. (10.21) implies that

P
£
√(bµ)°√(µ)+ z0 ∑ x

§
=©(x).

Since the distribution is pivotal the result carries over to the bootstrap distribution

P
§ £
√(bµ§)°√(bµ)+ z0 ∑ x

§
=©(x). (10.26)

Evaluating (10.26) at x = z0 we find P§ £
√(bµ§)°√(bµ) ∑ 0

§
=©(z0) which implies P§ £bµ§ ∑ bµ

§
=©(z0). In-

verting, we obtain
z0 =©°1 °

P
§ £bµ§ ∑ bµ

§¢
(10.27)

which is the probability limit of (10.23) as B !1. Thus the unknown z0 is recoved by (10.23), and we
can treat z0 as if it were known.

From (10.26) we deduce that

x(Æ) =©(zÆ+2z0)

=P§ £
√(bµ§)°√(bµ) ∑ zÆ+ z0)

§

=P§ £bµ§ ∑√°1 °
√(bµ)+ z0 + zÆ

¢§
.

This equation shows that √°1 °
√(bµ)+ z0 + zÆ

¢
equals the x(Æ)th bootstrap quantile. That is, q§

x(Æ) =
√°1 °

√(bµ)+ z0 + zÆ
¢
. Hence we can write (10.25) as

C bc =
£
√°1 °

√(bµ)+ z0 + zÆ/2
¢

,√°1 °
√(bµ)+ z0 + z1°Æ/2

¢§
.

It has coverage probability

P

h
µ 2C bc

i
=P

£
√°1 °

√(bµ)+ z0 + zÆ/2
¢
∑ µ ∑√°1 °

√(bµ)+ z0 + z1°Æ/2
¢§

=P
£
√(bµ)+ z0 + zÆ/2 ∑√(µ) ∑√(bµ)+ z0 + z1°Æ/2

§

=P
£
°zÆ/2 ∏√(bµ)°√(µ)+ z0 ∏°z1°Æ/2

§

=P [z1°Æ/2 ∏ Z ∏ zÆ/2]

=© (z1°Æ/2)°© (zÆ/2)

= 1°Æ.

The second equality applies the transformation √(µ). The fourth equality uses the model (10.21) and the
fact zÆ =°z1°Æ. This shows that the BC interval (10.25) has exact coverage under the assumption (10.21).

Furthermore, under the assumptions of Theorem 10.13, the BC interval has asymptotic coverage
probability 1°Æ, since the bias correction is asymptotically negligible.

An important property of the BC percentile interval is that it is transformation-respecting (like the
percentile interval). To see this, observe that p§ is invariant to transformations since it is a probability,
and thus z§

0 and x(Æ) are invariant. Since the interval is constructed from the x(Æ/2) and x(1°Æ/2)
quantiles, the quantile equivariance property shows that the interval is transformation-respecting.
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The bootstrap BC percentile intervals for the four estimators are reported in Table 13.2. They are
generally similar to the percentile intervals, though the intervals for æ2 and µ are somewhat shifted to
the right.

In Stata, BC percentile confidence intervals can be obtained by using the command
after an estimation command which calculates standard errors via the bootstrap.

10.18 BCa Percentile Interval

A further improvement on the BC interval was made by Efron (1987) to account for the skewness in
the sampling distribution, which can be modeled by specifying that the variance of the estimator de-
pends on the parameter. The resulting bootstrap accelerated bias-corrected percentile interval (BCa)
has improved performance on the BC interval, but requires a bit more computation and is less intuitive
to understand.

The construction is a generalization of that for the BC intervals. The assumption is that there is an
unknown but strictly increasing transformation √(µ), and unknown constants a and z0 such that

Z = √(bµ)°√(µ)
1+a√(µ)

+ z0 ª N(0,1). (10.28)

(As before, the assumption that Z is normal could be replaced by any known symmetric and invertible
distribution.)

The constant z0 is estimated by (10.23) just as for the BC interval. There are several possible estima-
tors of a. Efron’s suggestion is a scaled jackknife estimator of the skewness of bµ:

ba =
Pn

i=1

≥
µ° bµ(°i )

¥3

6
µ
Pn

i=1

≥
µ° bµ(°i )

¥2
∂3/2

µ = 1
n

nX

i=1

bµ(°i ).

The jackknife estimator of ba makes the BCa interval more computationally costly than other intervals.
Define for any Æ the adjusted version

x(Æ) =©
µ

z0 +
zÆ+ z0

1°a (zÆ+ z0)

∂
.

The BCa percentile interval is
C bca =

£
q§

x(Æ/2), q§
x(1°Æ/2)

§
.

Note that x(Æ) simplifies to (10.24) and C bca simplies to C bc when a = 0. While C bc improves on C pc by
correcting the median bias, C bca makes a further correction for skewness.

The BCa interval is only well-defined for values of Æ such that a (zÆ+ z0) < 1. (Or equivalently, if
Æ<©

°
a°1 ° z0

¢
for a > 0 and Æ>©

°
a°1 ° z0

¢
for a < 0.)

The BCa interval, like the BC and percentile intervals, is transformation-respecting. Thus if
h

q§
x(Æ/2), q§

x(1°Æ/2)

i

is the BCa interval for µ, then
h

m
≥
q§

x(Æ/2)

¥
,m

≥
q§

x(1°Æ/2)

¥i
is the BCÆ interval for ¡ = m(µ) when m(µ) is

monotone.
We now give a justification for the BCa interval. The most difficult feature to understand is the esti-

mator ba for a. This involves higher-order approximations which are too advanced for our treatment, so
we instead refer readers to Chapter 4.1.4 of Shao and Tu (1995), and simply assume that a is known.
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We now show that assumption (10.28) with a known implies that C bca has exact coverage. The argu-
ment is essentially the same as that given in the previous section. Assumption (10.28) implies that the
bootstrap distribution satisfies

P
§
"
√(bµ§)°√(bµ)

1+a√(bµ)
+ z0 ∑ x

#

=©(x). (10.29)

Evaluating at x = z0 and inverting we obtain (10.27) which is the same as for the BC interval. Thus the
estimator (10.23) is consistent as B !1, and we can treat z0 as if it were known.

From (10.29) we deduce that

x(Æ) =P§
"
√(bµ§)°√(bµ)

1+a√(bµ)
∑ zÆ+ z0

1°a (zÆ+ z0)

#

=P§
"
bµ§ ∑√°1

√
√(bµ)+ zÆ+ z0

1°a (zÆ+ z0)

!#

.

This shows that √°1
≥
√(bµ)+zÆ+z0
1°a(zÆ+z0)

¥
equals the x(Æ)th bootstrap quantile. Hence we can write C bca as

C bca =
"

√°1

√
√(bµ)+ zÆ/2 + z0

1°a (zÆ/2 + z0)

!

, √°1

√
√(bµ)+ z1°Æ/2 + z0

1°a (z1°Æ/2 + z0)

!#

.

It has coverage probability

P

h
µ 2C bca

i
=P

"

√°1

√
√(bµ)+ zÆ/2 + z0

1°a (zÆ/2 + z0)

!

∑ µ ∑√°1

√
√(bµ)+ z1°Æ/2 + z0

1°a (z1°Æ/2 + z0)

!#

=P
"
√(bµ)+ zÆ/2 + z0

1°a (zÆ/2 + z0)
∑√(µ) ∑ √(bµ)+ z1°Æ/2 + z0

1°a (z1°Æ/2 + z0)

#

=P
"

°zÆ/2 ∏
√(bµ)°√(µ)

1+a√(µ)
+ z0 ∏°z1°Æ/2

#

=P [z1°Æ/2 ∏ Z ∏ zÆ/2]

= 1°Æ.

The second equality applies the transformation √(µ). The fourth equality uses the model (10.28) and the
fact zÆ =°z1°Æ. This shows that the BCa interval C bca has exact coverage under the assumption (10.28)
with a known.

The bootstrap BCa percentile intervals for the four estimators are reported in Table 13.2. They are
generally similar to the BC intervals, though the intervals for æ2 and µ are slightly shifted to the right.

In Stata, BCa intervals can be obtained by using the command or the com-
mand after an estimation command which calculates standard errors via the
bootstrap using the option.

10.19 Percentile-t Interval

In many cases we can obtain improvement in accuracy by bootstrapping a studentized statistic such
as a t-ratio. Let bµ be an estimator of a scalar parameter µ and s(bµ) a standard error. The sample t-ratio is

T =
bµ°µ
s(bµ)

.
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The bootstrap t-ratio is

T § =
bµ§ ° bµ
s(bµ§)

where s(bµ§) is the standard error calculated on the bootstrap sample. Notice that the bootstrap t-ratio is
centered at the parameter estimate bµ. This is because bµ is the “true value” in the bootstrap universe.

The percentile-t interval is formed using the distribution of T §. This can be calculated via the boot-
strap algorithm. On each bootstrap sample the estimator bµ§ and its standard error s(bµ§) are calculated,
and the t-ratio T § =

°bµ§ ° bµ
¢

/s(bµ§) calculated and stored. This is repeated B times. The Æth quantile q§
Æ

is estimated by the Æth empirical quantile (or any quantile estimator) from the B bootstrap draws of T §.
The bootstrap percentile-t confidence interval is then defined as

C pt =
£bµ° s(bµ)q§

1°Æ/2, bµ° s(bµ)q§
Æ/2

§
.

The form may appear unusual when compared with the percentile interval. The left endpoint is deter-
mined by the upper quantile of the distribution of T §, and the right endpoint is determined by the lower
quantile. As we show below, this construction is important for the interval to have correct coverage when
the distribution is not symmetric.

When the estimator is asymptotically normal and the standard error a reliable estimator of the stan-
dard deviation of the distribution, we would expect the t-ratio T to be roughly approximated by the
normal distribution. In this case we would expect q§

0.975 º°q§
0.025 º 2. Departures from this baseline oc-

cur as the distribution becomes skewed or fat-tailed. If the bootstrap quantiles depart substantially from
this baseline it is evidence of substantial departure from normality. (It may also indicate a programming
error, so in these cases it is wise to triple-check!)

The percentile-t has the following advantages. First, when the standard error s(bµ) is reasonably reli-
able, the percentile-t bootstrap makes use of the information in the standard error, thereby reducing the
role of the bootstrap. This can improve the precision of the method relative to other methods. Second, as
we show later, the percentile-t intervals achieve higher-order accuracy than the percentile and BC per-
centile intervals. Third, the percentile-t intervals correspond to the set of parameter values “not rejected”
by one-sided t-tests using bootstrap critical values (bootstrap tests are presented in Section 10.21).

The percentile-t interval has the following disadvantages. First, they may be infeasible when stan-
dard error formula are unknown. Second, they may be practically infeasible when standard error calcu-
lations are computationally costly (since the standard error calculation needs to be performed on each
bootstrap sample). Third, the percentile-t may be unreliable if the standard errors s(bµ) are unreliable and
thus add more noise than clarity. Fourth, the percentile-t interval is not translation preserving, unlike the
percentile, BC percentile, and BCa percentile intervals.

It is typical to calculate percentile-t interval with t-ratios constructed with conventional asymptotic
standard errors. But this is not the only possible implementation. The percentile-t interval can be con-
structed with any data-dependent measure of scale. For example, if bµ is a two-step estimator for which it
is unclear how to construct a correct asymptotic standard error, but we know how to calculate a standard
error s(bµ) appropriate for the second step alone, then s(bµ) can be used for a percentile-t-type interval as
described above. It will not possess the higher-order accuracy properties of the following section, but it
will satisfy the conditions for first-order validity.

Furthermore, percentile-t intervals can be constructed using bootstrap standard errors. That is, the
statistics T and T § can be computed using bootstrap standard errors sboot

bµ
. This is computationally

costly, as it requires what we call a “nested bootstrap”. Specifically, for each bootstrap replication, a
random sample is drawn, the bootstrap estimate bµ§ computed, and then B additional bootstrap sub-
samples drawn from the bootstrap sample to compute the bootstrap standard error for the bootstrap
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estimate bµ§. Effectively B 2 bootstrap samples are drawn and estimated, which increases the computa-
tional requirement by an order of magnitude.

We now describe the distribution theory for first-order validity of the percentile-t bootstrap.

First, consider the smooth function model, where bµ = g
°
bµ
¢

and s(bµ) =
q

1
n

bG 0 bV bG with bootstrap

analogs bµ§ = g
°
bµ§¢

and s(bµ§) =
q

1
n

bG§0 bV §bG§
. From Theorems 6.10, 10.7, and 10.8

T =
p

n
°bµ°µ

¢
p

bG 0 bV bG
°!

d
Z

and

T § =
p

n
°bµ§ ° bµ

¢
p

bG§0 bV §bG§ °!
d§

Z

where Z ª N (0,1). This shows that the sample and bootstrap t-ratios have the same asymptotic distribu-
tion.

This motivates considering the broader situation where the sample and bootstrap t-ratios have the
same asymptotic distribution, but not necessarily normal. Thus assume that

T °!
d

ª (10.30)

T § °!
d§

ª (10.31)

for some continuous distribution ª. (10.31) implies that the quantiles of T § converge in probability to
those of ª, that is q§

Æ °!
p

qÆ where qÆ is the Æth quantile of ª. This and (10.30) imply

P
£
µ 2C pt§=P

£bµ° s(bµ)q§
1°Æ/2 ∑ µ ∑ bµ° s(bµ)q§

Æ/2

§

=P
£
q§
Æ/2 ∑ T ∑ q§

1°Æ/2

§

!P
£
qÆ/2 ∑ ª∑ q1°Æ/2

§

= 1°Æ.

Thus the percentile-t is asymptotically valid.

Theorem 10.14 If (10.30) and (10.31) hold where ª is continuously distributed,
then

P
£
µ 2C pt§! 1°Æ

as n !1.

The bootstrap percentile-t intervals for the four estimators are reported in Table 13.2. They are simi-
lar but somewhat different from the percentile-type intervals, and generally wider. The largest difference
arises with the interval for æ2, which is noticably wider than the other intervals.
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10.20 Percentile-t Asymptotic Refinement

This section uses the theory of Edgeworth and Cornish-Fisher expansions introduced in Chapter
9.8-9.10 of Introduction to Econometrics. This theory will not be familiar to most students. If you are
interested the following refinement theory it is advisable to start by reading these sections of Introduction
to Econometrics.

The percentile-t interval can be viewed as the intersection of two one-sided confidence intervals.
In our discussion of Edgeworth expansions for the coverage probability of one-sided asymptotic confi-
dence intervals (following Theorem 7.17 in the context of functions of regression coefficients) we found
that one-sided asymptotic confidence intervals have accuracy to order O

°
n°1/2¢. We now show that the

percentile-t interval has improved accuracy.
Theorem 9.13 of Introduction to Econometrics showed that the Cornish-Fisher expansion for the

quantile qÆ of a t-ratio T in the smooth function model takes the form

qÆ = zÆ+n°1/2p11(zÆ)+O
°
n°1¢

where p11 (x) is an even polynomial of order 2 with coefficients depending on the moments of h(y) up
to order 8. The bootstrap quantile q§

Æ has a similar Cornish-Fisher expansion

q§
Æ = zÆ+n°1/2p§

11(zÆ)+Op
°
n°1¢

where p§
11 (x) is the same as p11(x) except that the moments of h(y) are replaced by the corresponding

sample moments. Sample moments are estimated at the rate n°1/2. Thus we can replace p§
11 with p11

without affecting the order of this expansion:

q§
Æ = zÆ+n°1/2p11(zÆ)+Op

°
n°1¢

= qÆ+Op
°
n°1¢ .

This shows that the bootstrap quantiles q§
Æ of the studentized t-ratio are within Op

°
n°1¢ of the exact

quantiles qÆ.
By the Edgeworth expansion Delta method (Theorem 9.12 of Introduction to Econometrics), T and

T + (qÆ°q§
Æ) = T +Op

°
n°1¢ have the same Edgeworth expansion to order O(n°1). Thus

P
£
T ∑ q§

Æ

§
=P

£
T + (qÆ°q§

Æ) ∑ qÆ
§

=P
£
T ∑ qÆ

§
+O(n°1)

=Æ+O(n°1).

Thus the coverage of the percentile-t interval is

P
£
µ 2C pt§=P

£
q§
Æ/2 ∑ T ∑ q§

1°Æ/2

§

=P
£
qÆ/2 ∑ T ∑ q1°Æ/2

§
+O(n°1)

= 1°Æ+O(n°1).

This is an improved rate of convergence relative to the one-sided asymptotic confidence interval.

Theorem 10.15 Under the assumptions of Theorem 9.11 of Introduction to
Econometrics,

P
£
µ 2C pt§= 1°Æ+O(n°1).
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The following definition of the accuracy of a confidence interval is useful.

Definition 10.3 A confidence set C for µ is kth-order accurate if

P [µ 2C ] = 1°Æ+O
≥
n°k/2

¥
.

Examining our results, we find that one-sided asymptotic confidence intervals are first-order accu-
rate, but percentile-t intervals are second-order accurate. When a bootstrap confidence interval (or test)
achieves high-order accuracy than the analogous asymptotic interval (or test), we say that the bootstrap
method achieves an asymptotic refinement. Here, we have shown that the percentile-t interval achieves
an asymptotic refinement.

In order to achieve this asymptotic refinement, it is important that the t-ratio T (and its bootstrap
counter-part T §) are constructed with asymptotically valid standard errors. This is because the first
term in the Edgeworth expansion is the standard normal distribution, and this requires that the t-ratio
is asymptotically normal. This also has the practical finite-sample implication that the accuracy of the
percentile-t interval in practice depends on the accuracy of the standard errors used to construct the
t-ratio.

We do not go through the details, but normal-approximation bootstrap intervals, percentile boot-
strap intervals, and bias-corrected percentile bootstrap intervals are all first-order accurate, and do not
achieve an asymptotic refinement.

The BCa interval, however, can be shown to be asymptotically equivalent to the percentile-t inter-
val, and thus achieves an asymptotic refinement. We do not make this demonstration here as it is too
advanced. For a demonstration see Section 3.10.4 of Hall (1992).

Peter Hall

Peter Gavin Hall (1951-2016) of Australia was one of the most influential and
prolific theoretical statisticians in history. He made wide-ranging contributions.
Some of the most relevant for econometrics are theoretical investigations of
bootstrap methods and nonparametric kernel methods.

10.21 Bootstrap Hypothesis Tests

To test the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0 the most common approach is a t-test. We reject
H0 in favor of H1 for large absolute values of the t-statistic

T =
bµ°µ0

s(bµ)
,

where bµ is an estimator of µ and s(bµ) is a standard error for bµ. For a bootstrap test we use the bootstrap
algorithm to calculate the critical value.
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The bootstrap algorithm samples with replacement from the dataset. Given a bootstrap sample
the bootstrap estimator bµ§ and standard error s(bµ§) are calculated. Given these values the bootstrap
t-statistic is

T § =
bµ§ ° bµ
s(bµ§)

.

There are two important features about the bootstrap t-statistic. First, T § is centered at the sample es-
timate bµ, not at the hypothesized value µ0. This is done because bµ is the true value in the bootstrap
universe, and the distribution of the t-statistic must be centered at the true value within the bootstrap
sampling framework. Second, T § is calculated using the bootstrap standard error s(bµ§). This allows the
bootstrap to incorporate the randomness in standard error estimation.

The failure to properly center the bootstrap statistic at bµ is a common error in applications. Often
this is because the hypothesis to be tested is H0 : µ = 0, so the test statistic is T = bµ/s(bµ). This intuitively
suggests the bootstrap statistic T § = bµ§/s(bµ§), but this is wrong. The correct bootstrap statistic is T § =°bµ§ ° bµ

¢
/s(bµ§).

The bootstrap algorithm creates B draws T §(b) =
°bµ§(b)° bµ

¢
/s(bµ§(b)), b = 1, ...,B . The bootstrap

100Æ% critical value is q§
1°Æ, where q§

Æ is the Æth quantile of the absolute values of the bootstrap t-ratios
|T §(b)|. For a 100Æ% test we reject H0 : µ = µ0 in favor of H1 : µ 6= µ0 if |T | > q§

1°Æ and fail to reject if
|T |∑ q§

1°Æ.
It is generally better to report p-values rather than critical values. Recall that a p-value is p = 1°

Gn(|T |) where Gn(u) is the null distribution of the statistic |T |. The bootstrap p-value is defined as
p§ = 1°G§

n(|T |), where G§
n(u) is the bootstrap distribution of |T §|. This is estimated from the bootstrap

algorithm as

p§ = 1
B

BX

b=1

°ØØT §(b)
ØØ> |T |

¢
,

the percentage of bootstrap t-statistics that are larger than the observed t-statistic. Intuitively, we want to
know how “unusual” is the observed statistic T when the null hypothesis is true. The bootstrap algorithm
generates a large number of independent draws from the distribution T § (which is an approximation to
the unknown distribution of T ). If the percentage of the |T §| that exceed |T | is very small (say 1%) this
tells us that |T | is an unusually large value. However, if the percentage is larger, say 15%, then we cannot
interpret |T | as unusually large.

If desired, the bootstrap test can be implemented as a one-sided test. In this case the statistic is
the signed version of the t-ratio, and bootstrap critical values are calculated from the upper tail of the
distribution for the alternative H1 : µ > µ0, and from the lower tail for the alternative H1 : µ < µ0. There is
a connection between the one-sided tests and the percentile-t confidence interval. The latter is the set
of parameter values µ which are not rejected by either one-sided 100Æ/2% bootstrap t-test.

Bootstrap tests can also be conducted with other statistics. When standard errors are not available or
are not reliable, we can use the non-studentized statistic T = bµ°µ0. The bootstrap version is T § = bµ§° bµ.
Let q§

Æ be theÆth quantile of the bootstrap statistics
ØØbµ§(b)° bµ

ØØ. A bootstrap 100Æ% test rejectsH0 : µ = µ0

if
ØØbµ°µ0

ØØ> q§
1°Æ. The bootstrap p-value is

p§ = 1
B

BX

b=1

°ØØbµ§(b)° bµ
ØØ>

ØØbµ°µ0
ØØ¢ .
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Theorem 10.16 If (10.30) and (10.31) hold where ª is continuously distributed,
then the bootstrap critical value satisfies

q§
1°Æ °!

p
q1°Æ

where q1°Æ is the 1°Æth quantile of |ª|. The bootstrap test “Reject H0 in favor
of H1 if |T | > q§

1°Æ” has asymptotic size Æ:

P
£
|T | > q§

1°Æ |H0
§
°!Æ

as n !1.

In the smooth function model the t-test (with correct standard errors) has the following performance.

Theorem 10.17 Under the assumptions of Theorem 9.11 of Introduction to
Econometrics,

q§
1°Æ = z1°Æ+op

°
n°1¢

where zÆ =©°1 ((1+Æ)/2) is theÆth quantile of |Z |. The asymptotic test “Reject
H0 in favor of H1 if |T | > z1°Æ” has accuracy

P
£
|T | > z1°Æ |H0

§
= 1°Æ+O

°
n°1¢

and the bootstrap test “Reject H0 in favor of H1 if |T | > q§
1°Æ” has accuracy

P
£
|T | > q§

1°Æ |H0
§
= 1°Æ+o

°
n°1¢ .

This shows that the bootstrap test achieves a refinement relative to the asymptotic test.
The reasoning is as follows. We have shown that the Edgeworth expansion for the absolute t-ratio

takes the form
P [|T |∑ x] = 2©(x)°1+n°12p2(x)+o(n°1).

This means the asymptotic test has accuracy of order O(n°1).
Given the Edgeworth expansion, the Cornish-Fisher expansion for the Æth quantile qÆ of the distri-

bution of |T | takes the form
qÆ = zÆ+n°1p21(zÆ)+o

°
n°1¢ .

The bootstrap quantile q§
Æ has the Cornish-Fisher expansion

q§
Æ = zÆ+n°1p§

21(zÆ)+o
°
n°1¢

= zÆ+n°1p21(zÆ)+op
°
n°1¢

= qÆ+op
°
n°1¢

where p§
21 (x) is the same as p21(x) except that the moments of h(y) are replaced by the corresponding

sample moments. The bootstrap test has rejection probability, using the Edgeworth expansion Delta
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method (Theorem 11.12 of of Introduction to Econometrics)

P
£
|T | > q§

1°Æ|H0
§
=P

£
|T |+ (q1°Æ°q§

1°Æ) > q1°Æ
§

=P
£
|T | > q1°Æ

§
+o(n°1)

= 1°Æ+o(n°1)

as claimed.

10.22 Wald-Type Bootstrap Tests

If µ is a vector, then to test H0 : µ = µ0 against H1 : µ 6= µ0 at size Æ, a common test is based on the
Wald statistic

W =
°bµ°µ0

¢0 bV °1
bµ

°bµ°µ0
¢

where bµ is an estimator of µ and bV bµ is a covariance matrix estimator. For a bootstrap test we use the
bootstrap algorithm to calculate the critical value.

The bootstrap algorithm samples with replacement from the dataset. Given a bootstrap sample the
bootstrap estimator bµ§ and covariance matrix estimator bV §

bµ are calculated. Given these values the boot-
strap Wald statistic is

W § =
≥
bµ§ ° bµ

¥0 bV §°1
bµ

≥
bµ§ ° bµ

¥
.

As for the t-test, it is essential that the bootstrap Wald statistic W § is centered at the sample estimator bµ
instead of the hypothesized value µ0. This is because bµ is the true value in the bootstrap universe.

Based on B bootstrap replications we calculate the Æth quantile q§
Æ of the distribution of the boot-

strap Wald statistics W §. The bootstrap test rejects H0 in favor of H1 if W > q§
1°Æ. More commonly, we

calculate a bootstrap p-value. This is

p§ = 1
B

BX

b=1

°
W §(b) >W

¢
.

The asymptotic performance of the Wald test mimics that of the t-test. In general, the bootstrap Wald
test is first-order correct (achieves the correct size asymptotically), and under conditions for which an
Edgeworth expansion exists, has accuracy

P
£
W > q§

1°Æ |H0
§
= 1°Æ+o(n°1)

and thus achieves a refinement relative to the asymptotic Wald test.
If a reliable covariance matrix estimator bV bµ is not available, a Wald-type test can be implemented

with any positive-definite weight matrix instead of bV bµ. This includes simple choices such as the identity
matrix. The bootstrap algorithm can be used to calculate critical values and p-values for the test. So
long as the estimator bµ has an asymptotic distribution, this bootstrap test will be asymptotically first-
order valid. The test will not achieve an asymptotic refinement but provides a simple method to test
hypotheses when covariance matrix estimates are not available.

10.23 Criterion-Based Bootstrap Tests

A criterion-based estimator takes the form

bØ= argmin
Ø

J
°
Ø

¢
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for some criterion function J
°
Ø

¢
. This includes least-squares, maximum likelihood, minimum distance,

and GMM. Given a hypothesis H0 : µ = µ0 where µ = r
°
Ø

¢
, the restricted estimator which satisfies H0 is

eØ= argmin
r (Ø)=µ0

J
°
Ø

¢
.

A criterion-based statistic to test H0 is

J = min
r (Ø)=µ0

J
°
Ø

¢
°min

Ø
J
°
Ø

¢

= J (eØ)° J (bØ).

A criterion-based test rejects H0 for large values of J . A bootstrap test uses the bootstrap algorithm to
calculate the critical value.

In this context we need to be a bit thoughtful about how to construct bootstrap versions of J . It might
seem natural to construct the exact same statistic on the bootstrap samples as on the original sample,
but this is incorrect. It makes the same error as calculating a t-ratio or Wald statistic centered at the
hypothesized value. In the bootstrap universe, the true value of µ is not µ0, rather it is bµ = r

°bØ
¢
. Thus

when using the nonparametric bootstrap, we want to impose the constraint r
°
Ø

¢
= r

°bØ
¢
= bµ to obtain

the bootstrap version of J .
Thus, the correct way to calculate a bootstrap version of J is as follows. Generate a bootstrap sample

by random sampling from the dataset. Let J§
°
Ø

¢
be the the bootstrap version of the criterion. On a

bootstrap sample calculate the unrestricted estimator

bØ§ = argmin
Ø

J§
°
Ø

¢

and the restricted version
eØ§ = argmin

r (Ø)=bµ
J§

°
Ø

¢

where bµ = r
°bØ

¢
. The bootstrap statistic is

J§ = min
r (Ø)=bµ

J§
°
Ø

¢
°min

Ø
J§

°
Ø

¢

= J§(eØ§
)° J§(bØ§

).

Calculate J§ on each bootstrap sample. Take the 1°Æth quantile q§
1°Æ. The bootstrap test rejects H0

in favor of H1 if J > q§
1°Æ. The bootstrap p-value is

p§ = 1
B

BX

b=1

°
J§(b) > J

¢
.

Special cases of criterion-based tests are minimum distance tests, F tests, and likelihood ratio tests.
Take the F test for a linear hypothesis R

0Ø= µ0. The F statistic is

F =
°
eæ2 ° bæ2¢/q

bæ2/(n °k)

where bæ2 is the unrestricted estimator of the error variance, eæ2 is the restricted estimator, q is the number
of restrictions and k is the number of estimated coefficients. The bootstrap version of the F statistic is

F§ =
°
eæ§2 ° bæ§2¢/q

bæ§2/(n °k)
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where bæ§2 is the unrestricted estimator on the bootstrap sample, and eæ§2 is the restricted estimator
which imposes the restriction R

0Ø= bµ = R
0bØ.

Take the likelihood ratio (LR) test for the hypothesis r
°
Ø

¢
= µ0. The LR test statistic is

LR = 2
°
`n

°bØ
¢
°`n

°eØ
¢¢

where bØ is the unrestricted MLE and eØ is the restricted MLE (imposing r
°
Ø

¢
= µ0). The bootstrap version

is
LR§ = 2

≥
`§n

≥
bØ§¥

°`§n
≥
eØ§¥¥

where `§n(Ø) is the log-likelihood function calculated on the bootstrap sample, bØ§
is the unrestricted

maximizer, and eØ§
is the restricted maximizer imposing the restriction r

°
Ø

¢
= r

°bØ
¢
.

10.24 Parametric Bootstrap

Throughout this chapter we have described the most popular form of the bootstrap known as the
nonparametric bootstrap. However there are other forms of the bootstrap algorithm including the para-
metric bootstrap. This is appropriate when there is a full parametric model for the distribution, as in
likelihood estimation.

First, consider the context where the model specifies the full distribution of the random vector y ,
e.g. y ª F (y | Ø) where the distribution function F is known but the parameter Ø is unknown. Let bØ
be an estimator of Ø, such as the maximum likelihood estimator. The parametric bootstrap algorithm
generates bootstrap observations y

§
i by drawing random vectors from the distribution function F (y | bØ).

When this is done, the true value ofØ in the bootstrap universe is bØ. Everything which has been discussed
in the chapter can be applied using this bootstrap algorithm.

Second, consider the context where the model specifies the conditional distribution of the random
vector y given the random vector x , e.g. y | x ª F (y | x ,Ø). An example is the normal linear regression
model, where y | x ª N

°
x
0Ø,æ2¢ . In this context we can hold the regressors x i fixed and then draw the

bootstrap observations y
§
i from the conditional distribution F (y | x i , bØ). In the example of the normal

regression model this is equivalent to drawing a normal error e§i ª N
°
0, bæ2¢ and then setting y§

i = x
0
i
bØ+e§i .

Again, in this algorithm the true value of Ø is bØ and everything which is discussed in this chapter can be
applied as before.

Third, consider tests of the hypothesis r
°
Ø

¢
= µ0. In this context we can also construct a restricted

estimator eØ (for example the restricted MLE) which satisfies the hypothesis r
°eØ

¢
= µ0. Then we can

alternatively generate bootstrap samples by simulating from the distribution y
§
i ª F (y | eØ) , or in the

conditional context from y
§
i ª F (y | x i , eØ). When this is done, the true value of Ø in the bootstrap is eØ

which satisfies the hypothesis. So in this context the correct values of the bootstrap statistics are

T § =
bµ§ °µ0

s(bµ§)

W § =
≥
bµ§ °µ0

¥0 bV §°1
bµ

≥
bµ§ °µ0

¥

J§ = min
r (Ø)=µ0

J§
°
Ø

¢
°min

Ø
J§

°
Ø

¢

LR§ = 2
µ
max
Ø

`§n
°
Ø

¢
° max

r (Ø)=µ0

`§n
°
Ø

¢∂



CHAPTER 10. RESAMPLING METHODS 308

and

F§ =
°
eæ§2 ° bæ§2¢/q

bæ§2/(n °k)

where bæ§2 is the unrestricted estimator on the bootstrap sample, and eæ§2 is the restricted estimator
which imposes the restriction R

0Ø= µ0.
The primary advantage of the parametric bootstrap (relative to the nonparametric bootstrap) is that

it will be more accurate when the parametric model is correct. This may be quite important in small
samples. The primary disadvantage of the parameric bootstrap is that it can be inaccurate when the
parametric model is incorrect.

10.25 How Many Bootstrap Replications?

How many bootstrap replications should be used? There is no universally correct answer as there is a
trade-off between accuracy and computation cost. Computation cost is essentially linear in B . Accuracy
(either standard errors or p-values) is proportional to B°1/2. Improved accuracy can be obtained but
only at a higher computational cost.

In most empirical research, most calculations are quick and investigatory, not requiring full accu-
racy. But final results (those going into the final version of the paper) should be accurate. Thus it seems
reasonable to use asymptotic and/or bootstrap methods with a modest number of replications for daily
calculations, but use a much larger B for the final version.

In particular, for final calculations, B = 10,000 is desired, with B = 1000 a minimal choice. In contrast,
for daily quick calculations values as low as B = 100 may be sufficient for rough estimates.

A useful way to think about the accuracy of bootstrap methods stems from the calculation of p-
values. The bootstrap p-value p§ is an average of B Bernoulli draws. The variance of the simulation
estimator of p§ is p§(1°p§)/B , which is bounded below 1/4B . To calculate the p-value within, say, 0.01
of the true value with 95% probability requires a standard error below 0.005. This is ensured if B ∏ 10,000.

Stata by default sets B = 50. This is useful for verification that a program runs, but is a poor choice
for empirical reporting. Make sure that you set B to the value you want.

10.26 Setting the Bootstrap Seed

Computers do not generate true random numbers, but rather pseudo-random numbers generated by
a deterministic algorithm. The algorithms generate sequences which are indistinguishable from random
sequences, so this is not a worry for bootstrap applications.

The methods, however, necessarily require a starting value known as a “seed”. Most packages imple-
ment this with a default seed which is reset each time the statistical package is started. This means if
you start the package fresh, run a bootstrap program (e.g. a “do” file in Stata), exit the package, restart
the package and then rerun the bootstrap program, you should obtain exactly the same results. If you
instead run the bootstrap program (e.g. “do” file) twice sequentially without restarting the package, the
seed is not reset so a different set of pseudo-random numbers will be generated, and the results from the
two runs will be different.

Packages allow users to set their own seed. (In Stata, the command is where is a num-
ber. In Matlab the command is .) If the seed is set to a specific number at the start of a file, then
the exact same pseudo-random numbers will be generated each time the program is run. If this is the
case, the results of a bootstrap calculation (standard error or test) will be identical across computer runs.
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The fact that the bootstrap results can be fixed by setting the seed in the replication file has motivated
many researchers to follow this choice. They set the seed at the start of the replication file so that repeated
executions result in the same numerical findings.

Fixing seeds, however, should be done cautiously. It may be a wise choice for a final calculation
(when a paper is finished) but is an unwise choice for daily calculations. If you use a small number of
replications in your preliminary work, say B = 100, the bootstrap calculations will be quite inaccurate.
But as you run your results again and again (as is typical in empirical projects) you will find the same
numerical standard errors and test results, giving you a false sense of stability and accuracy. If instead a
different seed is used each time the program is run then the bootstrap results will vary across runs, and
you will observe that the results vary across these runs, giving you important and meaningful informa-
tion about the (lack of) accuracy in your results. One way to ensure this in Matlab is to use the command

which sets the seed according to the current clock.
These considerations lead to a recommended hybrid approach. For daily empirical investigations, do

not fix the bootstrap seed in your program unless you have it set by the clock. For your final calculations
set the seed to a specific arbitrary choice, and set B = 10,000 so that the results are insensitive to the seed.

10.27 Bootstrap Regression

A major focus of this textbook has been on the least-squares estimator bØ in the projection model.
The bootstrap can be used to calculate standard errors and confidence intervals for smooth functions of
the coefficient estimates.

The nonparametric bootstrap algorithm, as described before, samples observations randomly with
replacement from the dataset, creating the bootstrap sample {

°
y§

1 , x
§
1

¢
, ...,

°
y§

n , x
§
n
¢
}, or in matrix notation

(y
§, X

§) It is important to recognize that entire observations (pairs of yi and x i ) are sampled. This is
often called the pairs bootstrap.

Given this bootstrap sample, we calculate the regression estimator

bØ§ =
°

X
§0

X
§¢°1 °

X
§0

y
§¢

. (10.32)

This is repeated B times. The bootstrap standard errors are the standard deviations across the draws,
and confidence intervals are constructed from the empirical quantiles across the draws.

What is the nature of the bootstrap distribution of bØ§
? It is useful to start with the distribution of

the bootstrap observations
°
y§

i , x
§
i

¢
, which is the discrete distribution which puts mass 1/n on each ob-

servation pair
°
yi , x i

¢
. The bootstrap universe can be thought of as the empirical scatter plot of the

observations. The true value of the projection coefficient in this bootstrap universe is

°
E
§ £

x
§
i x

§0
i

§¢°1 °
E
§ £

x
§
i y§

i

§¢
=

√
1
n

nX

i=1
x i x

0
i

!°1 √
1
n

nX

i=1
x i yi

!

= bØ.

We see that the true value in the bootstrap distribution is the least-squares estimate bØ.
The bootstrap observations satisfy the projection equation

y§
i = x

§0
i

bØ+e§i (10.33)

E
§ £

x
§
i e§i

§
= 0.

For each bootstrap pair
°
y§

i , x
§
i

¢
=

°
y j , x j

¢
the true error e§i = be j equals the least-squares residual from

the original dataset. This is because each bootstrap pair corresponds to an actual observation.
A technical problem (which is typically ignored) is that it is possible for X

§0
X

§ to be singular in a
simulated bootstrap sample, in which case the least-squares estimator bØ§

cannot be defined. Indeed,
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the probability is always positive that X
§0

X
§ is singular. For example, the probability that a bootstrap

sample consists entirely of one observation repeated n times is n°(n°1). This is a small probability, but
positive. A more significant example is sparse dummy variable designs where it is possible to draw an
entire sample with only one observed value for the dummy variable. For example, if a sample has n = 20
observations with a dummy variable with treatment (equals 1) for only three of the 20 observations, the
probability is 4% that a bootstrap sample contains entirely non-treated values (all 0’s). 4% is quite high!

The standard approach to circumvent this problem is to compute bØ§
only if X

§0
X

§ is non-singular
as defined by a conventional numerical tolerance and treat it as missing otherwise. A better solution is
to define a tolerance which bounds X

§0
X

§ away from non-singularity. Define the ratio of the smallest
eigenvalue of the bootstrap design matrix to that of the data design matrix

∏§ =
∏min

°
X

§0
X

§¢

∏min
°

X
0
X

¢ .

If, in a given bootstrap replication, ∏§ < ø is smaller than a given tolerance (Shao and Tu (1995, p. 291)
recommend ø= 1/2) then the estimator can be treated as missing, or we can define the trimming rule

bØ§ =

8
><

>:

bØ§
if ∏§ ∏ ø

bØ if ∏§ < ø.
(10.34)

This ensures that the bootstrap estimator bØ§
will be well behaved.

10.28 Bootstrap Regression Asymptotic Theory

Define the least-squares estimator bØ, its bootstrap version bØ§
as in (10.32), and the transformations

bµ = g (bØ) and bµ§ = r (bØ§
) for some smooth transformation r . Let bV Ø and bV µ denote heteroskedasticity-

robust covariance matrix estimators for bØ and bµ, and let bV §
Ø and bV §

µ be their bootstrap versions. When

µ is scalar define the standard errors s(bµ) =
q

n°1 bV µ and s(bµ§) =
q

n°1 bV µ§ . Define the t-ratios T =
°bµ°µ

¢
/s(bµ) and bootstrap version T § =

°bµ§ ° bµ
¢

/s(bµ§). We are interested in the asymptotic distributions
of bØ§

, bµ§ and T §.
Since the bootstrap observations satisfy the model (10.33), we see by standard calculations that

p
n

≥
bØ§ ° bØ

¥
=

√
1
n

nX

i=1
x
§
i x

§0
i

!°1 √
1
p

n

nX

i=1
x
§
i e§i

!

.

By the bootstrap WLLN
1
n

nX

i=1
x
§
i x

§0
i °!

p§
E
£

x i x
0
i

§
=Q

and by the bootstrap CLT
1
p

n

nX

i=1
x
§
i e§i °!

d§
N(0,≠)

where≠= E
£

x i x
0
i e2

i

§
. Again applying the bootstrap WLLN we obtain

bV Ø °!
p§

V Ø =Q
°1≠Q

°1

and
bV µ °!

p§
V µ = R

0
V ØR
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where R = R
°
Ø

¢
.

Combining with the bootstrap CMT and delta method we establish the asymptotic distribution of
the bootstrap regression estimator.

Theorem 10.18 Under Assumption 7.2, as n !1
p

n
≥
bØ§ ° bØ

¥
°!
d§

N
°
0,V Ø

¢
.

If Assumption 7.3 also holds then

p
n

≥
bµ§ ° bµ

¥
°!
d§

N(0,V µ) .

If Assumption 7.4 also holds then

T § °!
d§

N(0,1) .

This means that the bootstrap confidence interval and testing methods all apply for inference on Ø
and µ. This includes the percentile, BC percentile, BCa , and percentile-t intervals, and hypothesis tests
based on t-tests, Wald tests, MD tests, LR tests and F tests.

To justify the use of bootstrap standard errors we also need to verify the uniform square integrabil-
ity of bØ§

and bµ§. This is technically challenging because the least-squares estimator involves division
(matrix inversion) which is not a globally continuous function. A partial solution is to use the trimmed
estimator (10.34). This bounds the moments of bØ§

by those of n°1 Pn
i=1 x

§
i e§i . Since this is a sample

mean, Theorem 10.10 applies and bV §
Ø is bootstrap consistent for V Ø. However, this does not ensure that

bV §
µ will be consistent for bV µ unless the function r (u) satisfies the conditions of Theorem 10.10. For gen-

eral applications we should use a trimmed estimator for the bootstrap variance. For some øn = O
°
en/8¢

define

z§
n =

p
n

≥
bµ§ ° bµ

¥

z§§ = z§ °∞∞z§
n

∞∞∑ øn
¢

z§§ = 1
B

BX

b=1
z§§(b)

bV boot,ø
µ = 1

B °1

BX

b=1

°
z§§(b)° z§§¢°

z§§(b)° z§§¢0 .

The matrix bV boot
µ is a trimmed bootstrap estimator of the variance of zn =

p
n

°bµ°µ
¢
. The associated

bootstrap standard error for bµ (in the scalar case) is s(bµ) =
q

n°1 bV boot
µ .

By an application of Theorems 10.11 and 10.12, we find that this estimator bV boot
µ is consistent for the

asymptotic variance.

Theorem 10.19 Under Assumption 7.2 and 7.3, as n !1

bV boot,ø
µ °!

p§
V µ.
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Programs such as Stata use the untrimmed estimator bV boot
µ rather than the trimmed estimator bV boot,ø

µ .
This means that we should be cautious about interpreting reported bootstrap standard errors especially
for nonlinear functions such as ratios.

10.29 Wild Bootstrap

Take the linear regression model

yi = x
0
iØ+ei

E [ei | x i ] = 0.

What is special about this model is the conditional mean restriction. The nonparametric bootstrap
(which samples the pairs

°
y§

i , x
§
i

¢
i.i.d. from the original observations) does not make use of this re-

striction. Consequently the bootstrap distribution for
°
y§

i , x
§
i

¢
does not satisfy the conditional mean

restriction, and therefore does not satisfy the linear regression assumption. To improve the precision of
the bootstrap method it seems reasonable to impose the conditional mean restriction on the bootstrap
distribution.

A natural approach is to hold the regressors x i fixed and then draw the errors e§i in some way which
imposes a conditional mean of zero. The simplest approach is to draw the errors independent from
the regressors, perhaps from the empirical distribution of the residuals. This procedure is known a the
residual bootstrap. However, this imposes independence of the errors from the regressors, which is
much stronger than the conditional mean assumption. This is generally undesirable.

A method which imposes the conditional mean restriction while allowing general heteroskedasticity
is the wild bootstrap. It was proposed by Liu (1988) and extended by Mammon (1993). The method uses
auxiliary random variables ª§i which are i.i.d., mean zero, and variance 1. The bootstrap observations are
then generated as

y§
i = x

0
i
bØ+e§i

e§i = beiª
§
i

where the regressors x i are held fixed at their sample values, bØ is the sample least-squares estimator, and
bei are the least-squares residuals, which are also held fixed at their sample values.

This algorithm generates bootstrap errors e§i which are conditionally mean zero. Thus the bootstrap
pairs

°
y§

i , x i
¢

satisfy a linear regression, with the “true” coefficient of bØ. The conditional variance of the
wild bootstrap errors e§i are

E
§ £

e§2
i | x i

§
= be2

i .

This means that the conditional variance of the bootstrap estimator bØ§
is

E
§
h≥

bØ§ ° bØ
¥≥

bØ§ ° bØ
¥0
| X

i
=

°
X

0
X

¢°1

√
nX

i=1
x i x

0
i be

2
i

!
°

X
0
X

¢°1

which is the White estimator of the variance of bØ. Thus the wild bootstrap replicates the appropriate first
and second moments of the distribution.

Two distributions have been proposed for the auxilary variables ª§i both of which are two-point dis-
crete distributions. The first are Rademacher random variables, which satisfy

P
£
ª§i = 1

§
= 1

2

P
£
ª§i =°1

§
= 1

2
.
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The second is the Mammen (1993) two-point distribution

P

"

ª§i = 1+
p

5
2

#

=
p

5°1

2
p

5

P

"

ª§i = 1°
p

5
2

#

=
p

5+1

2
p

5
.

The reasoning behind the Mammen distribution is that this choice implies E
£
ª§3

i

§
= 1, which implies

that the third central moment of bØ§
matches the natural nonparametric estimator of the third central

moment of bØ. Since the wild bootstrap matches the first three moments, the percentile-t interval and
one-sided t-tests can be shown to achieve asymptotic refinements.

The reasoning behind the Rademacher distribution is that this choice implies E
£
ª§4

i

§
= 1, which im-

plies that the fourth central moment of bØ§
matches the natural nonparametric estimator of the fourth

central moment of bØ. If the regression errors ei are symmetrically distributed (so the third moment
is zero) then the first four moments are matched. In this case the wild bootstrap should have even
better performance, and additionally two-sided t-tests can be shown to achieve an asymptotic refine-
ment. When the regression error is not symmetrically distributed these asymptotic refinements are
not achieved. However, simulation evidence for one-sided t-tests presented in Davidson and Flachaire
(2008) suggest that the Rademacher distribution (used with the restricted wild bootstrap) overall has the
best performance and is the preferred choice.

For hypothesis testing improved precision can be obtained by the restricted wild bootstrap. Con-
sider tests of the hypothesis

H0 : r
°
Ø

¢
= 0.

Let eØ be a CLS or EMD estimator of Ø subject to the restriction r
°eØ

¢
= 0. Let eei = yi ° x

0
i
eØ be the con-

strained residuals. The restricted wild bootstrap algorithm generates observations as

y§
i = x

0
i
eØ+e§i

e§i = eeiª
§
i .

With this modification, eØ is the true value in the bootstrap universe, so the null hypothesisH0 holds. Thus
bootstrap tests are constructed the same as for the parametric bootstrap using a restricted parameter
estimator.

10.30 Bootstrap for Clustered Observations

Bootstrap methods can also be applied in the context of clustered observations, though the method-
ological literature is relatively thin. Here we review methods discussed in Cameron, Gelbach and Miller
(2008).

Let y g = (y1g , ..., yng g )0 and X g = (x1g , ..., xng g )0 denote the ng £1 vector of dependent variables and

ng £k matrix of regressors for the g th cluster. A linear regression model using cluster notation is

y g = X gØ+eg

where eg = (e1g , ...,eng g )0 is a ng £1 error vector. The sample has G cluster pairs (y g , X g ).
The pairs cluster bootstrap samples G cluster pairs (y g , X g ) to create the bootstrap sample. Least-

squares is applied to the bootstrap sample to obtain the coefficient estimators. By repeating B times,
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bootstrap standard errors for coefficients estimates, or functions of the coefficient estimates, can be
calculated. Percentile, BC percentile, and BCa confidence intervals can be calculated.

The BCa interval requires an estimator of the acceleration coefficient a which is a scaled jackknife
estimate of the third moment of the estimator. In the context of clustered observations the delete-cluster
jackknife should be used for estimation of a.

Furthermore, on each bootstrap sample the cluster-robust standard errors can be calculated and
used to compute bootstrap t-ratios, from which percentile-t confidence intervals can be calculated.

The wild cluster bootstrap fixes the clusters and regressors, and generates the bootstrap observa-
tions as

y
§
g = X g bØ+e

§
g

e
§
g = be iª

§
g

where ª§g is a scalar auxilary random variable as described in the previous section. Notice that ª§g is
interacted with the entire vector of residuals from cluster g . Cameron, Gelbach and Miller (2008) follow
the recommendation of Davidson and Flachaire (2008) and use Rademacher random variables for ª§g .

For hypothesis testing, Cameron, Gelbach and Miller (2008) recommend the restricted wild cluster
bootstrap. For tests of

H0 : r
°
Ø

¢
= 0

let eØ be a CLS or EMD estimator of Ø subject to the restriction r
°eØ

¢
= 0. Let eeg = y g ° X g eØ be the con-

strained cluster-level residuals. The restricted wild cluster bootstrap algorithm generates observations
as

y
§
g = X g eØ+e

§
g

e
§
g = ee iª

§
g .

On each bootstrap sample the test statistic for H0 (t-ratio, Wald, LR, or F) is applied. Since the bootstrap
algorithm satisfiesH0 these statistics are centered at the hypothesized value. p-values are then calculated
conventionally and used to assess the significance of the test statistic.

There are several reasons why conventional asymptotic approximations may work poorly with clus-
tered observations. First, while the sample size n may be large, the effective sample size is the number
of clusters G . This is because when the dependence structure within each cluster is unconstrained the
central limit theorem effectively treats each cluster as a single observation. Thus, if G is small we should
treat inference as a small sample problem. Second, cluster-robust covariance matrix estimation explic-
itly treats each cluster as a single observation. Consequently the accuracy of normal approximations
to t-ratios and Wald statistics is more accurately viewed as a small sample distribution problem. Third,
when cluster sizes ng are heterogeneous, this means that the estimation problems just described also
involve heterogeneous variances. Specifically, heterogeneous cluster sizes induces a high degree of ef-
fective heteroskedasticity (since the variance of a within-cluster sum is proportional to ng ). When G
is small this means that cluster-robust inference is similar to finite-sample inference with a small het-
eroskedastic sample. Fourth, interest often concerns treatment which is applied at the level of a cluster
(such as the effect of tracking discussed in Section 4.22). If the number of treated clusters is small, this
is equivalent to estimation with a highly sparse dummy variable design, in which case cluster-robust
covariance matrix estimation can be unreliable.

These concerns suggest that conventional normal approximations may be poor in the context of
clustered observations with a small number of groups G , motivating the use of bootstrap methods. How-
ever, these concerns also can cause challenges with the accuracy of bootstrap approximations. When the
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number of clusters G is small, the cluster sizes ng heterogeneous, or the number of treated clusters small,
bootstrap methods may be inaccurate. In such cases inference should proceed cautiously.

To illustrate the use of the pairs cluster bootstrap, Table 10.4 reports the estimates of the example
from Section 4.22 of the effect of tracking on testscores from Duflo, Dupas and Kremer (2011). In addition
to the asymptotic cluster standard error, we report the cluster jackknife and cluster bootstrap standard
errors, as well as three percentile-type confidence intervals and using 10,000 bootstrap replications. In
this example the asymptotic, jackknife, and cluster bootstrap standard errors are identical, which reflects
the good balance of this particular regression design.

Table 10.4: Comparison of Methods for Estimate of Effect of Tracking

Coefficient on Tracking 0.138
Asymptotic cluster s.e. (0.078)
Jackknife cluster s.e. (0.078)
Cluster Bootstrap s.e. (0.078)
95% Percentile Interval [°0.013, 0.291]
95% BC Percentile Interval [°0.015, 0.289]
95% BCa Percentile Interval [°0.018, 0.286]

In Stata, to obtain cluster bootstrap standard errors and confidence intervals use the options
, where is the cluster variable and is the number of bootstrap replica-

tions.

10.31 Technical Proofs*

Some of the asymptotic results are facilitated by the following convergenced result.

Theorem 10.20 Marcinkiewicz WLLN If ui are independent and uniformly integrable, then for any r >
1, as n !1

n°r
nX

i=1
|ui |r °!p 0.

Proof of Theorem 10.20

n°r
nX

i=1
|ui |r ∑

µ
n°1 max

1∑i∑n
|ui |

∂r°1 1
n

nX

i=1
|ui |°!p 0

by the WLLN, Theorem 6.17, and r > 1.

Proof of Theorem 10.1 Fix "> 0. Since zn °!
p

z there is an n sufficiently large such that

P [kzn ° zk> "] < ".

Since the event kzn ° zk> " is non-random under the conditional probability P§, for such n,

P
§ [kzn ° zk> "] =

Ω
0 with probability exceeding 1°"
1 with probability less than ".

Since " is arbitrary we conclude P§ [kzn ° zk> "] °!
p

0 as required. Á
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Proof of Theorem 10.2 Fix "> 0. By Markov’s inequality (B.36), the facts (10.12) and (10.13), and finally
the Marcinkiewicz WLLN (Theorem 10.20) with r = 2 and ui =

∞∞y i

∞∞,

P
§ £∞∞y

§ ° y

∞∞> "
§
∑ "°2

E
§∞∞y

§ ° y

∞∞2

= "°2 tr
°
var§

£
y
§§¢

= "°2 tr
µ

1
n

bß
∂

∑ "°2n°2
nX

i=1
y
0
i y i

°!
p

0.

This establishes that y
§ ° y °!

p§
0.

Since y °µ°!
p

0 by the WLLN, y °µ°!
p§

0 by Theorem 10.1. Since y
§°µ= y

§° y + y °µ, we deduce

that y
§ °µ°!

p§
0. Á

Proof of Theorem 10.4 We verify conditions for the multivariate Lindeberg CLT (Theorem 6.4). (We
cannot use the Lindeberg–Lévy CLT since the conditional distribution depends on n.) Conditional on
Fn , the bootstrap draws y

§
i ° y are i.i.d. with mean 0 and variance matrix bß. Set ∫2

n = ∏min(bß). Note that
by the WLLN, ∫2

n °!
p

∫2 =∏min(ß) > 0. Thus for n sufficiently large, ∫2
n > 0 with high probability. Fix "> 0.

Equation (6.2) equals

1

n∫2
n

nX

i=1
E
§
h∞∞y

§
i ° y

∞∞2
≥∞∞y

§
i ° y

∞∞2 ∏ "n∫2
n

¥i
= 1

∫2
n
E
§
h∞∞y

§
i ° y

∞∞2
≥∞∞y

§
i ° y

∞∞2 ∏ "n∫2
n

¥i

∑ 1

"n∫4
n
E
§∞∞y

§
i ° y

∞∞4

∑ 24

"n∫4
n
E
§∞∞y

§
i

∞∞4

= 24

"n2∫4
n

nX

i=1

∞∞y i

∞∞4

°!
p

0.

The second inequality uses Minkowski’s inequality (B.34), Liapunov’s inequality (B.35) and the cr in-
equality (B.6). The following equality is E§

∞∞y
§
i

∞∞4 = n°1 Pn
i=1

∞∞y i

∞∞4, which is similar to (10.10). The final

convergence holds by the Marcinkiewicz WLLN (Theorem 10.20) with r = 2 and ui =
∞∞y i

∞∞2. The condi-
tions for Theorem 6.4 hold and we conclude

bß°1/2p
n

°
y
§ ° y

¢
°!
d§

N(0, I ) .

Since bß°!
p§
ßwe deduce that

p
n

°
y
§ ° y

¢
°!
d§

N(0,ß)

as claimed. Á

Proof of Theorem 10.10 For notational simplicity assume µ and µ are scalar. Set hi = h(yi ). The assump-
tion that the pth derivative of g (u) is bounded implies

ØØg (p) (u)
ØØ∑C for some C <1. Taking a pth order

Taylor series expansion
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bµ§ ° bµ = g (h
§

)° g (h) =
p°1X

j=1

g ( j )
≥
h
¥

j !

≥
h
§ °h

¥ j
+

g (p) °≥§n
¢

p !

≥
h
§ °h

¥p

where ≥§n lies between h
§

and h. This implies

ØØz§
n

ØØ=
p

n
ØØbµ§ ° bµ

ØØ∑
p

n
pX

j=1
c j

ØØØh
§ °h

ØØØ
j

where c j =
ØØØg ( j )

≥
h
¥ØØØ/ j ! for j < p and cp =C /p !. We find that the fourth central moment of the normalized

bootstrap estimator z§
n =

p
n

°bµ§ ° bµ
¢

satisfies the bound

E
§ £

z§4
n

§
∑

4pX

r=4
ar n2

E
§
ØØØh

§ °h
ØØØ
r

(10.35)

where the coefficients ar are products of the coefficients c j and hence each Op (1). We see that E§
£
z§4

n
§
=

Op (1) if n2
E
§
ØØØh

§ °h
ØØØ
r
=Op (1) for r = 4, ...,4p.

We show this holds for any r ∏ 4 using Rosenthal’s inequality (B.51), which states that for each r there
is a constant Rr <1 such that

n2
E
§
ØØØh

§ °h
ØØØ
r
= n2°r

E
§
ØØØØØ

nX

i=1

≥
h§

i °h
¥ØØØØØ

r

∑ n2°r Rr

(µ
nE§

≥
h§

i °h
¥2

∂r /2

+nE§
ØØØh§

i °h
ØØØ
r
)

= Rr

(

n2°r /2 bær + 1
nr°2

nX

i=1

ØØØhi °h
ØØØ
r
)

. (10.36)

Since E
£
h2

i

§
< 1, bæ2 = Op (1), so the first term in (10.36) is Op (1). Also, by the Marcinkiewicz WLLN

(Theorem 10.20), n°r /2 Pn
i=1

ØØØhi °h
ØØØ
r
= op (1) for any r ∏ 1, so the second term in (10.36) is op (1) for

r ∏ 4. Thus for all r ∏ 4, (10.36) is Op (1) and thus (10.35) is Op (1). We deduce that z§
n is uniformly square

integrable, and the bootstrap estimate of variance is consistent.
This argument can be extended to vector-valued means and estimates. Á

Proof of Theorem 10.12 We show that E§
∞∞z§§

n

∞∞4 = Op (1). By Theorem 6.15 this implies that z§§
n is uni-

formly square integrable. Since z§§
n °!

d§
Z , Theorem 6.16 implies that var

£
z§§

n
§
! var[Z ] =V Ø as stated.

Set hi = h
°

y i
¢
. Since G (u) = @

@u
g (u)0 is continuous in a neighborhood of µ, there exists ¥ > 0 and

M < 1 such that
∞∞u °µ

∞∞ ∑ 2¥ implies tr
°
G (u)0G (u)

¢
∑ M . By the WLLN and bootstrap WLLN there

is an n sufficiently large such that
∞∞∞hn °µ

∞∞∞ ∑ ¥ and
∞∞∞h

§
n °hn

∞∞∞ ∑ ¥ with probability exceeding 1 ° ¥.

On this event,
∞∞∞u °hn

∞∞∞ ∑ ¥ implies tr
°
G (u)0G (u)

¢
∑ M . Using the mean-value theorem at a point ≥§n

intermediate between h
§
n and hn

∞∞z§§
n

∞∞4
≥∞∞∞h

§
n °hn

∞∞∞∑ ¥
¥
∑ n2

∞∞∞g

≥
h
§
n

¥
°g

≥
hn

¥∞∞∞
4 ≥∞∞∞h

§
n °hn

∞∞∞∑ ¥
¥

∑ n2
∞∞∞G

°
≥§n

¢0 ≥
h
§
n °hn

¥∞∞∞
4

∑ M 2n2
∞∞∞h

§
n °hn

∞∞∞
4

.
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Then

E
§∞∞z§§

n

∞∞4 ∑ E§
h∞∞z§§

n

∞∞4
≥∞∞∞h

§
n °hn

∞∞∞∑ ¥
¥i

+ø4
nE

§
h ≥∞∞∞h

§
n °hn

∞∞∞> ¥
¥i

∑ M 2n2
E
§
∞∞∞h

§
n °hn

∞∞∞
4
+ø4

nP
§
≥∞∞∞h

§
n °hn

∞∞∞> ¥
¥

. (10.37)

In (10.17) we showed that the first term in (10.37) is Op (1) in the scalar case. The vector case follows
by element-by-element expansion.

Now take the second term in (10.37). We apply Bernstein’s inequality for vectors (B.40). Note that
h
§
n °hn = n°1 Pn

i=1 u
§
i with u

§
i = h

§
i °hn with j th element u§

j i = h§
j i °h j n . The u

§
i are i.i.d., mean zero,

E
§
h

u§2
j i

i
= bæ2

j =Op (1), and satisfy the bound
ØØØu§

j i

ØØØ∑ 2maxi , j
ØØh j i

ØØ= Bn , say. Bernstein’s inequality states
that

P
§
h∞∞∞h

§
n °hn

∞∞∞> ¥
i
∑ 2m exp

√

°n1/2 ¥2

2m2n°1/2 max j bæ2
j +2mn°1/2Bn¥/3

!

. (10.38)

Theorem 6.17 shows that n°1/2Bn = op (1). Thus the expression in the denominator of the parentheses
in (10.38) is op (1) as n !1, . It follows that for n sufficiently large (10.38) is Op

°
exp

°
°n1/2¢¢. Hence the

second term in (10.37) is Op
°
exp

°
°n1/2¢¢op

°
exp

°
°n1/2¢¢= op (1) by the assumption on øn .

We have shown that the two terms in (10.37) are each Op (1). This completes the proof. Á
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Exercises

Exercise 10.1 Find the jackknife estimator of variance of the estimator bµr = n°1 Pn
i=1 yr

i for µr = E
£

yr
i

§
.

Exercise 10.2 Show that if the jackknife estimator of variance of bØ is bV jack
bØ

, then the jackknife estimator

of variance of bµ = a +C bØ is bV jack
bµ

=C bV jack
bØ

C
0.

Exercise 10.3 A two-step estimator such as (12.51) is bØ =
°Pn

i=1 bw i bw 0
i

¢°1 °Pn
i=1 bw i yi

¢
where bw i = bA0

z i

and bA =
°

Z
0
Z

¢°1
Z

0
X . Describe how to construct the jackknife estimator of variance of bØ.

Exercise 10.4 Show that if the boostrap estimator of variance of bØ is bV boot
bØ , then the bootstrap estimator

of variance of bµ = a +C bØ is bV boot
bµ =C bV boot

bØ C
0.

Exercise 10.5 Show that if the percentile interval for Ø is [L,U ] then the percentile interval for a + cØ is
[a + cL, a + cU ].

Exercise 10.6 Consider the following bootstrap procedure. Using the non-parametric bootstrap, gener-
ate bootstrap samples, calculate the estimate bµ§ on these samples and then calculate

T § = (bµ§ ° bµ)/s(bµ),

where s(bµ) is the standard error in the original data. Let q§
Æ/2 and q§

1°Æ/2 denote the Æ/2th and 1°Æ/2th

quantiles of T §, and define the bootstrap confidence interval

C =
£bµ+ s(bµ)q§

Æ/2, bµ+ s(bµ)q§
1°Æ/2

§
.

Show that C exactly equals the percentile interval.

Exercise 10.7 Prove Theorem 10.6.

Exercise 10.8 Prove Theorem 10.7.

Exercise 10.9 Prove Theorem 10.8.

Exercise 10.10 Let yi be i.i.d., µ= E
£

yi
§
> 0, and µ =µ°1. Let bµ= Y n be the sample mean and bµ = bµ°1.

(a) Is bµ unbiased for µ?

(b) If bµ is biased, can you determine the direction of the bias E
£bµ°µ

§
(up or down)?

(c) Is the percentile interval appropriate in this context for confidence interval construction?

Exercise 10.11 Consider the following bootstrap procedure for a regression of yi on x i . Let bØ denote the
OLS estimator from the regression of y on X , and be = y °X bØ the OLS residuals.

(a) Draw a random vector (x
§,e§) from the pair {(x i , bei ) : i = 1, ...,n} . That is, draw a random integer i 0

from [1,2, ...,n], and set x
§ = x i 0 and e§ = bei 0 . Set y§ = x

§0bØ+ e§. Draw (with replacement) n such
vectors, creating a random bootstrap data set (y

§, X
§).
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(b) Regress y
§ on X

§, yielding OLS estimates bØ§
and any other statistic of interest.

Show that this bootstrap procedure is (numerically) identical to the non-parametric bootstrap.

Exercise 10.12 Take p§ as defined in (10.22) for the BC percentile interval. Show that it is invariant to
replacing µ with g (µ) for any strictly monotonically increasing transformation g (µ). Does this extend to
z§

0 as defined in (10.23)?

Exercise 10.13 Show that if the percentile-t interval for Ø is [L,U ] then the percentile-t interval for a+cØ
is [a +bL, a +bU ].

Exercise 10.14 You want to test H0 : µ = 0 against H1 : µ > 0. The test for H0 is to reject if Tn = bµ/s(bµ) > c
where c is picked so that Type I error isÆ. You do this as follows. Using the nonparametric bootstrap, you
generate bootstrap samples, calculate the estimates bµ§ on these samples and then calculate

T § = bµ§/s(bµ§).

Let q§
1°Æ denote the 1°Æth quantile of T §. You replace c with q§

1°Æ, and thus reject H0 if Tn = bµ/s(bµ) >
q§

1°Æ. What is wrong with this procedure?

Exercise 10.15 Suppose that in an application, bµ = 1.2 and s(bµ) = .2. Using the nonparametric bootstrap,
1000 samples are generated from the bootstrap distribution, and bµ§ is calculated on each sample. The
bµ§ are sorted, and the 0.025th and 0.975th quantiles of the bµ§ are .75 and 1.3, respectively.

(a) Report the 95% percentile interval for µ.

(c) With the given information, can you calculate the 95% BC percentile interval or percentile-t inter-
val for µ?

Exercise 10.16 Take the normal regression model

yi = x
0
iØ+ei

ei | x i ª N (0,æ2)

where we know the MLE are the least-squares estimators bØ and bæ2.

(a) Describe the parametric regression bootstrap for this model. Show that the conditional distribu-
tion of the bootstrap observations is y§

i | Fn ª N
°
x
0
i
bØ, bæ2¢.

(b) Show that the distribution of the bootstrap least-squares estimator is bØ§ | Fn ª N
≥
bØ,

°
X

0
X

¢°1 bæ2
¥
.

(c) (optional) Show that the distribution of the bootstrap t-ratio with a homoskedastic standard error
is T § ª tn°k .

Exercise 10.17 Consider the model

yi = x
0
iØ+ei

E [ei | x i ] = 0

with yi scalar and x i a k vector. You have a random sample (yi , x i : i = 1, ...,n). You are interested in
estimating the regression function m(x) = E

£
yi | x i = x

§
at a fixed vector x and constructing a 95% confi-

dence interval.
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(a) Write down the standard estimator and asymptotic confidence interval for m(x).

(b) Describe the percentile bootstrap confidence interval for m(x).

(c) Describe the percentile-t bootstrap confidence interval for m(x).

Exercise 10.18 The observed data is {yi , xi } 2R£Rk , k > 1, i = 1, ...,n. Take the model

yi = x
0
iØ+ei

E [xi ei ] = 0

µ3 = E
£
e3

i

§

(a) Write down an estimator for µ3.

(b) Explain how to use the percentile method to construct a 90% confidence interval for µ3 in this
specific model.

Exercise 10.19 Take the model

yi = x
0
iØ+ei

E [xi ei ] = 0

E
£
e2

i

§
=æ2

Describe the bootstrap percentile confidence interval for æ2.

Exercise 10.20 The model is

yi = x
0
1iØ1 +x

0
2iØ2 +ei

E [x i ei ] = 0

with x2i scalar. Describe how to test H0 :Ø2 = 0 against H1 :Ø2 6= 0 using the nonparametric bootstrap.

Exercise 10.21 The model is

yi = x
0
1iØ1 +x2iØ2 +ei

E [x i ei ] = 0

with both x1i and x1i k£1. Describe how to testH0 :Ø1 =Ø2 againstH1 :Ø1 6=Ø2 using the nonparametric
bootstrap.

Exercise 10.22 Suppose a Ph.D. student has a sample (yi , xi , zi : i = 1, ...,n) and estimates by OLS the
equation

yi = zi bÆ+x 0
i
bØ+ bei

where Æ is the coefficient of interest and she is interested in testing H0 : Æ = 0 against H1 : Æ 6= 0. She
obtains bÆ = 2.0 with standard error s(bÆ) = 1.0 so the value of the t-ratio for H0 is T = bÆ/s(bÆ) = 2.0. To
assess significance, the student decides to use the bootstrap. She uses the following algorithm

1. Samples (y§
i , x§

i , z§
i ) randomly from the observations. (Random sampling with replacement). Cre-

ates a random sample with n observations.
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2. On this pseudo-sample, estimates the equation

y§
i = z§

i bÆ§+x§0
i

bØ§+ ê§i

by OLS and computes standard errors, including s(bÆ§). The t-ratio for H0, T § = bÆ§/s(bÆ§) is com-
puted and stored.

3. This is repeated B = 10,000 times.

4. The 0.95th empirical quantile q§
.95 = 3.5 of the bootstrap absolute t-ratios |T §| is computed.

5. The student notes that while |T | = 2 > 1.96 (and thus an asymptotic 5% size test rejects H0), |T | =
2 < q§

.95 = 3.5 and thus the bootstrap test does not reject H0. As the bootstrap is more reliable, the
student concludes that H0 cannot be rejected in favor of H1.

Question: Do you agree with the student’s method and reasoning? Do you see an error in her method?

Exercise 10.23 Take the model

yi = x1iØ1 +x2iØ2 +ei

E [x i ei ] = 0.

The parameter of interest is µ = Ø1Ø2. Show how to construct a confidence interval for µ using the fol-
lowing three methods.

(a) Asymptotic Theory.

(b) Percentile Bootstrap.

(c) Percentile-t Bootstrap.

Your answer should be specific to this problem, not general.

Exercise 10.24 Take the model

yi = x1iØ1 +x2iØ2 +ei

E [x i ei ] = 0

µ = Ø1

Ø2
.

Assume that the observations (yi , x1i , x2i ) are i.i.d. across i = 1, ...,n. Describe how you would construct
the percentile-t bootstrap confidence interval for µ.

Exercise 10.25 The model is i.i.d. data, i = 1, ...,n,

yi = x
0
iØ+ei

E [ei | x i ] = 0.

Does the presence of conditional heteroskedasticity invalidate the application of the nonparametric
bootstrap? Explain.
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Exercise 10.26 The RESET specification test for nonlinearity in a random sample (due to Ramsey (1969))
is the following. The null hypothesis is a linear regression

yi = x
0
iØ+ei

E [ei | x i ] = 0.

The parameter Ø is estimated by OLS yielding predicted values byi . Then a second-stage least-squares
regression is estimated including both x i and byi

yi = x
0
i
eØ+

°
byi

¢2 e∞+ eei

The RESET test statistic R is the squared t-ratio on e∞.
A colleague suggests obtaining the critical value for the test using the bootstrap. He proposes the

following bootstrap implementation.

• Draw n observations (y§
i , x

§
i ) randomly from the observed sample pairs (yi , x i ) to create a boot-

strap sample.

• Compute the statistic R§ on this bootstrap sample as described above.

• Repeat this B times. Sort the bootstrap statistics R§, take the 0.95th quantile and use this as the
critical value.

• Reject the null hypothesis if R exceeds this critical value, otherwise do not reject.

Is this procedure a correct implementation of the bootstrap in this context? If not, propose a modifi-
cation.

Exercise 10.27 The model is

yi = x
0
iØ+ei

E [x i ei ] 6= 0,

so the regressor x i is endogenous. We know that in this case, the least-squares estimator may be biased
for the parameter Ø. We also know that the nonparametric BC percentile interval is (generally) a good
method for confidence interval construction in the presence of bias. Explain whether or not you ex-
pect the BC percentile interval applied to the least-squares estimator will have accurate coverage in the
presence of endogeneity.

Exercise 10.28 In Exercise 9.26 you estimated a cost function for 145 electric companies and tested the
restriction µ =Ø3 +Ø4 +Ø5 = 1.

(a) Estimate the regression by unrestricted least-squares, and report standard errors calculated by
asymptotic, jackknife and the bootstrap.

(b) Estimate µ = Ø3 +Ø4 +Ø5, and report standard errors calculated by asymptotic, jackknife and the
bootstrap.

(c) Report confidence intervals for µ using the percentile and BCa methods.

Exercise 10.29 In Exercise 9.27 you estimated the Mankiw, Romer, and Weil (1992) unrestricted regres-
sion. Let µ be the sum of the second, third and fourth coefficients.
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(a) Estimate the regression by unrestricted least-squares, and report standard errors calculated by
asymptotic, jackknife and the bootstrap.

(b) Estimate µ and report standard errors calculated by asymptotic, jackknife and the bootstrap.

(c) Report confidence intervals for µ using the percentile and BC methods.

Exercise 10.30 In Exercise 7.28 you estimated a wage regression with the CPS dataset and the subsample
of white Male Hispanics. Further restrict the sample to those never-married and live in the Midwest
region. (This sample has 99 observations.) As in subquestion (b), let µ be the ratio of the return to one
year of education to the return of one year of experience.

(a) Estimate µ and report standard errors calculated by asymptotic, jackknife and the bootstrap.

(b) Explain the discrepancy between the standard errors.

(c) Report confidence intervals for µ using the BC percentile method.

Exercise 10.31 In Exercise 4.26 you extended the work from Duflo, Dupas and Kremer (2011). Repeat
that regression, now calculating the standard error as well by cluster bootstrap. Report a BCa confidence
interval for each coefficient.
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Chapter 11

Multivariate Regression

11.1 Introduction

Multivariate regression is a system of regression equations. Multivariate regression is used as re-
duced form models for instrumental variable estimation (explored in Chaper 12), vector autoregressions
(explored in Chapter 15), demand systems (demand for multiple goods), and other contexts.

Multivariate regression is also called by the name systems of regression equations. Closely related is
the method of Seemingly Unrelated Regressions (SUR) which we introduce in Section 11.7.

Most of the tools of single equation regression generalize naturally to multivariate regression. A ma-
jor difference is a new set of notation to handle matrix estimates.

11.2 Regression Systems

A system of linear regressions takes the form

y j i = x
0
j iØ j +e j i (11.1)

for variables j = 1, ...,m and observations i = 1, ...,n, where the regressor vectors x j i are k j £ 1 and e j i

is an error. The coefficient vectors Ø j are k j £1. The total number of coefficients are k = Pn
j=1 k j . The

regression system specializes to univariate regression when m = 1.
It is typical to treat the observations as independent across observations i but correlated across vari-

ables j . As an example, the observations y j i could be expenditures by household i on good j . The
standard assumptions are that households are mutually independent, but expenditures by an individual
household are correlated across goods.

To describe the dependence between the dependent variables, we can define the m £1 error vector
e i = (e1i , ...,emi )0 and its m £m variance matrix

ß= E
£
e i e

0
i

§
.

The diagonal elements are the variances of the errors e j i , and the off-diagonals are the covariances across
variables. It is typical to allow ß to be unconstrained.

We can group the m equations (11.1) into a single equation as follows. Let y i = (y1i , ..., ymi )0 be the
m £1 vector of dependent variables, define the m £k matrix of regressors

X i =

0

B@
x
0
1i 0 · · · 0
... x

0
2i

...
0 0 · · · x

0
mi

1

CA ,

326
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and define the k £1 stacked coefficient vector

Ø=

0

B@
Ø1
...
Øm

1

CA .

Then the m regression equations can jointly be written as

y i = X iØ+e i . (11.2)

The entire system can be written in matrix notation by stacking the variables. Define

y =

0

B@
y 1
...

y n

1

CA , e =

0

B@
e1
...

en

1

CA , X =

0

BB@

X 1
...

X n

1

CCA

which are mn £1, mn £1, and mn £k, respectively. The system can be written as

y = XØ+e.

In many applications the regressor vectors x j i are common across the variables j , so x j i = x i and
k j = k. By this we mean that the same variables enter each equation with no exclusion restrictions.
Several important simplifications occur in this context. One is that we can write (11.2) using the notation

y i = B
0
x i +e i (11.3)

where B =
°
Ø1,Ø2, · · · ,Øm

¢
is k £m. Another is that we can write the system in the n£m matrix notation

Y = X B +E

where

Y =

0

B@
y
0
1

...
y
0
n

1

CA , E =

0

B@
e
0
1
...

e
0
n

1

CA , X =

0

B@
x
0
1
...

x
0
n

1

CA .

Another convenient implication of common regressors is that we have the simplification

X i =

0

BBBB@

x
0
i 0 · · · 0

0 x
0
i 0

...
...

...
0 0 · · · x

0
i

1

CCCCA
= I m ≠x

0
i

where ≠ is the Kronecker product (see Appendix A.21).

11.3 Least-Squares Estimator

Consider estimating each equation (11.1) by least-squares. This takes the form

bØ j =
√

nX

i=1
x j i x

0
j i

!°1 √
nX

i=1
x j i y j i

!

.
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The combined estimator of Ø is the stacked vector

bØ=

0

B@

bØ1
...

bØm

1

CA .

It turns that we can write this estimator using the systems notation

bØ=
≥

X
0
X

¥°1 ≥
X

0
y

¥
=

√
nX

i=1
X

0
i X i

!°1 √
nX

i=1
X

0
i y i

!

. (11.4)

To see this, observe that

X
0
X =

≥
X

0
1 · · · X

0
n

¥
0

BB@

X 1
...

X n

1

CCA

=
nX

i=1
X

0
i X i

=
nX

i=1

0

B@
x1i 0 · · · 0

... x2i
...

0 0 · · · xmi

1

CA

0

B@
x
0
1i 0 · · · 0
... x

0
2i

...
0 0 · · · x

0
mi

1

CA

=

0

B@

Pn
i=1 x1i x

0
1i 0 · · · 0

...
Pn

i=1 x2i x
0
2i

...
0 0 · · · Pn

i=1 xmi x
0
mi

1

CA

and

X
0
y =

≥
X

0
1 · · · X

0
n

¥
0

B@
y 1
...

y n

1

CA

=
nX

i=1
X

0
i y i

=
nX

i=1

0

B@
x1i 0 · · · 0

... x2i
...

0 0 · · · xmi

1

CA

0

B@
y1i

...
ymi

1

CA

=

0

B@

Pn
i=1 x1i y1i

...Pn
i=1 xmi ymi

1

CA .

Hence
≥

X
0
X

¥°1 ≥
X

0
y

¥
=

√
nX

i=1
X i X

0
i

!°1 √
nX

i=1
X i y i

!

=

0

BB@

°Pn
i=1 x1i x

0
1i

¢°1 °Pn
i=1 x1i y1i

¢

...°Pn
i=1 xmi x

0
mi

¢°1 °Pn
i=1 xmi ymi

¢

1

CCA

= bØ
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as claimed.
The m £1 residual vector for the i th observation is

be i = y i °X
0
i
bØ

and the least-squares estimator of the m £m error variance matrix is

bß= 1
n

nX

i=1
be i be 0

i . (11.5)

In the case of common regressors, observe that

bØ j =
√

nX

i=1
x i x

0
i

!°1 √
nX

i=1
x i y j i

!

and
bB =

°bØ1, bØ2, · · · , bØm
¢
=

°
X

0
X

¢°1 °
X

0
Y

¢
. (11.6)

In Stata, multivariate regression can be implemented using the command.

11.4 Mean and Variance of Systems Least-Squares

We can calculate the finite-sample mean and variance of bØ under the conditional mean assumption

E [e i | x i ] = 0 (11.7)

where x i is the union of the regressors x j i . Equation (11.7) is equivalent to E
•

y j i | x i
¶
= x

0
j iØ j , or that

the regression model is correctly specified.
We can center the estimator as

bØ°Ø=
≥

X
0
X

¥°1 ≥
X

0
e

¥
=

√
nX

i=1
X

0
i X i

!°1 √
nX

i=1
X

0
i e i

!

.

Taking conditional expectations, we find E
£bØ | X

§
= Ø. Consequently, systems least-squares is unbiased

under correct specification.
To compute the variance of the estimator, define the conditional covariance matrix of the errors of

the i th observation
E
£
e i e

0
i | x i

§
=ßi

which in general is unrestricted. Observe that if the observations are mutually independent, then

E
£
ee

0 | X
§
= E

2

64

0

B@
e1e1 e1e2 · · · e1en

...
. . .

...
ene1 ene2 · · · enen

1

CA

ØØØØØØØ
X

3

75

=

0

B@
ß1 0 · · · 0

...
. . .

...
0 0 · · · ßn

1

CA .

Also, by independence across observations,

var

"
nX

i=1
X

0
i e i | X

#

=
nX

i=1
var

h
X

0
i e i | x i

i
=

nX

i=1
X

0
ißi X i .
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It follows that

var
£bØ | X

§
=

≥
X

0
X

¥°1
√

nX

i=1
X

0
ißi X i

!≥
X

0
X

¥°1
.

When the regressors are common so that X i = I m ≠x
0
i then the covariance matrix can be written as

var
£bØ | X

§
=

≥
I m ≠

°
X

0
X

¢°1
¥√

nX

i=1

°
ßi ≠x i x

0
i

¢
!≥

I m ≠
°

X
0
X

¢°1
¥

.

Alternatively, if the errors are conditionally homoskedastic

E
£
e i e

0
i | x i

§
=ß (11.8)

then the covariance matrix takes the form

var
£bØ | X

§
=

≥
X

0
X

¥°1
√

nX

i=1
X

0
ißX i

!≥
X

0
X

¥°1
.

If both simplifications (common regressors and conditional homoskedasticity) hold then we have
the considerable simplication

var
£bØ | X

§
=ß≠

°
X

0
X

¢°1 .

11.5 Asymptotic Distribution

For an asymptotic distribution it is sufficient to consider the equation-by-equation projection model
in which case

E
£

x j i e j i
§
= 0. (11.9)

First, consider consistency. Since bØ j are the standard least-squares estimators, they are consistent
for the projection coefficients Ø j .

Second, consider the asymptotic distribution. Again by our single equation theory it is immediate
that the bØ j are asymptotically normally distributed. But our previous theory does not provide a joint

distribution of the bØ j across j . For this we need a joint theory for the stacked estimates bØ, which we now
provide.

Since the vector

X
0
i e i =

0

B@
x1i e1i

...
xmi emi

1

CA

is i.i.d. across i and mean zero under (11.9), the central limit theorem implies

1
p

n

nX

i=1
X

0
i e i °!

d
N(0,≠)

where
≠= E

h
X

0
i e i e

0
i X i

i
= E

h
X

0
ißi X i

i
.

The matrix ≠ is the covariance matrix of the variables x j i e j i across equations. Under conditional
homoskedasticity (11.8) the matrix≠ simplifies to

≠= E
h

X
0
ißX i

i
(11.10)
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(see Exercise 11.1). When the regressors are common then it simplies to

≠= E
£
e i e

0
i ≠x i x

0
i

§
(11.11)

(see Exercise 11.2) and under both conditions (homoskedasticity and common regressors) it simplifies
to

≠=ß≠E
£

x i x
0
i

§
(11.12)

(see Exercise 11.3).
Applied to the centered and normalized estimator we obtain the asymptotic distribution.

Theorem 11.1 Under Assumption 7.2,

p
n

°bØ°Ø
¢
°!

d
N

°
0,V Ø

¢

where

V Ø =Q
°1≠Q

°1

Q = E
h

X
0
i X i

i
=

0

B@
E
£

x1i x
0
1i

§
0 · · · 0

...
. . .

...
0 0 · · · E

£
xni x

0
ni

§

1

CA .

For a proof, see Exercise 11.4.
When the regressors are common then the matrix Q simplies as

Q = I m ≠E
£

x i x
0
i

§
(11.13)

(See Exercise 11.5).
If both the regressors are common and the errors are conditionally homoskedastic (11.8) then we

have the simplification
V Ø =ß≠

°
E
£

x i x
0
i

§¢°1 (11.14)

(see Exercise 11.6).
Sometimes we are interested in parameters µ = r (Ø1, ...,Øm) = r (Ø) which are functions of the coeffi-

cients from multiple equations. In this case the least-squares estimate of µ is bµ = r (bØ). The asymptotic
distribution of bµ can be obtained from Theorem 11.1 by the delta method.

Theorem 11.2 Under Assumptions 7.2 and 7.3,

p
n

°bµ°µ
¢
°!

d
N(0,V µ)

where

V µ = R
0
V ØR

R = @

@Ø
r

°
Ø

¢0 .
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For a proof, see Exercise 11.7.
Theorem 11.2 is an example where multivariate regression is fundamentally distinct from univariate

regression. Only by treating the least-squares estimates as a joint estimator can we obtain a distributional
theory for an estimator bµ which is a function of estimates from multiple equations and thereby construct
standard errors, confidence intervals, and hypothesis tests.

11.6 Covariance Matrix Estimation

From the finite sample and asymptotic theory we can construct appropriate estimators for the vari-
ance of bØ. In the general case we have

bV bØ =
≥

X
0
X

¥°1
√

nX

i=1
X

0
i be i be 0

i X i

!≥
X

0
X

¥°1
.

Under conditional homoskedasticity (11.8) an appropriate estimator is

bV 0
bØ =

≥
X

0
X

¥°1
√

nX

i=1
X

0
i
bßX i

!≥
X

0
X

¥°1
.

When the regressors are common then these estimators equal

bV bØ =
≥

I m ≠
°

X
0
X

¢°1
¥√

nX

i=1

°
be i be 0

i ≠x i x
0
i

¢
!≥

I m ≠
°

X
0
X

¢°1
¥

and
bV 0

bØ = bß≠
°

X
0
X

¢°1 ,

respectively.
Covariance matrix estimators for bµ are found as

bV bµ = bR 0 bV bØ
bR

bV 0
bµ = bR 0 bV 0

bØ
bR

bR = @

@Ø
r

°bØ
¢0

.

Theorem 11.3 Under Assumption 7.2,

n bV bØ °!
p

V Ø

and
n bV 0

bØ °!
p

V
0
Ø.

For a proof, see Exercise 11.8.
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11.7 Seemingly Unrelated Regression

Consider the systems regression model under the conditional mean and conditional homoskedas-
ticity assumptions

y i = X iØ+e i (11.15)

E [e i | x i ] = 0

E
£
e i e

0
i | x i

§
=ß

Since the errors are correlated across equations we can consider estimation by Generalized Least Squares
(GLS). To derive the estimator, premultiply (11.15) by ß°1/2 so that the transformed error vector is i.i.d.
with covariance matrix I m . Then apply least-squares and rearrange to find

bØgls =
√

nX

i=1
X

0
iß

°1
X i

!°1 √
nX

i=1
X

0
iß

°1
y i

!

. (11.16)

(see Exercise 11.9). Another approach is to take the vector representation

y = XØ+e

and calculate that the equation error e has variance E
£
ee

0§ = I n ≠ß. Premultiply the equation by I n ≠
ß°1/2 so that the transformed error has variance matrix I nm and then apply least-squares to find

bØgls =
≥

X
0 °

I n ≠ß°1¢
X

¥°1 ≥
X

0 °
I n ≠ß°1¢

y

¥
(11.17)

(see Exercise 11.10).
Expressions (11.16) and (11.17) are algebraically equivalent. To see the equivalence, observe that

X
0 °

I n ≠ß°1¢
X =

≥
X

0
1 · · · X

0
n

¥
0

B@
ß°1 0 · · · 0

... ß°1 ...
0 0 · · · ß°1

1

CA

0

BB@

X 1
...

X n

1

CCA

=
nX

i=1
X

0
iß

°1
X i

and

X
0 °

I n ≠ß°1¢
y =

≥
X

0
1 · · · X

0
n

¥
0

B@
ß°1 0 · · · 0

... ß°1 ...
0 0 · · · ß°1

1

CA

0

B@
y 1
...

y n

1

CA

=
nX

i=1
X

0
iß

°1
y i .

Sinceß is unknown it must be replaced by an estimator. Using bß from (11.5) we obtain a feasible GLS
estimator.

bØsur =
√

nX

i=1
X

0
i
bß°1

X i

!°1 √
nX

i=1
X

0
i
bß°1

y i

!

=
≥

X
0 ≥

I n ≠ bß°1
¥

X

¥°1 ≥
X

0 ≥
I n ≠ bß°1

¥
y

¥
. (11.18)
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This is known as the Seemingly Unrelated Regression (SUR) estimator, and was introduced by Zellner
(1962).

The estimator bß can be updated by calculating the SUR residuals be i = y i °X
0
i
bØsur and the covariance

matrix estimate bß= 1
n

Pn
i=1 be i be 0

i . Substituted into (11.18) we find an iterated SUR estimator, and this can
be iterated until convergence.

Under conditional homoskedasticity (11.8) we can derive its asymptotic distribution.

Theorem 11.4 Under Assumption 7.2 and (11.8)

p
n

°bØsur °Ø
¢
°!

d
N

≥
0,V

§
Ø

¥

where
V

§
Ø =

≥
E

h
X

0
iß

°1
X i

i¥°1
.

For a proof, see Exercise 11.11.
Under these assumptions (in particular conditional homoskedasticity), SUR is more efficient than

least-squares.

Theorem 11.5 Under Assumption 7.2 and (11.8)

V
§
Ø =

≥
E

h
X

0
iß

°1
X i

i¥°1

∑
≥
E

h
X

0
i X i

i¥°1
E

h
X

0
ißX i

i≥
E

h
X

0
i X i

i¥°1

=V Ø

and thus bØsur is asymptotically more efficient than bØols.

For a proof, see Exercise 11.12.
An appropriate estimator of the variance of bØsur is

bV bØ =
√

nX

i=1
X

0
i
bß°1

X i

!°1

.

Theorem 11.6 Under Assumption 7.2 and (11.8)

n bV bØ °!
p

V Ø.

For a proof, see Exercise 11.13.
In Stata, the seemingly unrelated regressions estimator is implemented using the command.



CHAPTER 11. MULTIVARIATE REGRESSION 335

Arnold Zellner

Arnold Zellner (1927-2000) of the United States was a founding father of the
econometrics field. He was a pioneer in Bayesian econometrics. One of his core
contributions was the method of Seemingly Unrelated Regressions.

11.8 Equivalence of SUR and Least-Squares

When the regressors are common across equations x j i = x i it turns out that the SUR estimator sim-
plifies to least-squares.

To see this, recall that when regressors are common this implies that X i = I m ≠x
0
i . Then

X
0
i
bß°1 = (I m ≠x i ) bß°1

= bß°1 ≠x i

=
≥
bß°1 ≠ I k

¥
(I m ≠x i )

=
≥
bß°1 ≠ I k

¥
X

0
i .

Thus

bØsur =
√

nX

i=1
X

0
i
bß°1

X i

!°1 √
nX

i=1
X

0
i
bß°1

y i

!

=
√≥

bß°1 ≠ I k

¥ nX

i=1
X

0
i X i

!°1 √≥
bß°1 ≠ I k

¥ nX

i=1
X

0
i y i

!

=
√

nX

i=1
X

0
i X i

!°1 √
nX

i=1
X

0
i y i

!

= bØols.

A model where regressors are not common across equations is nested within a model with the union
of all regressors included in all equations. Thus the model with regressors common across equations
is a fully unrestricted model, and a model where the regressors differ across equations is a restricted
model. Thus the above result shows that the SUR estimator reduces to least-squares in the absence of
restrictions, but SUR can differ from least-squares otherwise.

11.9 Maximum Likelihood Estimator

Take the linear model under the assumption that the error is independent of the regressors and mul-
tivariate normally distributed. Thus

y i = X iØ+e i

e i ª N(0,ß) .

In this case we can consider the maximum likelihood estimator (MLE) of the coefficients.
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It is convenient to reparameterize the covariance matrix in terms of its inverse, thus S = ß°1. With
this reparameterization, the conditional denstiy of y i given X i equals

f
°

y i | X i
¢
= det(S)1/2

(2º)m/2
exp

µ
°1

2

°
y i °X iØ

¢0
S

°
y i °X iØ

¢∂
.

The log-likelihood function for the sample is

`n(Ø,S) =°nm
2

log(2º)+ n
2

logdet(S)° 1
2

nX

i=1

≥
y i °X iØ

¥0
S

≥
y i °X iØ

¥
.

The maximum likelihood estimator
°bØmle, bSmle

¢
maximizes the log-likelihood function. The first or-

der conditions are

0 = @

@Ø
`n(Ø,S)

ØØØØ
Ø=bØ,S=bS

=
nX

i=1
X i bS

≥
y i °X i bØ

¥

and

0 = @

@S
`n(Ø,ß)

ØØØØ
Ø=bØ,S=bS

= n
2

bS°1 ° 1
2

tr

√
nX

i=1

≥
y i °X i bØ

¥≥
y i °X i bØ

¥0
!

.

The second equation uses the matrix results @
@S

logdet(S) = S
°1 and @

@B
tr(AB ) = A

0 from Appendix A.20.

Solving and making the substitution bß= bS°1
we obtain

bØmle =
√

nX

i=1
X

0
i
bß°1

X i

!°1 √
nX

i=1
X

0
i
bß°1

y i

!

bßmle =
1
n

nX

i=1

≥
y i °X i bØ

¥≥
y i °X i bØ

¥0
.

Notice that each equation refers to the other. Hence these are not closed-form expressions, but can be
solved via iteration. The solution is identical to the iterated SUR estimator. Thus the SUR estimator
(iterated) is identical to the MLE under normality.

Recall that the SUR estimator simplifies to OLS when the regressors are common across equations.
The same occurs for the MLE. Thus when X i = I m ≠x

0
i we find that bØmle = bØols and bßmle = bßols.

11.10 Restricted Estimation

In many multivariate regression applications it is desired to impose restrictions on the coefficients.
In particular, cross-equation restrictions (for example, imposing Slutsky symmetry on a demand system)
can be quite important, and can only be imposed by a multivariate estimation method. Estimation sub-
ject to restrictions can be done by minimum distance, maximum likelihood, or the generalized method
of moments.
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Minimum distance is a straightforward application of the methods of Chapter 8 to the estimators
presented in this chapter, since such methods apply to any asymptotically normal unrestricted estima-
tor.

Imposing restrictions on maximum likelihood is also straightforward. The likelihood is maximized
subject to the imposed restrictions. One important example is explored in detail in the following section.

Generalized method of moments estimation of multivariate regression subject to restrictions will be
explored in Section 13.18. This is a particularly simple and straightforward way to estimate restricted
multivariate regression models, and is our generally preferred approach.

11.11 Reduced Rank Regression

One context where systems estimation is important is when it is desired to impose or test restrictions
across equations. Restricted systems are commonly estimated by maximum likelihood under normal-
ity. In this section we explore one important special case of restricted multivariate regression known
as reduced rank regression. The model was originally proposed by Anderson (1951) and extended by
Johansen (1995).

The unrestricted model is

y i = B
0
x i +C

0
z i +e i (11.19)

E
£
e i e

0
i | x i , z i

§
=ß

where B is k £m, C is `£m, and x i and z i are regressors. We separate the regressors x i and z i because
the coefficient matrix B will be restricted while C will be unrestricted.

The matrix B is full rank if
rank(B ) = min(k,m).

The reduced rank restriction is that
rank(B ) = r < min(k,m)

for some known r .
The reduced rank restriction implies that we can write the coefficient matrix B in the factored form

B =G A
0

where A is m£r and G is k£r . This representation is not unique (as we can replace G with GQ and A with
AQ

°10 for any invertible Q and the same relation holds). Identification therefore requires a normalization
of the coefficients. A conventional normalization is

G
0
DG = I r

for given D .
Equivalently, the reduced rank restriction can be imposed by requiring that B satisfy the restriction

B A? = G A
0
A? = 0 for some m £ (m ° r ) coefficient matrix A?. Since G is full rank this requires that

A
0
A? = 0, hence A? is the orthogonal complement to A. Note that A? is not unique as it can be replaced

by A?Q for any (m ° r )£ (m ° r ) invertible Q . Thus if A? is to be estimated it requires a normalization.
We discuss methods for estimation of G , A, ß, C , and A?. The standard approach is maximum like-

lihood under the assumption that e i ª N(0,ß). The log-likelihood function for the sample is

`n(G , A,C ,ß) =°nm
2

log(2º)° n
2

logdet(ß)

° 1
2

nX

i=1

°
y i ° AG

0
x i °C

0
z i

¢0
ß°1 °

y i ° AG
0
x i °C

0
z i

¢
.
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Anderson (1951) derived the MLE by imposing the constraint B A? = 0 via the method of Lagrange
multipliers. This turns out to be algebraically cumbersome.

Johansen (1995) instead proposed a concentration method which turns out to be relatively straight-
forward. The method is as follows. First, treat G as if it is known. Then maximize the log-likelihood
with respect to the other parameters. Resubstituting these estimates, we obtain the concentrated log-
likelihood function with respect to G . This can be maximized to find the MLE for G . The other parameter
estimates are then obtain by substitution. We now describe these steps in detail.

Given G , the likelihood is a normal multivariate regression in the variables G
0
x i and z i , so the MLE for

A, C and ß are least-squares. In particular, using the Frisch-Waugh-Lovell residual regression formula,
we can write the estimators for A and ß as

bA(G) =
≥
eY 0 eX G

¥≥
G

0 eX 0 eX G

¥°1

and
bß(G) = 1

n

µ
eY 0 eY ° eY 0 eX G

≥
G

0 eX 0 eX G

¥°1
G

0 eX 0 eY
∂

where

eY = Y °Z
°

Z
0
Z

¢°1
Z

0
Y

eX = X °Z
°

Z
0
Z

¢°1
Z

0
X .

Substituting these estimators into the log-likelihood function, we obtain the concentrated likelihood
function, which is a function of G only

èn(G) = `n
°
G , bA(G), bC (G), bß(G)

¢

= m
2

°
n log(2º)°1

¢
° n

2
logdet

µ
eY 0 eY ° eY 0 eX G

≥
G

0 eX 0 eX G

¥°1
G

0 eX 0 eY
∂

= m
2

°
n log(2º)°1

¢
° n

2
logdet

≥
eY 0 eY

¥ det
µ
G

0
µ
eX 0 eX ° eX 0 eY

≥
eY 0 eY

¥°1
Y

0 eX
∂

G

∂

det
≥
G

0 eX 0 eX G

¥ .

The third equality uses Theorem A.1.8. The MLE bG for G is the maximizer of è(G), or equivalently equals

bG = argmin
G

det
µ
G

0
µ
eX 0 eX ° eX 0 eY

≥
eY 0 eY

¥°1
Y

0 eX
∂

G

∂

det
≥
G

0 eX 0 eX G

¥ (11.20)

= argmax
G

det
µ
G

0 eX 0 eY
≥
eY 0 eY

¥°1
Y

0 eX G

∂

det
≥
G

0 eX 0 eX G

¥

= {v 1, ..., v r }

which are the generalized eigenvectors of eX 0 eY
≥
eY 0 eY

¥°1
Y

0 eX with respect to eX 0 eX corresponding to the
r largest generalized eigenvalues. (Generalized eigenvalues and eigenvectors are discussed in Section
A.14.) The estimator satisfies the normalization bG 0 eX 0 eX bG = I r . Letting v

§
j denote the eigenvectors of

(11.20), we can also express bG =
©

v
§
m , ..., v

§
m°r+1

™
.

This is computationally straightforward. In MATLAB, for example, the generalized eigenvalues and
eigenvectors of a matrix A with respect to B are found using the command .



CHAPTER 11. MULTIVARIATE REGRESSION 339

Given bG , the MLE bA, bC , bß are found by least-squares regression of y i on bG 0
x i and z i . In particular,

bA = bG 0 eX 0 eY since bG 0 eX 0 eX bG = I r .
We now discuss the estimator bA? of A?. It turns out that

bA? = argmax
A

det
µ

A
0
µ
eY 0 eY ° eY 0 eX

≥
eX 0 eX

¥°1 eX 0 eY
∂

A

∂

det
≥

A
0 eY 0 eY A

¥ (11.21)

= {w 1, ..., w m°r }

the eigenvectors of eY 0 eY ° eY 0 eX
≥
eX 0 eX

¥°1 eX 0 eY with respect to eY 0 eY associated with the largest m ° r eigen-
values.

By the dual eigenvalue relation (Theorem A.5), the eigenvalue problems in equations (11.20) and
(11.21) have the same non-unit eigenvalues ∏ j , and the associated eigenvectors v

§
j and w j satisfy the

relationship

w j =∏°1/2
j

≥
eY 0 eY

¥°1 eY 0 eX v
§
j .

Letting§= diag{∏m , ...,∏m°r+1} this implies

{w m , ..., w m°r+1} =
≥
eY 0 eY

¥°1 eY 0 eX
©

v
§
m , ..., v

§
m°r+1

™
§

=
≥
eY 0 eY

¥°1 bA§.

The second equality holds since bG =
©

v
§
m , ..., v

§
m°r+1

™
and bA = eY 0 eX bG . Since the eigenvectors w j satisfy

the orthogonality property w
0
j
eY 0 eY w` = 0 for j 6= `, it follows that

0 = bA0
? eY 0 eY {w m , ..., w m°r+1} = bA0

?bA§.

Since§> 0 we conclude that bA0
?bA = 0 as desired.

The solution bA? in (11.21) can be represented several ways. One which is computationally conve-
nient is to observe that

eY 0 eY ° eY 0 eX
≥
eX 0 eX

¥°1 eY 0 eX = Y
0
M X ,Z Y = ee 0ee

where M X ,Z = I n ° (X , Z )
°
(X , Z )0 (X , Z )

¢°1 (X , Z )0 and ee = M X ,Z Y is the residual from the unrestricted
least-squares regression of Y on X and Z . The first equality follows by the Frisch-Waugh-Lovell theorem.
This shows that bA? are the generalized eigenvectors of ee 0ee with respect to eY 0 eY corresponding to the m°r
largest eigenvalues. In MATLAB, for example, these can be computed using the command.

Another representation is to write M Z = I n °Z
°

Z
0
Z

¢°1
Z

0 so that

bA? = argmax
A

det
°

A
0
Y

0
M X ,Z Y A

¢

det
°

A
0
Y

0
M Z Y A

¢ = argmin
A

det
°

A
0
Y

0
M Z Y A

¢

det
°

A
0
Y

0
M X ,Z Y A

¢

We summarize our findings.

Theorem 11.7 The MLE for the reduced rank model (11.19) under e i ª N(0,ß) is given as follows. bGmle =
{v 1, ..., v r } , the generalized eigenvectors of eX 0 eY

≥
eY 0 eY

¥°1
Y

0 eX with respect to eX 0 eX corresponding to the r

largest eigenvalues. bAmle, bC mle and bßmle are obtained by the least-squares regression

y i = bAmle bG 0
mlex i + bC 0

mlez i +be i

bßmle =
1
n

nX

i=1
be i be 0

i .
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bA? equals the generalized eigenvectors of ee 0ee with respect to eY 0 eY corresponding to the m ° r smallest
eigenvalues.

11.12 Principal Component Analysis

Recall in Section 4.22 we described the Duflo, Dupas and Kremer (2011) dataset which contains a
sample of Kenyan first grade students and their test scores. Following the authors we had estimated re-
gressions attempting to explain the variable totalscore, which was each student’s composite test score.
However, if you examine the data file you will find a large number of other pieces of information, includ-
ing each student’s score on the separate sections of the test, with the labels wordscore (word recognition),
sentscore (sentence recognition), letterscore (letter recognition), spellscore (spelling), additions_score (ad-
dition), substractions_score (subtraction), multiplications_score (multiplication). The “total” score sums
the scores from the individual sections. Perhaps there is more information in the individual scores. How
can we learn about this from the data?

Principal component analysis (PCA) addresses this issue by building models consisting of a com-
mon component and an idiosyncratic component. Let x i be a k £1 vector (for example the seven test
sub-scores described above) of observations for individual i . The elements of x i should be standardized
to have mean zero and unit variance. A single factor model takes the form

x i = h fi +ui (11.22)

where x i , h and ui are k £1 and fi is scalar. The random variable fi is known as the common factor and
the random vector ui is the individual component. The vector h is called the factor loadings. The scale
of h and fi are not separately identified, so a normalization is required. A typical choice is to normalize
h to have unit length, h

0
h = 1. The sign of h and fi are also not separately identified, so another normal-

ization is needed. One choice is to set the sign so that
Pn

i=1 fi > 0. Let æ2
f = E

£
f 2

i

§
be a free parameter.

Economists typically refer to (11.22) as a factor model. Other disciplines reserve that label for similar
but distinct models.

The way to think about (11.22) in the student test score example is that fi is a student’s scholastic
“aptitude” and the vector h describes how scholastic aptitude affects the seven sub-sections of the test.
We would expect the elements of h to all be positive, indicating that scholastic aptitude is related to
improved performance in all seven test areas.

Equation (11.22) decomposes the vector of observables x i into a the components fi and ui . The
model is typically completed by the assumption that the elements of fi and ui are mutually uncorrelated,
and the elements of ui have common variances so that E

£
ui u

0
i

§
= I kæ

2
u .

Under the assumptions described above the covariance matrix of x i takes the form

ßx = E
£

x i x
0
i

§

= hh
0æ2

f + I kæ
2
u .

In fact this summarizes the implications of the assumptions. An alternative way of viewing the model
(11.22) is that it is equivalent to restricting the covariance matrix ßx to take this form.

Notice that since h
0
h = 1

ßx h = hh
0∏æ2

f + I k∏æ
2
u = hæ2

f +hæ2
u = h

≥
æ2

f +æ
2
u

¥
.

This means that h is an eigenvector ofßx with associated eigenvalue æ2
f +æ

2
u . Let h j be any other eigen-

vector of ßx . Since h
0
h j = 0,

ßx h j = hh
0
h jæ

2
f + I k h jæ

2
u = h jæ

2
u
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so its associated eigenvalue is æ2
u . Thus ßx has eigenvalues æ2

f +æ
2
u and æ2

u , the latter with multiplicity

k °1. So h is the eigenvector associated with the largest eigenvalue (if æ2
f is strictly positive). The pro-

portional contribution of this factor to the total variance is ∏1/
PM

m=1∏m where ∏m are the eigenvalues of
ßx .

This suggests that the factor loading can be estimated by the leading eigenvector of the sample co-
variance matrix bßx = n°1 Pn

i=1 x i x
0
i . Let b∏1 ∏ b∏2 ∏ · · ·∏ b∏k be the eigenvalues of bßx and bh1, bh2, ..., bhk the

associated eigenvectors. The estimator of h is bh1.
A multiple factor model takes the form

x i =
rX

m=1
hm fmi +ui (11.23)

= H f i +ui

where hm are k £ 1 factor loadings and fmi is scalar. The second line sets H = [h1, ...,hr ] and f i =£
f1i , ..., fr i

§0. The loadings are normalized so that they are mutually orthonormal. The elements of fmi

and ui are assumed to be mutually uncorrelated, and have variances æ2
m and æ2

u , respectively. Assume
that the factors are ordered so that æ2

1 >æ2
2 > ·· · >æ2

r > 0.
The covariance matrix takes the form

ßx =
rX

m=1
hmh

0
mæ

2
m + I kæ

2
u

= Hß f H
0+ I kæ

2
u

where ß f = diag
°
æ2

1, ...,æ2
r
¢
. We find that for any of the loadings h j

ßx h j = h j

≥
æ2

j +æ
2
u

¥

and is an eigenvector of ßx . We see that the first r eigenvalues are strictly ranked and have associated
eigenvectors h1,...,hr .

This suggests that the factor loadings can be estimated by taking the eigenvectors bhm associated with
the largest r eigenvalues of bßx . The estimated proportional contribution of the mth factor is b∏m/

Pr
j=1

b∏ j

where b∏m are the eigenvalues of bßx .
In practice the number of factors is unknown. There are a number of rules which have been sug-

gested for selection of r . Essentially, the key is to examine the eigenvalues of bßx and determine if there
is a clear cut-off between the “large” and “small” eigenvalues.

Table 11.1: Eigenvalue Decomposition of Sample Covariance Matrix

Eigenvalue Proportion
1 4.02 0.57
2 1.04 0.15
3 0.57 0.08
4 0.52 0.08
5 0.37 0.05
6 0.29 0.04
7 0.19 0.03
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Table 11.2: Factor Loadings

First Factor Second Factor
words 0.41 °0.32
sentences 0.32 °0.49
letters 0.40 °0.13
spelling 0.43 °0.28
addition 0.38 0.41
substraction 0.35 0.52
multiplication 0.33 0.36

To illustrate, we use the Duflo, Dupas and Kremer (2011) dataset. In Table 11.1 we display the seven
eigenvalues of the sample covariance matrix for the seven test scores described above. The first eigen-
value is 4.0, and is associated with 57% of the variance. The second eigenvalue is 1.0, and is associated
with 15% of the variance. The remaining eigenvalues are smaller and of similar magnitude to one an-
other. This is consistent with a two-factor specification. In Table 11.2 we display the factor loadings
associated with these two eigenvalues. The coefficients in the first loading are all positive and similar in
magnitude. This is consistent with a general “scholastic aptitude” factor which affects all test subjects.
The coefficients in the second loading have the interesting pattern that the first four (literacy measures)
are all negative and the last three (math measures) are all positive with similar magnitudes. This is con-
sistent with a “mathematics ability” factor which positively affects all mathematics subjects relative to
literacy subjects. The presence of a mathematics factor does not mean that all students have a spread
between these subjects. Instead, it means that some students do better at the mathematics subjects,
some do better at the literacy subjects, and that the mathematics and literacy sub-tests are highly corre-
lated. These results are intuitive and credible.

In Stata, principal components analysis can be implemented using the command. The com-
mand automatically standardizes the variables so this does not need to be done by the researcher.

11.13 PCA with Additional Regressors

Consider the model
x i = H f i +B

0
z i +ui

where (as in the previous section) x i and ui are k £1, f i is r £1, and H is k £ r . In addition there is an
`£1 regressor z i and coefficient matrix B .

The coefficients H , B and factors f i can be estimated by a combination of PCA and least squares.
The key is the following two observations:

1. Given B , the coefficient H and factors f i can be estimated by PCA applied to x i °B
0
z i as described

in the previous section.

2. Given the factors f i , the coefficients H , B can be estimated by multivariate least squares of x i on
f i and z i .

To estimate the parameters all that is needed is to iterate between these two steps. Start with a pre-
liminary estimator of B obtained by multivariate least squares of x i on z i . Then apply the above two
steps and iterate under convergence.
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11.14 Factor-Augmented Regression

In Section 11.12 we discussed estimation of single-factor (11.22) and multiple-factor (11.23) principal
components models. The factor loadings can be used to estimate the underlying factors, and these can
be used for regression analysis.

First, let us consider the problem of estimation of the factors fi in a single-factor model. Recall that
the observables follow the model x i = h fi +ui . Suppose we know the factor loading h. Then an estimator
of fi is

efi =
h
0
x i

h
0
h

= fi + vi

where

vi =
h
0
ui

h
0
h

.

In the previous section we used the normalization h
0
h = 1. For our current treatment it will be conve-

nient to instead use the normalization æ2
f = 1.

Notice that vi is mean zero and uncorrelated with fi . Thus efi is unbiased for fi . It also has variance
(conditional on fi ) æ2

u/h
0
h. We then develop an asymptotic framework under which efi is consistent for

fi . This is the “large k” framework where there are a large number of covariates included in the vector
x i . If k !1 such that h

0
h !1 then var

£ efi | fi
§
= æ2

u/h
0
h ! 0. The condition h

0
h !1 means that the

typical regressor in x i is related to the factor fi , so that as the number of regressors grows the information
about fi grows as well. We deduce that as k !1

efi °!p fi .

This convergence is pointwise in i .
Now suppose that h is not observed but we have the estimator bh from the previous section. Our

estimator of fi is

bfi =
bh0

x i

bh0bh
=

bh0
h

bh0bh
fi + bvi

where

bvi =
bh0

ui

bh0bh
.

As n ! 1, bßx °!
p
ßx so by the continuous mapping theorem bh °!

p
h. Hence for each i , bfi °!p

efi as

n ! 1. From our previous discussion efi °!p fi as k ! 1 so it stands to reason that bfi °!p fi as both

n and k diverge. This is a bit trickier to establish so we won’t go into the technical details. Still, the
idea is that if n is large then the factor loadings will be well estimated, and if k is large (with informative
regressors) then the factors will be precisely estimated as well.

The above discussion extends naturally to the case of the multiple-factor model (11.23).
Now consider a regression problem. Suppose we have the observations

°
yi , x i

¢
where the dimension

of x i is large and the elements are highly correlated. Rather than considering the regression of yi on x i

consider the factor-augmented regression model

yi = f
0
iØ+ei

x i = H f i +ui

E
£

f i ei
§
= 0

E
£

f i u
0
i

§
= 0

E [ui ei ] = 0
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This model specifies that the influence of x i on yi is through the common factors f i . (There could
be additional conventional regressors as well; we omit these from our discussion for simplicity.) The idea
is that the variation in the regressors is mostly captured by the variation in the factors, so the influence
of the regressors can be mostly captured through these factors. This can be viewed as a dimension-
reduction technique, as we have reduced the k-dimensional x i to the r -dimensional f i .

In most cases it is difficult to interpret the factors f i and hence the coefficient Ø. In some cases,
though, we can interpret the factors. For example, in the context of the empirical example discussed in
the previous section, we could interpret the first two factors as a general “scholastic aptitude” and “math
ability”.

The model is typically estimated in multiple steps. First, the factor loadings H are estimated from the
covariance matrix of x i . Second, the factors f i are estimated as described above. Third, yi is regressed
on the estimated factors to obtain the estimator of Ø. The latter takes the form

bØ=
√

nX

i=1

bf i
bf 0

i

!°1 √
nX

i=1

bf i yi

!

=
√

bH 0 1
n

nX

i=1
x i x

0
i
bH

!°1 √
bH 0 1

n

nX

i=1
x i yi

!

where bH are the r eigenvectors of bßx associated with the largest r eigenvalues. As n !1, bH °!
p

H so

bØ°!
p

°
H

0
E
£

x i x
0
i

§
H

¢°1 °
H

0
E
£

x i yi
§¢

. (11.24)

If we use the normalization ß f = I r , then

E
£

x i x
0
i

§
= H H

0+ I kæ
2
u

and
E
£

x i yi
§
= E

£°
H f i +ui

¢°
f
0
iØ+ei

¢§
= HØ.

So the right-hand-side of (11.24) equals
°

H
0 °

H H
0+ I kæ

2
u
¢

H
¢°1 °

H
0
HØ

¢
=

°
H

0
H + I kæ

2
u
¢°1

Ø.

In the single factor case this is
1

h
0
h +æ2

u
Ø.

As k !1 we suggested that it is reasonable to assume that h
0
h !1. In this case the limit of the above

expression is Ø. Thus the factor-augmented least squares estimator is consistent in the “large n and k”
framework.

In the multi-factor case the needed assumption for bØ°!
p
Ø is

∏min
°

H
0
H

¢
!1.

In words, the smallest eigenvalue of the factor loading covariance matrix diverges as k !1.
For asymptotic normality we need a stronger rate condition. In the single-factor case the needed

condition is that n°1/2
h
0
h !1 as n,k !1. In the multi-factor case it is n°1/2∏min

°
H

0
H

¢
!1. These

are reasonable conditions as h
0
h and H

0
H should grow proportionally to k if all regressors are similarly

related to the factors, and if k2/n ! 1. The latter is a technical condition, but can be interpreted as
meaning that k is large relative to

p
n.

In Stata, the factor estimates bf i as described above can be calculated by first running principal com-
ponents analysis ( ) and then using the command. This creates the estimated factors which
can then be used in a regression command.
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Exercises

Exercise 11.1 Show (11.10) when the errors are conditionally homoskedastic (11.8).

Exercise 11.2 Show (11.11) when the regressors are common across equations x j i = x i .

Exercise 11.3 Show (11.12) when the regressors are common across equations x j i = x i and the errors
are conditionally homoskedastic (11.8).

Exercise 11.4 Prove Theorem 11.1.

Exercise 11.5 Show (11.13) when the regressors are common across equations x j i = x i .

Exercise 11.6 Show (11.14) when the regressors are common across equations x j i = x i and the errors
are conditionally homoskedastic (11.8).

Exercise 11.7 Prove Theorem 11.2.

Exercise 11.8 Prove Theorem 11.3.

Exercise 11.9 Show that (11.16) follows from the steps described.

Exercise 11.10 Show that (11.17) follows from the steps described.

Exercise 11.11 Prove Theorem 11.4.

Exercise 11.12 Prove Theorem 11.5.
Hint: First, show that it is sufficient to show that

E

h
X

0
i X i

i≥
E

h
X

0
iß

°1
X i

i¥°1
E

h
X

0
i X i

i
∑ E

h
X

0
ißX i

i
.

Second, rewrite this equation using the transformations U i = ß1/2
X i and V i = ß1/2

X i , and then apply
the matrix Cauchy-Schwarz inequality (B.33).

Exercise 11.13 Prove Theorem 11.6.

Exercise 11.14 Take the model

yi =º0
iØ+ei

ºi = E [x i | z i ] =°0z i

E [ei | z i ] = 0

where yi , i s scalar, x i is a k vector and z i is an ` vector. Ø and ºi are k £1 and ° is `£k. The sample is
(yi , x i , z i : i = 1, ...,n) with ºi unobserved.

Consider the estimator bØ for Ø by OLS of yi on bºi = b°0z i where b° is the OLS coefficient from the
multivariate regression of x i on z i

(a) Show that bØ is consistent for Ø.

(b) Find the asymptotic distribution
p

n
°bØ°Ø

¢
as n !1 assuming that Ø= 0.
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(c) Why is the assumption Ø= 0 an important simplifying condition in part (b)?

(d) Using the result in (c), construct an appropriate asymptotic test for the hypothesis H0 :Ø= 0.

Exercise 11.15 The observations are i.i.d., (y1i , y2i , x i : i = 1, ...,n). The dependent variables y1i and y2i

are real-valued. The regressor x i is a k-vector. The model is the two-equation system

y1i = x
0
iØ1 +e1i

E [x i e1i ] = 0

y2i = x 0
iØ2 +e2i

E [x i e2i ] = 0.

(a) What are the appropriate estimators bØ1 and bØ2 for Ø1 and Ø2?

(b) Find the joint asymptotic distribution of bØ1 and bØ2.

(c) Describe a test for H0 :Ø1 =Ø2.



Chapter 12

Instrumental Variables

12.1 Introduction

The concepts of endogeneity and instrumental variable are fundamental to econometrics, and mark
a substantial departure from other branches of statistics. The ideas of endogeneity arise naturally in eco-
nomics from models of simultaneous equations, most notably the classic supply/demand model of price
determination.

The identification problem in simultaneous equations dates back to Philip Wright (1915) and Work-
ing (1927). The method of instrumental variables first appears in an Appendix of a 1928 book by Philip
Wright, though the authorship is sometimes credited to his son Sewell Wright. The label “instrumental
variables” was introduced by Reiersøl (1945). An excellent review of the history of instrumental variables
and this controvery is Stock and Trebbi (2003).

12.2 Overview

We say that there is endogeneity in the linear model

yi = x
0
iØ+ei (12.1)

if Ø is the parameter of interest and
E [x i ei ] 6= 0. (12.2)

This is a core problem in econometrics and largely differentiates econometrics from many branches of
statistics. To distinguish (12.1) from the regression and projection models, we will call (12.1) a structural
equation and Ø a structural parameter. When (12.2) holds, it is typical to say that x i is endogenous for
Ø.

Endogeneity cannot happen if the coefficient is defined by linear projection. Indeed, we can define
the linear projection coefficient Ø§ = E

£
x i x

0
i

§°1
E
£

x i yi
§

and linear projection equation

yi = x
0
iØ

§+e§i
E
£

x i e§i
§
= 0.

However, under endogeneity (12.2) the projection coefficientØ§ does not equal the structural parameter.

347
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Indeed,

Ø§ =
°
E
£

x i x
0
i

§¢°1
E
£

x i yi
§

=
°
E
£

x i x
0
i

§¢°1
E
£

x i
°
x
0
iØ+ei

¢§

=Ø+
°
E
£

x i x
0
i

§¢°1
E [x i ei ]

6=Ø

the final relation since E [x i ei ] 6= 0.
Thus endogeneity requires that the coefficient be defined differently than projection. We describe

such definitions as structural. We will present three examples in the following section.
Endogeneity implies that the least-squares estimator is inconsistent for the structural parameter.

Indeed, under i.i.d. sampling, least-squares is consistent for the projection coefficient, and thus is in-
consistent for Ø.

bØ°!
p

°
E
£

x i x
0
i

§¢°1
E
£

x i yi
§
=Ø§ 6=Ø.

The inconsistency of least-squares is typically referred to as endogeneity bias or estimation bias due to
endogeneity. (This is an imperfect label as the actual issue is inconsistency, not bias.)

As the structural parameter Ø is the parameter of interest, endogeneity requires the development of
alternative estimation methods. We discuss those in later sections.

12.3 Examples

The concept of endogeneity may be easiest to understand by example. We discuss three distinct
examples. In each case it is important to see how the structural parameter Ø is defined independently
from the linear projection model.

Example: Measurement error in the regressor. Suppose that (yi , z i ) are joint random variables,
E
£

yi | z i
§
= z

0
iØ is linear, Ø is the structural parameter, and z i is not observed. Instead we observe x i =

z i +ui where ui is a k £1 measurement error, independent of ei and z i . This is an example of a latent
variable model, where “latent” refers to a structural variable which is unobserved.

The model x i = z i +ui with z i and ui independent and E [ui ] = 0 is known as classical measurement
error. This means that x i is a noisy but unbiased measure of z i .

By substitution we can express yi as a function of the observed variable x i .

yi = z
0
iØ+ei

= (x i °ui )0Ø+ei

= x
0
iØ+ vi

where vi = ei °u
0
iØ. This means that (yi , x i ) satisfy the linear equation

yi = x
0
iØ+ vi

with an error vi . But this error is not a projection error. Indeed,

E [x i vi ] = E
£
(z i +ui )

°
ei °u

0
iØ

¢§
=°E

£
ui u

0
i

§
Ø 6= 0

if Ø 6= 0 and E
£
ui u

0
i

§
6= 0. As we learned in the previous section, if E [x i vi ] 6= 0 then least-squares estima-

tion will be inconsistent.
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We can calculate the form of the projection coefficient (which is consistently estimated by least-
squares). For simplicity suppose that k = 1. We find

Ø§ =Ø+ E [xi vi ]

E
£
x2

i

§ =Ø
√

1°
E
£
u2

i

§

E
£
x2

i

§
!

.

Since E
£
u2

i

§
/E

£
x2

i

§
< 1 the projection coefficient shrinks the structural parameter Ø towards zero. This is

called measurement error bias or attenuation bias.

Example: Supply and Demand. The variables qi and pi (quantity and price) are determined jointly
by the demand equation

qi =°Ø1pi +e1i

and the supply equation
qi =Ø2pi +e2i .

Assume that e i =
µ

e1i

e2i

∂
is i.i.d., E [e i ] = 0 and E

£
e i e

0
i

§
= I 2 (the latter for simplicity). The question is: if

we regress qi on pi , what happens?
It is helpful to solve for qi and pi in terms of the errors. In matrix notation,

∑
1 Ø1

1 °Ø2

∏µ
qi

pi

∂
=

µ
e1i

e2i

∂

so

µ
qi

pi

∂
=

∑
1 Ø1

1 °Ø2

∏°1 µ
e1i

e2i

∂

=
∑
Ø2 Ø1

1 °1

∏µ
e1i

e2i

∂µ
1

Ø1 +Ø2

∂

=
µ °

Ø2e1i +Ø1e2i
¢

/(Ø1 +Ø2)
(e1i °e2i )/(Ø1 +Ø2)

∂
.

The projection of qi on pi yields

qi =Ø§pi +e§i
E
£
pi e§i

§
= 0

where

Ø§ =
E
£
pi qi

§

E
£
p2

i

§ = Ø2 °Ø1

2
.

Thus the projection coefficient Ø§ equals neither the demand slope Ø1 nor the supply slope Ø2, but
equals an average of the two. (The fact that it is a simple average is an artifact of the simple covariance
structure.)

Hence the OLS estimate satisfies bØ°!
p

Ø§, and the limit does not equal either Ø1 or Ø2. The fact that

the limit is neither the supply nor demand slope is called simultaneous equations bias. This occurs
generally when yi and xi are jointly determined, as in a market equilibrium.

Generally, when both the dependent variable and a regressor are simultaneously determined, then
the variables should be treated as endogenous.
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Example: Choice Variables as Regressors. Take the classic wage equation

log
°
wage

¢
=Øeducation+e

with Ø the average causal effect of education on wages. If wages are affected by unobserved ability, and
individuals with high ability self-select into higher education, then e contains unobserved ability, so ed-
ucation and e will be positively correlated. Hence education is endogenous. The positive correlation
means that the linear projection coefficient Ø§ will be upward biased relative to the structural coeffi-
cient Ø. Thus least-squares (which is estimating the projection coefficient) will tend to over-estimate the
causal effect of education on wages.

This type of endogeneity occurs generally when y and x are both choices made by an economic
agent, even if they are made at different points in time.

Generally, when both the dependent variable and a regressor are choice variables made by the same
agent, the variables should be treated as endogenous.

12.4 Instruments

We have defined endogeneity as the context where the regressor is correlated with the equation error.
In most applications we only treat a subset of the regressors as endogenous; most of the regressors will
be treated as exogenous, meaning that they are assumed uncorrelated with the equation error. To be
specific, we make the partition

x i =
µ

x1i

x2i

∂
k1

k2
(12.3)

and similarly

Ø=
µ
Ø1
Ø2

∂
k1

k2

so that the structural equation is

yi = x
0
iØ+ei (12.4)

= x
0
1iØ1 +x

0
2iØ2 +ei .

The regressors are assumed to satisfy

E [x1i ei ] = 0

E [x2i ei ] 6= 0.

We call x1i exogenous and x2i endogenous for the structural parameter Ø. As the dependent variable
yi is also endogenous, we sometimes differentiate x2i by calling x2i the endogenous right-hand-side
variables.

In matrix notation we can write (12.4) as

y = XØ+e

= X 1Ø1 +X 2Ø2 +e.

The endogenous regressors x2i are the critical variables discussed in the examples of the previous
section – simultaneous variables, choice variables, mis-measured regressors – that are potentially corre-
lated with the equation error ei . In most applications the number k2 of variables treated as endogenous
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is small (1 or 2). The exogenous variables x1i are the remaining regressors (including the equation inter-
cept) and can be low or high dimensional.

To consistently estimateØwe require additional information. One type of information which is com-
monly used in economic applications are what we call instruments.

Definition 12.1 The `£ 1 random vector z i is an instrumental variable for
(12.4) if

E [z i ei ] = 0 (12.5)

E
£

z i z
0
i

§
> 0 (12.6)

rank
°
E
£

z i x
0
i

§¢
= k. (12.7)

There are three components to the definition as given. The first (12.5) is that the instruments are
uncorrelated with the regression error. The second (12.6) is a normalization which excludes linearly
redundant instruments. The third (12.7) is often called the relevance condition and is essential for the
identification of the model, as we discuss later. A necessary condition for (12.7) is that `∏ k.

Condition (12.5) – that the instruments are uncorrelated with the equation error, is often described
as that they are exogenous in the sense that they are determined outside the model for yi .

Notice that the regressors x1i satisfy condition (12.5) and thus should be included as instrumental
variables. It is thus a subset of the variables z i . Notationally we make the partition

z i =
µ

z1i

z2i

∂
=

µ
x1i

z2i

∂
k1

`2
. (12.8)

Here, x1i = z1i are the included exogenous variables, and z2i are the excluded exogenous variables.
That is, z2i are variables which could be included in the equation for yi (in the sense that they are uncor-
related with ei ) yet can be excluded, as they would have true zero coefficients in the equation.

Many authors simply label x1i as the “exogenous variables”, x2i as the “endogenous variables”, and
z2i as the “instrumental variables”.

We say that the model is just-identified if ` = k (and `2 = k2) and over-identified if ` > k (and `2 >
k2).

What variables can be used as instrumental variables? From the definition E [z i ei ] = 0 we see that the
instrument must be uncorrelated with the equation error, meaning that it is excluded from the structural
equation as mentioned above. From the rank condition (12.7) it is also important that the instrumen-
tal variable be correlated with the endogenous variables x2i after controlling for the other exogenous
variables x1i . These two requirements are typically interpreted as requiring that the instruments be de-
termined outside the system for (yi , x2i ), causally determine x2i , but do not causally determine yi except
through x2i .

Let’s take the three examples given above.
Measurement error in the regressor. When x i is a mis-measured version of z i , a common choice for

an instrument z2i is an alternative measurement of z i . For this z2i to satisfy the property of an instru-
mental variable the measurement error in z2i must be independent of that in x i .

Supply and Demand. An appropriate instrument for price pi in a demand equation is a variable z2i

which influences supply but not demand. Such a variable affects the equilibrium values of pi and qi but
does not directly affect price except through quantity. Variables which affect supply but not demand are
typically related to production costs.
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An appropriate instrument for price in a supply equation is a variable which influences demand but
not supply. Such a variable affects the equilibrium values of price and quantity but only affects price
through quantity.

Choice Variable as Regressor. An ideal instrument affects the choice of the regressor (education)
but does not directly influence the dependent variable (wages) except through the indirect effect on the
regressor. We will discuss an example in the next section.

12.5 Example: College Proximity

In a influential paper, David Card (1995) suggested if a potential student lives close to a college, this
reduces the cost of attendence and thereby raises the likelihood that the student will attend college.
However, college proximity does not directly affect a student’s skills or abilities, so should not have a
direct effect on his or her market wage. These considerations suggest that college proximity can be used
as an instrument for education in a wage regression. We use the simplest model reported in Card’s paper
to illustrate the concepts of instrumental variables throughout the chapter.

Card used data from the National Longitudinal Survey of Young Men (NLSYM) for 1976. A baseline
least-squares wage regression for his data set is reported in the first column of Table 12.1. The dependent
variable is the log of weekly earnings. The regressors are education (years of schooling), experience (years
of work experience, calculated as age (years) less education+6), experience2/100, black, south (an indica-
tor for residence in the southern region of the U.S.), and urban (an indicator for residence in a standard
metropolitan statistical area). We drop observations for which wage is missing. The remaining sample
has 3,010 observations. His data is the file on the textbook website.

The point estimate obtained by least-squares suggests an 8% increase in earnings for each year of
education.

Table 12.1: Instrumental Variable Wage Regressions

OLS IV(a) IV(b) 2SLS(a) 2SLS(b) LIML
education 0.074 0.132 0.133 0.161 0.160 0.164

(0.004) (0.049) (0.051) (0.040) (0.041) (0.042)
experience 0.084 0.107 0.056 0.119 0.047 0.120

(0.007) (0.021) (0.026) (0.018) (0.025) (0.019)
experience2/100 °0.224 °0.228 °0.080 °0.231 °0.032 °0.231

(0.032) (0.035) (0.133) (0.037) (0.127) (0.037)
black °0.190 °0.131 °0.103 °0.102 °0.064 °0.099

(0.017) (0.051) (0.075) (0.044) (0.061) (0.045)
south °0.125 °0.105 °0.098 °0.095 °0.086 °0.094

(0.015) (0.023) (0.0284) (0.022) (0.026) (0.022)
urban 0.161 0.131 0.108 0.116 0.083 0.115

(0.015) (0.030) (0.049) (0.026) (0.041) (0.027)
Sargan 0.82 0.52 0.82
p-value 0.37 0.47 0.37

Notes:

1. IV(a) uses college as an instrument for education.

2. IV(b) uses college, age, and age2/100 as instruments for education, experience, and experience2/100.
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3. 2SLS(a) uses public and private as instruments for education.

4. 2SLS(b) uses public, private, age, and age2 as instruments for education, experience, and experi-
ence2/100.

5. LIML uses public and private as instruments for education.

As discussed in the previous sections, it is reasonable to view years of education as a choice made by
an individual, and thus is likely endogenous for the structural return to education. This means that least-
squares is an estimate of a linear projection, but is inconsistent for coefficient of a structural equation
representing the causal impact of years of education on expected wages. Labor economics predicts that
ability, education, and wages will be positively correlated. This suggests that the population projection
coefficient estimated by least-squares will be higher than the structural parameter (and hence upwards
biased). However, the sign of the bias is uncertain since there are multiple regressors and there are other
potential sources of endogeneity.

To instrument for the endogeneity of education, Card suggested that a reasonable instrument is a
dummy variable indicating if the individual grew up near a college. We will consider three measures:

college Grew up in same county as a 4-year college
public Grew up in same county as a 4-year public college
private Grew up in same county as a 4-year private college.

12.6 Reduced Form

The reduced form is the relationship between the regressors x i and the instruments z i . A linear
reduced form model for x i is

x i =°0z i +ui . (12.9)

This is a multivariate regression as introduced in Chapter 11. The `£k coefficient matrix° can be defined
by linear projection. Thus

°= E
£

z i z
0
i

§°1
E
£

z i x
0
i

§
(12.10)

so that
E
£

z i u
0
i

§
= 0.

In matrix notation, we can write (12.9) as
X = Z°+U

where U is n £k. Notice that the projection coefficient (12.10) is well defined and unique under (12.6).
Since z i and x i have the common variables x1i , we can focus on the reduced form for the the en-

dogenous regressors x2i . Recalling the partitions (12.3) and (12.8) we can partition ° conformably as

°=
k1 k2∑
°11 °12

°21 °22

∏
`1

`2

=
∑

I k1 °12

0 °22

∏
(12.11)

and similarly partition ui . Then (12.9) can be rewritten as two equation systems

x1i = z1i (12.12)

x2i =°012z1i +°022z2i +u2i . (12.13)
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The first equation (12.12) is a tautology. The second equation (12.13) is the primary reduced form equa-
tion of interest. It is a multivariate linear regression for x2i as a function of the included and excluded
exogeneous variables z1i and z2i .

We can also construct a reduced form equation for yi . Substituting (12.9) into (12.4), we find

yi =
°
°0z i +ui

¢0
Ø+ei

= z
0
i∏+ vi (12.14)

where
∏=°Ø (12.15)

and
vi = u

0
iØ+ei .

Observe that
E [z i vi ] = E

£
z i u

0
i

§
Ø+E [z i ei ] = 0.

Thus (12.14) is a projection equation. It is the reduced form for yi , as it expresses yi as a function of
exogeneous variables only. Since it is a projection equation we can write the reduced form coefficient as

∏= E
£

z i z
0
i

§°1
E
£

z i yi
§

which is well defined under (12.6).
Alternatively, we can substitute (12.13) into (12.4) and use x1i = z1i to obtain

yi = x
0
1iØ1 +

°
°012z1i +°022z2i +u2i

¢0
Ø2 +ei

= z
0
1i∏1 + z

0
2i∏2 + vi (12.16)

where

∏1 =Ø1 +°12Ø2 (12.17)

∏2 =°22Ø2. (12.18)

which is an alternative (and equivalent) expression of (12.15) given (12.11).
(12.9) and (12.14) together (or (12.13) and (12.16) together) are the reduced form equations for the

system

yi = z
0
i∏+ vi

x i =°0z i +ui .

The relationships (12.15) and (12.17)-(12.18) are critically important for understanding the identi-
fication of the structural parameters Ø1 and Ø2, as we discuss below. These equations show the tight
relationship between the parameters of the structural equations (Ø1 and Ø2) and those of the reduced
form equations (∏1, ∏2, °12 and °22).

12.7 Reduced Form Estimation

The reduced form equations are projections, so the coefficient matrices may be estimated by least-
squares (see Chapter 11). The least-squares estimator of (12.9) is

b°=
√

nX

i=1
z i z

0
i

!°1 √
nX

i=1
z i x

0
i

!

. (12.19)
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The estimates of equation (12.9) can be written as

x i = b°0z i + bui . (12.20)

In matrix notation, these can be written as

b°=
°

Z
0
Z

¢°1 °
Z

0
X

¢

and
X = Z b°+ bU .

Since X and Z have a common sub-matrix, we have the partition

b°=
∑

I k1
b°12

0 b°22

∏
.

The reduced form estimates of equation (12.13) can be written as

x2i = b°012z1i + b°022z2i + bu2i

or in matrix notation as
X 2 = Z 1b°12 +Z 2b°22 + bU 2.

We can write the submatrix estimators as

∑ b°12
b°22

∏
=

√
nX

i=1
z i z

0
i

!°1 √
nX

i=1
z i x

0
2i

!

=
°

Z
0
Z

¢°1 °
Z

0
X 2

¢
.

The reduced form estimator of equation (12.14) is

b∏=
√

nX

i=1
z i z

0
i

!°1 √
nX

i=1
z i yi

!

yi = z
0
i
b∏+ bvi

= z
0
1i

b∏1 + z
0
2i

b∏2 + bvi

or in matrix notation

b∏=
°

Z
0
Z

¢°1 °
Z

0
y
¢

y = Z b∏+ bv

= Z 1 b∏1 +Z 2 b∏2 + bv .

12.8 Identification

A parameter is identified if it is a unique function of the probability distribution of the observables.
One way to show that a parameter is identified is to write it as an explicit function of population mo-
ments. For example, the reduced form coefficient matrices ° and ∏ are identified since they can be
written as explicit functions of the moments of the observables (yi , x i , z i ). That is,

°= E
£

z i z
0
i

§°1
E
£

z i x
0
i

§
(12.21)

∏= E
£

z i z
0
i

§°1
E
£

z i yi
§

. (12.22)
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These are uniquely determined by the probability distribution of (yi , x i , z i ) if Definition 12.1 holds, since
this includes the requirement that E

£
z i z

0
i

§
is invertible.

We are interested in the structural parameter Ø. It relates to (∏,°) through (12.15), or

∏=°Ø. (12.23)

It is identified if it uniquely determined by this relation. This is a set of ` equations with k unknowns
with `∏ k. From standard linear algebra we know that there is a unique solution if and only if ° has full
rank k.

rank(°) = k. (12.24)

Under (12.24), Ø can be uniquely solved from the linear system∏=°Ø. On the other hand if rank(°) < k
then ∏= °Ø has fewer mutually independent linear equations than coefficients so there is not a unique
solution.

From the definitions (12.21)-(12.22) the identification equation (12.23) is the same as

E
£

z i yi
§
= E

£
z i x

0
i

§
Ø

which is again a set of ` equations with k unknowns. This has a unique solution if (and only if)

rank
°
E
£

z i x
0
i

§¢
= k (12.25)

which was listed in (12.7) as a conditions of Definition 12.1. (Indeed, this is why it was listed as part
of the definition.) We can also see that (12.24) and (12.25) are equivalent ways of expressing the same
requirement. If this condition fails then Ø will not be identified. The condition (12.24)-(12.25) is called
the relevance condition.

It is useful to have explicit expressions for the solutionØ. The easiest case is when `= k. Then (12.24)
implies° is invertible, so the structural parameter equalsØ=°°1∏. It is a unique solution because ° and
∏ are unique and ° is invertible.

When `> k we can solve for Ø by applying least-squares to the system of equations ∏= °Ø . This is
` equations with k unknowns and no error. The least-squares solution is Ø=

°
°0°

¢°1
°0∏. Under (12.24)

the matrix °0° is invertible so the solution is unique.
Ø is identified if rank(°) = k, which is true if and only if rank(°22) = k2 (by the upper-diagonal struc-

ture of °). Thus the key to identification of the model rests on the `2£k2 matrix °22 in (12.13). To see this,
recall the reduced form relationships (12.17)-(12.18). We can see that Ø2 is identified from (12.18) alone,
and the necessary and sufficient condition is rank(°22) = k2. If this is satisfied then the solution can be
written as Ø2 =

°
°022°22

¢°1
°022∏2 . Then Ø1 is identified from this and (12.17), with the explicit solution

Ø1 =∏1 °°12
°
°022°22

¢°1
°022∏2. In the just-identified case (`2 = k2) these equations simplify to take the

form Ø2 =°°1
22∏2 and Ø1 =∏1 °°12°

°1
22∏2.

12.9 Instrumental Variables Estimator

In this section we consider the special case where the model is just-identified, so that `= k.
The assumption that z i is an instrumental variable implies that

E [z i ei ] = 0.

Making the substitution ei = yi °x
0
iØ we find

E
£

z i
°
yi °x

0
iØ

¢§
= 0.
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Expanding,
E
£

z i yi
§
°E

£
z i x

0
i

§
Ø= 0.

This is a system of `= k equations and k unknowns. Solving for Ø we find

Ø=
°
E
£

z i x
0
i

§¢°1
E
£

z i yi
§

.

This solution assumes that the matrix E
£

z i x
0
i

§
is invertible, which holds under (12.7) or equivalently

(12.24).
The instrumental variables (IV) estimator Ø replaces the population moments by their sample ver-

sions. We find

bØiv =
√

1
n

nX

i=1
z i x

0
i

!°1 √
1
n

nX

i=1
z i yi

!

=
√

nX

i=1
z i x

0
i

!°1 √
nX

i=1
z i yi

!

=
°

Z
0
X

¢°1 °
Z

0
y
¢

. (12.26)

More generally, it is common to refer to any estimator of the form

bØiv =
°
W

0
X

¢°1 °
W

0
y
¢

given an n £k matrix W as an IV estimator for Ø using the instrument W .
Alternatively, recall that when ` = k the structural parameter can be written as a function of the

reduced form parameters as Ø= °°1∏. Replacing ° and ∏ by their least-squares estimators we can con-
struct what is called the Indirect Least Squares (ILS) estimator:

bØils = b°°1 b∏

=
≥°

Z
0
Z

¢°1 °
Z

0
X

¢¥°1 ≥°
Z

0
Z

¢°1 °
Z

0
y
¢¥

=
°

Z
0
X

¢°1 °
Z

0
Z

¢°
Z

0
Z

¢°1 °
Z

0
y
¢

=
°

Z
0
X

¢°1 °
Z

0
y
¢

.

We see that this equals the IV estimator (12.26). Thus the ILS and IV estimators are identical.
Given the IV estimator we define the residual vector

be = y °X bØiv

which satisfies
Z

0be = Z
0
y °Z

0
X

°
Z

0
X

¢°1 °
Z

0
y
¢
= 0. (12.27)

Since Z includes an intercept, this means that the residuals sum to zero, and are uncorrelated with the
included and excluded instruments.

To illustrate, we estimate the reduced form equations corresponding to the college proximity exam-
ple of Table 12.1, now treating education as endogenous and using college as an instrumental variable.
The reduced form equations for log(wage) and education are reported in the first and second columns of
Table 12.2.

Of particular interest is the equation for the endogenous regressor (education), and the coefficients
for the excluded instruments – in this case college. The estimated coefficient equals 0.347 with a small
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Table 12.2: Reduced Form Regressions

log(wage) education education experience experience2/100 education
experience 0.053 °0.410 °0.413

(0.007) (0.032) (0.032)
experience2/100 °0.219 0.073 0.093

(0.033) (0.170) (0.171)
black °0.264 °1.006 °1.468 1.468 0.282 °1.006

(0.018) (0.088) (0.115) (0.115) (0.026) (0.088)
south °0.143 °0.291 °0.460 0.460 0.112 °0.267

(0.017) (0.078) (0.103) (0.103) (0.022) (0.079)
urban 0.185 0.404 0.835 °0.835 °0.176 0.400

(0.017) (0.085) (0.112) (0.112) (0.025) (0.085)
college 0.045 0.337 0.347 °0.347 °0.073

(0.016) (0.081) (0.109) (0.109) (0.023)
public 0.430

(0.086)
private 0.123

(0.101)
age 1.061 °0.061 °0.555

(0.296) (0.296) (0.065)
age2/100 °1.876 1.876 1.313

(0.516) (0.516) (0.116)
F 17.51 8.22 1581 1112 13.87

standard error. This implies that growing up near a 4-year college increases average educational attain-
ment by 0.3 years. This seems to be a reasonable magnitude.

Since the structural equation is just-identified with one right-hand-side endogenous variable, we can
calculate the ILS/IV estimate for the education coefficient as the ratio of the coefficient estimates for the
instrument college in the two equations, e.g. 0.045/0.347 = 0.13, implying a 13% return to each year of
education. This is substantially greater than the 7% least-squares estimate from the first column of Table
12.1.

The IV estimates of the full equation are reported in the second column of Table 12.1.
Card (1995) also points out that if education is endogenous, then so is our measure of experience,

since it is calculated by subtracting education from age. He suggests that we can use the variables age
and age2 as instruments for experience and experience2, as they are clearly exogeneous and yet highly
correlated with experience and experience2. Notice that this approach treats experience2 as a variable
separate from experience. Indeed, this is the correct approach.

Following this recommendation we now have three endogenous regressors and three instruments.
We present the three reduced form equations for the three endogenous regressors in the third through
fifth columns of Table 12.2. It is interesting to compare the equations for education and experience. The
two sets of coefficients are simply the sign change of the other, with the exception of the coefficient on
age. Indeed this must be the case, because the three variables are linearly related. Does this cause a
problem for 2SLS? Fortunately, no. The fact that the coefficient on age is not simply a sign change means
that the equations are not linearly singular. Hence Assumption (12.24) is not violated.

The IV estimates using the three instruments college, age and age2 for the endogenous regressors
education, experience and experience2 is presented in the third column of Table 12.1. The estimate of
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the returns to schooling is not affected by this change in the instrument set, but the estimated return to
experience profile flattens (the quadratic effect diminishes).

The IV estimator may be calculated in Stata using the command.

12.10 Demeaned Representation

Does the well-known demeaned representation for linear regression (3.19) carry over to the IV esti-
mator? To see this, write the linear projection equation in the format

yi = x
0
iØ+Æ+ei

where Æ is the intercept and x i does not contain a constant. Similarly, partition the instrument as (1, z i )
where z i does not contain an intercept. We can write the IV estimates as

yi = x
0
i
bØiv + bÆiv + bei .

The orthogonality (12.27) implies the two-equation system

nX

i=1

°
yi °x

0
i
bØiv ° bÆiv

¢
= 0

nX

i=1
z i

°
yi °x

0
i
bØiv ° bÆiv

¢
= 0.

The first equation implies
bÆiv = y °x

0bØiv.

Substituting into the second equation

nX

i=1
z i

≥°
yi ° y

¢
°

°
x i °x

¢0 bØiv

¥

and solving for bØiv we find

bØiv =
√

nX

i=1
z i

°
x i °x

¢0
!°1 √

nX

i=1
z i

°
yi ° y

¢
!

=
√

nX

i=1

°
z i ° z

¢°
x i °x

¢0
!°1 √

nX

i=1

°
z i ° z

¢°
yi ° y

¢
!

. (12.28)

Thus the demeaning equations for least-squares carry over to the IV estimator. The coefficient esti-
mator bØiv is a function only of the demeaned data.

12.11 Wald Estimator

In many cases, including the Card proximity example, the excluded instrument is a binary (dummy)
variable. Let’s focus on that case, and suppose that the model has just one endogenous regressor and no
other regressors beyond the intercept. Thus the model can be written as

yi = xiØ+Æ+ei

E [ei | zi ] = 0
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with zi binary.
Notice that if we take expectations of the structural equation given zi = 1 and zi = 0, respectively, we

obtain

E
£

yi | zi = 1
§
= E [xi | zi = 1]Ø+Æ

E
£

yi | zi = 0
§
= E [xi | zi = 0]Ø+Æ.

Subtracting and dividing, we obtain an expression for the slope coefficient Ø

Ø=
E
£

yi | zi = 1
§
°E

£
yi | zi = 0

§

E [xi | zi = 1]°E [xi | zi = 0]
. (12.29)

The natural moment estimator for Ø replaces the expectations by the averages within the “grouped
data” where zi = 1 and zi = 0, respectively. That is, define the group means

y1 =
Pn

i=1 zi yi
Pn

i=1 zi
, y0 =

Pn
i=1 (1° zi ) yi
Pn

i=1 (1° zi )

x1 =
Pn

i=1 zi xi
Pn

i=1 zi
, x0 =

Pn
i=1 (1° zi ) xi
Pn

i=1 (1° zi )

and the moment estimator
bØ=

y1 ° y0

x1 °x0
. (12.30)

This is known as the “Wald estimator” as it was proposed by Wald (1940).
These expressions are rather insightful. (12.29) shows that the structural slope coefficient is the ex-

pected change in yi due to changing the instrument divided by the expected change in xi due to chang-
ing the instrument. Informally, it is the change in y (due to z) over the change in x (due to z). Equation
(12.30) shows that the slope coefficient can be estimated by a simple ratio in means.

The expression (12.30) may appear like a distinct estimator from the IV estimator bØiv, but it turns out
that they are the same. That is, bØ= bØiv. To see this, use (12.28) to find

bØiv =
Pn

i=1 zi
°
yi ° y

¢

Pn
i=1 zi

°
xi °x

¢

=
y1 ° y

x1 °x
.

Then notice

y1 ° y = y1 °
√

1
n

nX

i=1
zi y1 +

1
n

nX

i=1
(1° zi ) y0

!

= 1
n

nX

i=1
(1° zi )

°
y1 ° y0

¢

and similarly

x1 °x = 1
n

nX

i=1
(1° zi )

°
x1 °x0

¢

and hence

bØiv =
1
n

Pn
i=1 (1° zi )

°
y1 ° y0

¢

1
n

Pn
i=1 (1° zi )

°
x1 °x0

¢ = bØ

as defined in (12.30). Thus the Wald estimator equals the IV estimator.
We can illustrate using the Card proximity example. If we estimate a simple IV model with no covari-

ates we obtain the estimate bØiv = 0.19. If we estimate the group-mean log wages and education levels
based on the instrument college, we find
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near college not near college
log(wage) 6.311 6.156
education 13.527 12.698

Based on these estimates the Wald estimator of the slope coefficient is (6.311°6.156)/(13.527°12.698) =
0.19, the same as the IV estimator.

12.12 Two-Stage Least Squares

The IV estimator described in the previous section presumed ` = k. Now we allow the general case
of `∏ k. Examining the reduced-form equation (12.14) we see

yi = z
0
i°Ø+ vi

E [z i vi ] = 0.

Defining w i =°0z i we can write this as

yi = w
0
iØ+ vi

E [w i vi ] = 0.

Suppose that °were known. Then we would estimate Ø by least-squares of yi on w i =°0z i

bØ=
°
W

0
W

¢°1 °
W

0
y
¢

=
°
°0Z 0

Z°
¢°1 °

°0Z 0
y
¢

.

While this is infeasible, we can estimate ° from the reduced form regression. Replacing ° with its esti-
mator b°=

°
Z

0
Z

¢°1 °
Z

0
X

¢
we obtain

bØ2sls =
≥
b°0Z 0

Z b°
¥°1 ≥

b°0Z 0
y

¥

=
≥

X
0
Z

°
Z

0
Z

¢°1
Z

0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1
X

0
Z

°
Z

0
Z

¢°1
Z

0
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=
≥

X
0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1
X

0
Z

°
Z

0
Z

¢°1
Z

0
y . (12.31)

This is called the two-stage-least squares (2SLS) estimator. It was originally proposed by Theil (1953)
and Basmann (1957), and is a standard estimator for linear equations with instruments.

If the model is just-identified, so that k = `, then 2SLS simplifies to the IV estimator of the previous
section. Since the matrices X

0
Z and Z

0
X are square, we can factor

≥
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0
Z

°
Z

0
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=
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=
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¢°
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¢°1 .

(Once again, this only works when k = `.) Then
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≥
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as claimed. This shows that the 2SLS estimator as defined in (12.31) is a generalization of the IV estimator
defined in (12.26).

There are several alternative representations of the 2SLS estimator which we now describe. First,
defining the projection matrix

P Z = Z
°

Z
0
Z

¢°1
Z

0 (12.32)

we can write the 2SLS estimator more compactly as

bØ2sls =
°

X
0
P Z X

¢°1
X

0
P Z y . (12.33)

This is useful for representation and derivations, but is not useful for computation as the n£n matrix P Z

is too large to compute when n is large.
Second, define the fitted values for X from the reduced form

bX = P Z X = Z b°.

Then the 2SLS estimator can be written as

bØ2sls =
≥
bX 0

X

¥°1 bX 0
y .

This is an IV estimator as defined in the previous section using bX as the instrument.
Third, since P Z is idempotent, we can also write the 2SLS estimator as

bØ2sls =
°

X
0
P Z P Z X

¢°1
X

0
P Z y

=
≥
bX 0 bX

¥°1 bX 0
y

which is the least-squares estimator obtained by regressing y on the fitted values bX .
This is the source of the “two-stage” name is since it can be computed as follows.

• First regress X on Z , vis., b°=
°

Z
0
Z

¢°1 °
Z

0
X

¢
and bX = Z b°= P Z X .

• Second, regress y on bX , vis., bØ2sls =
≥
bX 0 bX

¥°1 bX 0
y .

It is useful to scrutinize the projection bX . Recall, X = [X 1, X 2] and Z = [X 1, Z 2]. Notice bX 1 = P Z X 1 =
X 1 since X 1 lies in the span of Z . Then

bX =
£bX 1, bX 2

§
=

£
X 1, bX 2

§
.

Thus in the second stage, we regress y on X 1 and bX 2. So only the endogenous variables X 2 are replaced
by their fitted values:

bX 2 = X 1b°12 +Z 2b°22.

This least squares estimator can be written as

y = X 1bØ1 + bX 2bØ2 + b∫.

A fourth representation of 2SLS can be obtained from the previous representation for bØ2. Set P 1 =
X 1

°
X

0
1X 1

¢°1
X

0
1. Applying the FWL theorem we obtain

bØ2 =
≥
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2 (I n °P 1) bX 2
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2 (I n °P 1) y

¥
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0
2P Z (I n °P 1) y
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°

X
0
2 (P Z °P 1) X 2
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0
2 (P Z °P 1) y

¢
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since P Z P 1 = P 1.
A fifth representation can be obtained by a further projection. The projection matrix P Z can be

replaced by the projection onto the pair [X 1, eZ 2] where eZ 2 = (I n °P 1) Z 2 is Z 2 projected orthogonal to

X 1. Since X 1 and eZ 2 are orthogonal, P Z = P 1 +P 2 where P 2 = eZ 2

≥
eZ 0

2
eZ 2

¥°1 eZ 0
2. Thus P Z °P 1 = P 2 and

bØ2 =
°

X
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2P 2X 2

¢°1 °
X

0
2P 2 y
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µ
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2
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¥°1 eZ 0
2X 2
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2
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2 y

∂
. (12.34)

Given the 2SLS estimator we define the residual vector

be = y °X bØ2sls.

When the model is overidentified, the instruments and residuals are not orthogonal. That is

Z
0be 6= 0.

It does, however, satisfy

bX 0be = b°0Z 0be

= X
0
Z

°
Z
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Z
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0
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°
Z

0
Z

¢°1
Z

0
X bØ2sls

= 0.

Returning to Card’s college proximity example, suppose that we treat experience as exogeneous, but
that instead of using the single instrument college (grew up near a 4-year college) we use the two instru-
ments (public, private) (grew up near a public/private 4-year college, respectively). In this case we have
one endogenous variable (education) and two instruments (public, private). The estimated reduced form
equation for education is presented in the sixth column of Table 12.2. In this specification, the coefficient
on public – growing up near a public 4-year college – is larger than that found for the variable college in
the previous specification (column 2). Furthermore, the coefficient on private – growing up near a pri-
vate 4-year college – is much smaller. This indicates that the key impact of proximity on education is via
public colleges rather than private colleges.

The 2SLS estimates obtained using these two instruments are presented in the fourth column of
Table 12.1. The coefficient on education increases to 0.161, indicating a 16% return to a year of education.
This is roughly twice as large as the estimate obtained by least-squares in the first column.

Additionally, if we follow Card and treat experience as endogenous and use age as an instrument,
we now have three endogenous variables (education, experience, experience2/100) and four instruments
(public, private, age, age2). We present the 2SLS estimates using this specification in the fifth column of
Table 12.1. The estimate of the return to education remains about 16%, but again the return to experience
flattens.

You might wonder if we could use all three instruments – college, public, and private. The answer is
no. This is because college=public+private so the three variables are colinear. Since the instruments are
linearly related, the three together would violate the full-rank condition (12.6).

The 2SLS estimator may be calculated in Stata using the command.
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12.13 Limited Information Maximum Likelihood

An alternative method to estimate the parameters of the structural equation is by maximum likeli-
hood. Anderson and Rubin (1949) derived the maximum likelihood estimator for the joint distribution
of (yi , x2i ). The estimator is known as limited information maximum likelihood, or LIML.

This estimator is called “limited information” because it is based on the structural equation for yi

combined with the reduced form equation for x2i . If maximum likelihood is derived based on a struc-
tural equation for x2i as well, then this leads to what is known as full information maximum likelihood
(FIML). The advantage of the LIML approach relative to FIML is that the former does not require a struc-
tural model for x2i , and thus allows the researcher to focus on the structural equation of interest – that
for yi . We do not describe the FIML estimator here as it is not commonly used in applied econometric
practice.

While the LIML estimator is less widely used among economists than 2SLS, it has received a resur-
gence of attention from econometric theorists.

To derive the LIML estimator, start by writing the joint reduced form equations (12.16) and (12.13) as

y i =
µ

yi

x2i

∂

=
∑
∏0

1 ∏0
2

°012 °022

∏µ
z1i

z2i

∂
+

µ
vi

u2i

∂

=¶0
1z1i +¶0

2z2i +ai (12.35)

where ¶1 =
£
∏1 °12

§
, ¶2 =

£
∏2 °22

§
and a

0
i =

£
vi u

0
2i

§
. The LIML estimator is derived under

the assumption that ai is multivariate normal.
Define ∞0 =

£
1 °Ø0

2

§
. From (12.18) we find

¶2∞=∏2 °°22Ø2 = 0.

Thus the `2£(k2 +1) coefficient matrix¶2 in (12.35) has deficient rank. Indeed, its rank must be k2, since
°22 has full rank.

This means that the model (12.35) is precisely the reduced rank regression model of Section 11.11.
Theorem 11.7 presents the maximum likelihood estimators for the reduced rank parameters. In particu-
lar, the MLE for ∞ is

b∞= argmin
∞

∞0
Y

0
M 1Y ∞

∞0Y 0
MZ Y ∞

(12.36)

where Y = [y , X 2] is the n £ (1+k2) matrix of the stacked endogenous variables y
0
i =

°
yi x

0
2i

¢
, M 1 =

I n°Z 1
°

Z
0
1Z 1

¢°1
Z

0
1 and M Z = I n°Z

°
Z

0
Z

¢°1
Z

0. The minimization (12.36) is sometimes called the “least
variance ratio” problem.

The minimization problem (12.36) is invariant to the scale of ∞ (that is, b∞c is equivalently the argmin
for any c) so a normalization is required. For estimation of the structural parameters a convenient nor-
malization is∞0 =

£
1 °Ø0

2

§
. Another is to set∞0

Y
0
MZ Y ∞= 1. Using the second normalization and the

theory of the minimum of quadratic forms (Section A.15) b∞ is the generalized eigenvector of Y
0
M 1Y with

respect to Y
0
MZ Y associated with the smalled generalized eigenvalue. (See Section A.14 for the defini-

tion of generalized eigenvalues and eigenvectors.) Computationally this is straightforward. For example,
in MATLAB, the generalized eigenvalues and eigenvectors of the matrix A with respect to B is found by
the command A B . Once this b∞ is found, any other normalization can be obtained by rescaling.
For example, to obtain the MLE for Ø2 make the partition b∞0 =

£
b∞1 b∞0

2

§
and set bØ2 =°b∞2/b∞1.



CHAPTER 12. INSTRUMENTAL VARIABLES 365

To obtain the MLE for Ø1, recall the structural equation yi = x
0
1iØ1+x

0
2iØ2+ei . Replacing Ø2 with the

MLE bØ2 and then apply regression. Thus

bØ1 =
°

X
0
1X 1

¢°1
X

0
1
°

y °X 2bØ2
¢

. (12.37)

These solutions are the MLE (known as the LIML estimator) for the structural parameters Ø1 and Ø2.
Many previous econometrics textbooks do not present a derivation of the LIML estimator as the

original derivation by Anderson and Rubin (1949) is lengthy and not particularly insightful. In contrast,
the derivation given here based on reduced rank regression is relatively simple.

There is an alternative (and traditional) expression for the LIML estimator. Define the minimum
obtained in (12.36)

b∑= min
∞

∞0
Y

0
M 1Y ∞

∞0Y 0
MZ Y ∞

(12.38)

which is the smallest generalized eigenvalue of Y
0
M 1Y with respect to Y

0
MZ Y . The LIML estimator then

can be written as
bØliml =

°
X

0 (I n °b∑M Z ) X
¢°1 °

X
0 (I n °b∑M Z ) y

¢
. (12.39)

We defer the derivation of (12.39) until the end of this section. Expression (12.39) does not simplify
computation (since b∑ requires solving the same eigenvector problem that yields bØ2). However (12.39)
is important for the distribution theory and to reveal the algebraic connection between LIML, least-
squares, and 2SLS.

The estimator (12.39) with arbitrary ∑ is known as a k class estimator of Ø. While the LIML estimator
obtains by setting ∑= b∑, the least-squares estimator is obtained by setting ∑= 0 and 2SLS is obtained by
setting ∑= 1. It is worth observing that the LIML solution to (12.38) satisfies b∑∏ 1.

When the model is just-identified, the LIML estimator is identical to the IV and 2SLS estimators.
They are only different in the over-identified setting. (One corollary is that under just-identification the
IV estimator is MLE under normality.)

For inference, it is useful to observe that (12.39) shows that bØliml can be written as an IV estimator

bØliml =
≥
eX 0

X

¥°1 ≥
eX 0

y

¥

using the instrument

eX = (I n °b∑M Z ) X =
µ

X 1

X 2 °b∑bU 2

∂

where bU 2 = MZ X 2 are the (reduced-form) residuals from the multivariate regression of the endogenous
regressors x2i on the instruments z i . Expressing LIML using this IV formula is useful for variance esti-
mation.

Asymptotically the LIML estimator has the same distribution as 2SLS. However, they can have quite
different behaviors in finite samples. There is considerable evidence that the LIML estimator has supe-
rior finite sample bias relative to 2SLS when there are many instruments or the reduced form is weak.
(We review these cases in the following sections.) However, on the other hand LIML has wider finite
sample dispersion.

We now derive the expression (12.39). Use the normaliaation ∞0 =
£

1 °Ø0
2

§
to write (12.36) as

bØ2 = argmin
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The first-order-condition for minimization is 2/
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¢ X
0
2M Z

°
y °X 2bØ2

¢

= X
0
2M 1

°
y °X 2bØ2

¢
°b∑X

0
2M Z

°
y °X 2bØ2

¢

using definition (12.38). Rewriting,

X
0
2 (M 1 °b∑M Z ) X 2bØ2 = X

0
2 (M 1 °b∑M Z ) y . (12.40)

Equation (12.39) is the same as the two equation system

X
0
1X 1bØ1 +X

0
1X 2bØ2 = X

0
1 y

X
0
2X 1bØ1 +

°
X

0
2 (I n °b∑M Z ) X 2

¢ bØ2 = X
0
2 (I n °b∑M Z ) y .

The first equation is (12.37). Using (12.37), the second is

X
0
2X 1

°
X

0
1X 1

¢°1
X

0
1
°
Y °X 2bØ2

¢
+

°
X

0
2 (I n °b∑M Z ) X 2

¢ bØ2 = X
0
2 (I n °b∑M Z ) y

which is (12.40) when rearranged. We have thus shown that (12.39) is equivalent to (12.37) and (12.40)
and is thus a valid expression for the LIML estimator.

Returning to the Card college proximity example, we now present the LIML estimates of the equation
with the two instruments (public, private). They are reported in the final column of Table 12.1. They are
quite similar to the 2SLS estimates in this application.

The LIML estimator may be calculated in Stata using the command.

Theodore Anderson

Theodore (Ted) Anderson (1918-2016) was a American statistician and econo-
metrician, who made fundamental contributions to multivariate statistical the-
ory. Important contributions include the Anderson-Darling distribution test, the
Anderson-Rubin statistic, the method of reduced rank regression, and his most
famous econometrics contribution – the LIML estimator. He continued working
throughout his long life, even publishing theoretical work at the age of 97!

12.14 JIVE

The ideal instrument for estimation of Ø is w i =°0z i . We can write this ideal estimator as

bØideal =
√

nX

i=1
w i x

0
i

!°1 √
nX

i=1
w i yi

!

.

This estimator is not feasible since ° is unknown. The 2SLS estimator replaces ° with the multivariate
least-squares estimator b° and w i with bw i = b°0z i leading to the following representation for 2SLS

bØ2sls =
√

nX

i=1
bw i x

0
i

!°1 √
nX

i=1
bw i yi

!

.
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Since b° is estimated on the full sample including observation i it is a function of the reduced form
error ui which is correlated with the structural error ei . It follows that bw i and ei are correlated, which
means that bØ2sls is biased for Ø. This correlation and bias disappears asymptotically but it can be impor-
tant in applications.

A solution to this problem is to replace bw i with a predicted value which is uncorrelated with the error
ei . This can be obtained by a standard leave-one-out estimator for °. Specifically, let

b°(°i ) =
°

Z
0
Z ° z i z

0
i

¢°1 °
Z

0
X ° z i x

0
i

¢

be the least-squares leave-one-out estimator of the reduced form matrix °, and let ew i = b°0(°i )z i be the
reduced form predicted values. Using ew i as an instrument we obtain the estimator

bØjive1 =
√

nX

i=1
ew i x

0
i

!°1 √
nX

i=1
ew i yi

!

=
√

nX

i=1

b°0(°i )z i x
0
i

!°1 √
nX

i=1

b°0(°i )z i yi

!

.

This was called the jackknife instrumental variables (JIVE1) estimator by Angrist, Imbens, and Krueger
(1999). It first appeared in Phillips and Hale (1977).

Angrist, Imbens, and Krueger (1999) pointed out that a somewhat simpler adjustment also removes
the correlation and bias. Define the estimator and predicted value

°(°i ) =
°

Z
0
Z

¢°1 °
Z

0
X ° z i x

0
i

¢

w i =°
0
(°i )z i

which only adjusts the Z
0
X component. Their JIVE2 estimator is

bØjive2 =
√

nX

i=1
w i x

0
i

!°1 √
nX

i=1
w i yi

!

=
√

nX

i=1
°
0
(°i )z i x

0
i

!°1 √
nX

i=1
°
0
(°i )z i yi

!

.

Using the formula for leave-one-out estimators (Theorem 3.7), the JIVE1 and JIVE2 estimators use
two linear operations: the first to create the predicted values ew i or w i , and the second to calculate the
IV estimator. Thus the estimators do not require significantly more computation than 2SLS.

An asymptotic distribution theory for the JIVE1 and JIVE2 estimators was developed by Chao, Swan-
son, Hausman, Newey, and Woutersen (2012).

The JIVE1 and JIVE2 estimators may be calculated in Stata using the command. It is not a part
of the standard package but can be easily added.

12.15 Consistency of 2SLS

We now present a demonstration of the consistency of the 2SLS estimate for the structural parameter.
The following is a set of regularity conditions.



CHAPTER 12. INSTRUMENTAL VARIABLES 368

Assumption 12.1

1. The observations (yi , xi , zi ), i = 1, ...,n, are independent and identically
distributed.

2. E
£

y2§<1.

3. Ekxk2 <1.

4. Ekzk2 <1.

5. E
£

z z
0§ is positive definite.

6. E
£

z x
0§ has full rank k.

7. E [ze] = 0.

Assumptions 12.1.2-4 state that all variables have finite variances. Assumption 12.1.5 states that the
instrument vector has an invertible design matrix, which is identical to the core assumption about re-
gressors in the linear regression model. This excludes linearly redundant instruments. Assumptions
12.1.6 and 12.1.7 are the key identification conditions for instrumental variables. Assumption 12.1.6
states that the instruments and regressors have a full-rank cross-moment matrix. This is often called the
relevance condition. Assumption 12.1.7 states that the instrumental variables and structural error are
uncorrelated. Assumptions 12.1.5-7 are identical to Definition 12.1.

Theorem 12.1 Under Assumption 12.1, bØ2sls °!p Ø as n !1.

The proof of the theorem is provided below.
This theorem shows that the 2SLS estimator is consistent for the structural coefficientØunder similar

moment conditions as the least-squares estimator. The key differences are the instrumental variables
assumption E [ze] = 0 and the identification assumption rank

°
E
£

z x
0§¢= k.

The result includes the IV estimator (when `= k) as a special case.
The proof of this consistency result is similar to that for the least-squares estimator. Take the struc-

tural equation y = XØ+ e in matrix format and substitute it into the expression for the estimator. We
obtain

bØ2sls =
≥

X
0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1
X

0
Z

°
Z

0
Z

¢°1
Z

0 °
XØ+e

¢

=Ø+
≥

X
0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1
X

0
Z

°
Z

0
Z

¢°1
Z

0
e. (12.41)

This separates out the stochastic component. Re-writing and applying the WLLN and CMT

bØ2sls °Ø=
µµ

1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
n

Z
0
X

∂∂°1

£
µ

1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
n

Z
0
e

∂
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°!
p

°
Q x zQ

°1
z z

Q z x

¢°1
Q x zQ

°1
z z
E [z i ei ] = 0

where

Q x z = E
£

xi z
0
i

§

Q z z = E
£

zi z
0
i

§

Q z x = E
£

zi x
0
i

§
.

The WLLN holds under the i.i.d. Assumption 12.1.1 and the finite second moment Assumptions 12.1.2-4.
The continuous mapping theorem applies if the matrices Q z z and Q x zQ

°1
z z

Q z x are invertible, which hold
under the identification Assumptions 12.1.5 and 12.1.6. The final equality uses Assumption 12.1.7.

12.16 Asymptotic Distribution of 2SLS

We now show that the 2SLS estimator satisfies a central limit theorem. We first state a set of sufficient
regularity conditions.

Assumption 12.2 In addition to Assumption 12.1,

1. E
£

y4§<1.

2. Ekzk4 <1.

3. ≠= E
£

z z
0e2§ is positive definite.

Assumption 12.2 strengthens Assumption 12.1 by requiring that the dependent variable and instru-
ments have finite fourth moments. This is used to establish the central limit theorem.

Theorem 12.2 Under Assumption 12.2, as n !1.

p
n

°bØ2sls °Ø
¢
°!

d
N

°
0,V Ø

¢

where

V Ø =
°
Q x zQ

°1
z z

Q z x

¢°1 °
Q x zQ

°1
z z
≠Q

°1
z z

Q z x

¢°
Q x zQ

°1
z z

Q z x

¢°1
.

This shows that the 2SLS estimator converges at a
p

n rate to a normal random vector. It shows as
well the form of the covariance matrix. The latter takes a substantially more complicated form than the
least-squares estimator.

As in the case of least-squares estimation, the asymptotic variance simplifies under a conditional ho-
moskedasticity condition. For 2SLS the simplification occurs when E

£
e2

i | z i
§
= æ2. This holds when z i

and ei are independent. It may be reasonable in some contexts to conceive that the error ei is indepen-
dent of the excluded instruments z2i , since by assumption the impact of z2i on yi is only through x i , but
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there is no reason to expect ei to be independent of the included exogenous variables x1i . Hence het-
eroskedasticity should be equally expected in 2SLS and least-squares regression. Nevertheless, under the

homoskedasticity condition then we have the simplifications≠=Q z zæ
2 and V Ø =V

0
Ø

de f=
°
Q x zQ

°1
z z

Q z x

¢°1
æ2.

The derivation of the asymptotic distribution builds on the proof of consistency. Using equation
(12.41) we have

p
n

°bØ2sls °Ø
¢
=

µµ
1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
n

Z
0
X

∂∂°1

£
µ

1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
p

n
Z

0
e

∂
.

We apply the WLLN and CMT for the moment matrices involving X and Z the same as in the proof of
consistency. In addition, by the CLT for i.i.d. observations

1
p

n
Z

0
e = 1

p
n

nX

i=1
z i ei °!

d
N(0,≠)

because the vector z i ei is i.i.d. and mean zero under Assumptions 12.1.1 and 12.1.7, and has a finite
second moment as we verify below.

We obtain

p
n

°bØ2sls °Ø
¢
=

µµ
1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
n

Z
0
X

∂∂°1

£
µ

1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
p

n
Z

0
e

∂

°!
d

°
Q x zQ

°1
z z

Q z x

¢°1
Q x zQ

°1
z z

N(0,≠) = N
°
0,V Ø

¢

as stated.
For completeness, we demonstrate that z i ei has a finite second moment under Assumption 12.2. To

see this, note that by Minkowski’s inequality (B.34)

°
E
£
e4§¢1/4 =

≥
E

h°
y °x

0Ø
¢4

i¥1/4

∑
°
E
£

y4§¢1/4 +
∞∞Ø

∞∞°
Ekxk4¢1/4 <1

under Assumptions 12.2.1 and 12.2.2. Then by the Cauchy-Schwarz inequality (B.32)

Ekzek2 ∑
°
Ekzk4¢1/2 °

E
£
e4§¢1/2 <1

using Assumptions 12.2.3.

12.17 Determinants of 2SLS Variance

It is instructive to examine the asymptotic variance of the 2SLS estimator to understand the factors
which determine the precision (or lack thereof) of the estimator. As in the least-squares case, it is more
transparent to examine the variance under the assumption of homoskedasticity. In this case the asymp-
totic variance takes the form

V
0
Ø =

°
Q x zQ

°1
z z

Q z x

¢°1
æ2

=
≥
E
£

x i z
0
i

§°
E
£

z i z
0
i

§¢°1
E
£

z i x
0
i

§¥°1
E
£
e2

i

§
.
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As in the least-squares case, we can see that the variance is increasing in the variance of the error ei , and
decreasing in the variance of x i . What is different is that the variance is decreasing in the (matrix-valued)
correlation between x i and z i .

It is also useful to observe that the variance expression is not affected by the variance structure of
z i . Indeed, V

0
Ø

is invariant to rotations of z i (if you replace z i with C z i for invertible C the expression
does not change). This means that the variance expression is not affected by the scaling of z i , and is not
directly affected by correlation among the z i .

We can also use this expression to examine the impact of increasing the instrument set. Suppose
we partition z i = (z ai , zbi ) where dim(z ai ) ∏ k so we can construct the 2SLS estimator using z ai . Let bØa
and bØ denote the 2SLS estimators constructed using the instrument sets z ai and (z ai , zbi ), respectively.
Without loss of generality we can assume that z ai and zbi are uncorrelated (if not, replace zbi with the
projection error after projecting onto z ai ). In this case both E

£
z i z

0
i

§
and

°
E
£

z i z
0
i

§¢°1 are block diagonal,
so

avar
£bØ

§
=

≥
E
£

x i z
0
i

§°
E
£

z i z
0
i

§¢°1
E
£

z i x
0
i

§¥°1
æ2

=
≥
E
£

x i z
0
ai

§°
E
£

z ai z
0
ai

§¢°1
E
£

z ai x
0
i

§
+E

£
x i z

0
bi

§°
E
£

zbi z
0
bi

§¢°1
E
£

zbi x
0
i

§¥°1
æ2

∑
≥
E
£

x i z
0
ai

§°
E
£

z ai z
0
ai

§¢°1
E
£

z ai x
0
i

§¥°1
æ2

= avar
£bØa

§

with strict inequality if E
£

x i z
0
bi

§
6= 0. Thus the 2SLS estimator with the full instrument set has a smaller

asymptotic variance than the estimator with the smaller instrument set.
What we have shown is that the asymptotic variance of the 2SLS estimator is decreasing as the num-

ber of instruments increases. From the viewpoint of asymptotic efficiency, this means that it is better to
use more instruments (when they are available and are all known to be valid instruments) rather than
less.

Unfortunately, there is always a catch. In this case it turns out that the finite sample bias of the 2SLS
estimator (which cannot be calculated exactly, but can be approximated using asymptotic expansions)
is generically increasing linearily as the number of instruments increases. We will see some calculations
illustrating this phenomenon in Section 12.37. Thus the choice of instruments in practice induces a
trade-off between bias and variance.

12.18 Covariance Matrix Estimation

Estimation of the asymptotic variance matrix V Ø is done using similar techniques as for least-squares
estimation. The estimator is constructed by replacing the population moment matrices by sample coun-
terparts. Thus

bV Ø =
≥
bQ x z

bQ°1
z z

bQ z x

¥°1 ≥
bQ x z

bQ°1
z z

b≠bQ°1
z z

bQ z x

¥≥
bQ x z

bQ°1
z z

bQ z x

¥°1
(12.42)
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where

bQ z z =
1
n

nX

i=1
z i z

0
i =

1
n

Z
0
Z

bQ x z =
1
n

nX

i=1
x i z

0
i =

1
n

X
0
Z

b≠= 1
n

nX

i=1
z i z

0
i be

2
i

bei = yi °x
0
i
bØ2sls.

The homoskedastic variance matrix can be estimated by

bV 0
Ø =

≥
bQ x z

bQ°1
z z

bQ z x

¥°1
bæ2

bæ2 = 1
n

nX

i=1
be2

i .

Standard errors for the coefficients are obtained as the square roots of the diagonal elements of
n°1 bV Ø. Confidence intervals, t-tests, and Wald tests may all be constructed from the coefficient esti-
mates and covariance matrix estimate exactly as for least-squares regression.

In Stata, the command by default calculates the covariance matrix estimator using the
homoskedastic variance matrix. To obtain covariance matrix estimation and standard errors with the
robust estimator bV Ø, use the “ ” option.

Theorem 12.3 Under Assumption 12.2, as n !1,

bV 0
Ø °!

p
V

0
Ø

bV Ø °!
p

V Ø.

To prove Theorem 12.3 the key is to show b≠°!
p
≠ as the other convergence results were established

in the proof of consistency. We defer this to Exercise 12.6.
It is important that the covariance matrix be constructed using the correct residual formula bei =

yi ° x
0
i
bØ2sls. This is different than what would be obtained if the “two-stage” computation method is

used. To see this, let’s walk through the two-stage method. First, we estimate the reduced form

x i = b°0z i + bui

to obtain the predicted values bx i = b°0z i . Second, we regress yi on bx i to obtain the 2SLS estimator bØ2sls.
This latter regression takes the form

yi = bx 0
i
bØ2sls + bvi (12.43)

where bvi are least-squares residuals. The covariance matrix (and standard errors) reported by this re-
gression are constructed using the residual bvi . For example, the homoskedastic formula is

bV Ø =
µ

1
n

bX 0 bX
∂°1

bæ2
v =

≥
bQ x z

bQ°1
z z

bQ z x

¥°1
bæ2

v

bæ2
v = 1

n

nX

i=1
bv2

i
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which is proportional to the variance estimate bæ2
v rather than bæ2. This is important because the residual

bvi differs from bei . We can see this because the regression (12.43) uses the regressor bx i rather than x i .
Indeed, we can calculate that

bvi = yi °x
0
i
bØ2sls + (x i °bx i )0 bØ2sls

= bei + bu0
i
bØ2sls

6= bei .

This means that standard errors reported by the regression (12.43) will be incorrect.
This problem is avoided if the 2SLS estimator is constructed directly and the standard errors calcu-

lated with the correct formula rather than taking the “two-step” shortcut.

12.19 LIML Asymptotic Distribution

In this section we show that the LIML estimator is asymptotically equivalent to the 2SLS estimator.
We recommend, however, a different covariance matrix estimator based on the IV representation.

We start by deriving the asymptotic distribution. Recall that the LIML estimator has several repre-
sentations, including

bØliml =
°

X
0 (I n °b∑M Z ) X

¢°1 °
X

0 (I n °b∑M Z ) y
¢

where

b∑= min
∞

∞0
Y

0
M 1Y ∞

∞0Y 0
MZ Y ∞

.

For the distribution theory, it is useful to rewrite this as

bØliml =
°

X
0
P Z X ° bµX

0
M Z X

¢°1 °
X

0
P Z y ° bµX

0
M Z y

¢

where

bµ= b∑°1 = min
∞

∞0
Y

0
M 1Z 2

°
Z

0
2M 1Z 2

¢°1
Z

0
2M 1Y ∞

∞0Y 0
MZ Y ∞

.

This second equality holds since the span of Z = [Z 1, Z 2] equals the span of [Z 1, M 1Z 2]. This implies

P Z = Z
°

Z
0
Z

¢°1
Z

0

= Z 1
°

Z
0
1Z 1

¢°1
Z

0
1 +M 1Z 2

°
Z

0
2M 1Z 2

¢°1
Z

0
2M 1.

We now show that n bµ=Op (1). The reduced form (12.35) implies that

Y = Z 1¶1 +Z 2¶2 +a.

It will be important to note that
¶2 = [∏2,°22] =

£
°22Ø2,°22

§

using (12.18). It follows that ¶2∞ = 0 for ∞ = (1,°Ø0
2)0. Note u∞ = e. Then MZ Y ∞= MZ e and M 1Y ∞ =

M 1e. Hence

n bµ= min
∞

∞0
Y

0
M 1Z 2

°
Z

0
2M 1Z 2

¢°1
Z

0
2M 1Y ∞

∞0 1
n Y

0
MZ Y ∞

∑

≥
1p
n

e
0
M 1Z 2

¥° 1
n Z

0
2M 1Z 2

¢°1
≥

1p
n

Z
0
2M 1e

¥

1
n e 0MZ e

=Op (1).
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It follows that

p
n

°bØliml °Ø
¢
=

µ
1
n

X
0
P Z X ° bµ

1
n

X
0
M Z X

∂°1 µ
1
p

n
X

0
P Z e °

p
n bµ

1
n

X
0
M Z e

∂

=
µ

1
n

X
0
P Z X °op (1)

∂°1 µ
1
p

n
X

0
P Z e °op (1)

∂

=
p

n
°bØ2sls °Ø

¢
+op (1)

which means that LIML and 2SLS have the same asymptotic distribution. This holds under the same
assumptions as for 2SLS, and in particular does not require normality of the errors.

Consequently, one method to obtain an asymptotically valid covariance estimate for LIML is to use
the same formula as for 2SLS. However, this is not the best choice. Rather, consider the IV representation
for LIML

bØliml =
≥
eX 0

X

¥°1 ≥
eX 0

y

¥

where

eX =
µ

X 1

X 2 °b∑bU 2

∂

and bU 2 = MZ X 2. The asymptotic covariance matrix formula for an IV estimator is

bV Ø =
µ

1
n

eX 0
X

∂°1
b≠

µ
1
n

X
0 eX

∂°1

(12.44)

where

b≠= 1
n

nX

i=1
ex i ex i be2

i

bei = yi °x
0
i
bØliml.

This simplifies to the 2SLS formula when b∑ = 1 but otherwise differs. The estimator (12.44) is a better
choice than the 2SLS formula for covariance matrix estimation as it takes advantage of the LIML estima-
tor structure.

12.20 Functions of Parameters

Given the distribution theory in Theorems 12.2 and 12.3 it is straightforward to derive the asymptotic
distribution of smooth nonlinear functions of the coefficients.

Specifically, given a function r
°
Ø

¢
:Rk !£ΩRq we define the parameter

µ = r
°
Ø

¢
.

Given bØ2sls a natural estimator of µ is bµ2sls = r
°bØ2sls

¢
.

Consistency follows from Theorem 12.1 and the continuous mapping theorem.

Theorem 12.4 Under Assumptions 12.1 and 7.3, as n !1, bµ2sls °!p µ.
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If r
°
Ø

¢
is differentiable then an estimator of the asymptotic covariance matrix for bµ is

bV µ = bR 0 bV ØbR

bR = @

@Ø
r (bØ2sls)0.

We similarly define the homoskedastic variance estimator as

bV 0
µ = bR 0 bV 0

Ø
bR .

The asymptotic distribution theory follows from Theorems 12.2 and 12.3 and the delta method.

Theorem 12.5 Under Assumptions 12.2 and 7.3, as n !1,

p
n

°bµ2sls °µ
¢
°!

d
N(0,V µ)

where

V µ = R
0
V ØR

R = @

@Ø
r (Ø)0

and
bV µ °!p V µ.

When q = 1, a standard error for bµ2sls is s(bµ2sls) =
q

n°1 bV µ .
For example, let’s take the parameter estimates from the fifth column of Table 12.1, which are the

2SLS estimates with three endogenous regressors and four excluded instruments. Suppose we are in-
terested in the return to experience, which depends on the level of experience. The estimated return
at experience= 10 is 0.047°0.032§2§10/100 = 0.041 and its standard error is 0.003. This implies a 4%
increase in wages per year of experience and is precisely estimated. Or suppose we are interested in the
level of experience at which the function maximizes. The estimate is 50§ 0.047/0.032 = 73. This has
a standard error of 249. The large standard error implies that the estimate (73 years of experience) is
without precision and is thus uninformative.

12.21 Hypothesis Tests

As in the previous section, for a given function r
°
Ø

¢
:Rk !£ΩRq we define the parameter µ = r

°
Ø

¢

and consider tests of hypotheses of the form

H0 : µ = µ0

against
H1 : µ 6= µ0.

The Wald statistic for H0 is
W = n

°bµ°µ0
¢0 bV °1

bµ
°bµ°µ0

¢
.



CHAPTER 12. INSTRUMENTAL VARIABLES 376

From Theorem 12.5 we deduce that W is asymptotically chi-square distributed. Let Gq (u) denote the ¬2
q

distribution function.

Theorem 12.6 Under Assumptions 12.2 and 7.3 and H0 holds, then as n !1,

W °!
d

¬2
q .

For c satisfying Æ= 1°Gq (c),

P [W > c |H0] °!Æ

so the test “Reject H0 if W > c” has asymptotic size Æ.

In linear regression we often report the F version of the Wald statistic (by dividing by degrees of
freedom) and use the F distribution for inference, as this is justified in the normal sampling model. For
2SLS estimation, however, this is not done as there is no finite sample F justification for the F version of
the Wald statistic.

To illustrate, once again let’s take the parameter estimates from the fifth column of Table 12.1 and
again consider the return to experience which is determined by the coefficients on experience and ex-
perience2/100. Neither coefficient is statisticially signficant at the 5% level and it is unclear if the overall
effect is statistically significant. We can assess this by testing the joint hypothesis that both coefficients
are zero. The Wald statistic for this hypothesis is W = 244, which is highly significant with an asymptotic
p-value of 0.0000. Thus by examining the joint test in contrast to the individual tests is quite clear that
experience has a non-zero effect.

12.22 Finite Sample Theory

In Chapter 5 we reviewed the rich exact distribution available for the linear regression model under
the assumption of normal innovations. There was a similarly rich literature in econometrics which de-
veloped a distribution theory for IV, 2SLS and LIML estimators. An excellent review of the theory, mostly
developed in the 1970s and early 1980s, is reviewed by Peter Phillips (1983).

This theory was developed under the assumption that the structural error vector e and reduced form
error u2 are multivariate normally distributed. Even though the errors are normal, IV-type estimators are
are non-linear functions of these errors and are thus the estimators non-normally distributed. Formulae
for the exact distributions have been derived, but are unfortunately functions of model parameters and
hence are not directly useful for finite sample inference.

One important implication of this literature is that it is quite clear that even in this optimal context
of exact normal innovations, the finite sample distributions of the IV estimators are non-normal and the
finite sample distributions of test statistics are not chi-squared. The normal and chi-squared approxima-
tions hold asymptotically, but there is no reason to expect these approximations to be accurate in finite
samples.

A second important result is that under the assumption of normal errors, most of the estimators do
not have finite moments in any finite sample. A clean statement concerning the existence of moments
for the 2SLS estimator was obtained by Kinal (1980) for the case of joint normality. Let bØ2sls,2 be the 2SLS
estimators of the coefficients on the endogeneous regressors.
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Theorem 12.7 If (yi , x i , z i ) are jointly normal, then for any r , E
∞∞bØ2sls,2

∞∞r <1
if and only if r < `2 °k2 +1.

This result states that in the just-identified case the IV estimator does not have any finite order inte-
ger moments. In the over-identified case the number of finite moments corresponds to the number of
overidentifying restrictions (`2 °k2). Thus if there is one over-identifying restriction the 2SLS estimator
has a finite mean, and if there are two over-identifying restrictions then the 2SLS estimator has a finite
variance.

The LIML estimator has a more severe moment problem, as it has no finite integer moments (Mari-
ano, 1982) regardless of the number of over-identifying restrictions. Due to this lack of moments, Fuller
(1977) proposed the following modification of LIML. Instead of (12.39), Fuller’s estimator is

bØFuller =
°

X
0 (I n °K M Z ) X

¢°1 °
X

0 (I n °K M Z ) y
¢

K = b∑° C
n °k

for some C ∏ 1. Fuller showed that his estimator has all moments finite under suitable conditions.
Hausman, Newey, Woutersen, Chao and Swanson (2012) propose an estimator they call HFUL which

combines the ideas of JIVE and Fuller which has excellent finite sample properties.

12.23 Bootstrap for 2SLS

The standard bootstrap algorithm for IV, 2SLS and GMM generates bootstrap samples by sampling
the triplets (y§

i , x
§
i , z

§
i ) independently and with replacement from the original sample {(yi , x i , z i ) : i =

1, ...,n}. Sampling n such observations and stacking into observation matrices (y
§, X

§, Z
§), the bootstrap

2SLS estimator is
bØ§

2sls =
≥

X
§0

Z
§ °

Z
§0

Z
§¢°1

Z
§0

X
§
¥°1

X
§0

Z
§ °

Z
§0

Z
§¢°1

Z
§0

y
§.

This is repeated B times to create a sample of B bootstrap draws. Given these draws, bootstrap statistics
can be calculated. This includes the bootstrap estimate of variance, standard errors, and confidence
intervals, including percentile, BC percentile, BCa and percentile-t.

We now show that the bootstrap estimator has the same asymptotic distribution as the sample esti-
mator. For overidentified cases this demonstration requires a bit of extra care. This was first shown by
Hahn (1996).

The sample observations satisfy the model

yi = x
0
iØ+ei

E [z i ei ] = 0.

The true value of Ø in the population can be written as

Ø=
≥
E
£

x i z
0
i

§
E
£

z i z
0
i

§°1
E
£

z i x
0
i

§¥°1
E
£

x i z
0
i

§
E
£

z i z
0
i

§°1
E
£

z i yi
§

.

The true value in the bootstrap universe is obtained by replacing the population moments by the sample
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moments, which equals the 2SLS estimator
≥
E
§ £

x
§
i z

§0
i

§
E
§ £

z
§
i z

§0
i

§°1
E
§ £

z
§
i x

§0
i

§¥°1
E
§ £

x
§
i z

§0
i

§
E
§ £

z
§
i z

§0
i

§°1
E
§ £

z
§
i y§

i

§

=
µµ

1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
n

Z
0
X

∂∂°1 µ
1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1 ∑
1
n

Z
0
y

∏

= bØ2sls.

The bootstrap observations thus satisfy the equation

y§
i = x

§0
i

bØ2sls +e§i .

In matrix notation
y
§ = X

§0bØ2sls +e
§. (12.45)

Given a bootstrap triple (y§
i , x

§
i , z

§
i ) = (y j , x j , z j ) for some observation j , the true bootstrap error is

e§i = y j °x
0
j
bØ2sls = be j .

It follows that
E
§ £

z
§
i e§i

§
= n°1

Z
0be. (12.46)

This is generally not equal to zero in the over-identified case.
This an an important complication. In over-identified models the true observations satisfy the pop-

ulation condition E [z i ei ] = 0 but in the bootstrap sample E§
£

z
§
i e§i

§
6= 0. This means that to apply the

central limit theorem to the bootstrap estimator we will first have to recenter the moment condition.
That is, (12.46) and the bootstrap CLT imply

1
p

n

°
Z

§0
e
§ °Z

0be
¢
= 1

p
n

nX

i=1

°
z
§
i e§i °E§

£
z
§
i e§i

§¢
°!
d§

N(0,≠) (12.47)

where
≠= E

£
z i z

0
i e2

i

§
.

Using (12.45) we can normalize the bootstrap estimator as

p
n

≥
bØ§

2sls ° bØ2sls

¥
=
p

n
≥

X
§0

Z
§ °

Z
§0

Z
§¢°1

Z
§0

X
§
¥°1

X
§0

Z
§ °

Z
§0

Z
§¢°1

Z
§0

e
§

=
µµ

1
n

X
§0

Z
§
∂µ

1
n

Z
§0

Z
§
∂°1 µ

1
n

Z
§0

X
§
∂∂°1

£
µ

1
n

X
§0

Z
§
∂µ

1
n

Z
§0

Z
§
∂°1 1

p
n

°
Z

§0
e
§ °Z

0be
¢

(12.48)

+
µµ

1
n

X
§0

Z
§
∂µ

1
n

Z
§0

Z
§
∂°1 µ

1
n

Z
§0

X
§
∂∂°1

£
µ

1
n

X
§0

Z
§
∂µ

1
n

Z
§0

Z
§
∂°1 µ

1
p

n
Z

0be
∂

. (12.49)

Using the bootstrap WLLN,

1
n

X
§0

Z
§ = 1

n
X

0
Z +op (1)

1
n

Z
§0

Z
§ = 1

n
Z

0
Z +op (1).
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This implies (12.49) is equal to

p
n

≥
X

0
Z

°
Z

0
Z

¢°1 °
Z

0
X

¢¥°1
X

0
Z

°
Z

0
Z

¢°1
Z

0be +op (1) = 0+op (1).

The equality holds because the 2SLS first-order condition implies X
0
Z

°
Z

0
Z

¢°1
Z

0be = 0. Also, combined
with (12.47) we see that (12.48) converges in bootstrap distribution to

°
Q x zQ

°1
z z

Q z x

¢°1
Q x zQ

°1
z z

N(0,≠) = N
°
0,V Ø

¢

where V Ø is the 2SLS asymptotic variance from Theorem 12.2. This is the asymptotic distribution of
p

n
≥
bØ§

2sls ° bØ2sls

¥
.

By standard calculations we can also show that bootstrap t-ratios are asymptotically normal.

Theorem 12.8 Under Assumption 12.2, as n !1
p

n
≥
bØ§

2sls ° bØ2sls

¥
°!
d§

N
°
0,V Ø

¢

where V Ø is the 2SLS asymptotic variance from Theorem 12.2. Furthermore,

T § =
p

n
≥
bØ§

2sls ° bØ2sls

¥

s
≥
bØ§

2sls

¥ °!
d§

N(0,1) .

This shows that percentile-type and percentile-t confidence intervals are asymptotically valid.
One might expect that the asymptotic refinement arguments extend to the BCa and percentile-t

methods, but this does not appear to be the case. While
p

n
≥
bØ§

2sls ° bØ2sls

¥
and

p
n

°bØ2sls °Ø
¢

have the

same asymptotic distribution, they differ in finite samples by an Op
°
n°1/2¢ term. This means that they

have distinct Edgeworth expansions. Consequently, unadjusted bootstrap methods will not achieve an
asymptotic refinement.

An alternative suggested by Hall and Horowitz (1996) is to recenter the bootstrap 2SLS estimator so
that it satisfies the correct orthogonality condition. Define

bØ§§
2sls =

≥
X

§0
Z

§ °
Z

§0
Z

§¢°1
Z

§0
X

§
¥°1

X
§0

Z
§ °

Z
§0

Z
§¢°1 °

Z
§0

y
§ °Z

0be
¢

.

We can see that

p
n

≥
bØ§§

2sls ° bØ2sls

¥
=

µ
1
n

X
§0

Z
§
µ

1
n

Z
§0

Z
§
∂°1 1

n
Z

§0
X

§
∂°1

£
µ

1
n

X
§0

Z
§
∂µ

1
n

Z
§0

Z
§
∂°1

√
1
p

n

nX

i=1

°
z
§
i e§i °E§

£
z
§
i e§i

§¢
!

which directly converges to the N
°
0,V Ø

¢
distribution without special handling. Hall and Horowitz (1996)

show that percentile-t methods applied to bØ§§
2sls achieve an asymptotic refinement and are thus preferred

to the unadjusted bootstrap estimator.
This recentered estimator, however, is not the standard implementation of the bootstrap for 2SLS as

used in empirical practice.
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12.24 The Peril of Bootstrap 2SLS Standard Errors

It is tempting to use the bootstrap algorithm to estimate variance matrices and standard errors for the
2SLS estimator. In fact this is one of the most common use of bootstrap methods in current econometric
practice. Unfortunately this is an unjustified and ill-conceived idea and should not be done. In finite
samples the 2SLS estimator may not have a finite second moment, meaning that bootstrap variance
estimates are unstable and unreliable.

Theorem 12.7 shows that under jointly normality the 2SLS estimator will have a finite variance if
and only if the number of overidentifying restrictions is two or larger. Thus for just-identified IV, and
2SLS with one degree of overidentification, the finite sample variance is infinite. The bootstrap will be
attempting to estimate this value – infinity – and will yield nonsensical answers. When the observations
are not jointly normal there is no finite sample theory (so it is possible that the finite sample variance is
actually finite) but this is unknown and unverifiable.

In overidentified settings when the number of overidentifying restrictions is two or larger the boot-
strap can be applied for standard error estimation. However this is not the most common application of
IV methods in econometric practice and thus should be viewed as the exception rather than the norm.

To understand what is going on, consider the simplest case of a just-identified model with a single
endogeneous regressor and no included exogeneous regressors. In this case the estimator can be written
as a ratio of means

bØiv °Ø=
Pn

i=1 zi ei
Pn

i=1 zi xi
.

Under joint normality of (ei , xi ), this has a Cauchy-like distribution which does not possess any finite
integer moments. The trouble is that the denominator can be either positive or negative, and arbitrarily
close to zero. This means that the ratio can take arbitrarily large values.

To illustrate let us return to the basic Card IV wage regression from column 2 of Table 12.1 which
uses college as an instrument for education. We estimate this equation for the subsample of black men,
which has n = 703 observations, and focus on the coefficient for the return to education. The coefficient
estimate is reported in Table 12.3, along with asymptotic, jackknife, and two bootstrap standard errors
each calculated with 10,000 bootstrap replications.

Table 12.3: Instrumental Variable Return to Education for Black Men

Estimate 0.11
Asymptotic s.e. (0.11)
Jackknife s.e. (0.11)
Bootstrap s.e. (standard) (1.42)
Bootstrap s.e. (repeat) (4.79)

The bootstrap standard errors are an order of magnitude larger than the asymptotic standard errors,
and vary substantially across the bootstrap runs despite using 10,000 bootstrap replications. This indi-
cates moment failure and unreliability of the bootstrap standard errors.

This is a strong message that bootstrap standard errors should not be computed for IV estimators.
Instead, report percentile-type confidence intervals.

12.25 Clustered Dependence

In Section 4.22 we introduced clustered dependence. We can also use the methods of clustered de-
pendence for 2SLS estimation. Recall, the g th cluster has the observations y g = (y1g , ..., yng g )0, X g =
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(x1g , ..., xng g )0, and Z g = (z1g , ..., zng g )0. The structural equation for the g th cluster can be written as the
matrix system

y g = X gØ+eg .

Using this notation the centered 2SLS estimator can be written as

bØ2sls °Ø=
≥

X
0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1
X

0
Z

°
Z

0
Z

¢°1
Z

0
e

=
≥
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Z

°
Z

0
Z

¢°1
Z

0
X

¥°1
X

0
Z

°
Z

0
Z

¢°1

√
GX
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Z

0
g eg

!

.

The cluster-robust covariance matrix estimator for bØ2sls thus takes the form

bV Ø =
≥

X
0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1
X

0
Z

°
Z

0
Z

¢°1 bS
°

Z
0
Z

¢°1
Z

0
X

≥
X

0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1

with

bS =
GX

g=1
Z

0
g beg be 0

g Z g

and the clustered residuals
beg = y g °X g bØ2sls.

The difference between the heteroskedasticity-robust estimator and the cluster-robust estimator is
the covariance estimator bS.

12.26 Generated Regressors

The “two-stage” form of the 2SLS estimator is an example of what is called “estimation with generated
regressors”. We say a regressor is a generated if it is an estimate of an idealized regressor, or if it is a func-
tion of estimated parameters. Typically, a generated regressor bw i is an estimate of an unobserved ideal
regressor w i . As an estimate, bw i is a function of the sample, not just observation i . Hence it is not “i.i.d.”
as it is dependent across observations, which invalidates the conventional regression assumptions. Con-
sequently, the sampling distribution of regression estimates is affected. Unless this is incorporated into
our inference methods, covariance matrix estimates and standard errors will be incorrect.

The econometric theory of generated regressors was developed by Pagan (1984) for linear models,
and extended to non-linear models and more general two-step estimators by Pagan (1986). Indepen-
dently, similar results were obtained by Murphy and Topel (1985). Here we focus on the linear model:

yi = w
0
iØ+ vi (12.50)

w i = A
0
z i

E [z i vi ] = 0.

The observables are
°
yi , z i

¢
. We also have an estimate bA of A.

Given bA we construct the estimate bw i = bA0
z i of w i , replace w i in (12.50) with bw i , and then estimate

Ø by least-squares, resulting in the estimator

bØ=
√

nX

i=1
bw i bw 0

i

!°1 √
nX

i=1
bw i yi

!

. (12.51)
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The regressors bw i are called generated regressors. The properties of bØ are different than least-squares
with i.i.d. observations, since the generated regressors are themselves estimates.

This framework includes the 2SLS estimator as well as other common estimators. The 2SLS model
can be written as (12.50) by looking at the reduced form equation (12.14), with w i = °0z i , A = °, and
bA = b° is (12.19).

The examples which motivated Pagan (1984) and Murphy and Topel (1985) emerged from the macroe-
conomics literature, in particular the work of Barro (1977) which examined the impact of inflation ex-
pectations and expectation errors on economic output. For example, let ºi denote realized inflation
and z i be the information available to economic agents. A model of inflation expectations sets wi =
E [ºi | z i ] =∞0

z i and a model of expectation error sets wi =ºi °E [ºi | z i ] =ºi °∞0
z i . Since expectations

and errors are not observed they are replaced in applications with the fitted values bwi = b∞0
z i or residuals

bwi =ºi ° b∞0
z i where b∞ is a coefficient estimate from a regression of ºi on z i .

The generated regressor framework includes all of these examples.
The goal is to obtain a distributional approximation for bØ in order to construct standard errors, con-

fidence intervals and conduct tests. Start by substituting equation (12.50) into (12.51). We obtain

bØ=
√

nX

i=1
bw i bw 0

i

!°1 √
nX

i=1
bw i

°
w

0
iØ+ vi

¢
!

.

Next, substitute w
0
iØ= bw 0

iØ+ (w i ° bw i )0Ø. We obtain

bØ°Ø=
√

nX

i=1
bw i bw 0

i

!°1 √
nX

i=1
bw i

°
(w i ° bw i )0Ø+ vi

¢
!

. (12.52)

Effectively, this shows that the distribution of bØ°Ø has two random components, one due to the con-
ventional regression component bw i vi , and the second due to the generated regressor (w i ° bw i )0Ø. Con-
ventional variance estimators do not address this second component and thus will be biased.

Interestingly, the distribution in (12.52) dramatically simplifies in the special case that the “gener-
ated regressor term” (w i ° bw i )0Ø disappears. This occurs when the slope coefficients on the generated
regressors are zero. To be specific, partition w i = (w 1i , w 2i ), bw i = (w 1i , bw 2i ) , and Ø =

°
Ø1,Ø2

¢
so that

w 1i are the conventional observed regressors and bw 2i are the generated regressors. Then (w i ° bw i )0Ø=
(w 2i ° bw 2i )0Ø2. Thus if Ø2 = 0 this term disappears. In this case (12.52) equals

bØ° bØ=
√

nX

i=1
bw i bw 0

i

!°1 √
nX

i=1
bw i vi

!

.

This is a dramatic simplification.
Furthermore, since bw i = bA0

z i we can write the estimator as a function of sample moments:
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A we find from standard manipulations that
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The conventional asymptotic covariance matrix estimator for bØ takes the form

bV Ø =
√

1
n

nX

i=1
bw i bw 0

i

!°1 √
1
n

nX

i=1
bw i bw 0

i bv2
i

!√
1
n

nX

i=1
bw i bw 0

i

!°1

(12.54)

where bvi = yi ° bw 0
i
bØ. Under the given assumptions, bV Ø °!

p
V Ø. Thus inference using bV Ø is asymptot-

ically valid. This is useful when we are interested in tests of Ø2 = 0 . Often this is of major interest in
applications.

To test H0 : Ø2 = 0 we partition bØ=
°bØ1, bØ2

¢
and construct a conventional Wald statistic

W = nbØ0
2
°£bV Ø

§
22

¢°1 bØ2.

Theorem 12.9 Take model (12.50) with E
£

y4
i

§
<1, Ekz ik4 <1, A

0
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£

z i z
0
i

§
A >

0, bA °!
p

A and bw i = (w 1i , bw 2i ). Under H0 : Ø2 = 0, then as n !1,

p
n

°bØ°Ø
¢
°!

d
N

°
0,V Ø

¢

where V Ø is given in (12.53). For bV Ø given in (12.54),

bV Ø °!
p

V Ø.

Furthermore,
W °!

d
¬2

q

where q = dim(Ø2). For c satisfying Æ= 1°Gq (c)

P [W > c |H0] !Æ

so the test “Reject H0 if W > c” has asymptotic size Æ.

In the special case that bA = A (X , Z ) and vi | x i , z i ª N
°
0,æ2¢ then there is a finite sample version

of the previous result. Let W 0 be the Wald statistic constructed with a homoskedastic variance matrix
estimator, and let

F =W /q (12.55)

be the the F statistic, where q = dim(Ø2).

Theorem 12.10 Take model (12.50) with bA = A (X , Z ), vi | x i , z i ª N
°
0,æ2¢ and

bw i = (w 1i , bw 2i ). Under H0 : Ø2 = 0, t-statistics have exact N(0,1) distributions,
and the F statistic (12.55) has an exact Fq,n°k distribution, where q = dim(Ø2)
and k = dim(Ø).
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To summarize, in the model yi = w
0
1iØ1 +w

0
2iØ2 +vi where w 2i is not observed but replaced with an

estimate bw 2i , conventional significance tests forH0 :Ø2 = 0 are asymptotically valid without adjustment.
While this theory allows tests of H0 : Ø2 = 0, it unfortunately does just justify conventional standard

errors or confidence intervals. For this, we need to work out the distribution without imposing the sim-
plification Ø2 = 0. This often needs to be worked out case-by-case, or by using methods based on the
generalized method of moments to be introduced in Chapter 13. However, in some important set of
examples it is straightforward to work out the asymptotic distribution.

For the remainder of this section we examine the setting where the estimators bA take a least-squares
form, so for some X can be written as bA =

°
Z

0
Z

¢°1 °
Z

0
X

¢
. Such estimators correspond to the multivariate

projection model

x i = A
0
z i +ui (12.56)

E
£

z i u
0
i

§
= 0.

This class of estimators directly includes 2SLS and the expectation model described above. We can write
the matrix of generated regressors as cW = Z bA and then (12.52) as
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Z
0
Z bA

¥°1 ≥
bA0

Z
0
≥
°Z

°
Z

0
Z

¢°1 °
Z

0
U

¢
Ø+v

¥¥

=
≥
bA0

Z
0
Z bA

¥°1 ≥
bA0

Z
0 °°UØ+v

¢¥

=
≥
bA0

Z
0
Z bA

¥°1 ≥
bA0

Z
0
e

¥

where
ei = vi °u

0
iØ= yi °x

0
iØ. (12.57)

This estimator has the asymptotic distribution

p
n

°bØ°Ø
¢
°!

d
N

°
0,V Ø

¢

where
V Ø =

°
A
0
E
£

z i z
0
i

§
A

¢°1 °
A
0
E
£

z i z
0
i e2

i

§
A

¢°
A
0
E
£

z i z
0
i

§
A

¢°1 . (12.58)

Under conditional homoskedasticity the covariance matrix simplifies to

V Ø =
°

A
0
E
£

z i z
0
i

§
A

¢°1
E
£
e2

i

§
.

An appropriate estimator of V Ø is

bV Ø =
µ

1
n

cW 0cW
∂°1

√
1
n

nX

i=1
bw i bw 0

i be
2
i

!µ
1
n

cW 0cW
∂°1

(12.59)

bei = yi °x
0
i
bØ.

Under the assumption of conditional homoskedasticity this can be simplified as usual.
This appears to be the usual covariance matrix estimator, but it is not, because the least-squares

residuals bvi = yi ° bw 0
i
bØ have been replaced with bei = yi ° x

0
i
bØ. This is exactly the substitution made by

the 2SLS covariance matrix formula. Indeed, the covariance matrix estimator bV Ø precisely equals the
estimator (12.42).
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Theorem 12.11 Take model (12.50) and (12.56) with E
£

y4
i

§
< 1, Ekz ik4 < 1,

A
0
E
£

z i z
0
i

§
A > 0, and bA =

°
Z

0
Z

¢°1 °
Z

0
X

¢
. As n !1,

p
n

°bØ°Ø
¢
°!

d
N

°
0,V Ø

¢

where V Ø is given in (12.58) with ei defined in (12.57). For bV Ø given in (12.59),

bV Ø °!
p

V Ø.

Since the parameter estimators are asymptotically normal and the covariance matrix is consistently
estimated, standard errors and test statistics constructed from bV Ø are asymptotically valid with conven-
tional interpretations.

We now summarize the results of this section. In general, care needs to be exercised when estimat-
ing models with generated regressors. As a general rule, generated regressors and two-step estimation
affects sampling distributions and variance matrices. An important simplication occurs for tests that the
generated regressors have zero slopes. In this case conventional tests have conventional distributions,
both asymptotically and in finite samples. Another important special case occurs when the generated
regressors are least-squares fitted values. In this case the asymptotic distribution takes a conventional
form, but the conventional residual needs to be replaced by one constructed with the forecasted variable.
With this one modification asymptotic inference using the generated regressors is conventional.

12.27 Regression with Expectation Errors

In this section we examine a generated regressor model which includes expectation errors in the
regression. This is an important class of generated regressor models, and is relatively straightforward to
characterize.

The model is

yi = w
0
iØ+u

0
iÆ+ vi

w i = A
0
z i

x i = w i +ui

E [z i∫i ] = 0

E [ui∫i ] = 0

E
£

z i u
0
i

§
= 0.

The observables are (yi , x i , z i ). This model states that w i is the expectation of x i (or more generally, the
projection of x i on z i ) and ui is its expectation error. The model allows for exogenous regressors as in the
standard IV model if they are listed in w i , x i and z i . This model is used, for example, to decompose the
effect of expectations from expectation errors. In some cases it is desired to include only the expecation
error ui , not the expecation w i . This does not change the results described here.

The model is estimated as follows. First, A is estimated by multivariate least-squares of x i on z i ,
bA =

°
Z

0
Z

¢°1 °
Z

0
X

¢
, which yields as by-products the fitted values cW = Z bA and residuals bU = bX ° cW .

Second, the coefficients are estimated by least-squares of yi on the fitted values bw i and residuals bui

yi = bw 0
i
bØ+ bu0

i bÆ+ bvi .
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We now examine the asymptotic distributions of these estimators.
By the first-step regression Z

0 bU = 0, cW 0 bU = 0 and W
0 bU = 0. This means that bØ and bÆ can be com-

puted separately. Notice that
bØ=

≥
cW 0cW

¥°1 cW 0
y

and
y = cWØ+UÆ+

°
W °cW

¢
Ø+v .

Substituting, using cW 0 bU = 0 and W °cW =°Z
°

Z
0
Z

¢°1
Z

0
U we find

bØ°Ø=
≥
cW 0cW

¥°1 cW 0 °
UÆ+

°
W °cW

¢
Ø+v

¢

=
≥
bA0

Z
0
Z bA

¥°1 bA0
Z

0 °
UÆ°UØ+v

¢

=
≥
bA0

Z
0
Z bA

¥°1 bA0
Z

0
e

where
ei = vi +u

0
i

°
Æ°Ø

¢
= yi °x

0
iØ.

We also find
bÆ=

≥
bU 0 bU

¥°1 bU 0
y .

Since bU 0
W = 0, U ° bU = Z

°
Z

0
Z

¢°1
Z

0
U and bU 0

Z = 0 then

bÆ°Æ=
≥
bU 0 bU

¥°1 bU 0 °
WØ+

°
U ° bU

¢
Æ+v

¢

=
≥
bU 0 bU

¥°1 bU 0
v .

Together, we establish the following distributional result.

Theorem 12.12 For the model and estimators described in this section, with
E
£

y4
i

§
<1, Ekz ik4 <1, Ekx ik4 <1, A

0
E
£

z i z
0
i

§
A > 0, and E

£
ui u

0
i

§
> 0, as n !

1
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n
µ bØ°Ø

bÆ°Æ

∂
°!

d
N(0,V ) (12.60)

where

V =
µ

V ØØ V ØÆ

V ÆØ V ÆÆ

∂
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E
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ui u

0
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i
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E
£
ui u

0
i

§¢°1 .
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The asymptotic covariance matrix is estimated by

bV ØØ =
µ

1
n

cW 0cW
∂°1

√
1
n

nX

i=1
bw i bw 0

i be
2
i

!µ
1
n

cW 0cW
∂°1

bV ÆØ =
µ

1
n

bU 0 bU
∂°1

√
1
n

nX

i=1
bui bw 0

i bei bvi

!µ
1
n

cW 0cW
∂°1

bV ÆÆ =
µ

1
n

bU 0 bU
∂°1

√
1
n

nX

i=1
bui bu0

i bv2
i

!µ
1
n

bU 0 bU
∂°1

where

bw i = bA0
z i

bui = bx i ° bw i

bei = yi °x
0
i
bØ

bvi = yi ° bw 0
i
bØ° bu0

i bÆ.

Under conditional homoskedasticity, specifically

E

∑µ
e2

i ei vi

ei vi v2
i

∂ØØØØz i

∏
=C

then V ÆØ = 0 and the coefficient estimates bØ and bÆ are asymptotically independent. The variance com-
ponents also simplify to

V ØØ =
°

A
0
E
£

z i z
0
i

§
A

¢°1
E
£
e2

i

§

V ÆÆ =
°
E
£
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§

.

In this case we have the covariance matrix estimators

bV 0
ØØ =

µ
1
n

cW 0cW
∂°1

√
1
n

nX

i=1
be2

i

!

bV 0
ÆÆ =

µ
1
n

bU 0 bU
∂°1

√
1
n

nX

i=1
bv2

i

!

and bV 0
ÆØ = 0.

12.28 Control Function Regression

In this section we present an alternative way of computing the 2SLS estimator by least squares. It
is useful in more complicated nonlinear contexts, and also in the linear model to construct tests for
endogeneity.

The structural and reduced form equations for the standard IV model are

yi = x
0
1iØ1 +x

0
2iØ2 +ei

x2i =°012z1i +°022z2i +u2i .
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Since the instrumental variable assumption specifies that E [z i ei ] = 0, x2i is endogenous (correlated with
ei ) if and only if u2i and ei are correlated. We can therefore consider the linear projection of ei on u2i

ei = u
0
2iÆ+∫i

Æ=
°
E
£
u2i u

0
2i

§¢°1
E [u2i ei ]

E [u2i∫i ] = 0.

Substituting this into the structural form equation we find

yi = x
0
1iØ1 +x

0
2iØ2 +u

0
2iÆ+∫i (12.61)

E [x1i∫i ] = 0

E [x2i∫i ] = 0

E [u2i∫i ] = 0.

Notice that x2i is uncorrelated with ∫i . This is because x2i is correlated with ei only through u2i , and ∫i

is the error after ei has been projected orthogonal to u2i .
If u2i were observed we could then estimate (12.61) by least-squares. While it is not observed, we can

estimate u2i by the reduced-form residual

bu2i = x2i ° b°012z1i ° b°022z2i

as defined in (12.20). Then the coefficients (Ø1,Ø2,Æ) can be estimated by least-squares of yi on (x1i , x2i , bu2i ).
We can write this as

yi = x
0
i
bØ+ bu0

2i bÆ+b∫i (12.62)

or in matrix notation as
y = X bØ+ bU 2 bÆ+ b∫.

This turns out to be an alternative algebraic expression for the 2SLS estimator.
Indeed, we now show that bØ= bØ2sls. First, note that the reduced form residual can be written as

bU 2 = (I n °P Z ) X 2

where P Z is defined in (12.32). By the FWL representation

bØ=
≥
eX 0 eX

¥°1 ≥
eX 0

y

¥
(12.63)

where eX =
£eX 1, eX 2

§
, with

eX 1 = X 1 ° bU 2

≥
bU 0

2
bU 2

¥°1 bU 0
2X 1 = X 1

(since bU 0
2X 1 = 0) and

eX 2 = X 2 ° bU 2

≥
bU 0

2
bU 2

¥°1 bU 0
2X 2

= X 2 ° bU 2
°

X
0
2 (I n °P Z ) X 2

¢°1
X

0
2 (I n °P Z ) X 2

= X 2 ° bU 2

= P Z X 2.

Thus eX = [X 1,P Z X 2] = P Z X . Substituted into (12.63) we find

bØ=
°

X
0
P Z X

¢°1 °
X

0
P Z y

¢
= bØ2sls
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which is (12.33) as claimed.
Again, what we have found is that OLS estimation of equation (12.62) yields algebraically the 2SLS

estimator bØ2sls.
We now consider the distribution of the control function estimates. It is a generated regression

model, and in fact is covered by the model examined in Section 12.27 after a slight reparametrization.
Let w i =°0z i and ui = x i °°0z i =

°
00,u

0
2i

¢0. Then the main equation (12.61) can be written as

yi = w
0
iØ+u

0
2i∞+∫i

where ∞=Æ+Ø2. This is the model in Section 12.27.
Set b∞= bÆ+ bØ2 It follows from (12.60) that as n !1 we have the joint distribution
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2
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ei = yi °x
0
iØ.

The asymptotic distribution of b∞= bÆ° bØ2 can then be deduced.

Theorem 12.13 If E
£

y4
i

§
< 1, Ekz ik4 < 1, Ekx ik4 < 1, A

0
E
£

z i z
0
i

§
A > 0, and

E
£
ui u

0
i

§
> 0, as n !1 p

n (bÆ°Æ) °!
d

N(0,V Æ)

where
V Æ =V 22 +V ∞∞°V ∞2 °V

0
∞2.

Under conditional homoskedasticity we have the important simplifications

V 22 =
h°
°0E

£
z i z

0
i

§
°
¢°1

i

22
E
£
e2

i

§

V ∞∞ =
°
E
£
u2i u

0
2i

§¢°1
E
£
∫2

i

§

V ∞2 = 0

V Æ =V 22 +V ∞∞.

An estimator for V Æ in the general case is

bV Æ = bV 22 + bV ∞∞° bV ∞2 ° bV 0
∞2 (12.64)
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where
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0
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2i bÆ.

Under the assumption of conditional homoskedasticity we have the estimator

bV 0
Æ = bV 0

ØØ+ bV 0
∞∞

bV ØØ =
h°

X
0
P Z X

¢°1
i

22

√
nX

i=1
be2

i

!

bV ∞∞ =
≥
bU 0 bU

¥°1
√

nX
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b∫2

i

!

.

12.29 Endogeneity Tests

The 2SLS estimator allows the regressor x2i to be endogenous, meaning that x2i is correlated with
the structural error ei . If this correlation is zero, then x2i is exogenous and the structural equation can
be estimated by least-squares. This is a testable restriction. Effectively, the null hypothesis is

H0 : E [x2i ei ] = 0

with the alternative
H1 : E [x2i ei ] 6= 0.

The maintained hypothesis is E [z i ei ] = 0. Since x1i is a component of z i , this implies E [x1i ei ] = 0.
Consequently we could alternatively write the null as H0 : E [x i ei ] = 0 (and some authors do so).

Recall the control function regression (12.61)

yi = x
0
1iØ1 +x

0
2iØ2 +u

0
2iÆ+"i

Æ=
°
E
£
u2i u

0
2i

§¢°1
E [u2i ei ] .

Notice that E [x2i ei ] = 0 if and only if E [u2i ei ] = 0, so the hypothesis can be restated as H0 :Æ= 0 against
H1 :Æ 6= 0. Thus a natural test is based on the Wald statistic W forÆ= 0 in the control function regression
(12.28). Under Theorem 12.9 and Theorem 12.10, under H0, W is asymptotically chi-square with k2

degrees of freedom. In addition, under the normal regression assumptions the F statistic has an exact
F (k2,n°k1 °2k2) distribution. We accept the null hypothesis that x2i is exogenous if W (or F) is smaller
than the critical value, and reject in favor of the hypothesis that x2i is endogenous if the statistic is larger
than the critical value.

Specifically, estimate the reduced form by least squares

x2i = b°012z1i + b°022z2i + bu2i

to obtain the residuals. Then estimate the control function by least squares

yi = x
0
i
bØ+ bu0

2i bÆ+b∫i . (12.65)
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Let W , W 0 and F = W 0/k2 denote the Wald statistic, homoskedastic Wald statistic, and F statistic for
Æ= 0.

Theorem 12.14 UnderH0, W °!
d

¬2
k2

. Let c1°Æ solveP
h
¬2

k2
∑ c1°Æ

i
= 1°Æ. The

test “Reject H0 if W > c1°Æ” has asymptotic size Æ.

Theorem 12.15 Suppose ei | x i , z i ª N
°
0,æ2¢. UnderH0, F ª F (k2,n°k1°2k2).

Let c1°Æ solve P [F (k2,n °k1 °2k2) ∑ c1°Æ] = 1°Æ. The test “Reject H0 if F >
c1°Æ” has exact size Æ.

Since in general we do not want to impose homoskedasticity, these results suggest that the most
appropriate test is the Wald statistic constructed with the robust heteroskedastic covariance matrix. This
can be computed in Stata using the command after when the latter uses
a robust covariance option. Stata reports the Wald statistic in F form (and thus uses the F distribution to
calculate the p-value) as “Robust regression F”. Using the F rather than the ¬2 distribution is not formally
justified but is a reasonable finite sample adjustment. If the command is applied
after without a robust covariance option, Stata reports the F statistic as “Wu-Hausman F”.

There is an alternative (and traditional) way to derive a test for endogeneity. Under H0, both OLS
and 2SLS are consistent estimators. But under H1, they converge to different values. Thus the difference
between the OLS and 2SLS estimators is a valid test statistic for endogeneity. It also measures what
we often care most about – the impact of endogeneity on the parameter estimates. This literature was
developed under the assumption of conditional homoskedasticity (and it is important for these results)
so we assume this condition for the development of the statistics.

Let bØ =
°bØ1, bØ2

¢
be the OLS estimator and let eØ =

°eØ1, eØ2
¢

be the 2SLS estimator. Under H0 (and
homoskedasticity) the OLS estimator is Gauss-Markov efficient, so by the Hausman equality

var
£bØ2 ° eØ2

§
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£eØ2
§
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£bØ2
§
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≥°

X
0
2 (P Z °P 1) X 2

¢°1 °
°

X
0
2M 1X 2

¢°1
¥
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where P Z = Z
°

Z
0
Z

¢°1
Z

0, P 1 = X 1
°

X
0
1X 1

¢°1
X

0
1, and M 1 = I n °P 1. Thus a valid test statistic for H0 is

T =

°bØ2 ° eØ2
¢0 ≥°

X
0
2 (P Z °P 1) X 2

¢°1 °
°

X
0
2M 1X 2

¢°1
¥°1 °bØ2 ° eØ2

¢

bæ2 (12.66)

for some estimate bæ2 of æ2. Durbin (1954) first proposed T as a test for endogeneity in the context of
IV estimation, setting bæ2 to be the least-squares estimate of æ2. Wu (1973) proposed T as a test for en-
dogeneity in the context of 2SLS estimation, considering a set of possible estimates bæ2 , including the
regression estimate from (12.65). Hausman (1978) proposed a version of T based on the full contrast
bØ° eØ, and observed that it equals the regression Wald statistic W 0 described earlier. In fact, when bæ2 is
the regression estimate from (12.65), the statistic (12.66) algebraically equals both W 0 and the version of
(12.66) based on the full contrast bØ° eØ . We show these equalities below. Thus these three approaches
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yield exactly the same statistic except for possible differences regarding the choice of bæ2. Since the re-
gression F test described earlier has an exact F distribution in the normal sampling model, and thus
can exactly control test size, this is the preferred version of the test. The general class of tests are called
Durbin-Wu-Hausman tests, Wu-Hausman tests, or Hausman tests, depending on the author.

When k2 = 1 (there is one right-hand-side endogenous variable) which is quite common in applica-
tions, the endogeneity test can be equivalently expressed at the t-statistic for bÆ in the estimated control
function. Thus it is sufficient to estimate the control function regression and check the t-statistic for bÆ.
If |bÆ| > 2 then we can reject the hypothesis that x2i is exogenous for Ø.

We illustrate using the Card proximity example using the two instruments public and private. We first
estimate the reduced form for education, obtain the residual, and then estimate the control function
regression. The residual has a coefficient °0.088 with a standard error of 0.037 and a t-statistic of 2.4.
Since the latter exceeds the 5% critical value (its p-value is 0.017) we reject exogeneity. This means that
the 2SLS estimates are statistically different from the least-squares estimates of the structural equation
and supports our decision to treat education as an endogenous variable. (Alternatively, the F statistic is
2.42 = 5.7 with the same p-value).

We now show the equality of the various statistics.
We first show that the statistic (12.66) is not altered if based on the full contrast bØ°eØ. Indeed, bØ1°eØ1

is a linear function of bØ2 ° eØ2, so there is no extra information in the full contrast. To see this, observe
that given bØ2, we can solve by least-squares to find

bØ1 =
°

X
0
1X 1

¢°1 °
X

0
1
°

y °X 2bØ2
¢¢

and similarly

eØ1 =
°

X
0
1X 1

¢°1 °
X

0
1
°

y °P Z X 2eØ
¢¢

=
°

X
0
1X 1

¢°1 °
X

0
1
°

y °X 2eØ
¢¢

the second equality since P Z X 1 = X 1. Thus

bØ1 ° eØ1 =
°

X
0
1X 1

¢°1
X

0
1
°

y °X 2bØ2
¢
°

°
X

0
1X 1

¢°1
X

0
1
°

y °P Z X 2eØ
¢

=
°

X
0
1X 1

¢°1
X

0
1X 2

°eØ2 ° bØ2
¢

as claimed.
We next show that T in (12.66) equals the homoskedastic Wald statistic W 0 for bÆ from the regres-

sion (12.65). Consider the latter regression. Since X 2 is contained in X , the coefficient estimate bÆ
is invariant to replacing bU 2 = X 2 ° bX 2 with °bX 2 = °P Z X 2. By the FWL representation, setting M X =
I n °X

°
X

0
X

¢°1
X

0

bÆ=°
≥
bX 0

2M X
bX 2

¥°1 bX 0
2M X y

=°
°

X
0
2P Z M X P Z X 2

¢°1
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0
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It follows that

W 0 =
y
0
M X P Z X 2

°
X

0
2P Z M X P Z X 2

¢°1
X

0
2P Z M X y

bæ2 .

Our goal is to show that T = W 0. Define eX 2 = (I n °P 1) X 2 so bØ2 =
≥
eX 0

2
eX 2

¥°1 eX 0
2 y . Then defining
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using (P Z °P 1)(I n °P 1) = (P Z °P 1) and defining Q = eX 2
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2 (P Z °P 1) X 2

¢°eØ2 ° bØ2
¢

= X
0
2 (P Z °P 1) y °

°
X

0
2 (P Z °P 1) X 2

¢≥eX 0
2
eX 2

¥°1 eX 0
2 y

= X
0
2 (P Z °P 1)(I n °Q) y

= X
0
2 (P Z °P 1 °P Z Q) y

= X
0
2P Z (I n °P 1 °Q) y

= X
0
2P Z M X y .

The third-to-last equality is P 1Q = 0 and the final uses M X = I n °P 1 °Q . We also calculate that

Q
§ de f=

°
X

0
2 (P Z °P 1) X 2

¢≥°
X

0
2 (P Z °P 1) X 2

¢°1 °
°

X
0
2M 1X 2

¢°1
¥

£
°

X
0
2 (P Z °P 1) X 2

¢

= X
0
2 (P Z °P 1 ° (P Z °P 1)Q (P Z °P 1)) X 2

= X
0
2
°
P Z °P 1 °P Z QP Z

¢
X 2

= X
0
2P Z M X P Z X 2.

Thus

T = ¢
0
Q

§°1¢

bæ2

=
y
0
M X P Z X 2

°
X

0
2P Z M X P Z X 2

¢°1
X

0
2P Z M X y

bæ2

=W 0

as claimed.

12.30 Subset Endogeneity Tests

In some cases we may only wish to test the endogeneity of a subset of the variables. In the Card prox-
imity example, we may wish test the exogeneity of education separately from experience and its square.
To execute a subset endogeneity test it is useful to partition the regressors into three groups, so that the
structural model is

yi = x
0
1iØ1 +x

0
2iØ2 +x

0
3iØ3 +ei

E [z i ei ] = 0.

As before, the instrument vector z i includes x1i . The variables x3i is treated as endogenous, and x2i is
treated as potentially endogenous. The hypothesis to test is that x2i is exogenous, or

H0 : E [x2i ei ] = 0

against
H1 : E [x2i ei ] 6= 0.

Under homoskedasticity, a straightfoward test can be constructed by the Durbin-Wu-Hausman prin-
ciple. Under H0, the appropriate estimator is 2SLS using the instruments (z i , x2i ). Let this estimator of
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Ø2 be denoted bØ2. Under H1, the appropriate estimator is 2SLS using the smaller instrument set z i . Let
this estimator of Ø2 be denoted eØ2. A Durbin-Wu-Hausman-type test of H0 against H1 is

T =
°bØ2 ° eØ2

¢0 ° cvar
£eØ2

§
° cvar

£bØ2
§¢°1 °bØ2 ° eØ2

¢
.

The asymptotic distribution under H0 is ¬2
k2

where k2 = dim(x2i ), so we reject the hypothesis that the

variables x2i are exogenous if T exceeds an upper critical value from the ¬2
k2

distribution.
Instead of using the Wald statistic, one could use the F version of the test by dividing by k2 and using

the F distribution for critical values. There is no finite sample justification for this modification, however,
since x3i is endogenous under the null hypothesis.

In Stata, the command (adding the variable name to specify which variable to
test for exogeneity) after without a robust covariance option reports the F version of this
statistic as “Wu-Hausman F”. For example, in the Card proximity example using the four instruments
public, private, age and age2, if we estimate the equation by 2SLS with a non-robust covariance matrix,
and then compute the endogeneity test for education, we find F = 272 with a p-value of 0.0000, but if we
compute the test for experience and its square we find F = 2.98 with a p-value of 0.051. In this equation,
education is clearly endogenous but the experience variables are unclear.

A heteroskedasticity or cluster-robust test cannot be constructed easily by the Durbin-Wu-Hausman
approach, since the covariance matrix does not take a simple form. Instead, we can use the regression
approach if we account for the generated regressor problem. The ideal control function regression takes
the form

yi = x
0
iØ+u

0
2iÆ2 +u

0
3iÆ3 +∫i

where u2i and u3i are the reduced-form errors from the projections of x2i and x3i on the instruments z i .
The coefficients Æ2 and Æ3 solve the equations

µ
E
£
u2i u

0
2i

§
E
£
u2i u

0
3i

§

E
£
u3i u

0
2i

§
E
£
u3i u

0
3i

§
∂µ

Æ2

Æ3

∂
=

µ
E [u2i ei ]
E [u3i ei ]

∂
.

The null hypothesis E [x2i ei ] = 0 is equivalent to E [u2i ei ] = 0. This implies

™0
µ
Æ2

Æ3

∂
= 0 (12.67)

where

™=
µ
E
£
u2i u

0
2i

§

E
£
u3i u

0
2i

§
∂

.

This suggests that an appropriate regression-based test ofH0 versusH1 is to construct a Wald statistic
for the restriction (12.67) in the control function regression

yi = x
0
i
bØ+ bu0

2i bÆ2 + bu0
3i bÆ3 +b∫i (12.68)

where bu2i and bu3i are the least-squares residuals from the regressions of x2i and x3i on the instruments
z i , respectively, and™ is estimated by

b™=
µ 1

n
Pn

i=1 bu2i bu0
2i )

1
n

Pn
i=1 bu3i bu0

2i

∂
.

A complication is that the regression (12.68) has generated regressors which have non-zero coefficients
under H0. The solution is to use the control-function-robust covariance matrix estimator (12.64) for
(bÆ2, bÆ3). This yields a valid Wald statistic for H0 versus H1. The asymptotic distribution of the statistic
under H0 is ¬2

k2
where k2 = dim(x2i ), so the null hypothesis that x2i is exogenous is rejected if the Wald

statistic exceeds the upper critical value from the ¬2
k2

distribution.
Heteroskedasticity-robust and cluster-robust subset endogeneity tests are not currently implemented

in Stata.
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12.31 OverIdentification Tests

When `> k the model is overidentified meaning that there are more moments than free parameters.
This is a restriction and is testable. Such tests are callled overidentification tests.

The instrumental variables model specifies that

E [z i ei ] = 0.

Equivalently, since ei = yi °x
0
iØ, this is the same as

E
£

z i yi
§
°E

£
z i x

0
i

§
Ø= 0.

This is an `£ 1 vector of restrictions on the moment matrices E
£

z i yi
§

and E
£

z i x
0
i

§
. Yet since Ø is of

dimension k which is less than `, it is not certain if indeed such a Ø exists.
To make things a bit more concrete, suppose there is a single endogenous regressor x2i , no x1i , and

two instruments z1i and z2i . Then the model specifies that

E(
£
z1i yi

§
= E [z1i x2i ]Ø

and
E
£
z2i yi

§
= E [z2i x2i ]Ø.

Thus Ø solves both equations. This is rather special.
Another way of thinking about this is that in this context we could solve for Ø using either one equa-

tion or the other. In terms of estimation, this is equivalent to estimating by IV using just the instrument
z1 or instead just using the instrument z2. These two estimators (in finite samples) will be different.
But if the overidentification hypothesis is correct, both are estimating the same parameter, and both are
consistent for Ø (if the instruments are relevant). In contrast, if the overidentification hypothesis is false,
then the two estimators will converge to different probability limits and it is unclear if either probability
limit is interesting.

For example, take the 2SLS estimates in the fourth column of Table 12.1, which use public and private
as instruments for education. Suppose we instead estimate by IV, using just public as an instrument, and
then repeat using private. The IV coefficient for education in the first case is 0.16, and in the second case
0.27. These appear to be quite different. However, the second estimate has quite a large standard error
(0.16) so perhaps the difference is sampling variation. An overidentification test addresses this question
formally.

For a general overidentification test, the null and alternative hypotheses are

H0 : E [z i ei ] = 0

H1 : E [z i ei ] 6= 0.

We will also add the conditional homoskedasticity assumption

E
£
e2

i | z i
§
=æ2. (12.69)

To avoid imposing (12.69), it is best to take a GMM approach, which we defer until Chapter 13.
To implement a test of H0, consider a linear regression of the error ei on the instruments z i

ei = z
0
iÆ+∫i (12.70)

with
Æ=

°
E
£

z i z
0
i

§¢°1
E [z i ei ] .
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We can rewrite H0 as Æ = 0. While ei is not observed we can replace it with the 2SLS residual bei , and
estimate Æ by least-squares regression

bÆ=
°

Z
0
Z

¢°1
Z

0be.

Sargan (1958) proposed testing H0 via a score test, which takes the form

S = bÆ0 ( cvar[bÆ])° bÆ=
be 0

Z
°

Z
0
Z

¢°1
Z

0be
bæ2 . (12.71)

where bæ2 = 1
n be 0be. Basmann (1960) independently proposed a Wald statistic for H0, which is S with bæ2

replaced with eæ2 = n°1b∫0b∫ where b∫= be ° Z bÆ. By the equivalence of homoskedastic score and Wald tests
(see Section 9.16), Basmann’s statistic is a monotonic function of Sargan’s statistic and hence they yield
equivalent tests. Sargan’s version is more typically reported.

The Sargan test rejects H0 in favor of H1 if S > c for some critical value c. An asymptotic test sets c as
the 1°Æ quantile of the ¬2

`°k distribution. This is justified by the asymptotic null distribution of S which
we now derive.

Theorem 12.16 Under Assumption 12.2 and E
£
e2

i | z i
§
=æ2, then as n !1

S °!
d

¬2
`°k .

For c satisfying Æ= 1°G`°k (c),

P [S > c |H0] !Æ

so the test “Reject H0 if S > c” has asymptotic size Æ.

We prove Theorem 12.16 below.
The Sargan statistic S is an asymptotic test of the overidentifying restrictions under the assumption

of conditional homoskedasticity. It has some limitations. First, it is an asymptotic test, and does not have
a finite sample (e.g. F ) counterpart. Simulation evidence suggests that the test can be oversized (reject
too frequently) in small and moderate sample sizes. Consequently, p-values should be interpreted cau-
tiously. Second, the assumption of conditional homoskedasticity is unrealistic in applications. The best
way to generalize the Sargan statistic to allow heteroskedasticity is to use the GMM overidentification
statistic – which we will examine in Chapter 13. For 2SLS, Wooldrige (1995) suggested a robust score test,
but Baum, Schaffer and Stillman (2003) point out that it is numerically equivalent to the GMM overiden-
tification statistic. Hence the bottom line appears to be that to allow heteroskedasticity or clustering, it
is best to use a GMM approach.

In overidentified applications, it is always prudent to report an overidentification test. If the test
is insignificant it means that the overidentifying restrictions are not rejected, supporting the estimated
model. If the overidentifying test statistic is highly significant (if the p-value is very small) this is evidence
that the overidentifying restrictions are violated. In this case we should be concerned that the model is
misspecified and interpreting the parameter estimates should be done cautiously.

When reporting the results of an overidentification test, it seems reasonable to focus on very small
sigificance levels, such as 1%. This means that we should only treat a model as “rejected” if the Sargan
p-value is very small, e.g. less than 0.01. The reason to focus on very small significance levels is because
it is very difficult to interpret the result “The model is rejected”. Stepping back a bit, it does not seem
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credible that any overidentified model is literally true, rather what seems potentially credible is that an
overidentified model is a reasonable approximation. A test is asking the question “Is there evidence
that a model is not true” when we really want to know the answer to “Is there evidence that the model
is a poor approximation”. Consequently it seems reasonable to require strong evidence to lead to the
conclusion “Let’s reject this model”. The recommendation is that mild rejections (p-values between 1%
and 5%) should be viewed as mildly worrisome, but not critical evidence against a model. The results of
an overidentification test should be integrated with other information before making a strong decision.

We illustrate the methods with the Card college proximity example. We have estimated two overi-
dentified models by 2SLS, in columns 4 & 5 of Table 12.1. In each case, the number of overidentifying
restrictions is 1. We report the Sargan statistic and its asymptotic p-value (calculated using the ¬2

1 dis-
tribution) in the table. Both p-values (0.37 and 0.47) are far from significant, indicating that there is no
evidence that the models are misspecified.

We now prove Theorem 12.16. The statistic S is invariant to rotations of Z (replacing Z with ZC ) so
without loss of generality we assume E

£
z i z

0
i

§
= I`. As n !1, n°1/2

Z
0
e °!

d
æZ where Z ª N(0, I`). Also

1
n Z

0
Z °!

p
I` and 1

n Z
0
X °!

p
Q , say. Then

n°1/2
Z

0be =
µ

I`°
µ

1
n

Z
0
X

∂µ
1
n

X
0
P Z X

∂°1 µ
1
n

X
0
Z

∂µ
1
n

Z
0
Z

∂°1∂
n°1/2

Z
0
e

°!
d

æ
≥

I`°Q
°
Q

0
Q

¢°1
Q

0
¥

Z.

Since bæ2 °!
p

æ2 it follows that

S °!
d

Z0
≥

I`°Q
°
Q

0
Q

¢°1
Q

0
¥

Z ª¬2
`°k .

The distribution is ¬2
`°k since I`°Q

°
Q

0
Q

¢°1
Q

0 is idempotent with rank `°k.
The Sargan statistic test can be implemented in Stata using the command after

or if a standard (non-robust) covariance matrix has been specified (that is, without
the ‘ ’ option), or by the command otherwise.

Denis Sargan

The British econometrician John Denis Sargan (1924-1996) was a pioneer in the
field of econometrics. He made a range of fundamental contributions, includ-
ing the overidentification test, Edgeworth expansions, and unit root theory. He
was also influential in British econometrics as the dissertation advisor for many
inflluential econometricians.

12.32 Subset OverIdentification Tests

Tests of H0 : E [z i ei ] = 0 are typically interpreted as tests of model specification. The alternative H1 :
E [z i ei ] 6= 0 means that at least one element of z i is correlated with the error ei and is thus an invalid
instrumental variable. In some cases it may be reasonable to test only a subset of the moment conditions.

As in the previous section we restrict attention to the homoskedasticity case E
£
e2

i | z i
§
=æ2.



CHAPTER 12. INSTRUMENTAL VARIABLES 398

Partition z i = (z ai , zbi ) with dimensions `a and `b , respectively, where z ai contains the instruments
which are believed to be uncorrelated with ei , and zbi contains the instruments which may be correlated
with ei . It is necessary to select this partition so that `a > k, or equivalently `b < `° k. This means
that the model with just the instruments z ai is over-identified, or that `b is smaller than the number of
overidentifying restrictions. (If `a = k then the tests described here exist but reduce to the Sargan test so
are not interesting.) Hence the tests require that `°k > 1, that the number of overidentifying restrictions
exceeds one.

Given this partition, the maintained hypothesis is that E [z ai ei ] = 0. The null and alternative hy-
potheses are

H0 : E [zbi ei ] = 0

H1 : E [zbi ei ] 6= 0.

That is, the null hypothesis is that the full set of moment conditions are valid, while the alternative hy-
pothesis is that the instrument subset zbi is correlated with ei and thus an invalid instrument. Rejection
of H0 in favor of H1 is then interpreted as evidence that zbi is misspecified as an instrument.

Based on the same reasoning as described in the previous section, to test H0 against H1 we consider
a partitioned version of the regression (12.70)

ei = z
0
aiÆa + z

0
biÆb +"i

but now focus on the coefficient Æb . Given E [z ai ei ] = 0, H0 is equivalent to Æb = 0. The equation is
estimated by least-squares, replacing the unobseved ei with the 2SLS residual bei . The estimate of Æb is

bÆb =
°

Z
0
b M a Z b

¢°1
Z

0
b M abe

where M a = I n °Z a
°

Z
0
a Z a

¢°1
Z

0
a . Newey (1985) showed that an optimal (asymptotically most powerful)

test of H0 against H1 is to reject for large values of the score statistic

N = bÆ0
b

≥
·var[Æb]

¥°
bÆb

=
be 0

R

µ
R

0
R °R

0 bX
≥
bX 0 bX

¥°1 bX 0
R

∂°1

R
0be

bæ2

where bX = P X , P = Z
°

Z
0
Z

¢°1
Z

0, R = M a Z b , and bæ2 = 1
n be 0be.

Independently from Newey (1985), Eichenbaum, Hansen, and Singleton (1988) proposed a test based
on the difference of Sargan statistics. Let S be the Sargan test statistic (12.71) based on the full instrument
set and Sa be the Sargan statistic based on the instrument set z ai . The Sargan difference statistic is

C = S °Sa .

Specifically, let eØ2sls be the 2SLS estimator using the instruments z ai only, set eei = yi ° x
0
i
eØ2sls, and set

eæ2 = 1
n ee 0ee. Then

Sa =
ee 0

Z a
°

Z
0
a Z a

¢°1
Z

0
aee

eæ2 .

An advantage of the C statistic is that it is quite simple to calculate from the standard regression output.
At this point it is useful to reflect on our stated requirement that `a > k. Indeed, if `a < k then z ai fails

the order condition for identification and eØ2sls cannot be calculated. Thus `a ∏ k is necessary to compute
Sa and hence S. Furthermore, if `a = k then z ai is just identified so while eØ2sls can be calculated, the
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statistic Sa = 0 so C = S. Thus when `a = k the subset test equals the full overidentification test so there
is no gain from considering subset tests.

The C statistic Sa is asymptotically equivalent to replacing eæ2 in Sa with bæ2, yielding the statistic

C§ =
be 0

Z
°

Z
0
Z

¢°1
Z

0be
bæ2 °

ee 0
Z a

°
Z

0
a Z a

¢°1
Z

0
aee

bæ2 .

It turns out that this is Newey’s statistic N . These tests have chi-square asymptotic distributions.
Let c satisfy Æ= 1°G`b (c).

Theorem 12.17 Algebraically, N =C§. Under Assumption 12.2 and E
£
e2

i | z i
§
=

æ2, as n !1, N °!
d

¬2
`b

and C °!
d

¬2
`b

. Thus the tests “Reject H0 if N > c” and

“Reject H0 if C > c” are asymptotically equivalent and have asymptotic size Æ.

Theorem 12.17 shows that N and C§ are identical, and are near equivalents to the convenient statistic
C§, and the appropriate asymptotic distribution is ¬2

`b
. Computationally, the easiest method to imple-

ment a subset overidentification test is to estimate the model twice by 2SLS, first using the full instrument
set z i and the second using the partial instrument set z ai . Compute the Sargan statistics for both 2SLS
regressions, and compute C as the difference in the Sargan statistics. In Stata, for example, this is simple
to implement with a few lines of code.

We illustrate using the Card college proximity example. Our reported 2SLS estimates have `°k = 1
so there is no role for a subset overidentification test. (Recall, the number of overidentifying restrictions
must exceed one.) To illustrate we consider adding extra instruments to the estimates in column 5 of Ta-
ble 12.1 (the 2SLS estimates using public, private, age, and age2 as instruments for education, experience,
and experience2/100). We add two instruments: the years of education of the father and the mother of the
worker. These variables had been used in the earlier labor economics literature as instruments, but Card
did not. (He used them as regression controls in some specifications.) The motivation for using parent’s
education as instruments is the hypothesis that parental education influences children’s educational at-
tainment, but does not directly influence their ability. The more modern labor economics literature has
disputed this idea, arguing that children are educated in part at home, and thus parent’s education has a
direct impact on the skill attainment of children (and not just an indirect impact via educational attain-
ment). The older view was that parent’s education is a valid instrument, the modern view is that it is not
valid. We can test this dispute using a overidentification subset test.

We do this by estimating the wage equation by 2SLS using public, private, age, age2, father, and
mother, as instruments for education, experience, and experience2/100). We do not report the param-
eter estimates here, but observe that this model is overidentified with 3 overidentifying restrictions. We
calculate the Sargan overidentification statistic. It is 7.9 with an asymptotic p-value (calculated using
¬2

3) of 0.048. This is a mild rejection of the null hypothesis of correct specification. As we argued in the
previous section, this by itself is not reason to reject the model. Now we consider a subset overidenti-
fication test. We are interested in testing the validity of the two instruments father and mother, not the
instruments public, private, age, age2. To test the hypothesis that these two instruments are uncorrelated
with the structural error, we compute the difference in Sargan statistic, C = 7.9°0.5 = 7.4, which has a
p-value (calculated using ¬2

2) of 0.025. This is marginally statistically significant, meaning that there is
evidence that father and mother are not valid instruments for the wage equation. Since the p-value is not
smaller than 1%, it is not overwhelming evidence, but it still supports Card’s decision to not use parental
education as instruments for the wage equation.
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We now prove the results in Theorem 12.17.
We first show that N = C§. Define P a = Z a

°
Z

0
a Z a

¢°1
Z

0
a and P R = R

°
R

0
R

¢°1
R

0. Since [Z a ,R] span
Z we find P = P R +P a and P R P a = 0. It will be useful to note that

P R
bX = P R P X = P R X

bX 0 bX ° bX 0
P R

bX = X
0 (P °P R ) X = X

0
P a X .

The fact that X
0
Pbe = bX 0be = 0 implies X

0
P Rbe =°X

0
P abe. Finally, since y = X bØ+be,

ee =
≥

I n °X
°

X
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P a X

¢°1
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¥
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so
ee 0

P aee = be 0
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P a °P a X

°
X

0
P a X

¢°1
X

0
P a

¥
be.

Applying the Woodbury matrix equality to the definition of N , and the above algebraic relationships,

N =
be 0

P Rbe +be 0
P R

bX
≥
bX 0 bX ° bX 0

P R
bX

¥°1 bX 0
P Rbe

bæ2

=
be 0

Pbe °be 0
P abe +be 0

P a X
°

X
0
P a X

¢°1
X

0
P abe

bæ2

= be 0
Pbe °ee 0

P aee
bæ2

=C§

as claimed.
We next establish the asymptotic distribution. Since Z a is a subset of Z , P M a = M aP , thus P R = R

and R
0
X = R

0 bX . Consequently
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∂
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V 2 = plim
n!1

µ
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R ° 1
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0 bX
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1
n

bX 0 bX
∂°1 1

n
bX 0
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∂
.

It follows that N =C§ °!
d

¬2
`b

as claimed. Since C =C§+op (1) it has the same limiting distribution.

12.33 Bootstrap Overidentification Tests

The bootstrap for 2SLS (Section 12.23) can be used for overidentification tests, but the bootstrap
version of the overidentification statistic must be adjusted. This is because in the bootstrap universe the
overidentified moment conditions are not satisfied. One solution is to center the moment conditions.
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For the 2SLS estimator the standard overidentification test is based on the Sargan statistic

S = n
be 0

Z
°

Z
0
Z

¢°1
Z

0be
be 0be

be = y °X bØ2sls.

The recentered bootstrap analog is

S§§ = n

°
be§0

Z
§ °Z

0be
¢°

Z
§0

Z
§¢°1 °

Z
§0be§ °Z

0be
¢

be§0be§

be§ = y
§ °X

§bØ§
2sls.

On each bootstrap sample S§§(b) is calculated and stored. The bootstrap p-value is

p§ = 1
B

BX

b=1

°
S§§(b) > S

¢
.

This bootstrap p-value is asymtpotically valid because the statistic S§§ satisfies the overidentified
moment conditions.

12.34 Local Average Treatment Effects

In a pair of influential papers, Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996) pro-
posed an new interpretation of the instrumental variables estimator using the potential outcomes model
introduced in Section 2.30.

We will restrict attention to the case that the endogenous regressor x and excluded instrument z are
binary variables. We write the model as a pair of potential outcome functions. The dependent variable y
is a function of the regressor and an unobservable vector u

y = h (x,u)

and the endogenous regressor x is a function of the instrument z and u

x = g (z,u) .

By specifying u as a vector there is no loss of generality in letting both equations depend on u.
In this framework, the outcomes are determined by the random vector u and the exogenous instru-

ment z. This determines x, which determines y . To put this in the context of the college proximity
example, the variable u is everything specific about an individual. Given college proximity z, the person
decides to attend college or not. The person’s wage is determined by the individual attributes u as well
as college attendence x, but is not directly affected by college proximity z.

We can omit the random variable u from the notation as follows. An individual i has a realization
ui . We then set yi (x) = h (x,ui ) and xi (z) = g (z,ui ). Also, given a realization zi the observables are
xi = xi (zi ) and yi = yi (xi ).

In this model the causal effect of college for individual i is

Ci = yi (1)° yi (0).

As discussed in Section 2.30, in general this is individual-specific.
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We would like to learn about the distribution of the causal effects, or at least features of the distribu-
tion. A common feature of interest is the average treatment effect (ATE)

AT E = E [Ci ] = E
£

yi (1)° yi (0)
§

.

This, however, it typically not feasible to estimate allowing for endogenous x without strong assump-
tions (such as that the causal effect Ci is constant across individuals). The treatment effect literature has
explored what features of the distribution of Ci can be estimated.

One particular feature of interest, and emphasized by Imbens and Angrist (1994), is known as the
local average treatment effect (LATE), and is roughly the average effect upon those effected by the in-
strumental variable. To understand LATE, it is helpful to consider the college proximity example using
the potential outcomes framework. In this framework, each person is fully characterized by their indi-
vidual unobservable ui . Given ui , their decision to attend college is a function of the proximity indicator
zi . For some students, proximity has no effect on their decision. For other students, it has an effect in the
specific sense that given zi = 1 they choose to attend college while if zi = 0 they choose to not attend. We
can summarize the possibilites with the following chart, which is based on labels developed by Angrist,
Imbens and Rubin (1996).

x(0) = 0 x(0) = 1
x(1) = 0 Never Takers Deniers
x(1) = 1 Compliers Always Takers

The columns indicate the college attendence decision given z = 0. The rows indicate the college at-
tendence decision given z = 1. The four entries are labels for the four types of individuals based on these
decisions. The upper-left entry are the individuals who do not attend college regardless of z. They are
called “Never Takers”. The lower-right entry are the individuals who conversely attend college regardless
of z. They are called “Always Takers”. The bottom left are the individuals who only attend college if they
live close to one. They are called “Compliers”. The upper right entry is a bit of a challenge. These are in-
dividuals who attend college only if they do not live close to one. They are called “Deniers”. Imbens and
Angrist discovered that to identify the parameters of interest we need to assume that there are no De-
niers, or equivalently that x(1) ∏ x(0), which they label as a “monotonicity” condition – that increasing
the instrument cannot decrease x for any individual.

We can distinguish the types in the table by the relative values of x(1)° x(0). For Never-Takers and
Always-Takers, x(1)°x(0) = 0, while for Compliers, x(1)°x(0) = 1.

We are interested in the causal effect Ci = h(1,u)°h(0,u) of college attendence on wages. Consider
the average causal effect among the different types. Among Never-Takers and Always-Takers, x(1) = x(0)
so

E
£

yi (1)° yi (0) | x(1) = x(0)
§

.

Suppose we try and estimate its average value, conditional for each the three types of individuals:
Never-Takers, Always-Takers, and Compliers. It would impossible for the Never-Takers and Always-
Takers. For the former, none attend college so it would be impossible to ascertain the effect of college
attendence, and similarly for the latter since they all attend college. Thus the only group for which we
can estimate a causal effect are the Compliers. This is

LATE = E
£

yi (1)° yi (0) | xi (1) > xi (0)
§

.

Imbens and Angrist called this the local average treatment effect (LATE) as it is the average treat-
ment effect for the sub-population whose endogenous regressor is affected by changes in the instru-
mental variable.
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Interestingly, we show below that

LATE =
E
£

yi | zi = 1
§
°E

£
yi | zi = 0

§

E [xi | zi = 1]°E [xi | zi = 0]
. (12.72)

That is, LATE equals the Wald expression (12.29) for the slope coefficient in the IV regression model.
This means that the standard IV estimator is an estimator of LATE. Thus when treatment effects are
potentially heterogeneous, we can interpret IV as an estimator of LATE. The equality (12.72) occurs under
the following conditions.

Assumption 12.3 ui and zi are independent; and P [xi (1)°xi (0) < 0] = 0.

One interesting feature about LATE is that its value can depend on the instrument zi and the dis-
tribution of causal effects Ci in the population. To make this concrete, suppose that instead of the Card
proximity instrument, we consider an instrument based on the financial cost of local college attendence.
It is reasonable to expect that while the set of students affected by these two instruments are similar, the
two sets of students will not be the same. That is, some students may be responsive to proximity but
not finances, and conversely. If the causal effect Ci has a different average in these two groups of stu-
dents, then LATE will be different when calculated with these two instruments. Thus LATE can vary by
the choice of instrument.

How can that be? How can a well-defined parameter depend on the choice of instrument? Doesn’t
this contradict the basic IV regression model? The answer is that the basic IV regression model is more
restrictive – it specifies that the causal effect Ø is common across all individuals. Thus its value is the
same regardless of the choice of specific instrument (so long as it satisfies the instrumental variables
assumptions). In contrast, the potential outcomes framework is more general, allowing for the causal
effect to vary across individuals. What this analysis shows us is that in this context is quite possible for
the LATE coefficient to vary by instrument. This occurs when causal effects are heterogeneous.

One implication of the LATE framework is that IV estimates should be interpreted as causal effects
only for the population of compliers. Interpretation should focus on the population of potential compli-
ers and extension to other populations should be done with caution. For example, in the Card proximity
model, the IV estimates of the causal return to schooling presented in Table 12.1 should be interpreted as
applying to the population of students who are incentivized to attend college by the presence of a college
within their home county. The estimates should not be applied to other students.

Formally, the analysis of this section examined the case of a binary instrument and endogenous re-
gressor. How does this generalize? Suppose that the regressor x is discrete, taking J +1 discrete values.
We can then rewrite the model as one with J binary endogenous regressors. If we then have J binary in-
struments, we are back in the Imbens-Angrist framework (assuming the instruments have a monotonic
impact on the endogenous regressors). A benefit is that with a larger set of instruments it is plausible
that the set of compliers in the population is expanded.

We close this section by showing (12.72) under Assumption 12.3. The realized value of xi can be
written as

xi = (1° zi ) xi (0)+ zi xi (1) = xi (0)+ zi (xi (1)°xi (0)) .

Similarly
yi = yi (0)+xi

°
yi (1)° yi (0)

¢
= yi (0)+xi Ci .

Combining,
yi = yi (0)+xi (0)Ci + zi (xi (1)°xi (0))Ci .
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The independence of ui and zi implies independence of (yi (0), yi (1), xi (0), xi (1),Ci ) and zi . Thus

E
£

yi | zi = 1
§
= E

£
yi (0)

§
+E [xi (0)Ci ]+E [(xi (1)°xi (0))Ci ]

and
E
£

yi | zi = 0
§
= E

£
yi (0)

§
+E [xi (0)Ci ] .

Subtracting we obtain

E
£

yi | zi = 1
§
°E

£
yi | zi = 0

§
= E [(xi (1)°xi (0))Ci ]

= 1£E [Ci | xi (1)°xi (0) = 1]P [xi (1)°xi (0) = 1]

+0 ·E [Ci | xi (1)°xi (0) = 0]P [xi (1)°xi (0) = 0]

+ (°1)£E [Ci | xi (1)°xi (0) =°1]P [xi (1)°xi (0) =°1]

= E [Ci | xi (1)°xi (0) = 1](E [xi | zi = 1]°E [xi | zi = 0])

where the final equality uses P [xi (1)°xi (0) < 0] = 0 and

P [xi (1)°xi (0) = 1] = E [xi (1)°xi (0)] = E [xi | zi = 1]°E [xi | zi = 0] .

Rearranging

LATE = E [Ci | xi (1)°xi (0) = 1] =
E
£

yi | zi = 1
§
°E

£
yi | zi = 0

§

E [xi | zi = 1]°E [xi | zi = 0]

as claimed.

12.35 Identification Failure

Recall the reduced form equation

x2i =°012z1i +°022z2i +u2i .

The parameterØ fails to be identified if°22 has deficient rank. The consequences of identification failure
for inference are quite severe.

Take the simplest case where k1 = 0 and k2 = `2 = 1. Then the model may be written as

yi = xiØ+ei (12.73)

xi = zi∞+ui

and°22 = ∞= E [zi xi ]/E
£
z2

i

§
. We see thatØ is identified if and only if∞ 6= 0, which occurs when E [xi zi ] 6= 0.

Thus identification hinges on the existence of correlation between the excluded exogenous variable and
the included endogenous variable.

Suppose this condition fails. In this case ∞ = 0 and E [xi zi ] = 0. We now analyze the distribution of
the least-squares and IV estimators of Ø. For simplicity we assume conditional homoskedasticity and
normalize the variances to unity. Thus

var
∑µ

ei

ui

∂ØØØØ zi

∏
=

µ
1 Ω

Ω 1

∂
. (12.74)

The errors have non-zero correlation Ω 6= 0 which occurs when the variables are endogenous.
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By the CLT we have the joint convergence

1
p

n

nX

i=1

µ
zi ei

zi ui

∂
°!

d

µ
ª1

ª2

∂
ª N

µ
0,

µ
1 Ω

Ω 1

∂∂
.

It is convenient to define ª0 = ª1 °Ωª2 which is normal and independent of ª2.
As a benchmark, it is useful to observe that the least-squares estimator of Ø satisfies

bØols °Ø=
n°1 Pn

i=1 ui ei

n°1 Pn
i=1 u2

i

°!
p

Ω 6= 0

so endogeneity causes bØols to be inconsistent for Ø.
Under identification failure ∞= 0 the asymptotic distribution of the IV estimator is

bØiv °Ø=
1p
n

Pn
i=1 zi ei

1p
n

Pn
i=1 zi xi

°!
d

ª1

ª2
= Ω+ ª0

ª2
.

This asymptotic convergence result uses the continuous mapping theorem, which applies since the
function ª1/ª2 is continuous everywhere except at ª2 = 0, which occurs with probability equal to zero.

This limiting distribution has several notable features.
First, bØiv does not converge in probability to a limit, rather it converges in distribution to a random

variable. Thus the IV estimator is inconsistent. Indeed, it is not possible to consistently estimate an
unidentified parameter and Ø is not identified when ∞= 0.

Second, the ratio ª0/ª2 is symmetrically distributed about zero, so the median of the limiting distri-
bution of bØiv is Ø+Ω. This means that the IV estimator is median biased under endogeneity. Thus under
identification failure the IV estimator does not correct the centering (median bias) of least-squares.

Third, the ratio ª0/ª2 of two independent normal random variables is Cauchy distributed. This is
particularly nasty, as the Cauchy distribution does not have a finite mean. The distribution has thick
tails meaning that extreme values occur with higher frequency than the normal, and inferences based
on the normal distribution can be quite incorrect.

Together, these results show that ∞ = 0 renders the IV estimator particularly poorly behaved – it is
inconsistent, median biased, and non-normally distributed.

We can also examine the behavior of the t-statistic. For simplicity consider the classical (homoskedas-
tic) t-statistic. The error variance estimate has the asymptotic distribution

bæ2 = 1
n

nX

i=1

°
yi °xi bØiv

¢2

= 1
n

nX

i=1
e2

i °
2
n

nX

i=1
ei xi

° bØiv °Ø
¢
+ 1

n

nX

i=1
x2

i

° bØiv °Ø
¢2

°!
d

1°2Ω
ª1

ª2
+

µ
ª1

ª2

∂2

.

Thus the t-statistic has the asymptotic distribution

T =
bØiv °Øq

bæ2 Pn
i=1 z2

i /
ØØPn

i=1 zi xi
ØØ
°!

d

ª1/ª2r
1°2Ω ª1

ª2
+

≥
ª1
ª2

¥2
.

The limiting distribution is non-normal, meaning that inference using the normal distribution will be
(considerably) incorrect. This distribution depends on the correlation Ω. The distortion is increasing
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in Ω. Indeed as Ω ! 1 we have ª1/ª2 !p 1 and the unexpected finding bæ2 !p 0. The latter means that
the conventional standard error s( bØiv) for bØiv also converges in probability to zero. This implies that the
t-statistic diverges in the sense |T |!p 1. In this situations users may incorrectly interpret estimates as
precise, despite the fact that they are useless.

12.36 Weak Instruments

In the previous section we examined the extreme consequences of full identification failure. Similar
problems occur when identification is weak in the sense that the reduced form coefficients are of small
magnitude. In this section we derive an asymptotic distribution of the OLS, 2SLS, and LIML estimators
when the reduced form coefficients are treated as weak. We show that the estimators are inconsistent,
and the 2SLS and LIML estimators remain random in large samples.

To simplify the exposition we assume that there are no included exogenous variables (no x1) so we
write x2, z2 and Ø2 simply as x , z and Ø. Thus the model is

yi = x
0
iØ+ei

x i =°0z i +u2i .

Define the reduced form error vector ai = (vi ,u2i ) and its variance matrix

E
£

ai a
0
i

§
=ß=

∑
ß11 ß12

ß21 ß22

∏
.

Recall that the structural error is ei = vi °Ø0
u2i =∞0

ui where ∞=
°
1,°Ø

¢
, which has variance E

£
e2

i | z i
§
=

∞0ß∞. Also define the covariance ß2e = E [u2i ei | z i ] =ß21 °ß22Ø.
In Section 12.35 we assumed complete identification failure in the sense that ° = 0. We now want

to assume that identification does not completely fail, but is weak in the sense that ° is small. A rich
asymptotic distribution theory has been developed to understand this setting by modeling ° as “local-
to-zero”. The seminal contribution is Staiger and Stock (1997). The theory was extended to nonlinear
GMM estimation by Stock and Wright (2000).

The technical device introduced by Staiger and Stock (1997) is to assume that the reduced form pa-
rameter is local-to-zero, specifically

°= n°1/2
C (12.75)

where C is a free matrix. The n°1/2 scaling is picked because it provides just the right balance to allow
a useful distribution theory. The local-to-zero assumption (12.75) is not meant to be taken literally but
rather is meant to be a useful distributional approximation. The parameter C indexes the degree of
identification. Larger kCk implies stronger identification; smaller kCk implies weaker identification.

We now derive the asymptotic distribution of the least-squares, 2SLS and LIML estimators under the
local-to-unity assumption (12.75).

The least-squares estimator satisfies

bØols °Ø=
°
n°1

X
0
X

¢°1 °
n°1

X
0
e
¢

=
°
n°1

U
0
2U 2

¢°1 °
n°1

U
0
2e

¢
+op (1)

°!
p
ß°1

22ß2e .

Thus the least-squares estimator is inconsistent for Ø.
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To examine the 2SLS estimator, by the central limit theorem

1
p

n

nX

i=1
z i a

0
i °!d ª=

£
ª1,ª2

§

where
vec(ª) ª N

°
0,E

£
ai a

0
i ≠ z i z

0
i

§¢
.

This implies
1
p

n
Z

0
e °!

d
ªe = ª∞.

We also find that
1
p

n
Z

0
X = 1

n
Z

0
ZC + 1

p
n

Z
0
U 2 °!

d
Q zC +ª2.

Thus

X
0
P Z X =

µ
1
p

n
X

0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
p

n
Z

0
X

∂

°!
d

°
Q zC +ª2

¢0
Q

°1
z

°
Q zC +ª2

¢

and

X
0
P Z e =

µ
1
p

n
X

0
Z

∂µ
1
n

Z
0
Z

∂°1 µ
1
p

n
Z

0
e

∂

°!
d

°
Q zC +ª2

¢0
Q

°1
z
ªe .

We find that the 2SLS estimator has the asymptotic distribution

bØ2sls °Ø=
°

X
0
P Z X

¢°1 °
X

0
P Z e

¢

°!
d

≥°
Q zC +ª2

¢0
Q

°1
z

°
Q zC +ª2

¢¥°1 °
Q zC +ª2

¢0
Q

°1
z
ªe . (12.76)

As in the case of complete identification failure, we find that bØ2sls is inconsistent forØ, it is asymptotically
random, and its asymptotic distribution is non-normal. The distortion is affected by the coefficient C .
As kCk!1 the distribution in (12.76) converges in probability to zero, suggesting that bØ2sls is consistent
for Ø. This corresponds to the classic “strong identification” context.

Now consider the LIML estimator. The reduced form is Y = Z¶+a. This implies MZ Y = MZ a and
by standard asymptotic theory

1
n

Y
0
MZ Y = 1

n
a
0
MZ a °!

p
ß= E

£
ai a

0
i

§
.

Define Ø=
£
Ø, I k

§
so that the reduced form coefficients equal¶=

£
°Ø,°

§
= n°1/2

CØ. Then
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n
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n
Z

0
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p
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Z
0
U °!

d
Q zCØ+ª
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Y

0
Z

°
Z

0
Z

¢°1
Z

0
Y °!

d

≥
Q zCØ+ª

¥0
Q

°1
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≥
Q zCØ+ª
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This allows us to calculate that by the continuous mapping theorem

n bµ= min
∞

∞0
Y

0
Z

°
Z

0
Z

¢°1
Z

0
Y ∞

∞0 1
n Y

0
MZ Y ∞

°!
d

min
∞

∞0
≥
Q zCØ+ª

¥0
Q

°1
z

≥
Q zCØ+ª

¥
∞

∞0ß∞

=µ§

say, which is a function of ª and thus random. We deduce that the asymptotic distribution of the LIML
estimator is

bØliml °Ø=
µ

X
0
P Z X °n bµ

1
n

X
0
M Z X

∂°1 µ
X

0
P Z e °n bµ

1
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0
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¢0
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°1
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°
Q zC +ª2

¢
°µ§ß22

¥°1 ≥°
Q zC +ª2

¢0
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°1
z
ªe °µ§ß2e

¥
.

Similarly to 2SLS, the LIML estimator is inconsistent for Ø, is asymptotically random, and non-normally
distributed.

We summarize.

Theorem 12.18 Under (12.75),

bØols °Ø°!
p
ß°1

22ß2e

bØ2sls °Ø°!
d

≥°
Q zC +ª2

¢0
Q

°1
z

°
Q zC +ª2

¢¥°1 °
Q zC +ª2

¢0
Q

°1
z
ªe
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bØliml °Ø°!
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Q zC +ª2
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°
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¢
°µ§ß22

¥°1
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¢0

Q
°1
z
ªe °µ§ß2e

¥

where

µ§ = min
∞

∞0
≥
Q zCØ+ª

¥0
Q

°1
z

≥
Q zCØ+ª

¥
∞

∞0ß∞
.

All three estimators are inconsistent. The 2SLS and LIML estimators are asymptotically random with
non-standard distributions, similar to the asymptotic distribution of the IV estimator under complete
identification failure explored in the previous section. The difference under weak identification is the
presence of the coefficient matrix C .

12.37 Many Instruments

Some applications have available a large number ` of instruments. If they are all valid, using a large
number should reduce the asymptotic variance relative to estimation with a smaller number of instru-
ments. Is it then good practice to use many instruments? Or is there a cost to this practice? Bekker
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(1994) initiated a large literature investigating this question by formalizing the idea of “many instru-
ments”. Bekker proposed an asymptotic approximation which treats the number of instruments ` as
proportional to the sample size, that is ` = Æn, or equivalently that `/N ! Æ 2 [0,1). The distributional
theory obtained is similar in many respects to the weak instrument theory outlined in the previous sec-
tion. Consequently the impact of “weak” and “many” instruments is similar.

Again for simplicity we assume that there are no included exogenous regressors so that the model is

yi = x
0
iØ+ei (12.77)

x i =°0z i +u2i

with z i `£1. We also make the simplifying assumption that the errors are conditionally homoskedastic.
Specifically, for ai = (vi ,u2i )

E
£

ai a
0
i | z i

§
=ß=

∑
ß11 ß12

ß21 ß22

∏
. (12.78)

In addition we assume that the conditional fourth moments are bounded

E
£
kaik4 | z i

§
∑ B <1. (12.79)

The idea that there are “many instruments” is formalized by the assumption that the number of in-
struments is increasing proportionately with the sample size

`

n
°!Æ. (12.80)

The best way to think about this is to viewÆ as the ratio of ` to n in a given sample. Thus if an application
has n = 100 observations and `= 10 instruments, then we should treat Æ= 0.10.

Suppose that there is a single endogenous regressors xi . Calculate its variance using the reduced
form: var[xi ] = var

£
z
0
i°

§
+var[ui ]. Suppose as well that var[xi ] and var[ui ] are unchanging as ` increases.

This implies that var
£

z
0
i°

§
is unchanging, even though the dimension ` is increasing. This is a useful

assumption, as it implies that the population R2 of the reduced form is not changing with `. We don’t
need this exact condition, rather we simply assume that the sample version converges in probability to
a fixed constant. Specifically, we assume that

1
n

nX

i=1
°0z i z

0
i°°!

p
H (12.81)

for some matrix H > 0. Again, this essentially implies that the R2 of the reduced form regressions for
each regressor in x i converge to constants.

As a baseline it is useful to examine the behavior of the least-squares estimator of Ø. First, observe
that the variance of vec

°
n°1 Pn

i=1°
0
z i u

0
i

¢
, conditional on Z , is

ß≠n°2
nX

i=1
°0z i z

0
i°°!

p
0

by (12.81). Thus it converges in probability to zero:

n°1
nX

i=1
°0z i a

0
i °!p 0. (12.82)

Combined with (12.81) and the WLLN we find
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and
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Hence
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Thus least-squares is inconsistent for Ø.
Now consider the 2SLS estimator. In matrix notation, setting P Z = Z
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0
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In the expression on the right-side of (12.83), several of the components have been examined in (12.81)
and (12.82). We now examine the remaining components 1

n u
0
2P Z e and 1

n u
0
2P Z u2 which are sub-components

of the matrix 1
n a

0
P Z a. Take the j kth element 1

n a
0
j P Z ak .

First, take its expectation. We have (given under the conditional homoskedasticity assumption (12.78))
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the final equality since tr(P Z ) = `.
Second, we calculate its variance, which is a more cumbersome exercise. Let Pi m = z

0
i

°
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be the i mth element of P Z . Then a
0
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i=1
Pn

m=1 a j i akmPi m . The matrix P Z is idempotent. It
therefore has the properties

Pn
i=1 Pi i = tr(P Z ) = ` and 0 ∑ Pi i ∑ 1. The property P Z P Z = P Z also impliesPn
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CHAPTER 12. INSTRUMENTAL VARIABLES 411

The third equality holds because the remaining cross-products have zero expectation since the obser-
vations are independent and the errors have zero mean. The first inequality is (12.79). The second uses
P 2

i i ∑ Pi i and
Pn

m=1 P 2
i m = Pi i . The final equality is

Pn
i=1 Pi i = `. Together, we have shown that

var
∑

1
n

a
0
j P Z ak

∏
! 0.

Using (12.80), (12.84), Markov’s inequality (B.36), and combining across all j and k we deduce that

1
n

a
0
P Z a °!

p
Æß. (12.85)

Returning to the 2SLS estimator (12.83) and combining (12.81), (12.82), and (12.85), we find

bØ2sls °Ø°!
p

(H +Æß22)°1Æß2e .

Thus 2SLS is also inconsistent for Ø. The limit, however, depends on the magnitude of Æ.
We finally examine the LIML estimator. (12.85) implies
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Thus LIML is consistent for Ø, unlike 2SLS.
We state these results formally.
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Theorem 12.19 In model (12.77), under assumptions (12.78), (12.79) and
(12.80), then as n !1.

bØols °!p Ø+ (H +ß22)°1ß2e

bØ2sls °!p Ø+ (H +Æß22)°1Æß2e

bØliml °!p Ø.

This result is quite insightful. It shows that while endogeneity (ß2e 6= 0) renders the least-squares
estimator inconsistent, the 2SLS estimator is also inconsistent if the number of instruments diverges
proportionately with n. The limit in Theorem 12.19 shows a continuity between least-squares and 2SLS.
The probability limit of the 2SLS estimator is continuous inÆ, with the extreme case (Æ= 1) implying that
2SLS and least-squares have the same probability limit. The general implication is that the inconsistency
of 2SLS is increasing in Æ.

The theorem also shows that unlike 2SLS, the LIML estimator is consistent under the many instru-
ments assumption. Effectively, LIML makes a bias-correction.

Theorems 12.18 (weak instruments) and 12.19 (many instruments) tell a cautionary tale. They show
that when instruments are weak and/or many, that the 2SLS estimator is inconsistent. The degree of
inconsistency depends on the weakness of the instruments (the magnitude of the matrix C in Theorem
12.18) and the degree of overidentification (the ratio Æ in Theorem 12.19). The Theorems also show that
the LIML estimator is inconsistent under the weak instrument assumption but with a bias-correction,
and is consistent under the many instrument assumption. This suggests that LIML is more robust than
2SLS to weak and many instruments.

An important limitation of the results in Theorem 12.19 is the assumption of conditional homoskedas-
ticity. It appears likely that the consistency of LIML may fail in the many instrument setting if the errors
are heteroskedastic.

In an application, users should be aware of the potential consequences of the many instrument
framework. It many be useful to calculate the “many instrument ratio” Æ = `/n. Unfortunately there
is no known rule-of-thumb for Æ which should lead to acceptable inference, but a minimum criterion
is that if Æ ∏ 0.05 you should be seriously concerned about the many-instrument problem. In general,
when Æ is large it seems preferable to use LIML instead of 2SLS.

12.38 Testing for Weak Instruments

In the previous sections we have found that weak instruments results in non-standard asymptotic
distributions for the 2SLS and LIML esitmators. In practice how do we know if this is a problem? Is there
a way to test if the instruments are weak?

This question was addressed in an influential paper by Stock and Yogo (2005) as an extension of
Staiger and Stock (1997). Stock-Yogo focus on two implications of weak instruments: (1) estimation bias
and (2) inference distortion. The show how to test the hypothesis that these distortions are not “too
big”. These tests are simply F tests for the excluded instruments in the reduced form regressions, but
with non-standard critical values. In particular, when there is one endogenous regressor and a single
instrument, the Stock-Yogo test rejects the null of weak instruments when this F statistic exceeds 10.
While Stock and Yogo explore two types of distortions, we focus exclusively on inference as that is the
more challenging problem. In this section we describe the Stock-Yogo theory and tests for the case of a
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single endogenous regressor (k2 = 1), and in the following section describe their methods for the case of
multiple endogeneous regressors.

While the theory in Stock and Yogo allows for an arbitrary number of exogenous regressors and in-
struments, for the sake of clear exposition we will focus on the very simple case of no included exogenous
variables (k1 = 0) and just one exogenous instrument (`2 = 1), which is model (12.73) from Section 12.35

yi = xiØ+ei

xi = zi°+ui .

Furthermore, as in Section 12.35 we assume conditional homoskedasticity and normalize the variances
as in (12.74). Since the model is just-identified the 2SLS, LIML and IV estimators are all equivalent.

The question of primary interest is to determine conditions on the reduced form under which the IV
estimator of the structural equation is well behaved, and secondly, what statistical tests can be used to
learn if these conditions are satisfied. As in Section 12.36 we assume that the reduced form coefficient °
is local-to-zero, specifically

°= n°1/2µ.

The asymptotic distribution of the IV estimator is presented in Theorem 12.18. Given the simplifying
assumptions the result is

bØiv °Ø°!
d

ªe

µ+ª2

where (ªe ,ª2) are bivariate normal. For inference we also examine the behavior of the classical (ho-
moskedastic) t-statistic for the IV estimator. Note
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de f= S. (12.86)

In general, S is non-normal, and its distribution depends on the parameters Ω and µ.
Can we use the distribution S for inference on Ø? The distribution depends on two unknown param-

eters, and neither is consistently estimable. (Thus we cannot simply use the distribution in (12.86) with
Ω and µ replaced with estimates.) To eliminate the dependence on Ω one possibility is to use the “worst
case” value, which turns out to be Ω = 1. By worst-case we mean that value which causes the greatest
distortion away from normal critical values. Setting Ω = 1 we have the considerable simplification

S = S1 = ª

ØØØØ1+
ª

µ

ØØØØ (12.87)

where ª ª N(0,1). When the model is strongly identified (so
ØØµ

ØØ is very large) then S1 º ª is standard
normal, consistent with classical theory. However when

ØØµ
ØØ is very small (but non-zero) |S1| º ª2/µ (in

the sense that this term dominates), which is a scaled ¬2
1 and quite far from normal. As

ØØµ
ØØ ! 0 we find

the extreme case |S1|!p 1.
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While (12.87) is a convenient simplification it does not yield a useful approximation for inference
since the distribution in (12.87) is highly dependent on the unknown µ. If we try to take the worst-case
value of µ, which is µ= 0, we find that |S1| diverges and all distributional approximations fail.

To break this impasse, Stock and Yogo (2005) recommended a constructive alternative. Rather than
using the worst-case µ, they suggested finding a threshold such that if µ exceeds this threshold then the
distribution (12.87) is not “too badly” distorted from the normal distribution.

Specifically, the Stock-Yogo recommendation can be summarized by two steps. First, the distribution
result (12.87) can be used to find a threshold value ø2 such that if µ2 ∏ ø2 then the size of the nominal1

5% test “Reject if |T | ∏ 1.96” has asymptotic size P [|S1|∏ 1.96] ∑ 0.15. This means that while the goal is
to obtain a test with size 5%, we recognize that there may be size distortion due to weak instruments and
are willing to tolerate a specific size distortion, for example 10% distortion (allow for actual size up to
15%, or more generally r ). Second, they use the asymptotic distribution of the reduced-form (first stage)
F statistic to test if the actual unknown value of µ2 exceeds the threshold ø2. These two steps together
give rise to the rule-of-thumb that the first-stage F statistic should exceed 10 in order to achieve reliable
IV inference. (This is for the case of one instrumental variable. If there is more than one instrument then
the rule-of-thumb changes.) We now describe the steps behind this reasoning in more detail.

The first step is to use the distribution (12.86) to determine the threshold ø2. Formally, the goal is to
find the value of ø2 =µ2 at which the asymptotic size of a nominal 5% test is actually r (e.g. r = 0.15)

P [|S1|∏ 1.96] ∑ r.

By some algebra and using the quadratic formula the event
ØØª

°
1+ª/µ

¢ØØ< x is the same as

µ2

4
°xµ<

≥
ª+ µ

2

¥2
< µ2

4
+xµ.

The random variable between the inequalities is distributed ¬2
1(µ2/4), a noncentral chi-square with one

degree of freedom and noncentrality parameter µ2/4. Thus
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(12.88)

where G (u,∏) is the distribution function of ¬2
1(∏). Hence the desired threshold ø2 solves

1°G
µ
ø2

4
+1.96ø,

ø2

4

∂
+G

µ
ø2

4
°1.96ø,

ø2

4

∂
= r

or effectively

G
µ
ø2

4
+1.96ø,

ø2

4

∂
= 1° r

since ø2/4°1.96ø < 0 for relevant values of ø. The numerical solution (computed with the non-central
chi-square distribution function, e.g. in MATLAB) is ø2 = 1.70 when r = 0.15. (That is, the
command

ncx2cdf(1.7/4+1.96§sqrt(1.7),1,1.7/4)

1The term “nominal size” of a test is the official intended size – the size which would obtain under ideal circumstances. In
this context the test “Reject if |T |∏ 1.96” has nominal size 0.05 as this would be the asymptotic rejection probability in the ideal
context of strong instruments.
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yields the answer . Stock and Yogo (2005) approximate the same calculation using simulation
methods and report ø2 = 1.82.)

This calculation means that if the true reduced form coefficient satisfies µ2 ∏ 1.7, or equivalently if
°2 ∏ 1.7/n, then the (asymptotic) size of a nominal 5% test on the structural parameter is no larger than
15%.

To summarize the Stock-Yogo first step, we calculate the minimum value ø2 forµ2 sufficient to ensure
that the asymptotic size of a nominal 5% t-test does not exceed r , and find that ø2 = 1.70 for r = 0.15.

The Stock-Yogo second step is to find a critical value for the first-stage F statistic sufficient to reject
the hypothesis that H0 :µ2 = ø2 against H1 :µ2 > ø2. We now describe this procedure.

They suggest testingH0 :µ2 = ø2 at the 5% size using the first stage F statistic. If the F statistic is small
so that the test does not reject then we should be worried that the true value of µ2 is small and there is a
weak instrument problem. On the other hand if the F statistic is large so that the test rejects then we can
have some confidence that the true value of µ2 is sufficiently large that the weak instrument problem is
not too severe.

To implement the test we need to calculate an appropriate critical value. It should be calculated
under the null hypothesis H0 : µ2 = ø2. This is different from a conventional F test (which has the null
hypothesis H0 :µ2 = 0).

We start by calculating the asymptotic distribution of F. Since there is just one regressor and one
instrument in our simplified setting, the first-stage F statistic is the squared t-statistic from the reduced
form, and given our previous calculations has the asymptotic distribution

F =
b∞2

s
°
b∞
¢2 =

°Pn
i=1 zi xi

¢2

°Pn
i=1 x2

i

¢
bæ2

u
°!

d

°
µ+ª2

¢2 ª¬2
1
°
µ2¢ .

This is a non-central chi-square distribution with one degree of freedom and non-centrality parameter
µ2. The distribution function of the latter is G(u,µ2).

To test H0 : µ2 = ø2 against H1 : µ2 > ø2 we reject for F ∏ c where c is selected so that the asymptotic
rejection probability

P [F ∏ c] !P
£
¬2

1
°
µ2¢∏ c

§
= 1°G

°
c,µ2¢

equals 0.05 under H0 :µ2 = ø2, or equivalently

G
°
c,ø2¢=G (c,1.7) = 0.95.

This can be found using the non-central chi-square quantile function, e.g. the function Q(p,d) which
solves G(Q(p,d),d) = p. We find that

c =Q (0.95,1.7) = 8.7.

In MATLAB, this can be computed by . (Stock and Yogo (2005) report c = 9.0 since
they used ø2 = 1.82.)

This means that if F > 8.7 we can reject H0 : µ2 = 1.7 against H1 : µ2 > 1.7 with an asymptotic 5% test.
In this context we should expect the IV estimate and tests to be reasonably well behaved. However, if
F < 8.7 then we should be cautious about the IV estimator, confidence intervals, and tests. This finding
led Staiger and Stock (1997) to propose the informal “rule of thumb” that the first stage F statistic should
exceed 10. Notice that F exceeding 8.7 (or 10) is equivalent to the reduced form t-statistic exceeding 2.94
(or 3.16), which is considerably larger than a conventional check if the t-statistic is “significant”. Equiv-
alently, the recommended rule-of-thumb for the case of a single instrument is to estimate the reduced
form and verify that the t-statistic for exclusion of the instrumental variable exceeds 3 in absolute value.

Does the proposed procedure control the asymptotic size of a 2SLS test? The first step has asymptotic
size bounded below r (e.g. 15%). The second step has asymptotic size 5%. By the Bonferroni bound (see
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Section 9.20) the two steps together have asymptotic size bounded below r +0.05 (e.g. 20%). We can thus
call the Stock-Yogo procedure a rigorous test with asymptotic size r +0.05 (or 20%).

Our analysis has been confined to the case k2 = `2 = 1. Stock and Yogo (2005) also examine the case
of `2 > 1 (which requires numerical simulation to solve), and both the 2SLS and LIML estimators. They
show that the F statistic critical values depend on the number of instruments `2 as well as the estimator.
We report their calculations in Table 12.4.

Table 12.4: 5% Critical Value for Weak Instruments, k2 = 1

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.4 9.0 6.7 5.5 16.4 9.0 6.7 5.5
2 19.9 11.6 8.7 7.2 8.7 5.3 4.4 3.9
3 22.3 12.8 9.5 7.8 6.5 4.4 3.7 3.3
4 24.6 14.0 10.3 8.3 5.4 3.9 3.3 3.0
5 26.9 15.1 11.0 8.8 4.8 3.6 3.0 2.8
6 29.2 16.2 11.7 9.4 4.4 3.3 2.9 2.6
7 31.5 17.4 12.5 9.9 4.2 3.2 2.7 2.5
8 33.8 18.5 13.2 10.5 4.0 3.0 2.6 2.4
9 36.2 19.7 14.0 11.1 3.8 2.9 2.5 2.3

10 38.5 20.9 14.8 11.6 3.7 2.8 2.5 2.2
15 50.4 26.8 18.7 12.2 3.3 2.5 2.2 2.0
20 62.3 32.8 22.7 17.6 3.2 2.3 2.1 1.9
25 74.2 38.8 26.7 20.6 3.8 2.2 2.0 1.8
30 86.2 44.8 30.7 23.6 3.9 2.2 1.9 1.7

One striking feature about these critical values is that those for the 2SLS estimator are strongly in-
creasing in `2 while those for the LIML estimator are decreasing in `2. This means that when the number
of instruments `2 is large, 2SLS requires a much stronger reduced form (larger µ2) in order for inference
to be reliable, but this is not the case for LIML. This is direct evidence that inference is less sensitive to
weak instruments when estimation is by LIML rather than 2SLS. This makes a strong case for using LIML
rather than 2SLS, especially when `2 is large or the instruments are potentially weak.

We now summarize the recommended Staiger-Stock/Stock-Yogo procedure for k1 ∏ 1, k2 = 1, and
`2 ∏ 1. The structural equation and reduced form equations are

yi = x
0
1iØ1 +x2iØ2 +ei

x2i = x
0
1i∞1 + z

0
2i∞2 +ui .

The reduced form is estimated by least-squares

x2i = x
0
1i b∞1 + z

0
2i b∞2 + bui

and the structural equation by either 2SLS or LIML:

yi = x
0
1i

bØ1 +x2i bØ2 + bei .

Let F be the F statistic for H0 : ∞2 = 0 in the reduced form equation. Let s( bØ2) be a standard error for Ø2

in the structural equation. The procedure is:
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1. Compare F with the critical values c in the above table, with the row selected to match the number
of excluded instruments `2, and the columns to match the estimation method (2SLS or LIML) and
the desired size r .

2. If F > c then report the 2SLS or LIML estimates with conventional inference.

The Stock-Yogo test can be implemented in Stata using the command after
or if a standard (non-robust) covariance matrix has been specified (that is, without

the ‘ ’ option).
There are possible extensions to the Stock-Yogo procedure.
One modest extension is to use the information to convey the degree of confidence in the accuracy

of a confidence interval. Suppose in an application you have `2 = 5 excluded instruments and have esti-
mated your equation by 2SLS. Now suppose that your reduced form F statistic equals 12. You check the
Stock-Yogo table, and find that F = 12 is significant with r = 0.20. Thus we can interpret the conventional
2SLS confidence interval as having coverage of 80% (or 75% if we make the Bonferroni correction). On
the other hand if F = 27 we would conclude that the test for weak instruments is significant with r = 0.10,
meaning that the conventional 2SLS confidence interval can be interpreted as having coverage of 90%
(or 85% after Bonferroni correction).

A more substantive extension, which we now discuss, reverses the steps. Unfortunately this discus-
sion will be limited to the case `2 = 1, where 2SLS and LIML are equivalent. First, use the reduced form F
statistic to find a one-sided confidence interval for µ2 of the form [µ2

L ,1). Second, use the lower bound
µ2

L to calculate a critical value c for S1 such that the 2SLS test has asymptotic size bounded below 0.05.
This produces better size control than the Stock-Yogo procedure and produces more informative confi-
dence intervals for Ø2. We now describe the steps in detail.

The first goal is to find a one-sided confidence interval for µ2. This is found by test inversion. As we
described earlier, for any ø2 we reject H0 : µ2 = ø2 in favor of H1 : µ2 > ø2 if F > c where G(c,ø2) = 0.95.
Equivalently, we reject if G(F,ø2) > 0.95. By the test inversion principle, an asymptotic 95% confidence
interval [µ2

L ,1) can be formed as the set of all values of ø2 which are not rejected by this test. Since
G(F,ø2) ∏ 0.95 for all ø2 in this set, the lower bound µ2

L satisfies G(F,µ2
L) = 0.95. The lower bound is found

from this equation. Since this solution is not generally programmed, it needs to be found numerically.
In MATLAB, the solution is when returns .

The second goal is to find the critical value c such that P (|S1|∏ c) = 0.05 when µ2 =µ2
L . From (12.88),

this is achieved when
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= 0.05. (12.89)

This can be solved as

G

√
µ2

L

4
+ cµL ,

µ2
L

4

!

= 0.95.

(The third term on the left-hand-side of (12.89) is zero for all solutions so can be ignored.) Using the
non-central chi-square quantile function Q(p,d), this C equals

c =
Q

≥
0.95,

µ2
L

4

¥
° µ2

L
4

µL
.

For example, in MATLAB this is found as . 95% confi-
dence intervals for Ø2 are then calculated as

bØiv ± cs( bØiv).
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We can also calculate a p-value for the t-statistic T for Ø2. These are

p = 1°G
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+|T |µL ,

µ2
L

4
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+G
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4
° |T |µL ,
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4

!

where the third term equals zero if |T | ∏ µL/4. In MATLAB, for example, this can be calculated by the
commands

T1= mu2/4+abs(T)§sqrt(mu2);
T2= mu2/4°abs(T)§sqrt(mu2);
p=°ncx2cdf(T1,1,mu2/4)+ncx2cdf(T2,1,mu2/4);
These confidence intervals and p-values will be larger than the conventional intervals and p-values,

reflecting the incorporation of information about the strength of the instruments through the first-stage
F statistic. Also, by the Bonferroni bound these tests have asymptotic size bounded below 10% and the
confidence intervals have asymptotic converage exceeding 90%, unlike the Stock-Yogo method which
has size of 20% and coverage of 80%.

The augmented procedure suggested here, only for the `2 = 1 case, is

1. Find µ2
L which solves G

°
F,µ2

L

¢
= 0.95 . In MATLAB, the solution is when

returns .

2. Find c which solves G
°
µ2

L/4+ cµL ,µ2
L/4

¢
= 0.95. In MATLAB, the command is

3. Report the confidence interval bØ2 ± cs( bØ2) for Ø2.

4. For the t statistic T =
° bØ2 °Ø2

¢
/s( bØ2) the asymptotic p-value is
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which is computed in MATLAB by
and )+ ).

We have described an extension to the Stock-Yogo procedure for the case of one instrumental vari-
able `2 = 1. This restriction was due to the use of the analytic formula (12.89) for the asymptotic distribu-
tion, which is only available when `2 = 1. In principle the procedure could be extended using simulation
or bootstrap methods, but this has not been done to my knowledge.

To illustrate the Stock-Yogo and extended procedures, let us return to the Card proximity example.
First, let’s take the IV estimates reported in the second column of Table 12.1 which used college proximity
as a single instrument. The reduced form estimates for the endogenous variable education is reported
in the second column of Table 12.2. The excluded instrument college has a t-ratio of 4.2 which implies
an F statistic of 17.8. The F statistic exceeds the rule-of thumb of 10, so the structural estimates pass
the Stock-Yogo threshold. Based on the Stock-Yogo recommendation, this means that we can interpret
the estimates conventionally. However, the conventional confidence interval, e.g. for the returns to
education, 0.132±0.049§1.96 = [0.04, 0.23] has an asymptotic coverage of 80%, rather than the nominal
95% rate.

Now consider the extended procedure. Given F = 17.8 we can calculate the lower bound µ2
L = 6.6.

This implies a critical value of C = 2.7. Hence an improved confidence interval for the returns to edu-
cation in this equation is 0.132± 0.049§ 2.7 = [0.01, 0.26]. This is a wider confidence interval, but has
improved asymptotic coverage of 90%. The p-value for Ø2 = 0 is p = 0.012.
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Next, let’s take the 2SLS estimates reported in the fourth column of Table 11.1 which use the two
instruments public and private. The reduced form equation is reported in column six of Table 12.2. An
F statistic for exclusion of the two instruments is F = 13.9, which exceeds the 15% size threshold for 2SLS
and all thresholds for LIML, indicating that the structural estimates pass the Stock-Yogo threshold test
and can be interpreted conventionally.

The weak instrument methods described here are important for applied econometrics as they dis-
cipline researchers to assess the quality of their reduced form relationships before reporting structural
estimates. The theory, however, has limitations and shortcomings. A major limitation is that the theory
requires the strong assumption of conditional homoskedasticity. Despite this theoretical limitation, in
practice researchers apply the Stock-Yogo recommendations to estimates computed with heteroskedasticity-
robust standard errors as it is the currently the best known approach. This is an active area of research
so the recommended methods may change in the years ahead.

12.39 Weak Instruments with k2 > 1

When there are more than one endogenous regressor (k2 > 1) it is better to examine the reduced
form as a system. Staiger and Stock (1997) and Stock and Yogo (2005) provided an analysis of this case
and constructed a test for weak instruments. The theory is considerably more involved than the k2 = 1
case, so we briefly summarize it here excluding many details, emphasizing their suggested methods.

The structural equation and reduced form equations are

yi = x
0
1iØ1 +x

0
2iØ2 +ei

x2i =°012z1i +°022z2i +u2i .

As in the previous section we assume that the errors are conditionally homoskedastic.
Identification of Ø2 requires the matrix °22 to be full rank. A necessary condition is that each row of

°022 is non-zero, but this is not sufficient.
We focus on the size performance of the homoskedastic Wald statistic for the 2SLS estimator of Ø2.

For simplicity assume that the variance of ei is known and normalized to one. Using representation
(12.34), the Wald statistic can be written as
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Recall from Section 12.36 that Stock and Staiger model the excluded instruments z2i as weak by set-
ting °22 = n°1/2

C for some matrix C . In this framework we have the asymptotic distribution results
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where ª2 is a matrix normal variates whose columns are independent N(0, I ). The variables ª0 and ª2 are
correlated. Together we obtain the asymptotic distribution of the Wald statistic

W °!
d

S = ª00
≥
C +ª2

¥≥
C

0
C

¥°1 ≥
C +ª2

¥0
ª0.

Using the spectral decomposition, C
0
C = H

0§H where H
0
H = I and§ is diagonal. Thus we can write

S = ª00ª2§
°1ª

0
2ª0

where ª2 = C H
0 + ª2H

0. The matrix ª§ = (ª0,ª2) is multivariate normal, so ª§0ª§ has what is called a
non-central Wishart distribution. It only depends on the matrix C through HC

0
C H

0 =§, which are the
eigenvalues of C

0
C . Since S is a function of ª§ only through ª

0
2ª0 we conclude that S is a function of C

only through these eigenvalues.
This is a very quick derivation of a rather involved derivation, but the conclusion drawn by Stock and

Yogo is that the asymptotic distribution of the Wald statistic is non-standard, and a function of the model
parameters only through the eigenvalues of C

0
C and the correlations between the normal variates ª0 and

ª2. The worst-case can be summarized by the maximal correlation between ª0 and ª2 and the smallest
eigenvalue of C

0
C . For convenience, they rescale the latter by dividing by the number of endogenous

variables. Define
G =C

0
C /k2 =ß°1/2

C
0
QCß°1/2/k2

and
g =∏min (G) =∏min

°
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C
0
QCß°1/2¢/k2.

This can be estimated from the reduced-form regression

x2i = b°012z1i + b°022z2i + bu2i .

The estimator is
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¢
.

bG is a matrix F -type statistic for the coefficient matrix b°22.
The statistic bg was proposed by Cragg and Donald (1993) as a test for underidentification. Stock and

Yogo (2005) use it as a test for weak instruments. Using simulation methods, they determined critical
values for bg similar to those for the k2 = 1 case. For given size r > 0.05, there is a critical value c (reported
in the table below) such that if bg > c, then the 2SLS (or LIML) Wald statistic W for bØ2 has asymptotic size
bounded below r . On the other hand, if bg ∑ c then we cannot bound the asymptotic size below r and we
cannot reject the hypothesis of weak instruments.

The Stock-Yogo critical values for k2 = 2 are presented in Table 12.5. The methods and theory applies
to the cases k2 > 2 as well, but those critical values have not been calculated. As for the k2 = 1 case, the
critical values for 2SLS are dramatically increasing in `2. Thus when the model is over-identified, we
need quite a large value of bg to reject the hypothesis of weak instruments. This is a strong cautionary
message to check the bg statistic in applications. Furthermore, the critical values for LIML are generally
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decreasing in `2 (except for r = 0.10, where the critical values are increasing for large `2). This means
that for over-identified models, LIML inference is much less sensitive to weak instruments than 2SLS,
and may be the preferred estimation method.

The Stock-Yogo test can be implemented in Stata using the command after
or if a standard (non-robust) covariance matrix has been specified (that is, with-

out the ‘ ’ option). Critical values which control for size are only available for for k2 ∑ 2. For for k2 > 2
critical values which control for relative bias are reported.

Robust versions of the test have been proposed by Kleibergen and Paap (2006). These can be imple-
mented in Stata using the downloadable command .

Table 12.5: 5% Critical Value for Weak Instruments, k2 = 2

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
2 7.0 4.6 3.9 3.6 7.0 4.6 3.9 3.6
3 13.4 8.2 6.4 5.4 5.4 3.8 3.3 3.1
4 16.9 9.9 7.5 6.3 4.7 3.4 3.0 2.8
5 19.4 11.2 8.4 6.9 4.3 3.1 2.8 2.6
6 21.7 12.3 9.1 7.4 4.1 2.9 2.6 2.5
7 23.7 13.3 9.8 7.9 3.9 2.8 2.5 2.4
8 25.6 14.3 10.4 8.4 3.8 2.7 2.4 2.3
9 27.5 15.2 11.0 8.8 3.7 2.7 2.4 2.2

10 29.3 16.2 11.6 9.3 3.6 2.6 2.3 2.1
15 38.0 20.6 14.6 11.6 3.5 2.4 2.1 2.0
20 46.6 25.0 17.6 13.8 3.6 2.4 2.0 1.9
25 55.1 29.3 20.6 16.1 3.6 2.4 1.97 1.8
30 63.5 33.6 23.5 18.3 4.1 2.4 1.95 1.7

12.40 Example: Acemoglu, Johnson and Robinson (2001)

One particularly well-cited instrumental variable regression is in Acemoglu, Johnson and Robinson
(2001) with additional details published in (2012). They are interested in the effect of political insti-
tutions on economic performance. The theory is that good institutions (rule-of-law, property rights)
should result in a country having higher long-term economic output than if the same country had poor
institutions. To investigate this question, they focus on a sample of 64 former European colonies. Their
data is in the file on the textbook website.

The authors’ premise is that modern political institutions will have been influenced by the colonizing
country. In particular, they argue that colonizing countries tended to set up colonies as either an “extrac-
tive state” or as a “migrant colony”. An extractive state was used by the colonizer to extract resources for
the colonizing country, but was not largely settled by the European colonists. In this case the colonists
would have had no incentive to set up good political institutions. In contrast, if a colony was set up as a
“migrant colony”, then large numbers of European settlers migrated to the colony to live. These settlers
would have desired institutions similar to those in their home country, and hence would have had a posi-
tive incentive to set up good political institutions. The nature of institutions is quite persistent over time,
so these 19th-century foundations would affect the nature of modern institutions. The authors conclude
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that the 19th-century nature of the colony should be predictive of the nature of modern institutions, and
hence modern economic growth.

To start the investigation they report an OLS regression of log GDP per capita in 1995 on a measure
of political institutions they call “risk”, which is a measure of the protection against expropriation risk.
[]This variable ranges from 0 to 10, with 0 the lowest protection against appropriation, and 10 the highest.
For each country the authors take the average value of the index over 1985 to 1995 (the mean is 6.5 with
a standard deviation of 1.5). Their reported OLS estimates (intercept omitted) are

·log(GDP per Capita) = 0.52
(0.06)

risk. (12.90)

These estimates imply a 52% difference in GDP between countries with a 1-unit difference in risk.
The authors argue that the risk is likely endogenous, since economic output influences political in-

stitutions, and because the variable risk is undoubtedly measured with error. These issues induce least-
square bias in different directions and thus the overall bias effect is unclear.

To correct for the endogeneity bias the authors argue the need for an instrumental variable which
does not directly affect economic performance yet is associated with political institutions. Their innova-
tive suggestion was to use the mortality rate which faced potential European settlers in the 19th century.
Colonies with high expected mortality would have been less attractive to European setters, resulting in
lower levels of European migrants. As a consequence the authors expect such colonies to have been more
likely structured as an extractive state rather than a migrant colony. To measure the expected mortality
rate the authors use estimates provided by historical research of the annualized deaths per 1000 soldiers,
labeled mortality. (They used military mortality rates as the military maintained high-quality records.)
The first-stage regression is

r i sk = °0.61
(0.13)

log(mortality)+ bu. (12.91)

These estimates confirm that 19th-century high settler mortality rates are associated with countries with
lower quality modern institutions. Using log(mortality) as an instrument for risk, they estimate the struc-
tural equation using 2SLS and report

·log(GDP per Capita) = 0.94
(0.16)

risk. (12.92)

This estimate is much higher than the OLS estimate from (12.90). The estimate is consistent with a near
doubling of GDP due to a 1-unit difference in the risk index.

These are simple regressions involving just one right-hand-side variable. The authors considered a
range of other models. Included in these results are a reversal of a traditional finding. In a conventional
(least-squares) regression two relevant varibles for output are latitude (distance from the equator) and
africa (a dummy variable for countries from Africa), both of which are difficult to interpret causally. But
in the proposed instrumental variables regression the variables latitude and africa have much smaller –
and statistically insignificant – coefficients.

To assess the specification, we can use the Stock-Yogo and endogeneity tests. The Stock-Yogo test is
from the reduced form (12.91). The instrument has a t-ratio of 4.8 (or F = 23) which exceeds the Stock-
Yogo critical value and hence can be treated as strong. For an endogeneity test, we take the least-squares
residual bu from this equation and include it in the structural equation and estimate by least-squares. We
find a coefficient on bu of °0.57 with a t-ratio of 4.7, which is highly significant. We conclude that the
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least-squares and 2SLS estimates are statistically different, and reject the hypothesis that the variable
risk is exogenous for the GDP structural equation.

In Exercise 12.23 you will replicate and extend these results using the authors’ data.
This paper is a creative and careful use of the instrumental variables method. The creativity stems

from the historical analysis which lead to the focus on mortality as a potential predictor of migration
choices. The care comes in the implementation, as the authors needed to gather country-level data on
political institutions and mortality from distinct sources. Putting these pieces together is the art of the
project.

12.41 Example: Angrist and Krueger (1991)

Another influential instrument variable regression is in Angrist and Krueger (1991). Their concern,
similar to Card (1995), is estimation of the structural returns to education while treating educational
attainment as endogenous. Like Card, their goal is to find an instrument which is exogenous for wages
yet has an impact on education. A subset of their data in the file on the textbook website.

Their creative suggestion was to focus on compulsory school attendance policies and their interac-
tion with birthdates. Compulsory schooling laws vary across states in the United States, but typically
require that youth remain in school until their sixteenth or seventeenth birthday. Angrist and Krueger
argue that compulsory schooling has a causal effect on wages – youth who would have chosen to drop
out of school stay in school for more years – and thus have more education which causally impacts their
earnings as adults.

Angrist and Krueger next observe that these policies have differential impact on youth who are born
early or late in the school year. Students who are born early in the calendar year are typically older when
they enter school. Consequently when they attain the legal dropout age they have attended less school
than those born near the end of the year. This means that birthdate (early in the calendar year versus late)
exogenously impacts educational attainment, and thus wages through education. Yet birthdate must be
exogenous for the structural wage equation, as there is no reason to believe that birthdate itself has a
causal impact on a person’s ability or wages. These considerations together suggest that birthdate is a
valid instrumental variable for education in a causal wage equation.

Typical wage datasets include age, but not birthdates. To obtain information on birthdate, Angrist
and Krueger used U.S. Census data which includes an individual’s quarter of birth (January-March, April-
June, etc.). They use this variable to construct 2SLS estimates of the return to education.

Their paper carefully documents that educational attainment varies by quarter of birth (as predicted
by the above discussion), and reports a large set of least-squares and 2SLS estimates. We focus on two
estimates at the core of their analysis, reported in column (6) of their Tables V and VII. This involves data
from the 1980 census with men born in 1930-1939, with 329,509 observations. The first equation is

·log(wage) = 0.081
(0.016)

edu° 0.230
(0.026)

black+ 0.158
(0.017)

urban+ 0.244
(0.005)

married (12.93)

where edu is years of education, and black, urban, and married are dummy variables indicating race (1 if
black, 0 otherwise), lives in a metropolitan area, and if married. In addition to the reported coefficients,
the equation also includes as regressors nine year-of-birth dummies and eight region-of-residence dum-
mies. The equation is estimated by 2SLS. The instrumental variables are the 30 interactions of three
quarter-of-birth times ten year-of-birth dummy variables.

This equation indicates an 8% increase in wages due to each year of education.
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Angrist and Krueger observe that the effect of compulsory education laws are likely to vary across
states, so expand the instrument set to include interactions with state-of-birth. They estimate the fol-
lowing equation by 2SLS

·log(wage) = 0.083
(0.009)

edu° 0.233
(0.011)

black+ 0.151
(0.009)

urban+ 0.244
(0.004)

married. (12.94)

This equation also adds fifty state-of-birth dummy variables as regressors. The instrumental variables
are the 180 interactions of quarter-of-birth times year-of-birth dummy variables, plus quarter-of-birth
times state-of-birth interactions.

This equation shows a similar estimated causal effect of education on wages as in (12.93). More
notably, the standard error is smaller in (12.94), suggesting improved precision by the expanded instru-
mental variable set.

However, these estimates seem excellent candidates for weak instruments and many instruments.
Indeed, this paper (published in 1991) helped spark these two literatures. We can use the Stock-Yogo
tools to explore the instrument strength and the implications for the Angrist-Krueger estimates.

We first take equation (12.93). Using the original Angrist-Krueger data, we estimate the correponding
reduced form, and calculate the F statistic for the 30 excluded instruments. We find F = 4.8. It has an
asymptotic p-value of 0.000, suggesting that we can reject (at any significance level) the hypothesis that
the coefficients on the excluded instruments are zero. Thus Angrist and Krueger appear to be correct
that quarter of birth helps to explain educational attainment and are thus a valid instrumental variable
set. However, using the Stock-Yogo test, F = 4.8 is not high enough to reject the hypothesis that the in-
struments are weak. Specifically, for `2 = 30 the critical value for the F statistic is 45 (if we want to bound
size below 15%). The actual value of 4.8 is far below 45. Since we cannot reject that the instruments are
weak, this indicates that we cannot interpret the 2SLS estimates and test statistics in (12.93) as reliable.

Second, take (12.94) with the expanded regressor and instrument set. Estimating the correspond-
ing reduced form, we find the F statistic for the 180 excluded instruments is F = 2.43 which also has an
asymptotic p-value of 0.000 indicating that we can reject at any significance level the hypothesis that the
excluded instruments have no effect on educational attainment. However, using the Stock-Yogo test we
also cannot reject the hypothesis that the instruments are weak. While Stock and Yogo did not calculate
the critical values for `2 = 180, the 2SLS critical values are increasing in `2 so we we can use those for
`2 = 30 as a lower bound. Hence the observed value of F = 2.43 is far below the level needed for signif-
icance. Consequently the results in (12.94) cannot be viewed as reliable. In particular, the observation
that the standard errors in (12.94) are smaller than those in (12.93) should not be interpreted as evidence
of greater precision. Rather, they should be viewed as evidence of unreliability due to weak instruments.

When instruments are weak, one constructive suggestion is to use LIML estimation rather than 2SLS.
Another constructive suggestion is to alter the instrument set. While Angrist and Krueger used a large
number of instrumental variables, we can consider using a smaller set. Take equation (12.93). Rather
than estimating it using the 30 interaction instruments, consider using only the three quarter-of-birth
dummy variables. We report the reduced form estimates here:

dedu =° 1.57
(0.02)

black+ 1.05
(0.01)

urban+ 0.225
(0.016)

married+ 0.050
(0.016)

Q2 + 0.101
(0.016)

Q3 + 0.142
(0.016)

Q4

(12.95)
where Q2, Q3 and Q4 are dummy variables for birth in the 2nd , 3r d , and 4th quarter. The regression also
includes nine year-of-birth and eight region-of-residence dummy variables.
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The reduced form coefficients in (12.95) on the quarter-of-birth dummies are quite instructive. The
coefficients are positive and increasing, consistent with the Angrist-Krueger hypothesis that individuals
born later in the year achieve higher average education. Focusing on the weak instrument problem, the
F test for exclusion of these three variables is F = 31. The Stock-Yogo critical value is 12.8 for `2 = 3 and
a size of 15%, and is 22.3 for a size of 10%. Since F = 31 exceeds both these thresholds we can reject the
hypothesis that this reduced form is weak. Estimating the model by 2SLS with these three instruments
we find

·log(wage) = 0.099
(0.021)

edu° 0.201
(0.033)

black+ 0.139
(0.022)

urban+ 0.240
(0.006)

married. (12.96)

These estimates indicate a slightly larger (10%) causal impact of education on wages, but with a larger
standard error. The Stock-Yogo analysis indicates that we can interpret the confidence intervals from
these estimates as having asymptotic coverge 85%.

While the original Angrist-Krueger estimates suffer due to weak instruments, their paper is a very cre-
ative and thoughtful application of the natural experiment methodology. They discovered a completely
exogenous variation present in the world – birthdate – and showed how this has a small but measur-
able effect on educational attainment, and thereby on earnings. Their crafting of this natural experiment
regression is extremely clever and demonstrates a style of analysis which can successfully underlie an
effective instrumental variables empirical analysis.

12.42 Programming

We now present Stata code for some of the empirical work reported in this chapter.
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Stata do File for Card Example

use Card1995.dta, clear
set more off
gen exp = age76 - ed76 - 6
gen exp2 = (exp^2)/100
* Drop observations with missing wage
drop if lwage76==.
* Table 12.1 regressions
reg lwage76 ed76 exp exp2 black reg76r smsa76r, r
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4), r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4 age76
age2), r perfect
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a nearc4b),
r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4a nearc4b
age76 age2), r perfect
ivregress liml lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a nearc4b),
r
* Table 12.2 regressions
reg lwage76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 black reg76r smsa76r nearc4 age76 age2, r
reg exp black reg76r smsa76r nearc4 age76 age2, r
reg exp2 black reg76r smsa76r nearc4 age76 age2, r
reg ed76 exp exp2 black reg76r smsa76r nearc4a nearc4b, r
reg lwage76 ed76 exp exp2 smsa76r reg76r, r
reg lwage76 nearc4 exp exp2 smsa76r reg76r, r
reg ed76 nearc4 exp exp2 smsa76r reg76r, r

Stata do File for Acemoglu-Johnson-Robinson Example

use AJR2001.dta, clear
reg loggdp risk
reg risk logmort0
predict u, residual
ivregress 2sls loggdp (risk=logmort0)
reg loggdp risk u
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Stata do File for Angrist-Krueger Example

use AK1991.dta, clear
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob#i.yob)
ivregress 2sls logwage black smsa married i.yob i.region i.state (edu =
i.qob#i.yob i.qob#i.state)
reg edu black smsa married i.yob i.region i.qob#i.yob
testparm i.qob#i.yob
reg edu black smsa married i.yob i.region i.state i.qob#i.yob i.qob#i.state
testparm i.qob#i.yob i.qob#i.state
reg edu black smsa married i.yob i.region i.qob
testparm i.qob
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob)
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Exercises

Exercise 12.1 Consider the single equation model

yi = ziØ+ei ,

where yi and zi are both real-valued (1£1). Let bØ denote the IV estimator of Ø using as an instrument a
dummy variable di (takes only the values 0 and 1). Find a simple expression for the IV estimator in this
context.

Exercise 12.2 In the linear model

yi = x
0
iØ+ei

E [ei | x i ] = 0

suppose æ2
i = E

£
e2

i | xi
§

is known. Show that the GLS estimator of Ø can be written as an IV estimator
using some instrument z i . (Find an expression for z i .)

Exercise 12.3 Take the linear model
y = XØ+e.

Let the OLS estimator for Ø be bØ and the OLS residual be be = y °X bØ.
Let the IV estimator for Ø using some instrument Z be eØ and the IV residual be ee = y ° X eØ. If X is

indeed endogenous, will IV “fit” better than OLS, in the sense that ee 0ee < be 0be, at least in large samples?

Exercise 12.4 The reduced form between the regressors x i and instruments z i takes the form

x i =°0z i +ui

or
X = Z°+U

where x i is k £1, z i is l £1, X is n £k, Z is n £ l , U is n £k, and ° is l £k. The parameter ° is defined by
the population moment condition

E
£

z i u
0
i

§
= 0.

Show that the method of moments estimator for ° is b°=
°

Z
0
Z

¢°1 °
Z

0
X

¢
.

Exercise 12.5 In the structural model

y = XØ+e

X = Z°+U

with ° l £k, l ∏ k, we claim that Ø is identified (can be recovered from the reduced form) if rank(°) = k.
Explain why this is true. That is, show that if rank(°) < k then Ø cannot be identified.

Exercise 12.6 For Theorem 12.3, establish that bV Ø °!
p

V Ø.

Exercise 12.7 Take the linear model

yi = xiØ+ei

E [ei | xi ] = 0.

where xi and Ø are 1£1.
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(a) Show that E [xi ei ] = 0 and E
£
x2

i ei
§
= 0. Is z i = (xi x2

i )0 a valid instrument for estimation of Ø?

(b) Define the 2SLS estimator of Ø, using z i as an instrument for xi . How does this differ from OLS?

Exercise 12.8 Suppose that price and quantity are determined by the intersection of the linear demand
and supply curves

Demand : Q = a0 +a1P +a2Y +e1

Supply : Q = b0 +b1P +b2W +e2

where income (Y ) and wage (W ) are determined outside the market. In this model, are the parameters
identified?

Exercise 12.9 Consider the model

yi = x
0
iØ+ei

E [ei | z i ] = 0

with yi scalar and x i and z i each a k vector. You have a random sample (yi , x i , z i : i = 1, ...,n).

(a) Suppose that x i is exogeneous in the sense that E [ei | z i , x i ] = 0. Is the IV estimator bØiv unbiased
for Ø?

(b) Continuing to assume that x i is exogeneous, find the variance matrix for bØiv, var
£bØiv|X , Z

§
.

Exercise 12.10 Consider the model

yi = x
0
iØ+ei

x i =°0z i +ui

E [z i ei ] = 0

E
£

z i u
0
i

§
= 0

with yi scalar and x i and z i each a k vector. You have a random sample (yi , x i , z i : i = 1, ...,n). Take the
control function equation

ei = u
0
i∞+"i

E [ui"i ] = 0

and assume for simplicity that ui is observed. Inserting into the structural equation we find

yi = z
0
iØ+u

0
i∞+"i .

The control function estimator (bØ, b∞) is OLS estimation of this equation.

(a) Show that E [x i"i ] = 0 (algebraically).

(b) Derive the asymptotic distribution of (bØ, b∞) .
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Exercise 12.11 Consider the structural equation

yi =Ø0 +Ø1xi +Ø2x2
i +ei (12.97)

with xi treated as endogenous so that E [xi ei ] 6= 0. Assume yi and xi are scalar. Suppose we also have a
scalar instructment zi which satisfies

E [ei | zi ] = 0

so in particular E [ei ] = 0 , E [zi ei ] = 0 and E
£
z2

i ei
§
= 0.

(a) Should x2
i be treated as endogenous or exogenous?

(b) Suppose we have a scalar instrument zi which satisfies

xi = ∞0 +∞1zi +ui (12.98)

with ui independent of zi and mean zero.

Consider using (1, zi , z2
i ) as instruments. Is this a sufficient number of instruments? (Would this

be just-identified, over-identified, or under-identified)?

(c) Write out the reduced form equation for x2
i . Under what condition on the reduced form parame-

ters (12.98) are the parameters in (12.97) identified?

Exercise 12.12 Consider the structural equation and reduced form

yi =Øx2
i +ei

xi = ∞zi +ui

E [zi ei ] = 0

E [zi ui ] = 0

with x2
i treated as endogenous so that E

£
x2

i ei
§
6= 0. For simplicity assume no intercepts. yi , zi , and xi are

scalar. Assume ∞ 6= 0. Consider the following estimator. First, estimate ∞ by OLS of xi on zi and construct
the fitted values bxi = b∞zi . Second, estimate Ø by OLS of yi on bx2

i .

(a) Write out this estimator bØ explicitly as a function of the sample.

(b) Find its probability limit as n !1

(c) In general, is bØ consistent for Ø? Is there a reasonable condition under which bØ is consistent?

Exercise 12.13 Consider the structural equation

yi = x
0
1iØ1 +x

0
2iØ2 +ei

E [z i ei ] = 0

where x2i is k2 £ 1 and treated as endogenous. The variables z i = (x1i , z2i ) are treated as exogenous,
where z2i is `2 £1 and `2 ∏ k2. You are interested in testing the hypothesis

H0 :Ø2 = 0.

Consider the reduced form equation for yi

yi = x
0
1i∏1 + z

0
2i∏2 + vi . (12.99)

Show how to test H0 using only the OLS estimates of (12.99).
Hint: This will require an analysis of the reduced form equations and their relation to the structural

equation.
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Exercise 12.14 Take the linear instrumental variables equation

yi = x
0
1iØ1 +x

0
2iØ2 +ei

E [z i ei ] = 0

where x1i is k1 £1, x2i is k2 £1, and z i is `£1, with ` ∏ k = k1 +k2. The sample size is n. Assume that
Q z z = E

£
z i z

0
i

§
> 0 and Qz x = E

£
z i x

0
i

§
has full rank k.

Suppose that only (yi , x1i , z i ) are available, and x2i is missing from the dataset.
Consider the 2SLS estimator bØ1 of Ø1 obtained from the misspecified IV regression, by regressing yi

on x1i only, using z i as an instrument for x1i .

(a) Find a stochastic decomposition bØ1 = Ø1 +b1n + r 1n where r 1n depends on the error ei , and b1n

does not depend on the error ei .

(b) Show that r 1n !p 0 as n !1.

(c) Find the probability limit of b1n and bØ1 as n !1.

(d) Does bØ1 suffer from “omitted variables bias”? Explain. Under what conditions is there no omitted
variables bias?

(e) Find the asymptotic distribution as n !1 of
p

n
°bØ1 °Ø1 °b1n

¢
.

Exercise 12.15 Take the linear instrumental variables equation

yi = xiØ1 + ziØ2 +ei

E [ei | zi ] = 0

where for simplicity both xi and zi are scalar 1£1.

(a) Can the coefficients (Ø1,Ø2) be estimated by 2SLS using zi as an instrument for xi ?

Why or why not?

(b) Can the coefficients (Ø1,Ø2) be estimated by 2SLS using zi and z2
i as instruments?

(c) For the 2SLS estimator suggested in (b), what is the implicit exclusion restriction?

(d) In (b), what is the implicit assumption about instrument relevance?

[Hint: Write down the implied reduced form equation for xi .]

(e) In a generic application, would you be comfortable with the assumptions in (c) and (d)?

Exercise 12.16 Take a linear equation with endogeneity and a just-identified linear reduced form

yi = xiØ+ei

xi = ∞zi +ui

where both xi and zi are scalar 1£1. Assume that

E [zi ei ] = 0

E [zi ui ] = 0.
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(a) Derive the reduced form equation
yi = zi∏+ vi .

Show that Ø=∏/∞ if ∞ 6= 0, and that E [zi vi ] = 0.

(b) Let b∏ denote the OLS estimate from linear regression of Y on Z , and let b∞ denote the OLS estimate
from linear regression of X on Z . Write µ = (∏,∞)0 and let bµ = (b∏, b∞)0. Define the error vector ªi =µ

vi

ui

∂
. Write

p
n

°bµ°µ
¢

using a single expression as a function of the error ªi .

(c) Show that E
£
ziªi

§
= 0.

(d) Derive the joint asymptotic distribution of
p

n
°bµ°µ

¢
as n !1. Hint: Define≠ª = E

£
z2

i ªiª
0
i

§
.

(e) Using the previous result and the Delta Method, find the asymptotic distribution of the Indirect
Least Squares estimator bØ= b∏/b∞.

(f) Is the answer in (e) the same as the asymptotic distribution of the 2SLS estimator in Theorem 12.2?

Hint: Show that
°

1 °Ø
¢
ªi = ei and

°
1 °Ø

¢
≠ª

µ
1
°Ø

∂
= E

°
z2

i e2
i

¢
.

Exercise 12.17 Take the model

yi = x
0
iØ+ei

E [zi ei ] = 0

and consider the two-stage least-squares estimator. The first-stage estimate is

bX = Z b°
b°=

°
Z

0
Z

¢°1
Z

0
X

and the second-stage is least-squares of yi on bx i :

bØ=
≥
bX 0 bX

¥°1 bX 0
y

with least-squares residuals
be = y ° bX bØ.

Consider bæ2 = 1
n

be 0be as an estimator for æ2 = E
£
e2

i

§
. Is this appropriate? If not, propose an alternative

estimator.

Exercise 12.18 You have two independent i.i.d. samples (y1i , x1i , z1i : i = 1, ...,n) and (y2i , x2i , z2i : i =
1, ...,n). The dependent variables y1i and y2i are real-valued. The regressors x1i and x2i and instruments
z1i and z2i are k-vectors. The model is standard just-identified linear instrumental variables

y1i = x
0
1iØ1 +e1i

E [z1i e1i ] = 0

y2i = x
0
2iØ2 +e2i

E [z2i e2i ] = 0.

For concreteness, sample 1 are women and sample 2 are men. You want to test H0 :Ø1 =Ø2, that the
two samples have the same coefficients.
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(a) Develop a test statistic for H0.

(b) Derive the asymptotic distribution of the test statistic.

(c) Describe (in brief) the testing procedure.

Exercise 12.19 To estimate Ø in the model yi = xiØ+ ei with xi scalar and endogenous, with household
level data, you want to use as an the instrument the state of residence.

(a) What are the assumptions needed to justify this choice of instrument?

(b) Is the model just identified or overidentified?

Exercise 12.20 The model is

yi = x
0
iØ+ei

E [z i ei ] = 0.

An economist wants to obtain the 2SLS estimates and standard errors for Ø. He uses the following steps

• Regresses x i on z i , obtains the predicted values bx i .

• Regresses yi on bx i , obtains the coefficient estimate bØ and standard error s(bØ) from this regression.

Is this correct? Does this produce the 2SLS estimates and standard errors?

Exercise 12.21 Let
yi = x

0
1iØ1 +x

0
2iØ2 +ei .

Let (bØ1, bØ2) denote the 2SLS estimates of (Ø1,Ø2) when z2i is used as an instrument for x2i and they
are the same dimension (so the model is just identified). Let (b∏1, b∏2) be the OLS estimates from the
regression

yi = x
0
1i

b∏1 + z
0
2i

b∏2 +ei .

Show that bØ1 = b∏1.

Exercise 12.22 In the linear model
yi = xiØ+ei

suppose æ2
i = E

£
e2

i | xi
§

is known. Show that the GLS estimator of Ø can be written as an instrumental
variables estimator using some instrument zi . (Find an expression for zi .)

Exercise 12.23 You will replicate and extend the work reported in Acemoglu, Johnson and Robinson
(2001). The authors provided an expanded set of controls when they published their 2012 extension and
posted the data on the AER website. This dataset is on the textbook website.

(a) Estimate the OLS regression (12.90), the reduced form regression (12.91) and the 2SLS regression
(12.92). (Which point estimate is different by 0.01 from the reported values? This is a common
phenomenon in empirical replication).

(b) For the above estimates, calculate both homoskedastic and heteroskedastic-robust standard er-
rors. Which were used by the authors (as reported in (12.90)-(12.91)-(12.92)?)
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(c) Calculate the 2SLS estimates by the Indirect Least Squares formula. Are they the same?

(d) Calculate the 2SLS estimates by the two-stage approach. Are they the same?

(e) Calculate the 2SLS estimates by the control variable approach. Are they the same?

(f) Acemoglu, Johnson and Robinson (2001) reported many specifications including alternative re-
gressor controls, for example latitude and africa. Estimate by least-squares the equation for log-
GDP adding latitude and africa as regressors. Does this regression suggest that latitude and africa
are predictive of the level of GDP?

(g) Now estimate the same equation as in (f) but by 2SLS using log mortality as an instrument for risk.
How does the interpretation of the effect of latitude and africa change?

(h) Return to our baseline model (without including latitude and africa ). The authors’ reduced form
equation uses log(mortality) as the instrument, rather than, say, the level of mortality. Estimate
the reduced form for risk with mortality as the instrument. (This variable is not provided in the
dataset, so you need to take the exponential of the mortality variable.) Can you explain why the
authors preferred the equation with log(mortality)?

(i) Try an alternative reduced form, including both log(mortality) and the square of log(mortality).
Interpret the results. Re-estimate the structural equation by 2SLS using both log(mortality) and its
square as instruments. How do the results change?

(j) For the estimates in (i), are the instruments strong or weak using the Stock-Yogo test?

(k) Calculate and interpret a test for exogeneity of the instruments.

(l) Estimate the equation by LIML, using the instruments log(mortality) and the square of log(mortality).

Exercise 12.24 In Exercise 12.23 you extended the reported in Acemoglu, Johnson and Robinson (2001).
Consider the 2SLS regression (12.92). Compute the standard errors both by the asymptotic formula and
by the bootstrap using a large number (10,000) of bootstrap replications. Re-calculate the bootstrap
standard errors. Comment on the reliability of bootstrap standard errors for IV regression.

Exercise 12.25 You will replicate and extend the work reported in the chapter relating to Card (1995).
The data is from the author’s website, and is posted as . The model we focus on is labeled
2SLS(a) in Table 12.1, which uses public and private as instruments for Edu. The variables you will need
for this exercise include lwage76, ed76 , age76, smsa76r, reg76r, nearc2, nearc4, nearc4a, nearc4b. See the
description file for definitions.

log(wage) =Ø0 +Ø1edu+Ø2exp+Ø3exp2/100+Ø4south+Ø5black+e

where edu=education (Years), exp=experience (Years), and south and black are regional and racial dummy
variables. The variables exp=age°edu°6 and exp2/100 are not in the dataset, they need to be generated.

(a) First, replicate the reduced form regression presented in the final column of Table 12.2, and the
2SLS regression described above (using public and private as instruments for edu) to verify that
you have the same variable defintions.

(b) Now try a different reduced form model. The variable nearc2 means “grew up near a 2-year college”.
See if adding it to the reduced form equation is useful.
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(c) Now try more interactions in the reduced form. Create the interactions nearc4a*age76 and nearc4a*age762/100,
and add them to the reduced form equation. Estimate this by least-squares. Interpret the coeffi-
cients on the two new variables.

(d) Estimate the structural equation by 2SLS using the expanded instrument set

{nearc4a, nearc4b, nearc4a*age76, nearc4a*age762/100}.

What is the impact on the structural estimate of the return to schooling?

(e) Using the Stock-Yogo test, are the instruments strong or weak?

(f) Test the hypothesis that edu is exogenous for the structural return to schooling.

(g) Re-estimate the last equation by LIML. Do the results change meaningfully?

Exercise 12.26 In Exercise 12.25 you extended the work reported in Card (1995). Now, estimate the IV
equation corresponding to the IV(a) column of Table 12.1, which is the baseline specification considered
in Card. Use the bootstrap to calculate a BC percentile confidence interval. In this example, should we
also report the bootstrap standard error?

Exercise 12.27 You will extend Angrist and Krueger (1991). In their Table VIII, they report their estimates
of an analog of (12.94) for the subsample of 26,913 black men. Use this sub-sample for the following
analysis.

(a) Start by considering estimation of an equation which is identical in form to (12.94), with the same
additional regressors (year-of-birth, region-of-residence, and state-of-birth dummy variables) and
180 excluded instrumental variables (the interactions of quarter-of-birth times year-of-birth dummy
variables, and quarter-of-birth times state-of-birth interactions). But now, it is estimated on the
subsample of black men. One regressor must be omitted to achieve identification. Which variable
is this?

(b) Estimate the reduced form for the above equation by least-squares. Calculate the F statistic for the
excluded instruments. What do you conclude about the strength of the instruments?

(c) Repeat, now estimating the reduced form for the analog of (12.93) which has 30 excluded instru-
mental variables, and does not include the state-of-birth dummy variables in the regression. What
do you conclude about the strength of the instruments?

(d) Repeat, now estimating the reduced form for the analog of (12.96) which has only 3 excluded in-
strumental variables. Are the instruments sufficiently strong for 2SLS estimation? For LIML esti-
mation?

(e) Estimate the structural wage equation using what you believe is the most appropriate set of re-
gressors, instruments, and the most appropriate estimation method. What is the estimated return
to education (for the subsample of black men) and its standard error? Without doing a formal hy-
pothesis test, do these results (or in which way?) appear meaningfully different from the results for
the full sample?

Exercise 12.28 In Exercise 12.27 you extended the work reported in Angrist and Krueger (1991) by es-
timating wage equations for the subsample of black men. Re-estimate equation (12.96) for this group,
which uses as instruments only the three quarter-of-birth dummy variables. Calculate the standard error
for the return to education by asymptotic and bootstrap methods, and a BC percentile interval. In this
application of 2SLS, is it appropriate to report a bootstrap standard error?



Chapter 13

Generalized Method of Moments

13.1 Introduction

One of the most popular estimation methods in applied econometrics is the Generalized Method of
Moments (GMM). GMM generalizes the classical method of moments estimator by allowing for models
that have more equations than unknown parameters and are thus overidentified. GMM includes as spe-
cial cases OLS, IV, multivariate regression, and 2SLS. It includes both linear and nonlinear models. In
this chapter we focus primarily on linear models.

The GMM label and methods were introduced to econometrics in a seminal paper by Lars Hansen
(1982). The ideas and methods build on the work of Amemiya (1974, 1977), Gallant (1977), and Gal-
lant and Jorgenson (1979). The ideas are closely related to the contemporeneous work of Halbert White
(1980, 1982) and White and Domowitz (1984). The methods are also related to what are called estimating
equations in the statistics literature. For a review of the later see Godambe (1991).

13.2 Moment Equation Models

All of the models that have been introduced so far can be written as moment equation models,
where the population parameters solve a system of moment equations. Moment equation models are
much broader than the models so far considered, and understanding their common structure opens up
straightforward techniques to handle new econometric models.

Moment equation models take the following form. Let g i (Ø) be a known `£1 function of the i th ob-
servation and a k £1 parameter Ø. A moment equation model is summarized by the moment equations

E
£

g i (Ø)
§
= 0 (13.1)

and a parameter space Ø 2 B . For example, in the instrumental variables model g i
°
Ø

¢
= z i

°
yi °x

0
iØ

¢
.

In general, we say that a parameter Ø is identified if there is a unique mapping from the data dis-
tribution to Ø. In the context of the model (13.1) this means that there is a unique Ø satisfying (13.1).
Since (13.1) is a system of ` equations with k unknowns, then it is necessary that ` ∏ k for there to be
a unique solution. If ` = k we say that the model is just identified, meaning that there is just enough
information to identify the parameters. If ` > k we say that the model is overidentified, meaning that
there is excess information (which can improve estimation efficiency). If `< k we say that the model is
underidentified, meaning that there is insufficient information to identify the parameters. In general,
we assume that `∏ k so the model is either just identified or overidentified.

436
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13.3 Method of Moments Estimators

In this section we consider the just-identified case `= k.
Define the sample analog of (13.5)

g n(Ø) = 1
n

nX

i=1
g i (Ø). (13.2)

The method of moments estimator (MME) bØmm for Ø is defined as the parameter value which sets
g n(Ø) = 0. Thus

g n(bØmm) = 1
n

nX

i=1
g i (bØmm) = 0. (13.3)

The equations (13.3) are known as the estimating equations as they are the equations which determine
the estimator bØmm.

In some contexts (such as those discussed in the examples below), there is an explicit solution for
bØmm. In other cases the solution must be found numerically.

We now show how most of the estimators discussed so far in the textbook can be written as method
of moments estimators.

Mean: Set gi
°
µ
¢
= yi °µ. The MME is bµ= 1

n
Pn

i=1 yi .

Mean and Variance: Set

g i
°
µ,æ2¢=

√
yi °µ°

yi °µ
¢2 °æ2

!

.

The MME are bµ= 1
n

Pn
i=1 yi and bæ2 = 1

n
Pn

i=1

°
yi ° bµ

¢2 .

OLS: Set g i
°
Ø

¢
= x i

°
yi °x

0
iØ

¢
. The MME is bØ=

°
X

0
X

¢°1 °
X

0
y
¢
.

OLS and Variance: Set

g i
°
Ø,æ2¢=

√
x i

°
yi °x

0
iØ

¢
°
yi °x

0
iØ

¢2 °æ2

!

.

The MME is bØ=
°

X
0
X

¢°1 °
X

0
y
¢

and bæ2 = 1
n

Pn
i=1

°
yi °x

0
i
bØ
¢2

.

Multivariate Least Squares, vector form: Set g i
°
Ø

¢
= X i

°
y i °X

0
iØ

¢
. The MME is bØ=

°Pn
i=1 X i X

0
i

¢°1 °Pn
i=1 X i y i

¢

which is (11.4).

Multivariate Least Squares, matrix form: Set g i (B ) = vec
°
x i

°
y
0
i °x

0
i B

¢¢
. The MME is bB =

°Pn
i=1 x i x

0
i

¢°1 °Pn
i=1 x i y

0
i

¢

which is (11.6).

Seemingly Unrelated Regression: Set

g i
°
Ø,ß

¢
=

√
X iß

°1 °
y i °X

0
iØ

¢

vec
≥
ß°

°
y i °X

0
iØ

¢°
y i °X

0
iØ

¢0¥
!

.

The MME is bØ=
≥Pn

i=1 X i bß°1
X

0
i

¥°1 ≥Pn
i=1 X i bß°1

y i

¥
and bß= n°1 Pn

i=1

°
y i °X

0
i
bØ
¢°

y i °X
0
i
bØ
¢0

.

IV: Set g i
°
Ø

¢
= z i

°
yi °x

0
iØ

¢
. The MME is bØ=

°Pn
i=1 z i x

0
i

¢°1 °Pn
i=1 z i yi

¢
.
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Generated Regressors: Set

g i
°
Ø, A

¢
=

µ
A
0
z i

°
yi ° z

0
i AØ

¢

vec
°
z i

°
x
0
i ° z

0
i A

¢¢
∂

.

The MME is bA =
°Pn

i=1 z i z
0
i

¢°1 °Pn
i=1 z i x

0
i

¢
and bØ=

≥
bA0Pn

i=1 z i z
0
i
bA
¥°1 ≥

bA0Pn
i=1 z i yi

¥
.

A common feature unifying these examples is that the estimator can be written as the solution to
a set of estimating equations (13.3). This provides a common framework which enables a convenient
development of a unified distribution theory.

13.4 Overidentified Moment Equations

In the instrumental variables model gi (Ø) = z i
°
yi °x

0
iØ

¢
. Thus (13.2) is

g n(Ø) = 1
n

nX

i=1
g i (Ø) = 1

n

nX

i=1
z i

°
yi °x

0
iØ

¢
= 1

n

°
Z

0
y °Z

0
XØ

¢
. (13.4)

We have defined the method of moments estimator for Ø as the parameter value which sets g n(Ø) = 0.
However, when the model is overidentified (if ` > k) then this is generally impossible as there are more
equations than free parameters. Equivalently, there is no choice of Ø which sets (13.4) to zero. Thus the
method of moments estimator is not defined for the overidentified case.

While we cannot find an estimator which sets g n(Ø) equal to zero, we can try to find an estimator
which makes g n(Ø) as close to zero as possible.

One way to think about this is to define the vector µ = Z
0
y , the matrix G = Z

0
X and the “error”

¥=µ°GØ. Then we can write (13.4) as
µ=GØ+¥.

This looks like a regression equation with the `£1 dependent variable µ, the `£k regressor matrix G ,
and the `£1 error vector ¥. Recall, the goal is to make the error vector ¥ as small as possible. Recalling
our knowledge about least-squares, we know that a simple method is to use least-squares regression
of µ on G , which minimzes the sum-of-squares ¥0¥. This is certainly one way to make ¥ “small”. This
least-squares solution is bØ=

°
G

0
G

¢°1 °
G

0µ
¢
.

More generally, we know that when errors are non-homogeneous it can be more efficient to estimate
by weighted least squares. Thus for some weight matrix W , consider the estimator

bØ=
°
G

0
W G

¢°1 °
G

0
Wµ

¢

=
°

X
0
Z W Z

0
X

¢°1 °
X

0
Z W Z

0
y
¢

.

This minimizes the weighted sum of squares ¥0
W ¥. This solution is known as the generalized method of

moments (GMM).
The estimator is typically defined as follows. Given a set of moment equations (13.2) and an `£`

weight matrix W > 0, the GMM criterion function is defined as

J (Ø) = n g n(Ø)0W g n(Ø).

The factor “n” is not important for the definition of the estimator, but is convenient for the distribution
theory. The criterion J (Ø) is the weighted sum of squared moment equation errors. When W = I`, then
J (Ø) = n g n(Ø)0g n(Ø) = n

∞∞g n(Ø)
∞∞2 , the square of the Euclidean length. Since we restrict attention to

positive definite weight matrices W , the criterion J (Ø) is always non-negative.
The Generalized Method of Moments (GMM) estimator is defined as the minimizer of the GMM

criterion J (Ø).
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Definition 13.1 The Generalized Method of Moments estimator is

bØgmm = argmin
Ø

Jn
°
Ø

¢
.

Recall that in the just-identified case k = `, the method of moments estimator bØmm solves g n(bØmm) =
0. Hence in this case Jn

°bØmm
¢
= 0 which means that bØmm minimizes Jn

°
Ø

¢
and equals bØgmm = bØmm. This

means that GMM includes MME as a special case. This implies that all of our results for GMM will apply
to any method of moments estimators.

In the over-identified case the GMM estimator will depend on the choice of weight matrix W and so
this is an important focus of the theory. In the just-identified case, the GMM estimator simplifies to the
MME which does not depend on W .

The method and theory of the generalized method of moments was developed in an influential paper
by Lars Hansen (1982). This paper introduced the method, its asymptotic distribution, the form of the
efficient weight matrix, and tests for overidentification.

13.5 Linear Moment Models

One of the great advantages of the moment equation framework is that it allows both linear and non-
linear models. However, when the moment equations are linear in the parameters then we have explicit
solutions for the estimates and a straightforward asymptotic distribution theory. Hence we start by con-
fining attention to linear moment equations, and return to nonlinear moment equations later. In the
examples listed earlier, the estimators which have linear moment equations include the sample mean,
OLS, multivariate least squares, IV, and 2SLS. The estimates which have non-linear moment equations
include the sample variance, SUR, and generated regressors.

In particular, we focus on the overidentified IV model

g i (Ø) = z i (yi °x
0
iØ) (13.5)

where z i is `£1 and x i is k £1.

13.6 GMM Estimator

Given (13.5) the sample moment equations are (13.4). The GMM criterion can be written as

J (Ø) = n
°

Z
0
y °Z

0
XØ

¢0
W

°
Z

0
y °Z

0
XØ

¢
.

The GMM estimator minimizes J (Ø). The first order conditions are

0 = @

@Ø
J (bØ)

= 2
@

@Ø
g n(bØ)0W g n(bØ)

=°2
µ

1
n

X
0
Z

∂
W

µ
1
n

Z
0 °

y °X bØ
¢∂

.

The solution is given as follows.
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Theorem 13.1 For the overidentified IV model

bØgmm =
°

X
0
Z W Z

0
X

¢°1 °
X

0
Z W Z

0
y
¢

. (13.6)

While the estimator depends on W , the dependence is only up to scale. This is because if W is re-
placed by cW for some c > 0, bØgmm does not change.

When W is fixed by the user, we call bØgmm a one-step GMM estimator.
The GMM estimator (13.6) resembles the 2SLS estimator (12.31). In fact they are equal when W =°

Z
0
Z

¢°1. This means that the 2SLS estimator is a one-step GMM estimator for the linear model. In the
just-identified case it also simplifies to the IV estimator (12.26).

Theorem 13.2 If W =
°

Z
0
Z

¢°1 then bØgmm = bØ2sls.

Furthermore, if k = ` then bØgmm = bØiv.

13.7 Distribution of GMM Estimator

Let
Q = E

£
z i x

0
i

§

and
≠= E

£
z i z

0
i e2

i

§
= E

£
g i g

0
i

§

where g i = z i ei . Then µ
1
n

X
0
Z

∂
W

µ
1
n

Z
0
X

∂
°!

p
Q

0
W Q

and µ
1
n

X
0
Z

∂
W

µ
1
p

n
Z

0
e

∂
°!

d
Q

0
W N(0,≠) .

We conclude:

Theorem 13.3 Asymptotic Distribution of GMM Estimator. Under Assump-
tion 12.2, as n !1 p

n
°bØ°Ø

¢
°!

d
N

°
0,V Ø

¢

where
V Ø =

°
Q

0
W Q

¢°1 °
Q

0
W≠W Q

¢°
Q

0
W Q

¢°1 . (13.7)
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We find that the GMM estimator is asymptotically normal with a “sandwich form” asymptotic vari-
ance.

Our derivation treated the weight matrix W as if it is non-random, but Theorem 13.3 carries over
to the case where the weight matrix cW is random so long as it converges in probability to some posi-
tive definite limit W . This may require scaling the weight matrix, for example replacing cW =

°
Z

0
Z

¢°1

with cW =
°
n°1

Z
0
Z

¢°1. Since rescaling the weight matrix does not affect the estimator this is ignored in
implementation.

13.8 Efficient GMM

The asymptotic distribution of the GMM estimator bØgmm depends on the weight matrix W through
the asymptotic variance V Ø. The asymptotically optimal weight matrix W 0 is one which minimizes V Ø.
This turns out to be W 0 =≠°1. The proof is left to Exercise 13.4.

When the GMM estimator bØ is constructed with W = W 0 =≠°1 (or a weight matrix which is a con-
sistent estimator of W 0) we call it the Efficient GMM estimator:

bØgmm =
°

X
0
Z≠°1

Z
0
X

¢°1 °
X

0
Z≠°1

Z
0
y
¢

.

Its asymptotic distribution takes a simpler form than in Theorem 13.3. By substituting W = W 0 =≠°1

into (13.7) we find

V Ø =
°
Q

0≠°1
Q

¢°1 °
Q

0≠°1≠≠°1
Q

¢°
Q

0≠°1
Q

¢°1 =
°
Q

0≠°1
Q

¢°1
.

This is the asymptotic variance of the efficient GMM estimator.

Theorem 13.4 Asymptotic Distribution of GMM with Efficient Weight Ma-
trix. Under Assumption 12.2 and W =≠°1, as n !1

p
n

≥
bØgmm °Ø

¥
°!

d
N

°
0,V Ø

¢

where
V Ø =

°
Q

0≠°1
Q

¢°1
.

Theorem 13.5 Efficient GMM. Under Assumption 12.2, for any W > 0,

°
Q

0
W Q

¢°1 °
Q

0
W≠W Q

¢°
Q

0
W Q

¢°1 °
°
Q

0≠°1
Q

¢°1 > 0.

Thus if bØgmm is the efficient GMM estimator and eØgmm is another GMM esti-
mator, then

avar
h
bØgmm

i
∑ avar

h
eØgmm

i
.
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For a proof, see Exercise 13.4.
This means that the smallest possible GMM covariance matrix (in the positive definite sense) is

achieved by the efficient GMM weight matrix.
W 0 =≠°1 is not known in practice but it can be estimated consistently as we discuss in Section 13.10.

For any cW °!
p

W 0, the asymptotic distribution in Theorem 13.4 is unaffected. Consequently we still call

any bØgmm constructed with an estimate of the efficient weight matrix an efficient GMM estimator.
By “efficient”, we mean that this estimator has the smallest asymptotic variance in the class of GMM

estimators with this set of moment conditions. This is a weak concept of optimality, as we are only con-
sidering alternative weight matrices cW . However, it turns out that the GMM estimator is semiparamet-
rically efficient as shown by Gary Chamberlain (1987). If it is known that E

£
g (w i ,Ø)

§
= 0, and this is all

that is known, this is a semi-parametric problem as the distribution of the data is unknown. Chamberlain
showed that in this context no semiparametric estimator (one which is consistent globally for the class

of models considered) can have a smaller asymptotic variance than
°
G

0≠°1
G

¢°1 where G = E
h

@
@Ø0 g i (Ø)

i
.

Since the GMM estimator has this asymptotic variance, it is semiparametrically efficient.
The results in this section show that in the linear model no estimator has better asymptotic efficiency

than the efficient linear GMM estimator. No estimator can do better (in this first-order asymptotic sense),
without imposing additional assumptions.

13.9 Efficient GMM versus 2SLS

For the linear model we introduced the 2SLS estimator as a standard estimator for Ø. Now we have
introduced the GMM estimator which includes 2SLS as a special case. Is there a context where 2SLS is
efficient?

To answer this question, recall that the 2SLS estimator is GMM given the weight matrix cW =
°

Z
0
Z

¢°1

or equivalently cW =
°
n°1

Z
0
Z

¢°1 since scaling doesn’t matter. Since cW °!
p

°
E
£

z i z
0
i

§¢°1, this is asymptoti-

cally equivalent to using the weight matrix W =
°
E
£

z i z
0
i

§¢°1. In contrast, the efficient weight matrix takes

the form
°
E
£

z i z
0
i e2

i

§¢°1. Now suppose that the structural equation error ei is conditionally homoskedas-

tic in the sense that E
£
e2

i | z i
§
= æ2. Then the efficient weight matrix equals W =

°
E
£

z i z
0
i

§¢°1
æ°2, or

equivalently W =
°
E
£

z i z
0
i

§¢°1 since scaling doesn’t matter. The latter weight matrix is the same as the
2SLS asymptotic weight matrix. This shows that the 2SLS weight matrix is the efficient weight matrix
under conditional homoskedasticity.

Theorem 13.6 Under Assumption 12.2 and E
£
e2

i | z i
§
=æ2 then bØ2sls is efficient

GMM.

This shows that 2SLS is efficient under homoskedasticity. When homoskedasticity holds, there is no
reason to use efficient GMM over 2SLS. More broadly, when homoskedasticity is a reasonable approxi-
mation then 2SLS will be a reasonable estimator. However, this result also shows that in the general case
where the error is conditionally heteroskedastic, then 2SLS is generically inefficient relative to efficient
GMM.
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13.10 Estimation of the Efficient Weight Matrix

To construct the efficient GMM estimator we need a consistent estimator cW of W 0 =≠°1. The con-
vention is to form an estimate b≠ of≠ and then set cW = b≠°1

.
The two-step GMM estimator proceeds by using a one-step consistent estimate ofØ to construct the

weight matrix estimator cW . In the linear model the natural one-step estimator forØ is the 2SLS estimator
bØ2sls. Set eei = yi °x

0
i
bØ2sls, eg i = g i (eØ) = z i eei and g n = n°1 Pn

i=1 eg i . Two moment estimators of≠ are then

b≠= 1
n

nX

i=1
eg i eg

0
i (13.8)

and
b≠§ = 1

n

nX

i=1

°
eg i °g n

¢°
eg i °g n

¢0 . (13.9)

The estimator (13.8) is an uncentered covariance matrix estimator while the estimator (13.9) is a cen-
tered version. Either estimator is consistent when E (z i ei ) = 0 which holds under correct specification.
However under misspecification we may have E (z i ei ) 6= 0. In the latter context b≠§

may be viewed as a
robust estimator. For some testing problems it turns out to be preferable to use a covariance matrix esti-
mator which is robust to the alternative hypothesis. For these reasons estimator (13.9) is generally pre-
ferred. Unfortunately, estimator (13.8) is more commonly seen in practice since it is the default choice
by most packages. It is also worth observing that when the model is just identified then g n = 0 so the two
are algebraically identical.

Given the choice of covariance matrix estimator we set cW = b≠°1
or cW = b≠§°1

. Given this weight
matrix, we then construct the two-step GMM estimator as (13.6) using the weight matrix cW .

Since the 2SLS estimator is consistent for Ø, by arguments nearly identical to those used for covari-
ance matrix estimation, we can show that b≠ and b≠§

are consistent for ≠ and thus cW is consistent for
≠°1. See Exercise 13.3.

This also means that the two-step GMM estimator satisfies the conditions for Theorem 13.4. We have
established.

Theorem 13.7 Under Assumption 12.2 and ≠ > 0, if cW = b≠°1
or cW = b≠§°1

where the latter are defined in (13.8) and (13.9) then as n !1
p

n
≥
bØgmm °Ø

¥
°!

d
N

°
0,V Ø

¢

where
V Ø =

°
Q

0≠°1
Q

¢°1
.

This shows that the two-step GMM estimator is asymptotically efficient.
The two-step GMM estimator of the IV regression equation can be computed in Stata using the

command. By default it uses formula (13.8). The centered version (13.9) may be se-
lected using the option.
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13.11 Iterated GMM

The asymptotic distribution of the two-step GMM estimator does not depend on the choice of the
preliminary one-step estimator. However, the actual value of the estimator depends on this choice, and
so will the finite sample distribution. This is undesirable and likely inefficient. To remove this depen-
dence we can iterate the estimation sequence. Specifically, given bØgmm we can construct an updated

weight matrix estimate cW and then re-estimate bØgmm. This updating can be iterated until convergence1.
The result is called the iterated GMM estimator and is a common implementation of efficient GMM.

Interestingly, B. Hansen and Lee (2018) show that the iterated GMM estimator is unaffected if the
weight matrix is computed with or without centering. Standard errors and test statistics, however, will
be affected by the choice.

The iterated GMM estimator of the IV regression equation can be computed in Stata using the
command using the option.

13.12 Covariance Matrix Estimation

An estimator of the asymptotic variance of bØgmm can be obtained by replacing the matrices in the
asymptotic variance formula by consistent estimates.

For the one-step or two-step GMM estimator the covariance matrix estimator is

bV Ø =
≥
bQ 0cW bQ

¥°1 ≥
bQ 0cW b≠cW bQ

¥≥
bQ 0cW bQ

¥°1
(13.10)

where
bQ = 1

n

nX

i=1
z i x

0
i

and using either the uncentered estimator (13.8) or centered estimator (13.9) with the residuals bei =
yi °x

0
i
bØgmm.

For the efficient iterated GMM estimator the covariance matrix estimator is

bV Ø =
≥
bQ 0 b≠°1 bQ

¥°1
=

µµ
1
n

X
0
Z

∂
b≠°1

µ
1
n

Z
0
X

∂∂°1

. (13.11)

b≠ can be computed using either the uncentered estimator (13.8) or centered estimator (13.9). Based on
the asymptotic approximation the estimator (13.11) can be used as well for the two-step estimator but
should use the final residuals bei = yi °x

0
i
bØgmm.

Asymptotic standard errors are given by the square roots of the diagonal elements of n°1 bV Ø.
In Stata, the default covariance matrix estimation method is determined by the choice of weight ma-

trix. Thus if the centered estimator (13.9) is used for the weight matrix, it is also used for the covariance
matrix estimator.

13.13 Clustered Dependence

In Section 4.22 we introduced clustered dependence and in Section 12.25 described covariance ma-
trix estimation for 2SLS. The methods extend naturally to GMM, but with the additional complication of
potentially altering weight matrix calculation.

1In practice, “convergence” obtains when the difference between the estimates obtained at subsequent steps is smaller than
a pre-specified tolerance. A sufficient condition for convergence is that the sequence is a contraction mapping. Indeed, B.
Hansen and Lee (2018) have shown that the iterated GMM estimator generally satisfies this condition in large samples.
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As before, the structural equation for the g th cluster can be written as the matrix system

y g = X gØ+eg .

Using this notation the centered GMM estimator with weight matrix W can be written as

bØgmm =
°

X
0
Z W Z

0
X

¢°1
X

0
Z W

√
GX

g=1
Z

0
g eg

!

.

The cluster-robust covariance matrix estimator for bØgmm is then

bV Ø =
°

X
0
Z W Z

0
X

¢°1
X

0
Z W bSW Z

0
X

°
X

0
Z W Z

0
X

¢°1 (13.12)

with

bS =
GX

g=1
Z

0
g beg be 0

g Z g (13.13)

and the clustered residuals
beg = y g °X g bØgmm. (13.14)

The cluster-robust estimator (13.12) is appropriate for the one-step or two-step GMM estimator. It is
also appropriate for the iterated estimator when the latter uses a conventional (non-clustered) efficient
weight matrix. However in the clustering context it is more natural to use a cluster-robust weight matrix
such as W = bS°1

where bS is a cluster-robust covariance estimator as in (13.13) based on a one-step or
iterated residual. This gives rise to the cluster-robust GMM estimator

bØgmm =
≥

X
0
Z bS°1

Z
0
X

¥°1
X

0
Z bS°1

Z
0
y . (13.15)

An appropriate cluster-robust covariance matrix estimator is

bV Ø =
≥

X
0
Z bS°1

Z
0
X

¥°1

where bS is calculated using the final residuals.
To implement a cluster-robust weight matrix, use the 2SLS estimator for first step. Compute the

cluster residuals (13.14) and covariance matrix (13.13). Then (13.15) is the two-step GMM estimator.
Iterating the residuals and covariance matrix until convergence we obtain the iterated GMM estimator.

In Stata, using the command with the option implements the two-step
GMM estimator using the cluster-robust weight matrix and cluster-robust covariance matrix estimator.
To use the centered covariance matrix use the option, and to implement the iterated GMM esti-
mator use the option. Alternatively, you can use the and options to separately specify
the weight matrix and covariance matrix estimation methods.

13.14 Wald Test

For a given function r
°
Ø

¢
:Rk !£ΩRq we define the parameter µ = r

°
Ø

¢
. The GMM estimator of µ

is bµgmm = r

≥
bØgmm

¥
. By the delta method it is asymptotically normal with covariance matrix

V µ = R
0
V ØR

R = @

@Ø
r (Ø)0.
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An estimator of the asymptotic covariance matrix is

bV µ = bR 0 bV ØbR

bR = @

@Ø
r (bØgmm)0.

When µ is scalar then an asymptotic standard error for bµgmm is formed as
q

n°1 bV µ.
A standard test of the hypothesis

H0 : µ = µ0

against
H1 : µ 6= µ0

is based on the Wald statistic
W = n

°bµ°µ0
¢0 bV °1

bµ
°bµ°µ0

¢
.

Let Gq (u) denote the ¬2
q distribution function.

Theorem 13.8 Under Assumptions 12.2 and 7.3, and H0 holds, as n !1,

W °!
d

¬2
q .

For c satisfying Æ= 1°Gq (c),

P [W > c |H0] °!Æ

so the test “Reject H0 if W > c” has asymptotic size Æ.

For a proof see Exercise 13.5.
In Stata, the commands and can be used after to implement Wald

tests of linear hypotheses. The commands and can be used after to im-
plement Wald tests of nonlinear hypotheses.

13.15 Restricted GMM

It is often desirable to impose restrictions on the coefficients. In this section we consider estimation
subject to the linear constraints R

0Ø= c . In the following section we consider nonlinear constraints.
The constrained GMM estimator minimizes the GMM criterion subject to the constraint. It is

bØcgmm = argmin
R

0Ø=c

J (Ø).

This is the parameter vector which makes the estimating equations as close to zero as possible with
respect to the weighted quadratic distance while imposing the restriction on the parameters.

Suppose the weight matrix W is fixed. Using the methods of Chapter 8 it is straightforward to derive
that the constrained GMM estimator is

bØcgmm = bØgmm °
°

X
0
Z W Z

0
X

¢°1
R

≥
R

0 °
X

0
Z W Z

0
X

¢°1
R

¥°1 ≥
R

0bØgmm °c

¥
. (13.16)
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(For details, see Exercise 13.6.)
We derive the asymptotic distribution under the assumption that the restriction is true. Make the

substitution c = R
0Ø in (13.16) and reorganize to find

p
n

≥
bØcgmm °Ø

¥
=

µ
I k °

°
X

0
Z W Z

0
X

¢°1
R

≥
R

0 °
X

0
Z W Z

0
X

¢°1
R

¥°1
R

0
∂p

n
≥
bØgmm °Ø

¥
. (13.17)

This is a linear function of
p

n
≥
bØgmm °Ø

¥
. Since the asymptotic distribution of the latter is known, the

asymptotic distribution of
p

n
≥
bØcgmm °Ø

¥
is a linear function of the former.

Theorem 13.9 Under Assumptions 12.2 and 8.3, for the constrained GMM es-
timator (13.16), p

n
≥
bØcgmm °Ø

¥
°!

d
N

°
0,V cgmm

¢

as n !1, where

V cgmm =V Ø°
°
Q

0
W Q

¢°1
R

≥
R

0 °
Q

0
W Q

¢°1
R

¥°1
R

0
V Ø (13.18)

°V ØR

≥
R

0 °
Q

0
W Q

¢°1
R

¥°1
R

0 °
Q

0
W Q

¢°1

+
°
Q

0
W Q

¢°1
R

≥
R

0 °
Q

0
W Q

¢°1
R

¥°1
R

0
V ØR

≥
R

0 °
Q

0
W Q

¢°1
R

¥°1
R

0 °
Q

0
W Q

¢°1 .

For a proof, see Exercise 13.8. Unfortunately the asymptotic covariance matrix formula (13.18) is
quite tedious!

Now suppose that the the weight matrix is set as W = b≠°1
, the efficient weight matrix from uncon-

strained estimation. In this case the constrained GMM estimator can be written as

bØcgmm = bØgmm ° bV ØR
°
R

0 bV ØR
¢°1

≥
R

0bØgmm °c

¥
(13.19)

which is the same formula (8.25) as efficient minimum distance. (For details, see Exercise 13.7.) We also
find that the asymptotic covariance matrix simplifies considerably.

Theorem 13.10 Under Assumptions 12.2 and 8.3, for the efficient constrained
GMM estimator (13.19),

p
n

≥
bØcgmm °Ø

¥
°!

d
N

°
0,V cgmm

¢

as n !1, where

V cgmm =V Ø°V ØR
°
R

0
V ØR

¢°1
R

0
V Ø. (13.20)

For a proof, see Exercise 13.9.
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The asymptotic covariance matrix (13.20) can be estimated by

bV cgmm = eV Ø° eV ØR
°
R

0 eV ØR
¢°1

R
0 eV Ø. (13.21)

eV Ø =
≥
bQ 0 e≠°1 bQ

¥°1

e≠= 1
n

nX

i=1
z i z

0
i ee

2
i (13.22)

eei = yi °x
0
i
bØcgmm.

The covariance matrix (13.18) can be estimated similarly, though using (13.10) to estimate V Ø. The co-
variance matrix estimator e≠ can also be replaced with a centered version.

A constrained iterated GMM estimator can be implemented by setting W = e≠°1
where e≠ is defined

in (13.22), and then iterating until convergence. This is a natural estimator, as it is the appropriate im-
plementation of the idea of iterated GMM.

Since both b≠ and e≠ converge to the same limit ≠ (under the assumption that the constraint is
true), the constrained iterated GMM estimator has the same asymptotic distribution as given in The-
orem 13.10.

13.16 Nonlinear Restricted GMM

Nonlinear constraints on the parameters can be written as r
°
Ø

¢
= 0 for some function where r :

R
k !R

q . Least-squares estimation subject to nonlinear constraints was explored in Section 8.14. In this
section we introduce GMM estimation subject to nonlinear constraints. The constraint is nonlinear if
r

°
Ø

¢
cannot be written as a linear function of Ø.

The constrained GMM estimator minimizes the GMM criterion subject to the constraint. It is

bØcgmm = argmin
r (Ø)=0

J (Ø). (13.23)

This is the parameter vector which makes the estimating equations as close to zero as possible with
respect to the weighted quadratic distance while imposing the restriction on the parameters.

In general there is no explicit solution for bØcgmm. Instead, the solution needs to be found numerically.
Fortunately there are excellent nonlinear constrained optimization solvers which make the task quite
feasible. We do not review these here, but can be found in any numerical software system.

For the asymptotic distribution assume that the restriction r
°
Ø

¢
= 0 is true. Then, using the same

methods as in the proof of Theorem 8.10 we can show that (13.17) approximately holds, in the sense that

p
n

≥
bØcgmm °Ø

¥
=

µ
I k °

°
X

0
Z W Z

0
X

¢°1
R

≥
R

0 °
X

0
Z W Z

0
X

¢°1
R

¥°1
R

0
∂p

n
≥
bØgmm °Ø

¥
+op (1)

where R = @
@Ør

°
Ø

¢0. Thus the asymptotic distribution of the constrained estimator takes the same form
as in the linear case.

Theorem 13.11 Under Assumptions 12.2 and 8.3, for the constrained GMM es-
timator (13.23) p

n
≥
bØcgmm °Ø

¥
°!

d
N

°
0,V cgmm

¢

as n !1, where V cgmm equals (13.18). If W = b≠°1
, then V cgmm equals (13.20).

V cgmm =V Ø°V ØR
°
R

0
V ØR

¢°1
R

0
V Ø.
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The asymptotic covariance matrix in the efficient case is estimated by (13.21) with R replaced with

bR = @

@Ø
r

≥
bØcgmm

¥0
.

The asymptotic covariance matrix (13.18) in the general case is estimated similarly.
To implement an iterated restricted GMM estimator, the weight matrix may be set as W = e≠°1

where
e≠ is defined in (13.22), and then iterated until convergence.

13.17 Constrained Regression

Take the conventional projection model

yi = x
0
iØ+ei

E [x i ei ] = 0.

We can view this as a very special case of GMM. It is model (13.5) with z i = x i . This is just-identified
GMM and the estimator is least-squares bØgmm = bØols.

In Chapter 8 we discussed estimation of the projection model subject to linear constraints R
0Ø = c ,

which includes exclusion restrictions. Since the projection model is a special case of GMM, the con-
strained projection model is also constrained GMM. From the results of Section 13.15 we find that the
efficient constrained GMM estimator is

bØcgmm = bØols ° bV ØR
°
R

0 bV ØR
¢°1 °

R
0bØols °c

¢
= bØemd,

the efficient minimum distance estimator. Thus for linear constraints on the linear projection model,
efficient GMM equals efficient minimum distance. Thus one convenient method to implement efficient
minimum distance is by using GMM.

13.18 Multivariate Regression

GMM methods can simplify estimation and inference for multivariate regressions such as those in-
troduced in Chapter 11.

The general multivariate regression (projection) model is

y j i = x
0
j iØ j +e j i

E
£

x j i e j i
§
= 0

for j = 1, ...,m. Using the notation from Section 11.2 the equations can be written jointly as

y i = X iØ+e i

and for the full sample as
y = XØ+e.

The k moment conditions are
E

h
X

0
i

≥
y i °X iØ

¥i
= 0. (13.24)

Given a k £k weight matrix W the GMM criterion is

J (Ø) = n
≥

y °XØ
¥0

X W X
0 ≥

y °XØ
¥

.
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The GMM estimator bØgmm minimizes J (Ø). Since this is a just-identified model the estimator solves
the sample equations

X
0 ≥

y °X bØgmm

¥
= 0.

The solution is

bØgmm =
√

nX

i=1
X

0
i X i

!°1 √
nX

i=1
X

0
i y i

!

=
≥

X
0
X

¥°1 ≥
X

0
y

¥

= bØols,

the least-squares estimator.
Thus the unconstrained GMM estimator of the multivariate regression model is least-squares. The

estimator does not depend on the weight matrix since the model is just-identified.
A important advantage of the GMM framework is to incorporate constraints. Consider the class of

restrictions R
0Ø = c . Minimization of the GMM criterion subject to this restrition has solutions as de-

scribed in (13.15). The restricted GMM estimator is

bØgmm = bØols °
≥

X
0
X W X

0
X

¥°1
R

µ
R

0
≥

X
0
X W X

0
X

¥°1
R

∂°1 °
R

0bØols °c
¢

.

This estimator depends on the weight matrix because it is over-identified.
A simple choice for weight matrix is W = X

0
X . This leads to the one-step estimator

bØ1 = bØols °
≥

X
0
X

¥°1
R

µ
R

0
≥

X
0
X

¥°1
R

∂°1 °
R

0bØols °c
¢

.

The asymptotically efficient choice sets W = b≠°1
where b≠= n°1 Pn

i=1 X
0
i be i be 0

i X i and be i = y i °X i bØ1. This
leads to the two-step estimator

bØ2 = bØols °
≥

X
0
X b≠°1

X
0
X

¥°1
R

µ
R

0
≥

X
0
X b≠°1

X
0
X

¥°1
R

∂°1 °
R

0bØols °c
¢

.

When the regressors x i are common across all equations, then the multivariate regression model can
be written conveniently as in (11.3)

y i = B
0
x i +e i

E
£

x i e
0
i

§
= 0.

The moment restrictions can be written as the matrix system

E
£

x i
°

y
0
i °x

0
i B

¢§
= 0.

Written as a vector system this is (13.24) and thus leads to the same restricted GMM estimators.
These are general formula for imposing restrictions. In specific cases (such as an exclusion restric-

tion) direct methods may be more convenient. In all cases, the solution is found by minimization of the
GMM criterion J (Ø) subject to the restriction.
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13.19 Distance Test

In Section 13.14 we introduced Wald tests of the hypothesis H0 : µ = µ0 where µ = r
°
Ø

¢
for a given

function r
°
Ø

¢
:Rk !£ΩRq . When r

°
Ø

¢
is non-linear, an alternative is to use a criterion-based statistic.

This is sometimes called the GMM Distance statistic and sometimes called a LR-like statistic (the LR is
for likelihood-ratio). The idea was first put forward by Newey and West (1987a).

The idea is to compare the unrestricted and restricted estimators by contrasting the criterion func-
tions. The unrestricted estimator takes the form

bØgmm = argmin
Ø

J (Ø)

where
bJ (Ø) = n ·g n(Ø)0 b≠°1

g n(Ø)

is the unrestricted GMM criterion with an efficient weight matrix estimate b≠. The minimized value of
the criterion is

bJ = bJ (bØgmm).

As in Section 13.15, the estimator subject to r
°
Ø

¢
= µ0 is

bØcgmm = argmin
r (Ø)=µ0

eJ (Ø)

where
eJ (Ø) = n g n(Ø)0 e≠°1

g n(Ø)

which depends on an efficient weight matrix estimate, either b≠ (the same as the unrestricted estimator),
or e≠ (the iterated weight matrix from constrained estimation). The minimized value of the criterion is

eJ = eJ
≥
bØcgmm

¥
.

The GMM distance (or LR-like) statistic is the difference in the criterion functions.

D = eJ ° bJ .

The distance test shares the useful feature of LR tests in that it is a natural by-product of the computation
of alternative models.

The test has the following large sample distribution.

Theorem 13.12 Under Assumptions 12.2 and 7.3, and H0 holds, then as n !
1,

D °!
d

¬2
q .

For c satisfying Æ= 1°Gq (c),

P [D > c |H0] °!Æ

so the test “Reject H0 if D > c” has asymptotic size Æ.
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The proof is given in Section 13.28.
Theorem 13.12 shows that the distance statistic has the same asymptotic distribution as Wald and

likelihood ratio statistics, and can be interpreted similarly. Small values of D mean that imposing the
restriction does not result in a large value of the moment equations. Hence the restriction appears to be
compatible with the data. On the other hand, large values of D mean that imposing the restriction results
in a much larger value of the moment equations, implying that the restriction is not compatible with the
data. The finding that the asymptotic distribution is chi-squared allows the calculation of asymptotic
critical values and p-values.

We now discuss the choice of weight matrix. As mentioned above, one simple choice is to set e≠= b≠.
In this case we have the following result.

Theorem 13.13 If e≠ = b≠ then D ∏ 0. Furthermore, if r is linear in Ø, then D
equals the Wald statistic.

The statement that e≠= b≠ implies D ∏ 0 follows from the fact that in this case the criterion functions
bJ (Ø) = eJ (Ø) are identical, so the constrained minimum cannot be smaller than the unconstrained. The
statement that linear hypotheses and e≠= b≠ implies D =W follows from applying the expression for the
constrained GMM estimator (13.19) and using the variance matrix formula (13.11).

This result shows some advantages to using the same weight matrix to estimate both bØgmm and
bØcgmm. In particular, the non-negativity finding motivated Newey and West (1987a) to recommend us-
ing e≠= b≠. However, this is not an important advantage. Setting e≠ to be the constrained efficient weight
matrix is natural for efficient estimation of bØcgmm. In the event that D < 0 the test simply fails to reject
H0 at any significance level.

As discussed in Section 9.17, for tests of nonlinear hypotheses the Wald statistic can work quite
poorly. In particular, the Wald statistic is affected by how the hypothesis r

°
Ø

¢
is formulated. In contrast,

the distance statistic D is not affected by the algebraic formulation of the hypothesis. Current evidence
suggests that the D statistic appears to have good sampling properties, and is a preferred test statistic
relative to the Wald statistic for nonlinear hypotheses. (See B. Hansen (2006).)

In Stata, the command after can be used to report the value of the
GMM criterion J . By estimating the two nested GMM regressions the values bJ and eJ can be obtained and
D computed.

13.20 Continuously-Updated GMM

An alternative to the two-step GMM estimator can be constructed by letting the weight matrix be an
explicit function of Ø. These leads to the criterion function

J (Ø) = n g n(Ø)0
√

1
n

nX

i=1
g (w i ,Ø)g (w i ,Ø)0

!°1

g n(Ø).

The bØ which minimizes this function is called the continuously-updated GMM (CU-GMM) estimator,
and was introduced by L. Hansen, Heaton and Yaron (1996).

A complication is that the continuously-updated criterion J (Ø) is not quadratic inØ. This means that
minimization requires numerical methods. It may appear that the CU-GMM estimator is the same as
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the iterated GMM estimator, but this is not the case at all. They solve distinct first-order conditions, and
can be quite different in applications.

Relative to traditional GMM, the CU-GMM estimator has lower bias but thicker distributional tails.
While it has received considerable theoretical attention, it is not used commonly in applications.

13.21 OverIdentification Test

In Section 12.31 we introduced the Sargan (1958) overidentification test for the 2SLS estimator under
the assumption of homoskedasticity. L. Hansen (1982) generalized the test to cover the GMM estimator
allowing for general heteroskedasticity.

Recall, overidentified models (`> k) are special in the sense that there may not be a parameter value
Ø such that the moment condition

H0 : E [z i ei ] = 0

holds. Thus the model – the overidentifying restrictions – are testable.
For example, take the linear model yi = Ø0

1x1i +Ø0
2x2i + ei with E [x1i ei ] = 0 and E [x2i ei ] = 0. It is

possible that Ø2 = 0, so that the linear equation may be written as yi =Ø0
1x1i +ei . However, it is possible

thatØ2 6= 0, and in this case it would be impossible to find a value ofØ1 so that both E
£

x1i
°
yi °x

0
1iØ1

¢§
= 0

and E
£

x2i
°
yi °x

0
1iØ1

¢§
= 0 hold simultaneously. In this sense an exclusion restriction can be seen as an

overidentifying restriction.
Note that g n °!

p
E [z i ei ] , and thus g n can be used to assess whether or not the hypothesis that

E [z i ei ] = 0 is true or not. Assuming that an efficient weight matrix estimate is used, the criterion function
at the parameter estimator is

J = J (bØgmm) = n g
0
n

b≠°1
g n .

This is a quadratic form in g n , and is thus a natural test statistic forH0 : E [z i ei ] = 0. Note that we assume
that the criterion function is constructed with an efficient weight matrix estimate. This is important for
the distribution theory.

Theorem 13.14 Under Assumption 12.2, then as n !1,

J = J
≥
bØgmm

¥
°!

d
¬2
`°k .

For c satisfying Æ= 1°G`°k (c),

P [J > c |H0] °!Æ

so the test “Reject H0 if J > c” has asymptotic size Æ.

The proof of the theorem is left to Exercise 13.13.
The degrees of freedom of the asymptotic distribution are the number of overidentifying restrictions.

If the statistic J exceeds the chi-square critical value, we can reject the model. Based on this information
alone it is unclear what is wrong, but it is typically cause for concern. The GMM overidentification test is
a very useful by-product of the GMM methodology, and it is advisable to report the statistic J whenever
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GMM is the estimation method. When over-identified models are estimated by GMM, it is customary to
report the J statistic as a general test of model adequacy.

In Stata, the command afer can be used to implement the overiden-
tification test. The GMM criterion J and its asymptotic p-value using the ¬2

`°k distribution are reported.

13.22 Subset OverIdentification Tests

In Section 12.32 we introduced subset overidentification tests for the 2SLS estimator under the as-
sumption of homoskedasticity. In this section we describe how to construct analogous tests for the GMM
estimator under general heteroskedasticity.

Recall, subset overidentification tests are used when it is desired to focus attention on a subset of in-
struments whose validity is questioned. Partition z i = (z ai , zbi ) with dimensions `a and `b , respectively,
where z ai contains the instruments which are believed to be uncorrelated with ei , and zbi contains the
instruments which may be correlated with ei . It is necessary to select this partition so that `a > k, so that
the instruments z ai alone identify the parameters. The instruments zbi are potentially valid additional
instruments.

Given this partition, the maintained hypothesis is that E [z ai ei ] = 0. The null and alternative hy-
potheses are

H0 : E [zbi ei ] = 0

H1 : E [zbi ei ] 6= 0.

The GMM test is constructed as follows. First, estimate the model by efficient GMM with only the
smaller set z ai of instruments. Let eJ denote the resulting GMM criterion. Second, estimate the model by
efficient GMM with the full set z i = (z ai , zbi ) of instruments. Let bJ denote the resulting GMM criterion.
The test statistic is the difference in the criterion functions:

C = bJ ° eJ .

This is similar in form to the GMM distance statistic presented in Section 13.19. The difference is that the
distance statistic compares models which differ based on the parameter restrictions, while the C statistic
compares models based on different instrument sets.

Typically, the model with the greater instrument set will produce a larger value for J so that C ∏ 0.
However negative values can algebraically occur. That is okay for this simply leads to a non-rejection of
H0.

If the smaller instrument set z ai is just-identified so that `a = k then eJ = 0 so C = bJ is simply the
standard overidentification test. This is why we have restricted attention to the case `a > k.

The test has the following large sample distribution.

Theorem 13.15 Under Assumption 12.2 and E
£

z ai x
0
i

§
has full rank k, then as

n !1,
C °!

d
¬2
`b

.

For c satisfying Æ= 1°G`b (c),

P [C > c |H0] °!Æ

so the test “Reject H0 if C > c” has asymptotic size Æ.
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The proof of Theorem 13.15 is presented in Section 13.28.
In Stata, the command afer can be used to implement a subset

overidentification test, where is the name(s) of the instruments(s) tested for validity. The statistic C
and its asymptotic p-value using the ¬2

`2
distribution are reported.

13.23 Endogeneity Test

In Section 12.29 we introduced tests for endogeneity in the context of 2SLS estimation. Endogeneity
tests are simple to implement in the GMM framework as a subset overidentification test. The model is

yi = x
0
1iØ1 +x

0
2iØ2 +ei

where the maintained assumption is that the regressors x1i and excluded instruments z2i are exogenous
so that E [x1i ei ] = 0 and E [z2i ei ] = 0. The question is whether or not x2i is endogenous. Thus the null
hypothesis is

H0 : E [x2i ei ] = 0

with the alternative
H1 : E [x2i ei ] 6= 0.

The GMM test is constructed as follows. First, estimate the model by efficient GMM using (x1i , z2i )
as instruments for (x1i , x2i ). Let eJ denote the resulting GMM criterion. Second, estimate the model by
efficient GMM using (x1i , x2i , z2i ) as instruments for (x1i , x2i ). Let bJ denote the resulting GMM criterion.
The test statistic is the difference in the criterion functions:

C = bJ ° eJ .

The distribution theory for the test is a special case of the theory of overidentification testing.

Theorem 13.16 Under Assumption 12.2 and E
£

z2i x
0
2i

§
has full rank k2, then as

n !1,
C °!

d
¬2

k2
.

For c satisfying Æ= 1°Gk2 (c),

P [C > c |H0] !Æ

so the test “Reject H0 if C > c” has asymptotic size Æ.

In Stata, the command afer can be used to implement the test
for endogeneity. The statistic C and its asymptotic p-value using the ¬2

k2
distribution are reported.

13.24 Subset Endogeneity Test

In Section 12.30 we introduced subset endogeneity tests for 2SLS estimation. GMM tests are simple
to implement as subset overidentification tests. The model is
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yi = x
0
1iØ1 +x

0
2iØ2 +x

0
3iØ3 +ei

E [z i ei ] = 0

where the instrument vector is z i = (x1i , z2i ). The k3£1 variables x3i are treated as endogenous, and the
k2£1 variables x2i are treated as potentially endogenous. The hypothesis to test is that x2i is exogenous,
or

H0 : E [x2i ei ] = 0

against
H1 : E [x2i ei ] 6= 0.

The test requires that `2 ∏ (k2 +k3) so that the model can be estimated under H1.
The GMM test is constructed as follows. First, estimate the model by efficient GMM using (x1i , z2i )

as instruments for (x1i , x2i , x3i ). Let eJ denote the resulting GMM criterion. Second, estimate the model
by efficient GMM using (x1i , x2i , z2i ) as instruments for (x1i , x2i , x3i ). Let bJ denote the resulting GMM
criterion. The test statistic is the difference in the criterion functions:

C = bJ ° eJ .

The distribution theory for the test is a special case of the theory of overidentification testing.

Theorem 13.17 Under Assumption 12.2 and E
£

z2i
°
x
0
2i , x

0
3i

¢§
has full rank k2 +

k3, then as n !1,
C °!

d
¬2

k2
.

For c satisfying Æ= 1°Gk2 (c),

P [C > c |H0] °!Æ

so the test “Reject H0 if C > c” has asymptotic size Æ.

In Stata, the command afer can be used to implement the
test for endogeneity, where is the name(s) of the variable(s) tested for endogeneity. The statistic C and
its asymptotic p-value using the ¬2

k2
distribution are reported.

13.25 Nonlinear GMM

GMM applies whenever an economic or statistical model implies the `£1 moment condition

E
£

g i (Ø)
§
= 0.

where g i (Ø) is a possibly nonlinear function of the parameters Ø. Often, this is all that is known. Identi-
fication requires `∏ k = dim(Ø). The GMM estimator minimizes

J (Ø) = n ·g n(Ø)0cW g n(Ø)
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for some weight matrix cW , where

g n(Ø) = 1
n

nX

i=1
g i (Ø).

The efficient GMM estimator can be constructed by setting

cW =
√

1
n

nX

i=1
bg i bg

0
i °g n g

0
n

!°1

,

with bg i = g (w i , eØ) constructed using a preliminary consistent estimator eØ, perhaps obtained by first
setting cW = I`.

As in the case of the linear model, the weight matrix can be iterated until convergence to obtain the
iterated GMM estimator.

Proposition 13.1 Distribution of Nonlinear GMM Estimator
Under general regularity conditions,

p
n

≥
bØgmm °Ø

¥
°!

d
N

°
0,V Ø

¢

where
V Ø =

°
Q

0
W Q

¢°1 °
Q

0
W≠W Q

¢°
Q

0
W Q

¢°1

with
≠= E

£
g i g

0
i

§

and

Q = E
∑
@

@Ø0 g i (Ø)
∏

.

If the efficient weight matrix is used then

V Ø =
°
Q

0≠°1
Q

¢°1
.

The proof of this result is omitted as it uses more advanced techniques.
The asymptotic covariance matrices can be estimated by sample counterparts of the population ma-

trices. For the case of a general weight matrix,

bV Ø =
≥
bQ 0cW bQ

¥°1 ≥
bQ 0cW b≠cW bQ

¥≥
bQ 0cW bQ

¥°1

where
b≠= 1

n

nX

i=1

°
g i (bØ)°g

¢°
g i (bØ)°g

¢0

g = n°1
nX

i=1
g i (bØ)

and
bQ = 1

n

nX

i=1

@

@Ø0 g i (bØ).
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For the case of the iterated efficient weight matrix,

bV Ø =
≥
bQ 0 b≠°1 bQ

¥°1
.

All of the methods discussed in this chapter – Wald tests, constrained estimation, distance tests,
overidentification tests, endogeneity tests – apply similarly to the nonlinear GMM estimator.

13.26 Bootstrap for GMM

The bootstrap for 2SLS (Section 12.23) can be used for GMM estimation. The standard bootstrap
algorithm generates bootstrap samples by sampling the triplets (y§

i , x
§
i , z

§
i ) independently and with re-

placement from the original sample. The GMM estimator is applied to the bootstrap sample to obtain
the bootstrap estimates bØ§

gmm. This is repeated B times to create a sample of B bootstrap draws. Given
these draws, bootstrap confidence intervals, including percentile, BC percentile, BCa and percentile-t,
are calculated conventionally.

For variance and standard error estimation, the same cautions apply as for 2SLS. It is difficult to know
if the GMM estimator has a finite variance in a given application. It is best to avoid using the bootstrap to
calculate standard errors. Instead, use the bootstrap for percentile and percentile-t confidence intervals.

When the model is overidentified, as discussed for 2SLS, bootstrap GMM inference will not achieve
an asymptotic refinement unless the bootstrap estimator is recented to satisfy the orthogonality condi-
tion. We now describe the recentering recommended by Hall and Horowitz (1996).

For linear GMM wth weight matrix W , the recented GMM bootstrap estimator is

bØ§§
gmm =

°
X

§0
Z

§
W

§
Z

§0
X

§¢°1 °
X

§0
Z

§
W

§ °
Z

§0
y
§ °Z

0be
¢¢

where W
§ is the bootstrap version of W and be = y °X bØgmm. For efficient GMM,

W
§ =

√
1
n

nX

i=1
z
§
i z

§0
i

≥
yi °x

§0
i

eØ§¥2
!°1

for preliminary estimator eØ§
.

For nonlinear GMM (Section 13.25), the bootstrap criterion function is modified. The recentered
bootstrap criterion is

J§§(Ø) = n
≥

g
§
n(Ø)°g n(bØgmm)

¥0
W

§
≥

g
§
n(Ø)°g n(bØgmm)

¥

g
§
n(Ø) = 1

n

nX

i=1
g
§
i (Ø)

where g n(bØgmm) is from the sample, not from the bootstrap data. The bootstrap estimator is

bØ§§
gmm = argmin J§§(Ø).

The bootstrap can be used to calculate the p-value of the GMM overidentification test. For the GMM
estimator with an efficient weight matrix the standard overidentification test is the Hansen J statistic

J = n g n(bØgmm)0 b≠°1
g n(bØgmm).

The recentered bootstrap analog is

J§§ = n
≥

g
§
n(bØ§§

gmm)°g n(bØgmm)
¥0 b≠§°1

≥
g
§
n(bØ§§

gmm)°g n(bØgmm)
¥

.
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On each bootstrap sample J§§(b) is calculated and stored. The bootstrap p-value is

p§ = 1
B

BX

b=1

°
J§§(b) > S

¢
.

This bootstrap p-value is asymptotically valid since J§§ satisfies the overidentified moment conditions.

13.27 Conditional Moment Equation Models

In many contexts, an economic model implies more than an unconditional moment restriction of
the form E

£
g (w i ,Ø)

§
= 0. It implies a conditional moment restriction of the form

E
£
e i (Ø) | z i

§
= 0

where e i (Ø) is some s £ 1 function of the observation and the parameters. In many cases, s = 1. The
variable z i is often called an instrument.

It turns out that this conditional moment restriction is much more powerful, and restrictive, than the
unconditional moment equation model discussed throughout this chapter.

For example, the linear model yi = x
0
iØ+ei with instruments z i falls into this class under the assump-

tion E [ei | z i ] = 0. In this case, ei (Ø) = yi °x
0
iØ.

It is also helpful to realize that conventional regression models also fall into this class, except that in
this case x i = z i . For example, in linear regression, ei (Ø) = yi °x

0
iØ, while in a nonlinear regression model

ei (Ø) = yi ° g (x i ,Ø). In a joint model of the conditional mean E
£

y | x
§
= x

0Ø and variance var
£

y | x
§
=

f (x)0∞, then

e i
°
Ø,∞

¢
=

8
><

>:

yi °x
0
iØ

°
yi °x

0
iØ

¢2 ° f (x i )0∞
.

Here s = 2.
Given a conditional moment restriction, an unconditional moment restriction can always be con-

structed. That is for any`£1 function¡
°
z ,Ø

¢
, we can set g i (Ø) =¡

°
z i ,Ø

¢
ei (Ø) which satisfies E

£
g i (Ø)

§
=

0 and hence defines an unconditional moment equation model. The obvious problem is that the class
of functions ¡ is infinite. Which should be selected?

This is equivalent to the problem of selection of the best instruments. If zi 2 R is a valid instrument
satisfying E [ei | zi ] = 0, then zi , z2

i , z3
i , ..., etc., are all valid instruments. Which should be used?

One solution is to construct an infinite list of potent instruments, and then use the first k instru-
ments. How is k to be determined? This is an area of theory still under development. One study of this
problem is Donald and Newey (2001).

Another approach is to construct the optimal instrument. The form was uncovered by Chamberlain
(1987). Take the case s = 1. Let

R i = E
∑
@

@Ø
ei (Ø) | z i

∏

and
æ2

i = E
£
ei (Ø)2 | z i

§
.

Then the “optimal instrument” is
Ai =°æ°2

i R i

so the optimal moment is
g i (Ø) = Ai ei (Ø).
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Setting g i (Ø) to be this choice (which is k £1, so is just-identified) yields the best GMM estimator possi-
ble.

In practice, Ai is unknown, but its form helps us think about construction of good instruments.
In the linear model ei (Ø) = yi ° x

0
iØ, note that R i = °E [x i | z i ] and æ2

i = E
£
e2

i | z i
§
. This means the

optimal instrument is
Ai =æ°2

i E [x i | z i ] .

In the case of linear regression, x i = z i , so Ai =æ°2
i z i . Hence efficient GMM is equivalent to GLS.

In the case of endogenous variables, note that the efficient instrument Ai involves the estimation of
the conditional mean of x i given z i . In other words, to get the best instrument for x i , we need the best
conditional mean model for x i given z i , not just an arbitrary linear projection. The efficient instrument
is also inversely proportional to the conditional variance of ei . This is the same as the GLS estimator;
namely that improved efficiency can be obtained if the observations are weighted inversely to the con-
ditional variance of the errors.
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13.28 Technical Proofs*

Proof of Theorem 13.12 Set ee = y °X bØcgmm and be = y °X bØgmm. By standard covariance matrix analysis
b≠ °!

p
≠ and e≠ °!

p
≠. Thus we can replace b≠ and e≠ in the criteria without affecting the asymptotic

distribution. In particular

eJ (bØcgmm) = 1
n

ee 0
Z e≠°1

Z
0ee

= 1
n

ee 0
Z b≠°1

Z
0ee +op (1). (13.25)

Now observe that
Z

0ee = Z
0be °Z

0
X

≥
bØcgmm ° bØgmm

¥
.

Thus

1
n

ee 0
Z b≠°1

Z
0ee = 1

n
be 0

Z b≠°1
Z

0be ° 2
n

≥
bØcgmm ° bØgmm

¥0
X

0
Z b≠°1

Z
0be

+ 1
n

≥
bØcgmm ° bØgmm

¥0
X

0
Z b≠°1

Z
0
X

≥
bØcgmm ° bØgmm

¥

= bJ (bØgmm)+ 1
n

≥
bØcgmm ° bØgmm

¥0
X

0
Z b≠°1

Z
0
X

≥
bØcgmm ° bØgmm

¥
(13.26)

where the second equality holds since X
0
Z b≠°1

Z
0be = 0 is the first-order condition for bØgmm. By (13.16)

and Theorem 13.4, under H0

p
n

≥
bØcgmm ° bØgmm

¥
=°

°
X

0
Z≠°1

Z
0
X

¢°1
R

≥
R

0 °
X

0
Z≠°1

Z
0
X

¢°1
R

¥°1
R

0pn
≥
bØgmm °Ø

¥
+op (1)

°!
d

°
Q

0≠°1
Q

¢°1
RZ (13.27)

where

Z ª N(0,V R ) (13.28)

V R =
≥
RV

0 °
Q

0≠°1
Q

¢°1
R

¥°1
.

Putting together (13.25), (13.26), (13.27) and (13.28),

D = eJ (bØcgmm)° bJ (bØgmm)

=
p

n
≥
bØcgmm ° bØgmm

¥0 1
n

X
0
Z b≠°1 1

n
Z

0
X
p

n
≥
bØcgmm ° bØgmm

¥

°!
d

Z0
V

°1
R

Z

ª¬2
q

since V R > 0 and Z is q £1. Á

Proof of Theorem 13.15 Let eØ denote the GMM estimator obtained with the instrument set z ai and let
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bØ denote the GMM estimator obtained with the instrument set z i . Set

ee = y °X eØ

be = y °X bØ

e≠= n°1
nX

i=1
z ai z

0
ai ee

2
i

b≠= n°1
nX

i=1
z i z

0
i be

2
i .

Let R be the `£`a selector matrix so that z ai = R
0
z i . Note that

e≠= R
0n°1

nX

i=1
z i z

0
i ee

2
i R .

By standard covariance matrix analysis, b≠ °!
p
≠ and e≠ °!

p
R

0≠R . Also, 1
n Z

0
X °!

p
Q , say. By the CLT,

n°1/2
Z

0
e °!

d
Z where Z ª N(0,≠). Then

n°1/2
Z

0be =
µ

I`°
µ

1
n

Z
0
X

∂µ
1
n

X
0
Z b≠°1 1

n
Z

0
X

∂°1 µ
1
n

X
0
Z

∂
b≠°1

∂
n°1/2

Z
0
e

°!
d

≥
I`°Q

°
Q

0≠°1
Q

¢°1
Q

0≠°1
¥

Z

and

n°1/2
Z

0
aee = R

0
µ

I`°
µ

1
n

Z
0
X

∂µ
1
n

X
0
Z R e≠°1

R
0 1
n

Z
0
X

∂°1 µ
1
n

X
0
Z

∂
R e≠°1

R
0
∂

n°1/2
Z

0
e

°!
d

R
0
µ

I`°Q

≥
Q

0
R

°
R

0≠R
¢°1

R
0
Q

¥°1
Q

0
R

°
R

0≠R
¢°1

R
0
∂

Z

jointly.
By linear rotations of Z and R we can set≠= I` to simplify the notation. Thus setting PQ =Q

°
Q

0
Q

¢°1
Q

0,
P R = R

°
R

0
R

¢°1
R

0 and Z ª N(0, I`) we have

bJ °!
d

Z0 °
I`°PQ

¢
Z

and
eJ °!

d
Z0

≥
P R °P RQ

°
Q

0
P RQ

¢°1
Q

0
P R

¥
Z.

It follows that
C = bJ ° eJ °!

d
Z0

AZ

where
A =

≥
I`°PQ °P R +P RQ

°
Q

0
P RQ

¢°1
Q

0
P R

¥
.

This is a quadratic form in a standard normal vector, and the matrix A is idempotent (this is straightfor-
ward to check). Z0

AZ is thus distributed ¬2
d with degrees of freedom d equal to

rank(A) = tr
≥

I`°PQ °P R +P RQ
°
Q

0
P RQ

¢°1
Q

0
P R

¥

= `°k °`a +k

= `b .

Thus the asymptotic distribution of C is ¬2
`b

as claimed. Á
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Exercises

Exercise 13.1 Take the model

yi = x
0
iØ+ei

E [x i ei ] = 0

e2
i = z

0
i∞+¥i

E
£

z i¥i
§
= 0.

Find the method of moments estimators
°bØ, b∞

¢
for

°
Ø,∞

¢
.

Exercise 13.2 Take the single equation

y = XØ+e

E [e | Z ] = 0

Assume E
£
e2

i | z i
§
= æ2. Show that if bØgmm is the GMM estimated by GMM with weight matrix W n =

°
Z

0
Z

¢°1 , then
p

n
°bØ°Ø

¢
°!

d
N

≥
0,æ2 °

Q
0
M

°1
Q

¢°1
¥

where Q = E
£

z i x
0
i

§
and M = E

£
z i z

0
i

§
.

Exercise 13.3 Take the model yi = x
0
iØ+ei with E [z i ei ] = 0. Let eei = yi ° x

0
i
eØ where eØ is consistent for Ø

(e.g. a GMM estimator with some weight matrix). An estimator of the optimal GMM weight matrix is

cW =
√

1
n

nX

i=1
z i z

0
i ee

2
i

!°1

.

Show that cW °!
p
≠°1 where≠= E

£
z i z

0
i e2

i

§
.

Exercise 13.4 In the linear model estimated by GMM with general weight matrix W , the asymptotic vari-
ance of bØgmm is

V =
°
Q

0
W Q

¢°1
Q

0
W≠W Q

°
Q

0
W Q

¢°1 .

(a) Let V 0 be this matrix when W =≠°1. Show that V 0 =
°
Q

0≠°1
Q

¢°1 .

(b) We want to show that for any W , V °V 0 is positive semi-definite (for then V 0 is the smaller possible
covariance matrix and W =≠°1 is the efficient weight matrix). To do this, start by finding matrices
A and B such that V = A

0≠A and V 0 = B
0≠B .

(c) Show that B
0≠A = B

0≠B and therefore that B
0≠ (A °B ) = 0.

(d) Use the expressions V = A
0≠A, A = B + (A °B ) , and B

0≠ (A °B ) = 0 to show that V ∏V 0.

Exercise 13.5 Prove Theorem 13.8.

Exercise 13.6 Derive the constrained GMM estimator (13.16).

Exercise 13.7 Show that the constrained GMM estimator (13.16) with the efficient weight matrix is (13.19).
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Exercise 13.8 Prove Theorem 13.9.

Exercise 13.9 Prove Theorem 13.10.

Exercise 13.10 The equation of interest is

yi = m(x i ,Ø)+ei

E [z i ei ] = 0.

The observed data is (yi , z i , x i ). z i is `£1 and Ø is k £1, `∏ k. Show how to construct an efficient GMM
estimator for Ø.

Exercise 13.11 As a continuation of Exercise 12.7, derive the efficient GMM estimator using the instru-
ment z i = (xi x2

i )0. Does this differ from 2SLS and/or OLS?

Exercise 13.12 In the linear model y = XØ+e with E [x i ei ] = 0, the GMM criterion function for Ø is

J (Ø) = 1
n

°
y °XØ

¢0
X b≠°1

X
0 °

y °XØ
¢

(13.29)

where b≠ = 1
n

Pn
i=1 x i x

0
i be

2
i , bei = yi ° x

0
i
bØ are the OLS residuals, and bØ =

°
X

0
X

¢°1
X

0
y is least-squares. The

GMM estimator of Ø subject to the restriction r (Ø) = 0 is

eØ= argmin
r (Ø)=0

Jn(Ø).

The GMM test statistic (the distance statistic) of the hypothesis r (Ø) = 0 is

D = J (eØ) = min
r (Ø)=0

J (Ø). (13.30)

(a) Show that you can rewrite J (Ø) in (13.29) as

J (Ø) = n
°
Ø° bØ

¢0 bV °1
Ø

°
Ø° bØ

¢

and thus eØ is the same as the minimum distance estimator.

(b) Show that under linear hypotheses the distance statistic D in (13.30) equals the Wald statistic.

Exercise 13.13 Take the linear model

yi = x
0
iØ+ei

E [z i ei ] = 0.

and consider the GMM estimator bØ of Ø. Let

J = n g n(bØ)0 b≠°1
g n(bØ)

denote the test of overidentifying restrictions. Show that J °!
d

¬2
`°k as n !1 by demonstrating each of

the following:

(a) Since≠> 0, we can write≠°1 =CC
0 and≠=C

0°1
C

°1.



CHAPTER 13. GENERALIZED METHOD OF MOMENTS 465

(b) J = n
°
C

0
g n(bØ)

¢0 °
C

0 b≠C
¢°1

C
0
g n(bØ).

(c) C
0
g n(bØ) = DnC

0
g n(Ø) where

Dn = I`°C
0
µ

1
n

Z
0
X

∂µµ
1
n

X
0
Z

∂
b≠°1

µ
1
n

Z
0
X

∂∂°1 µ
1
n

X
0
Z

∂
b≠°1

C
0°1

g n(Ø) = 1
n

Z
0
e.

(d) Dn °!
p

I`°R
°
R

0
R

¢°1
R

0 where R =C
0
E
£

z i x
0
i

§
.

(e) n1/2
C

0
g n(Ø) °!

d
u ª N(0, I`) .

(f) J °!
d

u
0
≥

I`°R
°
R

0
R

¢°1
R

0
¥

u.

(g) u
0
≥

I`°R
°
R

0
R

¢°1
R

0
¥

u ª¬2
`°k .

Hint: I`°R
°
R

0
R

¢°1
R

0 is a projection matrix.

Exercise 13.14 Take the model

yi = x
0
iØ+ei

E [z i ei ] = 0

yi scalar, x i a k vector and z i an ` vector, `∏ k. Assume i.i.d. observations. Consider the statistic

Jn(Ø) = nmn(Ø)0W mn(Ø)

mn(Ø) = 1
n

nX

i=1
z i

°
yi °x

0
iØ

¢

for some weight matrix W > 0.

(a) Take the hypothesis
H0 :Ø=Ø0

Derive the asymptotic distribution of Jn(Ø0) under H0 as n !1.

(b) What choice for W yields a known asymptotic distribution in part (a)? (Be specific about degrees
of freedom.)

(c) Write down an appropriate estimator cW for W which takes advantage of H0. (You do not need to
demonstrate consistency or unbiasedness.)

(d) Describe an asymptotic test of H0 against H1 :Ø 6=Ø0 based on this statistic.

(e) Use the result in part (d) to construct a confidence region for Ø. What can you say about the form
of this region? For example, does the confidence region take the form of an ellipse, similar to
conventional confidence regions?
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Exercise 13.15 Consider the model

yi = x
0
iØ+ei

E [z i ei ] = 0 (13.31)

R
0Ø= 0 (13.32)

with yi scalar, x i a k vector and z i an ` vector with `> k. The matrix R is k £q with 1 ∑ q < k. You have
a random sample (yi , x i , z i : i = 1, ...,n).

For simplicity, assume the efficient weight matrix W =
°
E
£

z i z
0
i e2

i

§¢°1 is known.

(a) Write out the GMM estimator bØ given the moment conditions (13.31) but ignoring constraint
(13.32).

(b) Write out the GMM estimator eØ given the moment conditions (13.31) and constraint (13.32).

(c) Find the asymptotic distribution of
p

n
°eØ°Ø

¢
as n ! 1 under the assumption that (13.31) and

(13.32) are correct.

Exercise 13.16 The observed data is {yi , xi , z i } 2R£Rk £R`, k > 1 and `> k > 1, i = 1, ...,n. The model is

yi = x
0
iØ+ei

E [z i ei ] = 0. (13.33)

(a) Given a weight matrix W > 0, write down the GMM estimator bØ for Ø.

(b) Suppose the model is misspecified in that

ei = ±n°1/2 +ui (13.34)

E [ui | z i ] = 0

with µ
z
= E [z i ] 6= 0 and ± 6= 0. Show that (13.34) implies that (13.33) is false.

(c) Express
p

n
°bØ°Ø

¢
as a function of W , n, ±, and the variables (x i , z i , ui ).

(d) Find the asymptotic distribution of
p

n
°bØ°Ø

¢
under Assumption (13.34).

Exercise 13.17 The model is

yi = ziØ+xi∞+ei

E [ei | zi ] = 0.

Thus xi is potentially endogenous and zi is exogenous. Assume that zi and xi are scalar. Someone
suggests estimating (Ø,∞) by GMM, using the pair (zi , z2

i ) as the instruments. Is this feasible? Under what
conditions, if any, (in additional to those described above) is this a valid estimator?

Exercise 13.18 The observations are i.i.d., (yi , x i , q i : i = 1, ...,n), where x i is k £1 and q i is m £1. The
model is

yi = x
0
iØ+ei

E [x i ei ] = 0

E
£

q i ei
§
= 0.

Find the efficient GMM estimator for Ø.
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Exercise 13.19 You want to estimate µ= E
£

yi
§

under the assumption that E [xi ] = 0, where yi and xi are
scalar and observed from a random sample. Find an efficient GMM estimator for µ.

Exercise 13.20 Consider the model

yi = x
0
iØ+ei

E [z i ei ] = 0

R
0Ø= 0.

The dimensions are x 2 Rk , z 2 R`, ` > k. The matrix R is k £ q, 1 ∑ q < k. Derive an efficient GMM
estimator for Ø for this model.

Exercise 13.21 Take the linear equation yi = x
0
iØ+e, and consider the following estimators of Ø.

1. bØ : 2SLS using the instruments z1i .

2. eØ : 2SLS using the instruments z1i .

3. Ø : GMM using the instruments z i = (z1i , z2i ) and the weight matrix

W =
√ °

Z
0
1Z 1

¢°1
∏ 0

0
°

Z
0
2Z 2

¢°1 (1°∏)

!

for ∏ 2 (0,1).

Find an expression for Ø which shows that it is a specific weighted average of bØ and eØ.

Exercise 13.22 Consider the just-identified model

yi = x
0
1iØ1 +x

0
2iØ2 +ei

E [x i ei ] = 0

where x i = (x
0
1i x

0
2i )0 and z i are k £1. We want to test H0 : Ø1 = 0. Three econometricians are called to

advise on how to test H0.

• Econometrician 1 proposes testing H0 by a Wald statistic.

• Econometrician 2 suggests testing H0 by the GMM Distance Statistic.

• Econometrician 3 suggests testing H0 using the test of overidentifying restrictions.

You are asked to settle this dispute. Explain the advantages and/or disadvantages of the different
procedures, in this specific context.

Exercise 13.23 Take the model

yi = x
0
iØ+ei

E [x i ei ] = 0

Ø=Qµ

where Ø is k £1, Q is k £m with m < k, and Q is known. Assume that the observations (yi , x i ) are i.i.d.
across i = 1, ...,n.

Under these assumptions, what is the efficient estimator of µ?
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Exercise 13.24 Take the model

yi = µ+ei

E [x i ei ] = 0

with (yi , x i ) a random sample. yi is real-valued and x i is k £1, k > 1.

(a) Find the efficient GMM estimator of µ.

(b) Is this model over-identified or just-identified?

(c) Find the GMM test statistic for over-identification.

Exercise 13.25 Take the model

yi = x
0
iØ+ei

E [x i ei ] = 0

where x i contains an intercept so E [ei ] = 0. An enterprising econometrician notices that this implies the
n moment conditions

E [ei ] = 0, i = 1, ...,n.

Given an n £n weight matrix W , this implies a GMM criterion

J (Ø) =
°

y °XØ
¢0

W
°

y °XØ
¢

.

(a) Under i.i.d. sampling, show that the efficient weight matrix is W =æ°2
I n , where æ2 = E

£
e2

i

§
.

(b) Using the weight matrix W =æ°2
I n , find the GMM estimator bØ that minimizes J (Ø).

(c) Find a simple expression for the minimized criterion J (bØ).

(d) Theorem 13.14 says that criterion such as J (bØ) are asymptotically ¬2
`°k where ` is the number of

moments. While the assumptions of Theorem 13.14 do not apply to this context, what is ` here?
That is, which ¬2 distribution is the asserted asymptotic distribution?

(e) Does the answer in (d) make sense? Explain your reasoning.

Exercise 13.26 Take the model

yi = x
0
iØ+ei

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2.

An econometrician more enterprising than the one in previous question notices that this implies the nk
moment conditions

E [x i ei ] = 0, i = 1, ...,n.

We can write the moments using matrix notation as

E

h
X

0 °
y °XØ

¢i
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where

X =

0

BBBB@

x
0
1 0 · · · 0

0 x
0
2 0

...
...

...
0 0 · · · x

0
n

1

CCCCA
.

Given an nk £nk weight matrix W , this implies a GMM criterion

J (Ø) =
°

y °XØ
¢0

X W X
0 °

y °XØ
¢

.

(a) Calculate≠= E
h

X
0
ee

0
X

i
.

(b) The econometrician decides to set W = ≠°, the Moore-Penrose generalized inverse of ≠. (See
Section A.6.)

Note: A useful fact is that for a vector a,
°
aa

0¢° = aa
0 °

a
0
a

¢°2 .

(c) Find the GMM estimator bØ that minimizes J (Ø).

(d) Find a simple expression for the minimized criterion J (bØ).

(e) Comment on whether the ¬2 approximation from Theorem 13.14 is appropriate for J (bØ).

Exercise 13.27 Continuation of Exercise 12.23, based on the empirical work reported in Acemoglu, John-
son and Robinson (2001).

(a) Re-estimate the model estimated in part (j) by efficient GMM. Use the 2SLS estimates as the first-
step for the weight matrix, and then calculate the GMM estimator using this weight matrix without
further iteration. Report the estimates and standard errors.

(b) Calculate and report the J statistic for overidentification.

(c) Compare the GMM and 2SLS estimates. Discuss your findings

Exercise 13.28 Continuation of Exercise 12.25, which involved estimation of a wage equation by 2SLS.

(a) Re-estimate the model in part (a) by efficient GMM. Do the results change meaningfully?

(b) Re-estimate the model in part (d) by efficient GMM. Do the results change meaningfully?

(c) Report the J statistic for overidentification.
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Chapter 14

Time Series

14.1 Introduction

A time series y t 2 Rm is a process observed in sequence over time: t = 1, ...,n. To denote the time
period it is typical to use the subscript t . The time series is univariate if m = 1 and multivariate if m > 1.
This chapter is primarily focused on univariate time series models, though we describe the concepts for
the multivariate case when the added generality does not add extra complications.

Most economic time series are recorded at discrete intervals such as annual, quarterly, monthly,
weekly, or daily. The number of observations s per year is called the frequency.

Because of the sequential nature of time series, we expect that observations close in calender time,
e.g. y t and its lagged value y t°1, will be dependent. This type of dependence structure requires a differ-
ent distributional theory than for cross-sectional and clustered observations, since we cannot divide the
sample into independent groups. Many of the issues which distinguish time series from cross-section
econometrics concern the modeling of these dependence relationships.

There are many excellent textbooks for time series analysis. The encyclopedic standard is Hamil-
ton (1994). Others include Harvey (1990), Tong (1990), Brockwell and Davis (1991), Fan and Yao (2003),
Lütkepohl (2005), Enders (2014), and Kilian and Lütkepohl (2017). For textbooks on the related subject
of forecasting see Granger (1989), Granger and Newbold (1986), and Elliott and Timmermann (2016).

14.2 Examples

Many economic time series are macroeconomic variables. An excellent resource for U.S. macroe-
conomic data are the FRED-MD and FRED-QD databases, which contain a wide set of monthly and
quarterly variables, assembled and maintained by the St. Louis Federal Reserve Bank. See McCracken
and Ng (2015). The datasets FRED-MD and FRED-QD for 1959-2017 are posted on the course website.
FRED-MD has 129 variables over 708 months. FRED-QD has 248 variables over 236 quarters.

When working with time series data one of the first tasks is to plot the series against time. In Figures
14.1-14.4 we plot eight example time series from FRED-QD and FRED-MD. As is conventional in time
series plots, the x-axis displays calendar dates (in this case years) and the y-axis displays the level of the
series. The series plotted are: (1a) Real U.S. GDP (gdpc1); (1b) U.S.-Canada exchange rate (excausx); (2a)
Interest rate on U.S. 10-year Treasury (gs10); (2b) Real crude oil price (oilpricex); (3a) U.S. unemployment
rate (unrate); (3b) U.S. real non-durables consumption growth rate (growth rate of pcndx); (4a) U.S. CPI
inflation rate (growth rate of cpiaucsl); (4b) S&P 500 return (growth rate of sp500). (1a) and (3b) are
quarterly series, the rest are monthly.
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Figure 14.1: U.S. GDP and Exchange Rate

Many of the plots are smooth, meaning that the neighboring values (in calendar time) are similar
to one another and hence are serially correlated. Some of the plots are non-smooth, meaning that the
neighboring values are not similar and hence less correlated. At least one plot (real GDP) displays an
upward trend.

14.3 Differences and Growth Rates

It is common to transform many series by taking logarithms, differences and/or growth rates. Three
of the series in Figures 14.3-14.4 (consumption growth, inflation [growth rate of CPI index], and S&P 500
return) are displayed as growth rates. This transformation may be done for a number of different reasons,
but the most credible reason is that this is the suitable variable for the desired analysis.

Many aggregate series such as real GDP are transformed by taking natural logarithms. This flattens
the apparent exponential growth and makes fluctuations proportionate.

The first difference of a series yt is
¢yt = yt ° yt°1.

The second difference is
¢2 yt =¢yt °¢yt°1.

Higher-order differences can be defined similarly but are not used in practice.
The annual, or year-on-year, change of a series yt with frequency s is

¢s yt = yt ° yt°s .

There are several methods to calculate growth rates. The one-period growth rate is the percentage
change from period t °1 to period t :

qt = 100
µ
¢yt

yt°1

∂
= 100

µ
yt

yt°1
°1

∂
. (14.1)



CHAPTER 14. TIME SERIES 473

Pe
rc
en
ta
ge

1960 1970 1980 1990 2000 2010 2020

2
4

6
8

10
12

14

(a) Interest Rate on 10-Year Treasury

Year

20
12

 D
ol

la
rs

 p
er

 B
ar

re
l

1960 1970 1980 1990 2000 2010 2020

0
20

40
60

80
10

0
12

0

(b) Real Crude Oil Price

Figure 14.2: Interest Rate and Crude Oil Price

The multiplication by 100 is not essential but scales qt so that it is a percentage. This is the transforma-
tion used for the plots in Figures 14.3(b)-14.4(a)(b).

For non-annual data the one-period growth rate (14.1) may be unappealing for interpretation. Con-
sequently, statistical agencies commonly report “annualized” growth rates, which is the annual growth
which would occur if the one-period growth rate is compounded for a full year. For a series with fre-
quency s the annualized growth rate is

at = 100
µµ

yt

yt°1

∂s

°1
∂

. (14.2)

Notice that at is a nonlinear function of qt .
Year-on-year growth rates are

Qt = 100
µ
¢s yt

yt°s

∂
= 100

µ
yt

yt°s
°1

∂
.

These do not need annualization.
Growth rates are closely related to logarithmic transformations. For small growth rates, qt , at and Qt

are approximately first differences in logarithms:

qt ' 100¢ log yt

at ' 400¢ log yt

Qt ' 100¢s log yt .

For analysis using growth rates I recommend the one-period growth rates (14.1) or differenced log-
arithms rather than the annualized growth rates (14.2). While annualized growth rates are preferred for
reporting, they are a highly nonlinear transformation which is unnatural for statistical analysis. Dif-
ferenced logarithms are the most common choice, and are recommended for models which combine
log-levels and growth rates for then the models are linear in all variables.
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Figure 14.3: Unemployment Rate and Cconsumption Growth Rate

14.4 Stationarity

Recall that cross-sectional observations are conventionally treated as random draws from an un-
derlying population. This is not an appropriate model for time series processes due to serial depen-
dence. Instead, we treat the observed sample

©
y 1, ..., y n

™
as a realization of a dependent stochastic

process. It is often useful to view
©

y 1, ..., y n
™

as a subset of an underlying doubly-infinite sequence©
..., y t°1, y t , y t+1, ...

™
.

A random vector y t can be characterized by its distribution, and a set such as (y t , y t+1, ..., y t+`) can
be characterized by its joint distribution. Important features of these distributions are their means, vari-
ances, and covariances. Since there is only one observed time series sample, in order to learn about these
distributions there needs to be some sort of constancy. This may only hold after a suitable transforma-
tion such as growth rates (as discussed in the previous section).

The most commonly assumed form of constancy is stationarity. There are two definitions. The first
is sufficient for construction of linear models.

Definition 14.1 {y t } is covariance or weakly stationary if the mean

µ= E
£

y t
§

and variance matrix

ß= var
£

y t
§
= E

h°
y t °µ

¢°
y t °µ

¢0i

are independent of t , and the autocovariances

°(k) = cov
°

y t , y t°k
¢
= E

h°
y t °µ

¢°
y t°k °µ

¢0i

are independent of t for all k.
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Figure 14.4: U.S. Inflation Rate and S&P 500 Return

In the univariate case we typically write the variance as æ2 and autocovariances as ∞(k).
The mean µ and variance ß are features of the marginal distribution of y t (the distribution of y t at

a specific time period t ). Their constancy as stated in the above definition means that these features of
the distribution are stable over time.

The autocovariances °(k) are features of the bivariate distributions of (y t , y t°k ). Their constancy as
stated in the definition means that the correlation patterns between adjacent y t are stable over time, and
only depend on the number of time periods k separating the variables. By symmetry, we have °(°k) =
°(k)0. In the univariate case this simplifies to ∞(°k) = ∞(k).

The autocovariances summarize the linear dependence between y t and its lags. A scale-free measure
of linear dependence in the univariate case are the autocorrelations

Ω(k) = corr
°
yt , yt°k

¢
=

cov
°
yt , yt°k

¢
q

var
£

yt
§

var
£

yt°1
§ = ∞(k)

æ2 = ∞(k)
∞(0)

.

Notice by symmetry that Ω(°k) = Ω(k).
The second definition of stationarity concerns the entire joint distribution.

Definition 14.2 {y t } is strictly stationary if the joint distribution of
(y t , ..., y t+`) is independent of t for all `.

This is the natural generalization of the cross-section definition of identical distributions. Strict sta-
tionarity implies that the (marginal) distribution of y t does not vary over time. It also implies that the
bivariate distributions of (y t , y t+1) and multivariate distributions of (y t , ..., y t+`) are stable over time.
Under the assumption of a bounded variance a strictly stationary process is covariance stationary1.

1More generally, the two classes are non-nested since strictly stationary infinite variance processes are not covariance sta-
tionary.
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For formal statistical theory we will generally require the stronger assumption of strict stationarity.
Therefore, if we label a process as “stationary” you should interpret it as meaning “strictly stationary”.

The core meaning of both weak and strict stationarity is the same – that the distribution of y t is stable
over time. To understand the concept, it may be useful to review the plots in Figures 14.1-14.4. Are these
stationary processes? If so, we would expect that the mean and variance would be stable over time. This
seems unlikely to apply to the series in Figures 14.1 and 14.2, as in each case it is difficult to describe
what is the “typical” value of the series. Stationarity may be appropriate for the series in Figures 14.3 and
14.4, as each oscillates with a fairly regular pattern. It is difficult, however, to know whether or not a given
time series is stationary simply by examining a time series plot.

A straightforward but essential relationship is that an i.i.d. process is strictly stationary.

Theorem 14.1 If y t is i.i.d., then it strictly stationary.

Here are some examples of strictly stationary scalar processes. In each, et is i.i.d. and E [et ] = 0.

Example 14.1 yt = et +µet°1.

Example 14.2 yt = Z for some random variable Z .

Example 14.3 yt = (°1)t Z for a random variable Z which is symmetrically distributed about 0.

Example 14.4 yt = Z cos(µt ) for a random variable Z symmetrically distributed about 0.

Here are some examples of processes which are not stationary.

Example 14.5 yt = t .

Example 14.6 yt = (°1)t .

Example 14.7 yt = cos(µt ) .

Example 14.8 yt =
p

t et .

Example 14.9 yt = et + t°1/2et°1.

Example 14.10 yt = yt°1 +et with y0 = 0.

From the examples we can see that stationarity means that the distribution is constant over time. It
does not mean, however, mean that the process has some sort of limited dependence, nor that there is an
absence of periodic patterns. These restrictions are actually associated with the concepts of ergodicity
and mixing, which we shall introduce in subsequent sections.
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14.5 Transformations of Stationary Processes

One of the important properties of strict stationarity is that it is preserved by transformation. That is,
transformations of strictly stationary processes are also strictly stationary. This includes transformations
which include the full history of y t .

Theorem 14.2 If y t is strictly stationary and x t =¡
°

y t , y t°1, y t°2, ...
¢
2 Rq is a

random vector, then x t is strictly stationary.

Theorem 14.2 is extremely useful both for the study of stochastic processes which are constructed
from underlying errors, and for the study of sample statistics such as linear regression estimators which
are functions of sample averages of squares and cross-products of the original data.

We give the proof of Theorem 14.2 in Section 14.46.

14.6 Convergent Series

An example of a transformation which includes the full past history is the infinite-order moving av-
erage transformation

xt =
1X

j=0
a j yt° j (14.3)

where a j are coefficients. Many time-series models involve representations and transformations of the
form (14.3).

The infinite series (14.3) exists if it is convergent which means that the sequence
PN

j=0 a j yt° j has a
finite limit as N ! 1. Since the inputs yt are random the best we can do is to define convergence as
holding with probability one.

Definition 14.3 The infinite series (14.3) converges almost surely if
PN

j=0 a j yt° j has a finite limit as N !
1 with probability one. In this case we describe xt as convergent.

Theorem 14.3 If yt is strictly stationary, E
ØØyt

ØØ < 1, and
P1

j=0

ØØa j
ØØ < 1, then

(14.3) converges almost surely. Furthermore, xt is strictly stationary.

The proof of Theorem 14.3 is provided in Section 14.46.

14.7 Ergodicity

The assumption of stationarity is not sufficient for many purposes, as there are strictly stationary
processes with no time series variation. As we described earlier, an example of a stationary process is
yt = Z for some random variable Z . This is random but constant over all time. An implication is that the
sample mean of yt = Z will be inconsistent for the population mean.
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We want a minimal sufficient assumption so that the law of large numbers will apply to the sample
mean. It turns out that a sufficient condition is ergodicity. As it is a rather technical subject, we mention
only a few highlights here. For a rigorous treatment see a standard textbook such as Walters (1982).

A time series y t is ergodic if all invariant events are trivial, meaning that any event which is unaf-
fected by time-shifts has probability either zero or one. This definition is rather abstract and difficult to
grasp, but fortunately it is not needed by most economists.

A useful intuition is that if y t is ergodic then its sample paths will pass through all parts of the sample
space, never getting “stuck” in a subregion.

We will first describe the properties of ergodic series which will be relevant for our needs, and follow
with the more rigorous technical definitions. For proof of the results see Section 14.46.

First, many standard time series processes can be shown to be ergodic. A useful starting point is the
observation that an i.i.d. sequence is ergodic.

Theorem 14.4 If y t is i.i.d., then it strictly stationary and ergodic.

Second, ergodicity, like stationarity, is preserved by transformation.

Theorem 14.5 If y t is strictly stationary and ergodic and x t =
¡

°
y t , y t°1, y t°2, ...

¢
is a random vector, then x t is strictly stationary and

ergodic.

As an example, the infinite-order moving average transformation (14.3) is ergodic if the input is er-
godic and the coefficients are absolutely convergent.

Theorem 14.6 If yt is strictly stationary, ergodic, E
ØØyt

ØØ<1, and
P1

j=0

ØØa j
ØØ<1

then xt =
P1

j=0 a j yt° j is strictly stationary and ergodic.

We now present a useful property. It is that the Cesàro sum of the autocovariances limits to zero.

Theorem 14.7 If yt is strictly stationary, ergodic, and E
£

y2
t

§
<1, then

lim
n!1

1
n

nX

`=1
cov

°
yt , yt+`

¢
= 0. (14.4)

The result (14.4) can be interpreted as that the covariances “on average” tend to zero. Some authors
have mis-stated ergodicity as implying that the covariances tend to zero but this is not correct, as (14.4)
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allows, for example, the non-convergent sequence cov
°
yt , yt+`

¢
= (°1)`. The reason why (14.4) is partic-

ularly useful is because it is sufficient for the WLLN, as we discover later in Theorem 14.9.
We now give the formal definition of ergodicity for interested readers. As the concepts will not be

used again, most readers can safely skip this discussion.
As we stated above, by definition the series y t is ergodic if all invariant events are trivial. To under-

stand this we introduce some technical definitions. First, we can write an event as A =
©
ey t 2G

™
where

ey t =
°
..., y t°1, y t , y t+1, ...

¢
is an infinite history and G Ω Rm1. Second, the `th time-shift of ey t is defined

as ey t+` =
°
..., y t°1+`, y t+`, y t+1+`, ...

¢
. Thus ey t+` replaces each observation in ey t by its `th shifted value

yt+`. A time-shift of the event A =
©
ey t 2G

™
is A` =

©
ey t+` 2G

™
. Third, an event A is called invariant if

it is unaffected by a time-shift, so that A` = A. Thus replacing any history ey t with its shifted history
ey t+` doesn’t change the event. Invariant events are rather special. An example of an invariant event is
A =

©
max°1<t<1 yt ∑ 0

™
. Fourth, an event A is called trivial if either P [A] = 0 or P [A] = 1. You can think

of trivial events as essentially non-random. Recall, by definition y t is ergodic if all invariant events are
trivial. This means that any event which is unaffected by a time shift is trivial – is essentially non-random.
For example, again consider the invariant event A =

©
max°1<t<1 yt ∑ 0

™
. If yt = Z ª N(0,1) for all t , then

P [A] = P [Z ∑ 0] = 0.5. Since this does not equal 0 or 1 then yt = Z is not ergodic. However, if yt is i.i.d.
N(0,1) then P

£
max°1<t<1 yt ∑ 0

§
= 0. This is a trivial event. For yt to be ergodic (it is in this case) all

such invariant events must be trivial.
An important technical result is that ergodicity is equivalent to the following property.

Theorem 14.8 A stationary series y t is ergodic iff for all events A and B

lim
n!1

1
n

nX

`=1
P [A`\B ] =P [A]P [B ] . (14.5)

This result is rather deep so we do not prove it here. See Walters (1982), Corollary 1.14.2, or Davidson
(1994), Theorem 13.13. The limit in (14.5) is the Cesàro sum of P [A`\B ]. Theorem ?? shows that a suffi-
cient condition for (14.5) is that P [A`\B ] ! P [A]P [B ] which is known as mixing. Thus mixing implies
ergodicity. Mixing, roughly, means that separated events are asymptotically independent. Ergodicity is
weaker, only requiring that the events are asymptotically independent “on average”. We discuss mixing
in Section 14.12.

14.8 Ergodic Theorem

The ergodic theorem is one of the most famous results in time series theory. There are actually sev-
eral forms of the theorem, most of which concern almost sure convergence. For simplicity we state the
theorem in terms of convergence in probability.
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Theorem 14.9 Ergodic Theorem.
If y t is strictly stationary, ergodic, and E

∞∞y t

∞∞<1, then as n !1,

E

∞∞y °µ
∞∞°! 0 (14.6)

and
y °!

p
µ (14.7)

where µ= E
£

y t
§
.

The ergodic theorem shows that ergodicity is sufficient for consistent estimation. The moment con-
dition E

∞∞y t

∞∞<1 is the same as in the WLLN for i.i.d. observations.
We now provide a proof of the ergodic theorem for the scalar case under the additional assumption

that var
£

yt
§
=æ2 <1. A proof which relaxes this assumption is provided in Section 14.46.

By direct calculation

var
£

y
§
= 1

n2

nX

t=1

nX

j=1
∞

°
t ° j

¢

where ∞(`) = cov(xt , xt+`). The double sum is over all elements of an n £n matrix whose t j th element
is ∞

°
t ° j

¢
. The diagonal elements are ∞(0) = æ2, the first off-diagonal elements are ∞(1), the second off-

diagonal elements are ∞(2) and so on. This means that there are precisely n diagonal elements of æ2,
2(n °1) equalling ∞(1), etc. Thus the above equals

var
£

y
§
= 1

n2

°
næ2 +2(n °1)∞(1)+2(n °2)∞(2)+·· ·+2∞(n °1)

¢

= æ2

n
+ 2

n

nX

`=1

µ
1° `

n

∂
∞(`). (14.8)

This is a rather intruiging expression. It shows that the variance of the sample mean precisely equals
æ2/n (which is the variance of the sample mean under i.i.d. sampling) plus a weighted Cesàro mean of
the autocovariances. The latter is zero under i.i.d. sampling, but is non-zero otherwise. Theorem 14.7
shows that the Cesàro mean of the autocovariances converges to zero. Let wn` = 2(`/n2), which satisfy
the conditions of the Toeplitz Lemma (Theorem A.5 of Introduction to Econometrics). Then

2
n

nX

`=1

µ
1° `

n

∂
∞(`) = 2

n2

n°1X

`=1

X̀

j=1
∞( j ) =

n°1X

`=1
wn`

√
1
`

X̀

j=1
∞( j )

!

°! 0. (14.9)

Together, we have shown that (14.8) is o(1) under ergodicity. Hence var
£

y
§
! 0. Markov’s inequality

establishes that y °!
p
µ.

14.9 Conditioning on Information Sets

In the past few sections we have introduced the concept of the infinite histories. We now consider
conditional expectations given infinite histories.

First, some basics. Recall from probability theory that an outcome is an element of a sample space.
An event is a set of outcomes. A probability law is a rule which assigns non-negative real numbers to
events. When outcomes are infinite histories then events are collections of such histories, and a proba-
bility law is a rule which assigns numbers to collections of infinite histories.
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Now we wish to define a conditional expectation given an infinite past history. Specifically, we wish
to define

Et°1
£

yt
§
= E

£
yt | yt°1, yt°2, . . .

§
(14.10)

the expected value of yt given the history ey t°1 =
°
yt°1, yt°2, . . .

¢
up to time t . Intuitively, Et°1

£
yt

§
is the

mean of the conditional distribution, the latter reflecting the information in the history. Mathemati-
cally this cannot be defined using (2.5) as the latter requires a joint density for

°
yt , yt°1, yt°2, . . .

¢
which

does not make much sense. Instead, we can appeal to Theorem 2.13, which states that the conditional
expectation (14.10) exists if E

ØØyt
ØØ <1 and the probabilities P

£
ey t°1 2 A

§
are defined. The latter are the

probabilities of events discussed in the previous paragraph. Thus the conditional expectation is well
defined.

In this textbook we have avoided measure-theoretic terminology to keep the presentation accessible,
and because it is my belief that measure theory is more distracting than helpful. However, it is standard in
the time series literature to follow the measure-theoretic convention of writing (14.10) as the conditional
expectation given by a æ-field. So at the risk of being overly-technical, we will follow this convention and
write the expectation (14.10) as E

£
yt |Ft°1

§
where Ft°1 =æ

°
ey t°1

¢
is the æ-field generated by the history

ey t°1. Aæ-field (also known as a æ-algebra) is a collection of sets satisfying certain regularity conditions2.
See Introduction to Econometrics, Section 1.14. The æ-field generated by a random variable Y is the
collection of measurable events involving Y . Similarly, the æ-field generated by an infinite history is
the collection of measurable events involving this history. Intuitively, Ft°1 contains all the information
available in the history ey t°1. Consequently, economists typically call Ft°1 an information set rather
than a æ-field. As I said, in this textbook we endeavor to avoid measure theoretic complications so will
follow the economists’ label rather than the probabilists’, but use the latter’s notation as is conventional.
To summarize, we will write Ft =æ

°
yt , yt°1, . . .

¢
to indicate the information set generated by an infinite

history
°
yt , yt°1, . . .

¢
, and will write (14.10) as E

£
yt |Ft°1

§
.

We now describe some properties about information sets Ft .
First, they are nested: Ft°1 ΩFt . This means that information accumulates over time. Information

is not lost.
Second, it is important to be precise about which variables are contained in the information set.

Some economists are sloppy and refer to “the information set at time t” without specifying which vari-
ables are in the information set. It is better to be specific. For example, the information sets F1t =
æ

°
yt , yt°1, . . .

¢
and F2t =æ

°
yt , xt , yt°1, xt°1 . . .

¢
are distinct, even though they are both dated at time t .

Third, the conditional expectations (14.10) follow the law of iterated expectations and the condition-
ing theorem, thus

E
£
E
£

yt |Ft°1
§
|Ft°2

§
= E

£
yt |Ft°2

§

E
£
E
£

yt |Ft°1
§§

= E
£

yt
§

,

and
E
£

yt°1 yt |Ft°1
§
= yt°1E

£
yt |Ft°1

§
.

14.10 Martingale Difference Sequences

An important concept in economics is unforecastability, meaning that the conditional expectation is
the unconditional expectation. This is similar to the properties of a regression error. An unforecastable
process is called a martingale difference sequence (MDS).

2A æ-field contains the universal set, is closed under complementation, and closed under countable unions.
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A MDS et is defined with respect to a specific sequence of information sets Ft . Most commonly
the latter are the natural filtration Ft = æ (et ,et°1, . . .) (the past history of et ), but it could be a larger
information set. The only requirement is that et is adapted to Ft , meaning that E [et |Ft ] = et .

Definition 14.4 The process (et ,Ft ) is a Martingale Difference Sequence
(MDS) if et is adapted to Ft , E |et | <1 and E [et |Ft°1] = 0.

In words, a MDS et is unforecastable in the mean. It is useful to notice that if we apply iterated
expectations E [et ] = E [E [et |Ft°1]] = 0. Thus a MDS is mean zero.

The definition of a MDS requires the information sets Ft to contain the information in et , but is
broader in the sense that it can contain more information. When no explicit definition is given it is stan-
dard to assume that Ft is the natural filtration. However, it is best to explicitly specify the information
sets so there is no confusion.

The term “martingale difference sequence” refers to the fact that the summed process St =
Pt

j=1 e j is
a martingale, and et is its first-difference. A martingale St is a process such that E [St |Ft°1] = St°1.

If et is i.i.d. and mean zero it is a MDS, but the reverse is not the case. To see this, first suppose that et

is i.i.d. and mean zero. It is then independent of Ft°1 =æ (et°1,et°2, . . .), so E [et |Ft°1] = E [et ] = 0. Thus
an i.i.d. shock is a MDS as claimed.

To show that the reverse is not true let ut be i.i.d. N(0,1) and set

et = ut ut°1. (14.11)

By the conditioning theorem,
E [et |Ft°1] = ut°1E [ut |Ft°1] = 0

so et is a MDS. The process (14.11) is not, however, i.i.d. One way to see this is to calculate the first
autocovariance of e2

t , which is

cov
°
e2

t ,e2
t°1

¢
= E

£
e2

t e2
t°1

§
°E

£
e2

t
§
E
£
e2

t°1
§

= E
£
u2

t
§
E
£
u4

t°1
§
E
£
u2

t°2
§
°1

= 2 6= 0.

Since the covariance is non-zero, et is not an independent sequence. Thus et is a MDS but not i.i.d.
An important property of a square integrable MDS is that it is serially uncorrelated. To see this, ob-

serve that by iterated expectations, the conditioning theorem, and the definition of a MDS, for k > 0,

cov(et ,et°k ) = E [et et°k ]

= E [E [et et°k |Ft°1]]

= E [E [et |Ft°1]et°k ]

= E [0et°k ]

= 0.

Thus the autocovariances and autocorrelations are zero.
A process that is serially uncorrelated, however, is not necessarily a MDS. Take the process

et = ut +ut°1ut°2
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where again ut is i.i.d. N(0,1). The shock et is not a MDS since E [et |Ft°1] = ut°1ut°2 6= 0. However,

cov(et ,et°1) = E [et et°1]

= E [(ut +ut°1ut°2)(ut°1 +ut°2ut°3)]

= E
£
ut ut°1 +ut ut°2ut°3 +u2

t°1ut°2 +ut°1u2
t°2ut°3

§

= E [ut ]E [ut°1]+E [ut ]E [ut°2]E [ut°3]

+E
£
u2

t°1
§
E [ut°2]+E [ut°1]E

£
u2

t°2
§
E [ut°3]

= 0.

Similarly, cov(et ,et°k ) = 0 for k 6= 0. Thus et is serially uncorrelated. We have proved the following.

Theorem 14.10 If (et ,Ft ) is a MDS and E
£
e2

t

§
<1 then et is serially uncorre-

lated.

Another important special case is a homoskedastic martingale difference sequence.

Definition 14.5 The MDS (et ,Ft ) is a Homoskedastic Martingale Difference
Sequence (MDS) if E

£
e2

t |Ft°1
§
=æ2.

A homoskedastic MDS should more properly be called a conditionally homoskedastic MDS, because
the property concerns the conditional distribution rather than the unconditional. That is, any strictly
stationary MDS satisfies a constant variance E

£
e2

t

§
but only a homoskedastic MDS has a constant condi-

tional variance E
£
e2

t |Ft°1
§
.

A homoskedatic MDS is analogous to a conditionally homoskedastic regression error. It is interme-
diate between a MDS and an i.i.d. sequence. Specifically, a (square integrable and mean zero) i.i.d.
sequence is a homoskedastic MDS, and the latter is a MDS.

The reverse is not the case. First, a MDS is not necessarily conditionally homoskedastic. Consider the
example et = ut ut°1 given previously which we showed is a MDS. It is not conditionally homoskedastic,
however, since

E
£
e2

t |Ft°1
§
= u2

t°1E
£
u2

t |Ft°1
§
= u2

t°1

which is time-varying. Thus this MDS et is conditionally heteroskedastic. Second, a homoskedastic MDS
is not necessarily i.i.d. Consider the following example. Set et =

p
1°2/¥t°1Tt , where Tt is distributed

with a student t distribution with degree of freedom parameter ¥t°1 = 2+ e2
t°1 This is scaled so that

E [et |Ft°1] = 0 and E
£
e2

t |Ft°1
§
= 1, and is thus a homoskedastic MDS. The conditional distribution of

et depends on et°1 through the degree of freedom parameter. Hence et is not an independent sequence.
One way to think about the difference between MDS and i.i.d. shocks is in terms of forecastability.

An i.i.d. process is fully unforecastable, in that no function of an i.i.d. process is forecastable. A MDS is
unforecastable in the mean, but other moments may be forecastable.
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14.11 CLT for Martingale Differences

We are interested in an asymptotic approximation for the distribution of standardized sample means
such as

Sn = 1
p

n

nX

t=1
u t (14.12)

where u t is mean zero with variance E
£
u t u

0
t

§
= ß < 1. In this section we present a CLT for the case

where u t is a martingale difference sequence.

Theorem 14.11 MDS CLT If u t is a strictly stationary and ergodic martingale
difference sequence and E

£
u t u

0
t

§
=ß<1, then as n !1,

Sn = 1
p

n

nX

t=1
u t °!

d
N(0,ß) .

The conditions for Theorem 14.11 are similar to the Lindeberg-Lévy CLT. The only difference is that
the i.i.d. assumption has been replaced by the assumption of a strictly stationarity and ergodic MDS.

It might be reasonable to conjecture that the CLT would hold under the broader assumption that u t

is white noise. However, no such theory exists. At present, it is unknown if the MDS assumption can be
weakened.

The proof of Theorem 14.11 is technically advanced so we do not present the full details, but instead
refer readers to Theorem 3.2 of Hall and Heyde (1980) or Theorem 24.3 of Davidson (1994) (which are
more general than Theorem 14.11, not requiring strict stationarity). To illustrate the role of the MDS
assumption we give a sketch of the proof in Section 14.46.

14.12 Mixing

For many results, including a CLT for correlated (non-MDS) series, we need a stronger restriction on
the dependence between observations than ergodicity.

Recalling the property (14.5) of ergodic sequences, we can measure the dependence between two
events A and B by the discrepancy

Æ(A,B) = |P [A\B ]°P [A]P [B ]| . (14.13)

This equals 0 when A and B are independent, and is positive otherwise. In general, Æ(A,B) can be used
to measure the degree of dependence between the events A and B .

Now consider the two information sets (æ-fields)

F t
°1 =æ

°
..., y t°1, y t

¢

F1
t =æ

°
y t , y t+1, ...

¢
.

The first is the history of the series up until period t , and the second is the history of the series starting
in period t and going forward. We then separate the information sets by ` periods, that is, take F t°`

°1
and F1

t . We can measure the degree of dependence between the information sets by taking all events
in each, and then taking the largest discrepancy (14.13). This is

Æ (`) = sup
A2F t°`

°1 ,B2F1
t

Æ(A,B).
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The constants Æ(`) are known as the mixing coefficients. We say that y t is strong mixing if Æ(`) ! 0
as `!1. This means that as the time separation increases between the information sets, the degree of
dependence decreases, eventually reaching independence.

From the Theorem of Cesàro Means (Theorem A.4 of Introduction to Econometrics), strong mixing
implies (14.5) which is equivalent to ergodicity. Thus a mixing process is ergodic.

An intuition concerning mixing can be colorfully illustrated by the following example due to Halmos
(1956). A martini is a drink consisting of a large portion of gin and a small part of vermouth. Suppose that
you pour a serving of gin into a martini glass, pour a small amount of vermouth on top, and then stir the
drink with a swizzle stick. If your stirring process is mixing, with each turn of the stick the vermouth will
become more evenly distributed throughout the gin, and asymptotically (as the number of stirs tends
to infinity) the vermouth and gin distributions will become independent3. If so, we say this is a mixing
process.

For applications, mixing is often useful when we can characterize the rate at which the coefficients
Æ(`) decline to zero. There are two types of conditions which are seen in asymptotic theory: rates and
summation. Rate conditions take the form Æ(`) = O(`°r ) or Æ(`) = o(`°r ). Summation conditions take
the form

P1
`=0Æ(`)r <1 or

P1
`=0`

sÆ(`)r <1.
There are alternative measures of dependence beyond (14.13) and many have been proposed. Strong

mixing is one of the weakest (and thus embraces a wide set of time series processes) but is insufficiently
strong for some applications. Another popular dependence measure is known as absolute regularity or
Ø-mixing. The Ø-mixing coefficients are

Ø (`) = sup
A2F1

t

E

ØØØP
h

A |F t°`
°1

i
°P [A]

ØØØ .

Absolute regularity is stronger than strong mixing in the sense that Ø (`) ! 1 implies Æ(`) ! 0, and
rates conditions for the Ø-mixing coefficients imply the same rate conditions for the strong mixing coef-
ficients.

One reason why mixing is useful for applications is that it is preserved by transformations.

Theorem 14.12 If y t has mixing coefficients Æy (`) and x t =
¡(y t , y t°1, y t°2, ..., y t°q ) then x t has mixing coefficients Æx (`) ∑ Æy (` ° q)
(for ` ∏ q). The coefficients Æx (m) satisfy the same summation and rate
conditions as Æy (`).

A limitation of the above result is that it is confined to a finite number of lags, unlike the transforma-
tion results for stationarity and ergodicity.

Mixing can be a useful tool because of the following inequalities.

3Of course, if you really make an asymptotic number of stirs, you will never finish stirring and you won’t be able to enjoy the
martini. Hence in practice it is advised to stop stirring before the number of stirs actually reaches infinity.
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Theorem 14.13 Suppose that xt°` and zt are random variables which are
F t°`

°1 and F1
t measurable, respectively.

1. If |xt |∑C1 and |zt |∑C2 then

|cov(xt°`, zt )|∑ 4C1C2Æ(`).

2. If E |xt |r <1 and E |zt |q <1 for 1/r +1/q < 1 then

|cov(xt°`, zt )|∑ 8
°
E |xt |r

¢1/r °
E |zt |q

¢1/q
Æ(`)1°1/r°1/q .

3. If E
£

yt
§
= 0 and E

ØØyt
ØØr <1 for r ∏ 1 then

E

ØØØE
≥

yt

ØØØF t°`
°1

¥ØØØ∑ 6
°
E

ØØyt
ØØr ¢1/r

Æ(`)1°1/r .

The proof is given in Section 14.46. The following follows fairly directly from the definition of mixing.

Theorem 14.14 If y t is i.i.d. then it is strong mixing and ergodic.

14.13 CLT for Correlated Observations

In this section we develop a CLT for the normalized mean Sn defined in (14.12) allowing the variables
u t to be serially correlated.

In (14.8) we found that in the scalar case

var[Sn] =æ2 +2
nX

`=1

µ
1° `

n

∂
∞(`)

where æ2 = var[ut ] and ∞(`) = cov(ut ,ut°`). Since ∞(°`) = ∞(`) this can be written as

var[Sn] =
nX

`=°n

µ
1° |`|

n

∂
∞(`). (14.14)

In the vector case define the variance
ß= E

£
u t u

0
t
§

and the matrix covariance
°(`) = E

£
u t u

0
t°`

§

which satisfies °(°`) =°(`)0. We obtain by a calculation analogous to (14.14)

var[Sn] =ß+
nX

`=1

µ
1° `

n

∂°
°(`)+°(`)0

¢

=
nX

`=°n

µ
1° |`|

n

∂
°(`). (14.15)
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A necessary condition for Sn to converge to a normal distribution is that the variance (14.15) con-
verges to a limit. Indeed,

nX

`=1

µ
1° `

n

∂
°(`) = 1

n

n°1X

`=1

X̀

j=1
°( j ) °!

1X

`=0
°(`) (14.16)

where the convergence holds by Theorem ?? if the limit in (14.16) is convergent. A necessary condition
for this to hold is that the covariances °(`) decline to zero as `!1, which is stronger than ergodicity.
A sufficient condition is that the covariances are absolutely summable, which can be verified using a
mixing inequality. Using the triangle inequality (B.16) and Theorem 14.13.2, for r > 2

1X

`=0
k°(`)k ∑ 8

°
Eku tkr ¢2/r

1X

`=0
Æ(`)1°2/r .

This implies that (14.15) converges if Eku tkr <1 and
P1
`=0Æ(`)1°2/r <1. We conclude that under these

assumptions

var[Sn] !
1X

`=°1
°(`)

de f= ≠. (14.17)

It turns out that these conditions are sufficient for the CLT.

Theorem 14.15 If u t is strictly stationary with mixing coefficientsÆ(`), E [u t ] =
0, for some r > 2, Eku tkr <1 and

P1
`=1Æ(`)1°2/r <1, then (14.17) is conver-

gent, and

Sn = 1
p

n

nX

t=1
u t

d°! N(0,≠) .

The proof is in Section 14.46.
The theorem requires r > 2 finite moments which is stronger than the MDS CLT. The summability

condition on the mixing coefficients in Theorem 14.15 is considerably stronger than ergodicity. There is
a trade off involving the choice of r . A larger r means more moments are required finite, but a slower
decay in the coefficients Æ(`) is allowed. Smaller r is less restrictive regarding moments, but requires a
faster decay rate in the mixing coefficients.

14.14 Linear Projection

In Chapter 2 we extensively studied the properties of linear projection models. In the context of
stationary time series we can use similar tools. An important extension is to allow for projections onto
infinite dimensional random vectors. For this analysis we assume that yt is covariance stationary.

Recall that when (y, x) have a joint distribution with bounded variances, the linear projection of y
onto x (the best linear predictor) is the minimizer of

S
°
Ø

¢
= E

h°
y °Ø0

x
¢2

i

and has the solution
P

£
y | x

§
= x

0 °
E
£

x x
0§¢°1

E
£

x y
§

.
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We are interested in the best linear predictor of the random variable yt given the infinite past history
ey t°1 = (..., yt°2, yt°1). Linear functions of ey t°1 take the form Æ0 +

P1
j=1Æ j yt° j . The best linear predictor

minimizes the mean squared prediction error

S (Æ0,Æ1, ...) = E
"√

yt °Æ0 °
1X

j=1
Æ j yt° j

!2#

.

The solution takes the form

P t°1
£

yt
§
=P

£
yt | ey t°1

§
=Æ0 +

1X

j=1
Æ j yt° j .

We call this the projection of yt onto ey t°1. This is the projection analog of the conditional expectation
(14.10).

The projection error is
et = yt °P t°1

£
yt

§
. (14.18)

We can write the decomposition of yt into projection and projection error as a regression equation

yt =Æ0 +
1X

j=1
Æ j yt° j +et .

From the projection theorem for Hilbert spaces (see Theorem 2.3.1 of Brockwell and Davis (1991))
the projection P t°1

£
yt

§
and projection error et are unique. The projection error has finite variance

æ2 = E
£
e2

t
§
∑ E

£
y2

t
§
<1.

Also, by Theorem 14.2, if yt is strictly stationary then P t°1
£

yt
§

and et are strictly stationary.
The projection error is mean zero and uncorrelated with the elements of ey t°1. This implies that

E [et°`et ] = E
"√

yt°`°Æ0 °
1X

j=1
Æ j yt°`° j

!

et

#

= E
£

yt°`et
§
°Æ0E [et ]°

1X

j=1
Æ jE

£
yt°`° j et

§

= 0.

Thus the projection errors are serially uncorrelated.
We state these results formally.
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Theorem 14.16 If yt is covariance stationary it has the projection equation

yt =Æ0 +
1X

j=1
Æ j yt° j +et .

The projection error et satisfies

E [et ] = 0

E
£

yt° j et
§
= 0 j ∏ 1

E
£
et° j et

§
= 0 j ∏ 1

and
æ2 = E

£
e2

t
§
∑ E

£
y2

t
§
<1. (14.19)

If yt is strictly stationary, then et is strictly stationary.

14.15 White Noise

The projection error et is mean zero, has a finite variance, and is serially uncorrelated. This describes
what is known as a white noise process.

Definition 14.6 The process et is white noise if E [et ] = 0, E
£
e2

t

§
=æ2 <1, and

cov(et ,et°k ) = 0 for k 6= 0.

A MDS is white noise (Theorem 14.10) but the reverse is not true as shown by the example et =
ut +ut°1ut°2 given in Section 14.10, which is white noise but not a MDS.

Therefore, the following types of shocks are nested: i.i.d., MDS, and white noise, with i.i.d. being the
most narrow class, and white noise the broadest.

14.16 The Wold Decomposition

In Section 14.14 we showed that we can express a stationary time series by a projection equation with
white noise errors. An alternative is to express the time series as a linear function of the same white noise
errors. This is a famous result known as the Wold decomposition.
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Theorem 14.17 (The Wold Decomposition) If yt is covariance stationary and
æ2 > 0 where æ2 is the projection error variance from (14.19), then yt has the
linear representation

yt =µt +
1X

j=0
b j et° j , (14.20)

where et are the white noise projection errors (14.18), b0 = 1,

1X

j=1
b2

j <1 (14.21)

and
µt = lim

m!1
P t°m

£
yt

§
. (14.22)

The Wold decomposition shows that yt can be written as a linear function of the white noise projec-
tion errors plus µt . The infinite sum in (14.20) is also known as a linear process. The Wold decomposi-
tion is a foundational result for linear time series analysis. Since any covariance stationary process can
be written in this format we can use linear parametric models (autoregressive and moving average) as
approximations.

The series µt is the projection of yt on the history from the infinite past. It is the part of yt which
is perfectly predictable from its past values, and is called the deterministic component. In most cases
µt = µ, the unconditional mean of yt . However, it is possible for stationary processes to have more
substantive deterministic components. An example is

µt =
Ω

(°1)t with probability 1/2
(°1)t+1 with probability 1/2

.

This series is strictly stationary, has mean zero and variance one. However, it is perfectly predictable
given the previous history, as it simply oscillates between °1 and 1.

In practical applied time series analysis, deterministic components are typically excluded by as-
sumption. We call a stationary time series non-deterministic4 if µt = µ, a constant. In this case the
Wold decomposition has a simpler form.

Theorem 14.18 If yt is covariance stationary and non-deterministic then yt

has the linear representation

yt =µ+
1X

j=0
b j et° j ,

where b j satisfy (14.21) and et are the white noise projection errors (14.18).

A limitation of the Wold decomposition is the restriction to linearity. Effectively, it says that there is a
valid linear approximation within the class of linear models. It excludes alternative (nonlinear) models
by assumption.

For a proof of Theorem 14.17 see Section 14.46.

4Most authors define purely non-deterministic as the case µt = 0. We allow for a non-zero mean so to accomodate practical
time series applications.
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14.17 Linear Models

In the previous sections we showed that any non-deterministic covariance stationary time series yt

has the projection representations

yt =Æ0 +
1X

j=1
Æ j yt° j +et

and

yt =µ+
1X

j=0
b j et° j

where the errors et are white noise projection errors. These representations help us understand that
linear models can be used as approximations for stationary time series.

For the next several sections we reverse the analysis. We will assume a specific linear model, and then
study the properties of the resulting time series. In particular, we will be seeking conditions under which
the process is stationary. This helps us understand the properties of linear models.

Throughout, we will be assuming that the error et is a strictly stationary and ergodic MDS with a
finite variance. This allows as a special case the stronger assumption that et is i.i.d., but is less restrictive.
In particular, it allows for conditional heteroskedasticity.

14.18 Moving Average Processes

The first-order moving average process, denoted MA(1), is

yt =µ+et +µet°1

where et is a strictly stationary and ergodic white noise process. The model is called a “moving average”
because yt is a weighted average of the shocks et and et°1.

It is straightforward to calculate that a MA(1) has the following moments.

E
£

yt
§
=µ

var
£

yt
§
=

°
1+µ2¢æ2

∞(1) = µæ2

Ω(1) = µ

1+µ2

∞(k) = Ω(k) = 0, k ∏ 2.

Thus the MA(1) process has a non-zero first autocorrelation, with the remainder zero.
An MA(1) process with µ 6= 0 is serially correlated, with each pair of adjacent observations (yt°1, yt )

correlated. If µ > 0 the pair are positively correlated, while if µ < 0 they are negatively correlated. The
serial correlation, however, is limited in that observations separated by multiple periods are mutually
independent.

The qth-order moving average process, denoted MA(q), is

yt =µ+µ0et +µ1et°1 +µ2et°2 +·· ·+µq et°q
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where µ0 = 1. It is straightforward to calculate that a MA(q) has the following moments.

E
£

yt
§
=µ

var
£

yt
§
=

√
qX

j=0
µ2

j

!

æ2

∞(k) =
√

q°kX

j=0
µ j+kµ j

!

æ2, k ∑ q

Ω(k) =
Pq°k

j=0 µ j+kµ j
Pq

j=0µ
2
j

∞(k) = Ω(k) = 0, k > q.

In particular, a MA(q) has q non-zero autocorrelations, with the remainder zero.
A MA(q) process yt is strictly stationary and ergodic.
A MA(q) process with moderately large q can have considerably more complicated dependence rela-

tions than an MA(1) process. One specific pattern which can be induced by a MA process is smoothing.
Suppose that the coefficients µ j all equal 1. Then yt is a smoothed version of the shocks et .

To illustrate, Figure 14.5(a) displays a plot of a simulated white noise (i.i.d. N(0,1)) process with
n = 120 observations. Figure 14.5(b) displays a plot of an MA(8) process constructed with the same
innovations, with µ j = 1, j = 1, ...,8. You can see that the white noise has no predictable behavior, while
the MA(8) is very smooth.
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(a) White Noise
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−2
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2

4
6

(b) MA(8)

Figure 14.5: White Noise and MA(8)
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14.19 Infinite-Order Moving Average Process

An infinite-order moving average process, denoted MA(1), also known as a linear process, is

yt =µ+
1X

j=0
µ j et° j

where et is a strictly stationary and ergodic white noise process, and

1X

j=0
µ2

j <1.

A linear process has the following moments:

E
£

yt
§
=µ

var
£

yt
§
=

√
1X

j=0
µ2

j

!

æ2

∞(k) =
√

1X

j=0
µ j+kµ j

!

æ2

Ω(k) =
P1

j=0µ j+kµ j
Pq

j=0µ
2
j

.

Theorem 14.19 The MA(1) process yt converges almost surely and is strictly
stationary and ergodic if either

1.
P1

j=0

ØØµ j
ØØ<1 and et is white noise

2.
P1

j=0µ
2
j <1 and et is a MDS.

For a proof see Section 14.46.
The theorem provides two conditions under which the infinite-order MA process converges. The first

strenthens the summability requirement on the coefficients. The second strengthens the dependence
condition on the errors to martingale differences.

14.20 Lag Operator

An algebraic construct which is useful for the analysis of time series models is the lag operator.

Definition 14.7 The lag operator L satisfies Lyt = yt°1.
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Defining L2 = LL, we see that L2 yt = Lyt°1 = yt°2. In general, Lk yt = yt°k .
Using the lag operator, the MA(q) model can be written in the format

yt = µ0et +µ1Let +·· ·+µq Lq et

=
°
µ0 +µ1L+·· ·+µq Lq¢

et

= µ(L)et

where
µ(L) = µ0 +µ1L+·· ·+µq Lq

is a q th-order polynomial in the lag operator L. The expression yt = µ(L)et is compact way to write the
model.

14.21 First-Order Autoregressive Process

The first-order autoregressive process, denoted AR(1), is

yt =Æ0 +Æ1 yt°1 +et (14.23)

where et is a strictly stationary and ergodic white noise process. The AR(1) model is probably the single
most important model in econometric time series analysis.

As a simple motivating example, let yt be is the employment level (number of jobs) in an economy.
Suppose that a fixed fraction 1°Æ1 of employees lose their job and a random number ut of new employ-
ees are hired each period. Setting Æ0 = E [ut ] and et = ut °Æ0, this implies the law of motion (14.23).

To illustrate the behavior of the AR(1) process, Figure 14.6 plots two simulated AR(1) processes. Each
is generated using the white noise process et displayed in Figure 14.5(a). The plot in Figure 14.6(a) sets
Æ1 = 0.5 and the plot in Figure 14.6(b) sets Æ1 = 0.95. You can see how both are more smooth than the
white noise process, and that the smoothing increases with Æ.
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(a) AR(1) with Æ[1] = 0.5
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(b) AR(1) with Æ= 0.95

Figure 14.6: AR(1) Processes
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Our first goal is to obtain conditions under which (14.23) is stationary. We can do so by showing that
yt can be written as a convergent linear process and then appealing to Theorem 14.5. To find a linear
process representation for yt we can use backward recursion. Notice that yt in (14.23) depends on its
previous value yt°1. If we take (14.23) and lag it one period we find yt°1 =Æ0+Æ1 yt°2+et°1. Substituting
this into (14.23) we find

yt =Æ0 +Æ1
°
Æ0 +Æ1 yt°2 +et°1

¢
+et

=Æ0 +Æ1Æ0 +Æ2
1 yt°2 +Æ1et°1 +et .

Similarly we can lag (14.29) twice to find yt°2 =Æ0+Æ1 yt°3+et°2 and can be used to substitute out yt°2.
Continuing recursively t times, we find

yt =Æ0
°
1+Æ1 +Æ2

1 +·· ·+Æt°1
1

¢
+Æt

1 y0 +Æt°1
1 e1 +Æt°2

1 e2 +·· ·+et

=Æ0

t°1X

j=0
Æ

j
1 +Æ

t
1 y0 +

t°1X

j=0
Æ

j
1et° j . (14.24)

Thus yt equals an intercept plus the scaled initial condition Æt
1 y0 and the moving average

Pt°1
j=0Æ

j
1et° j .

Now suppose we continue this recursion into the infinite past. By Theorem 14.19 this converges ifP1
j=0 |Æ1| j <1. The limit is provided by the following well-known result.

Theorem 14.20
1X

k=0
Øk = 1

1°Ø is absolutely convergent if
ØØØ

ØØ< 1.

The series converges by the ratio test. (See Theorem A.3 of Introduction to Econometrics.) To find the
limit,

A =
1X

k=0
Øk = 1+

1X

k=1
Øk = 1+Ø

1X

k=0
Øk = 1+ØA.

Solving, we find A = 1/(1°Ø).
Thus the intercept in (14.24) converges to Æ0/(1°Æ1). We deduce the following:

Theorem 14.21 If |Æ1| < 1 then the AR(1) process (14.23) has the convergent
representation

yt =µ+
1X

j=0
Æ

j
1et° j (14.25)

where µ=Æ0/(1°Æ1). The AR(1) process yt is strictly stationary and ergodic.

We can compute the moments of yt from (14.25)

E
£

yt
§
=µ+

1X

k=0
Æk

1E [et°k ] =µ

var
£

yt
§
=

1X

k=0
Æ2k

1 var[et°k ] = æ2

1°Æ2
1

.



CHAPTER 14. TIME SERIES 496

An alternative informal way to calculate the moments is as follows. Apply expectations to both sides
of (14.23)

E
£

yt
§
=Æ0 +Æ1E

£
yt°1

§
+E [et ] =Æ0 +Æ1E

£
yt°1

§
.

Stationarity implies E
£

yt°1
§
= E

£
yt

§
. Solving we find E

£
yt

§
=Æ0/(1°Æ1). Similarly,

var
£

yt
§
= var

£
Æyt°1 +et

§
=Æ2

1 var
£

yt°1
§
+var[et ] =Æ2

1 var
£

yt°1
§
+æ2.

Stationarity implies var
£

yt°1
§
= var

£
yt

§
. Solving we find var

£
yt

§
=æ2/(1°Æ2

1). This method is useful for
calculation of autocovariances and autocorrelations. For simplicity set Æ0 = 1. We find

∞(1) = E
£

yt°1 yt
§
= E

£
yt°1

°
Æ1 yt°1 +et

¢§
=Æ1 var

£
yt

§

so
Ω(1) = ∞(1)/var

£
yt

§
=Æ1.

Furthermore,
∞(k) = E

£
yt°k yt

§
= E

£
yt°k

°
Æ1 yt°1 +et

¢§
=Æ1∞(k °1).

By recursion we obtain

∞(k) =Æk
1 var

£
yt

§

Ω(k) =Æk
1 .

Thus the AR(1) process with Æ1 6= 0 has non-zero autocorrelations of all orders which decay to zero geo-
metrically as k increases. For Æ1 > 0 the autocorrelations are all positive. For Æ1 < 0 the autocorrelations
alternate in sign.

We can also express the AR(1) process using the lag operator notation:

(1°Æ1L) yt =Æ0 +et . (14.26)

We can write this as
Æ(L)yt =Æ0 +et

where
Æ(L) = 1°Æ1L.

We call Æ(z) = 1°Æ1z the autoregressive polynomial of yt .
This suggests an alternative way of obtaining the representation (14.25). We can invert the operator

(1°Æ1L) to write yt as a function of lagged et . That is, suppose that the inverse operator (1°Æ1L)°1

exists. Then we can use this operator on (14.26) to find

yt = (1°Æ1L)°1 (1°Æ1L) yt = (1°Æ1L)°1 (Æ0 +et ) . (14.27)

What is the operator (1°Æ1L)°1? Recall from Theorem 14.20 that for |x| < 1,

1X

j=0
x j = 1

1°x
= (1°x)°1 .

Now evaluate this expression at x =Æ1z. We find

(1°Æ1z)°1 =
1X

j=0
Æ

j
1z j . (14.28)
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Setting z = L this is

(1°Æ1L)°1 =
1X

j=0
Æ

j
1L j .

Substituted into (14.27) we obtain

yt = (1°Æ1L)°1 (Æ0 +et )

=
√

1X

j=0
Æ j L j

!

(Æ0 +et )

=
1X

j=0
Æ

j
1L j (Æ0 +et )

=
1X

j=0
Æ

j
1

°
Æ0 +et° j

¢

= Æ0

1°Æ1
+

1X

j=0
Æ

j
1et° j

which is (14.25). This is valid for |Æ1| < 1.
This illustrates another important concept. We say that a polynomial Æ(z) is invertible if

Æ(z)°1 =
1X

j=0
a j z j

is absolutely convergent. In particular, the AR(1) autoregressive polynomial Æ(z) = 1°Æ1z is invertible if
|Æ1| < 1. This is the same condition as for stationarity of the AR(1) process. Invertibility turns out to be a
very useful property.

14.22 Unit Root and Explosive AR(1) Processes

The AR(1) process (14.23) is stationary if |Æ| < 1. What happens otherwise?
If Æ0 = 0 and Æ1 = 1 the model is known as a random walk.

yt = yt°1 +et .

This is also called a unit root process, a martingale, or an integrated process. By back-substitution

yt = y0 +
tX

j=1
e j .

Thus the initial condition does not disappear for large t . Consequently the series is non-stationary. The
autoregressive polynomial Æ(z) = 1° z is not invertible, meaning that yt cannot be written as a conver-
gent function of the infinite past history of et .

The stochastic behavior of a random walk is noticably different from a stationary AR(1) process. It
wanders up and down with equal likelihood, and is not mean-reverting. While it has no tendency to
return to its previous values, the wandering nature of a random walk can give the illusion of mean rever-
sion. The difference is that a random walk will take a very large number of time periods to “revert”.

To illustrate, Figure 14.7 plots two independent random walk processes. The plot in panel (a) uses
the innovations from Figure 14.5(a). The plot in panel (b) uses an independent set of i.i.d. N(0,1) errors.
You can see that the plot in panel (a) appears similar to the MA(8) and AR(1) plots in the sense that
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Figure 14.7: Random Walk Processes

the series is smooth with long swings, but the difference is that the series does not return to a long-
term mean. It appears to have drifted down over time. The plot in panel (b) appears to have quite
different behavior, falling dramatically over a 5-year period, and then appearing to stabilize. These are
both common behaviors of random walk proceses.

If Æ1 > 1 the process is explosive. The model (14.23) with Æ1 > 1 exhibits exponential growth, and
high sensitivity to initial conditions. Explosive autoregressive processes do not seem to be good descrip-
tions for most economic time series. While aggregate time series such as the GDP process displayed
in Figure 14.1(a) exhibit a similar exponential growth pattern, the exponential growth can typically be
removed by taking logarithms.

The caseÆ1 <°1 induces explosive oscillating growth and does not appear to be empirically relevant
for economic applications.

14.23 Second-Order Autoregressive Process

The second-order autoregressive process, denoted AR(2), is

yt =Æ0 +Æ1 yt°1 +Æ2 yt°2 +et (14.29)

where et is a strictly stationary and ergodic white noise process. The dynamic patterns of an AR(2) pro-
cess are more complicated than an AR(1) process.

As a motivating example consider the multiplier-accelerator model of Samuelson (1939). It might
be a bit dated as a model, but it is simple so hopefully makes the point. Aggregate output (in an econ-
omy with no trade) is defined as Yt =Consumptiont+Investmentt +Govt . Suppose that individuals make
their consumption decisions on the previous period’s income Consumptiont = bYt°1, firms make their
investment decisions on the change in consumption Investmentt = d¢Ct , and government spending is
random,Govt = a +et . Then aggregate output follows

Yt = a +b(1+d)Yt°1 °bdYt°2 +et (14.30)
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which is an AR(2) process.
Using the lag operator we can write (14.29) as

yt °Æ1Lyt °Æ2L2 yt =Æ0 +et ,

or
Æ(L)yt =Æ0 +et

where
Æ(L) = 1°Æ1L°Æ2L2.

We call Æ(z) the autoregressive polynomial of yt .
We would like to describe the conditions for the stationarity of yt . For simplicity set Æ0 = 0. Factor

the autoregressive polynomial as

Æ(z) = 1°Æ1z °Æ2z2 =
°
1°Ø1z

¢°
1°Ø2z

¢

which holds for

Ø j =
Æ1 ±

q
Æ2

1 +4Æ2

2
. (14.31)

These factors are real if Æ2
1 °4Æ2 ∏ 0 but are complex conjugates otherwise. Equating the factors, we can

see that Æ1 =Ø1 +Ø2 and Æ2 =Ø1Ø2.
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Figure 14.8: Stationarity Region for AR(2)

The autoregressive polynomial Æ(z) is invertible when the polynomials
°
1°Ø1z

¢
and

°
1°Ø2z

¢
are

invertible. In the previous section we discovered that this occurs when
ØØØ1

ØØ< 1 and
ØØØ2

ØØ< 1. Under these
conditions the inverse equals

Æ(z)°1 =
°
1°Ø2z

¢°1 °
1°Ø1z

¢°1 .

Consequently
yt =

°
1°Ø2L

¢°1 °
1°Ø1L

¢°1 et .
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If
ØØØ1

ØØ < 1, by Theorem 14.21 the series ut =
°
1°Ø1L

¢°1 et is a convergent AR(1) process. Furthermore,
when

ØØØ2
ØØ < 1 the series yt =

°
1°Ø2L

¢°1 ut is also convergent, by Theorem 14.3. Thus sufficient condi-
tions for stationarity are

ØØØ1
ØØ< 1 and

ØØØ2
ØØ< 1.

With some algebra, we can show that
ØØØ1

ØØ < 1 and
ØØØ2

ØØ < 1 iff the following restrictions hold on the
autoregressive coefficients:

Æ1 +Æ2 < 1 (14.32)

Æ2 °Æ1 < 1 (14.33)

Æ2 >°1 (14.34)

These restrictions describe a triangle in (Æ1,Æ2) space. This region is shown in Figure 14.8. Coefficients
within this triangle correspond to a stationary AR(2) process.

Furthermore, the triangle is divided into two regions, the region above the parabola Æ2
1 ° 4Æ2 = 0

producing real factors Ø j , and the region below the parabola producing complex factors Ø j . These two
regions are marked in Figure 14.8. This is potentially interesting because when the factors are complex
the autocorrelations of yt display damped oscillations. For this reason, the dynamic patterns of an AR(2)
can be much more complicated than those of an AR(1).

Take, for example, the Samuelson multiplier-accelerator model (14.30). You can calculate that this
model has complex factors (and thus oscillations) for certain values of b and d , including b ∑ 0.8 and
d ∏ 0.4.

Theorem 14.22 If
ØØØ j

ØØ < 1 for Ø j defined in (14.31), or equivalently if the in-
equalities (14.32)-(14.34) hold, then the AR(2) process (14.29) is absolutely con-
vergent, strictly stationary, and ergodic.

The proof is presented in Section 14.46.
To illustrate, Figure 14.9 displays two simulated AR(2) processes. The plot in panel (a) sets Æ1 =Æ2 =

0.4. These coefficients produce real factors so the process displays behavior similar to that of the AR(1)
processes. The plot in panel (b) sets Æ1 = 1.3 and Æ2 =°0.8. These coefficients produce complex factors
so the process displays oscillations.

14.24 AR(p) Processes

The pth-order autoregressive process, denoted AR(p), is

yt =Æ0 +Æ1 yt°1 +Æ2 yt°2 +·· ·+Æp yt°p +et (14.35)

where et is a strictly stationary and ergodic white noise process.
Using the lag operator,

yt °Æ1Lyt °Æ2L2 yt ° · · ·°Æp Lp yt =Æ0 +et ,

or
Æ(L)yt =Æ0 +et

where
Æ(L) = 1°Æ1L°Æ2L2 ° · · ·°Æp Lp . (14.36)
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Figure 14.9: AR(2) Processes

We call Æ(z) the autoregressive polynomial of yt .
The Fundamental Theorem of Algebra states that any polynomial can be factored as

Æ(z) =
°
1°Ø1z

¢°
1°Ø2z

¢
· · ·

°
1°Øp z

¢
(14.37)

where the factors Ø j can be real or in complex conjugate pairs. If
ØØØ j

ØØ< 1 then the polynomials
°
1°Ø j z

¢

are invertible and thus so is Æ(z). The inverse is

Æ(z)°1 =
°
1°Ø1z

¢°1 °
1°Ø2z

¢°1 · · ·
°
1°Øp z

¢°1 . (14.38)

Consequently

yt =Æ(L)°1 (Æ0 +et )

=
°
1°Øp L

¢°1 · · ·
°
1°Ø2L

¢°1 °
1°Ø1L

¢°1 (Æ0 +et )

=µ+
°
1°Øp L

¢°1 · · ·
°
1°Ø2L

¢°1 °
1°Ø1L

¢°1 et (14.39)

where
µ= Æ0

1°Æ1 ° · · ·°Æp
.

The series u1t =
°
1°Ø1L

¢°1 (Æ0 +et ) is a strictly stationary and ergodic AR(1) process by Theorem 14.21.
By induction, the series u j t =

°
1°Ø2L

¢°1 u j°1,t is strictly stationary and ergodic by Theorem 14.6. Thus
yt is strictly stationary and ergodic.

In general, we do not have explicit expressions for the factors Ø j (though they can be calculated
numerically from the coefficients). Instead, the following characterization may be insightful. Take the
inverse factors∏ j =Ø°1

j . Since 1°Ø j∏ j = 0, thenÆ(∏ j ) = 0. This means that∏ j is a root of the polynomial

Æ(z) (the point on the x-axis where the polynomial hits zero). The requirement
ØØØ j

ØØ < 1 is the same asØØ∏ j
ØØ> 1. We find that the following three conditions are equivalent.

1.
ØØØ j

ØØ< 1 for j = 1, ..., p.
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2. All roots ∏ j of Æ(z) satisfy
ØØ∏ j

ØØ> 1.

3. Æ(z) 6= 0 for all complex numbers z such that |z|∑ 1.

For complex numbers z, the equation |z| = 1 defines the unit circle (the circle with radius of unity),
the region |z| ∑ 1 is the interior of the unit circle, and the region |z| > 1 is the exterior of the unit circle.
We have established the following.

Theorem 14.23 If all roots of Æ(z) lie outside the unit circle, then the AR(p)
process (14.35) is absolutely convergent, strictly stationary, and ergodic.

Thus to check if a specific autoregressive process satisfies the conditions for stationarity, we can (nu-
merically) compute the roots∏ j of the autoregressive polynomial, calculate their modulus

ØØ∏ j
ØØ and check

if
ØØ∏ j

ØØ> 1.
The equation (14.39) can be written as

yt =µ+b(L)et

where

b(z) =Æ(z)°1 =
1X

j=0
b j z j . (14.40)

We have the following characterization of the moving average coefficients.

Theorem 14.24 If all roots of the autoregressive polynomial Æ(z) lie outside
the unit circle then (14.40) holds with b j =O

°
j pØ j ¢ and

P1
j=0

ØØb j
ØØ<1.

The proof is presented in Section 14.46.

14.25 Impulse Response Function

The coefficients of the moving average representation

yt = b(L)et

=
1X

j=0
b j et° j

= b0et +b1et°1 +b2et°2 +·· ·

are known among economists as the impulse response function (IRF). (Often, scaled by the standard
deviation of et . We discuss this scaling at the end of the section.) In linear models the impulse response
function is defined as the change in yt+ j due to a shock at time t . This is

@

@et
yt+ j = b j .
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This means that the coefficients b j can be interpreted as the magnitude of the impact of a time t shock
on the time t + j variable. Plots of b j can then be used to assess the time-propagation of shocks. This is
a standard method of analysis for multivariate time series.

It is desirable to have a convenient method to calculate the impulse responses b j from the coeffi-
cients of an autoregressive model (14.35). There are two methods which we now describe.

The first uses a simple recursion. In the linear AR(p) model, we can see that the coefficient b j is the
simple derivative

b j =
@

@et
yt+ j =

@

@e0
y j

We can therefore calculate b j by generating a history and perturbing the shock e0. Since this calculation
is unaffected by all other shocks, we can simply set et = 0 for t 6= 0 and set e0 = 1. This implies the
recursion

b0 = 1

b1 =Æ1b0

b2 =Æ1b1 +Æ2b0

...

b j =Æ1b j°1 +Æ2b j°2 +·· ·+Æp b j°p .

Equivalently, this is achieved by the following simulation. Set yt = 0 for t ∑ 0. Set e0 = 1 and et = 0 for
t > 1. Generate yt for t ∏ 0 by yt =Æ1 yt°1 +Æ2 yt°2 +·· ·+Æp yt°p +et . Then y j = b j .

A second method uses a vector representation of the AR(p) model. Let ey t = (yt , ..., yt°p+1)0 and ee t =
(et ,0...,0)0. Then

ey t =

0

BBBBBB@

Æ1 Æ2 · · · Æp°1 Æp

1 0 · · · 0 0
0 1 · · · 0 0
...

... 0
...

0 0 · · · 1 0

1

CCCCCCA
ey t°1 +ee t

= Aey t°1 +ee t . (14.41)

By recursion

ey t =
1X

j=0
A

j ee t° j .

Here, A
j = A · · · A means the j th matrix product of A with itself. Setting S = (1,0, ...0)0 we find

yt =
1X

j=0
S0

A
j Set° j .

By linearity

b j =
@

@et
yt+ j = S0

A
j S. (14.42)

Thus the coefficient b j can be calculated by forming the matrix A, its j -fold product A
j , and then taking

the upper-left element.
As mentioned at the beginning of the section, it is often desirable to define the IRF to be scaled so

that it is the response to a one-deviation shock. Let æ2 = var(et ) and define "t = et /æ which has unit
variance. Then the IRF at lag j is

IRF j =
@

@"t
yt+ j =æb j .



CHAPTER 14. TIME SERIES 504

14.26 ARMA and ARIMA Processes

The autoregressive-moving-average process, denoted ARMA(p,q), is

yt =Æ0 +Æ1 yt°1 +Æ2 yt°2 +·· ·+Æp yt°p +µ0et +µ1et°1 +µ2et°2 +·· ·+µq et°q

where et is a strictly stationary and erogodic white noise process. It can be written using lag operator
notation as

Æ(L)yt =Æ0 +µ(L)et .

Theorem 14.25 The ARMA(p,q) process (14.35) is strictly stationary and er-
godic if all roots of Æ(z) lie outside the unit circle. In this case we can write

yt =µ+b(L)et

where b j =O
°

j pØ j ¢ and
P1

j=0

ØØb j
ØØ<1.

The process yt follows an autoregressive-integrated moving-average process, denoted ARIMA(p,d,q),
if ¢d yt is ARMA(p,q). It can be written using lag operator notation as

Æ(L)(1°L)d yt =Æ0 +µ(L)et .

14.27 Mixing Properties of Linear Processes

There is a considerable probability literature investigating the mixing properties of time series pro-
cesses. One challenge is that since autoregressive processes depend on the infinite past sequence of
innovations et it is not immediately obvious if they satisfy the mixing conditions.

In fact, a simple AR(1) is not necessarily mixing. A counter-example was developed by Andrews
(1984). He showed that if the error et has a two-point discrete distribution, then an AR(1) yt is not strong
mixing. The reason is that a discrete innovation combined with the autoregressive structure means that
by observing yt you can deduce with near certainty the past history of the shocks et . The example seems
rather special, but shows the need to be careful with the theory. The intuition stemming from Andrews’
finding is that for an autoregressive process to be mixing it is necessary for the errors et to not be discrete.

A useful characterization was provided by Pham and Tran (1985).
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Theorem 14.26 Suppose that yt = µ+P1
j=0µ j et° j satisfies the following con-

ditions:

1. et is i.i.d. with E |et |r <1 for some r > 0 and density f (x) which satisfies
ZØØ f (x °u)° f (x)

ØØd x ∑C |u| (14.43)

for some C <1.

2. All roots of µ(z) lie outside the unit circle and
P1

j=0

ØØµ j
ØØ<1.

3.
P1

k=1

≥P1
j=k

ØØµ j
ØØ
¥r /(1+r )

<1.

Then for some B <1

Æ(`) ∑ 4Ø(`) ∑ B
1X

k=`

√
1X

j=k

ØØµ j
ØØ
!r /(1+r )

and yt is absolutely regular and strong mixing.

The condition (14.43) is rather unusual, but specifies that et has a smooth density. This rules out the
counter-example discovered by Andrews (1984).

The summability condition on the coefficients in part 3 involves a trade-off with the number of mo-
ments r . If et has all moments finite (e.g. normal errors) then we can set r = 1 and this condition
simplifies to

P1
k=1 k |µk | <1. For any r , the summability condition holds if µ j has geometric decay, as

holds for an finite-order AR(p) process.
It is instructive to deduce how the decay in the coefficients µ j affects the rate for the mixing coeffi-

cients Æ(`). If
ØØµ j

ØØ∑O
°

j°¥
¢

then
P1

j=k

ØØµ j
ØØ∑O

≥
k°(¥°1)

¥
so the rate is

Æ(`) ∑ 4Ø(`) ∑O
°
`°s¢

s =
°
¥°1

¢≥ r
1+ r

¥
°1.

Mixing requires s > 0, which holds for sufficiently large ¥. For example, if r = 4 it holds for ¥> 9/4.
The primary message from this section is that linear processes, including autoregressive and ARMA

processes, are mixing, if the innovations satisfy suitable conditions. The mixing coefficients decay at
rates related to the decay rates of the moving average coefficients.

14.28 Identification

The parameters of a model are identified if the parameters are uniquely determined by the proba-
bility distribution of the observations. In the case of linear time series analysis we typically focus on the
second moments of the observations (means, variances, covariances). We therefore say that the coef-
ficients of a stationary MA, AR, or ARMA model are identified if they are uniquely determined by the
autocorrelation function. That is, given the autocorrelation function Ω(k), are the coefficients unique?

It turns out that the answer is that MA and ARMA models are generally not identified. Identification is
achieved by restricting the class of polynomial operators. In contrast, AR models are generally identified.
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Let us start with the MA(1) model
yt = et +µet°1.

It has first-order autocorrelation

Ω(1) = µ

1+µ2 .

Set != 1/µ. Then
!

1+!2 = 1/!

1+ (1/!)2 = µ

1+µ2 = Ω(1)

Thus the MA(1) model with coefficient != 1/µ produces the same autocorrelations as the MA(1) model
with coefficient µ. For example, µ = 1/2 and ! = 2 each yield Ω(1) = 2/5. There is no empirical way to
distinguish between the models yt = et+µet°1 and yt = et+!et°1. Thus the coefficient µ is not identified.

The standard solution is to select the parameter which produce an invertible moving average poly-
nomial. Since there is only one such choice this yields a unique solution. This may be sensible when
there is reason to believe that shocks have their primary impact in the contemporaneous period, and
secondary (lesser) impact in the second period.

Now consider the MA(2) model
yt = et +µ1et°1 +µ2et°2.

The moving average polynomial can be factored as

µ(z) =
°
1°Ø1z

¢°
1°Ø2z

¢

so that Ø1Ø2 = µ2 and Ø1 +Ø2 =°µ1. The process has first- and second-order autocorrelations

Ω(1) = µ1 +µ1µ2

1+µ2
1 +µ2

2

=
°Ø1 °Ø2 °Ø2

1Ø2 °Ø1Ø
2
2

1+Ø2
1 +Ø2

2 +2Ø1Ø2 +Ø2
1Ø

2
2

Ω(2) = µ2

1+µ2
1 +µ2

2

= Ø1Ø2

1+Ø2
1 +Ø2

2 +2Ø1Ø2 +Ø2
1Ø

2
2

.

If we replace Ø1 with !1 = 1/Ø1 we obtain

Ω(1) =
°1/Ø1 °Ø2 °Ø2/Ø2

1 °Ø2
2/Ø1

1+1/Ø2
1 +Ø2

2 +2Ø2/Ø1 +Ø2
2/Ø2

1

=
°Ø1 °Ø2Ø

2
1 °Ø2 °Ø2

2Ø1

Ø2
1 +1+Ø2

2Ø
2
1 +2Ø2Ø1 +Ø2

2

Ω(2) = Ø2/Ø1

1+1/Ø2
1 +Ø2

2 +2Ø2/Ø1 +Ø2
2/Ø2

1

= Ø1Ø2

Ø2
1 +1+Ø2

1Ø
2
2 +2Ø1Ø2 +Ø2

2

which is unchanged. Similarly if we replace Ø2 with !2 = 1/Ø2 we obtain unchanged first- and second-
order autocorrelations. It follows that in the MA(2) model, the factors Ø1 and Ø2 are not identified. It
follows that the coefficients µ1 and µ2 are not identified. Consequently there are four distinct MA(2)
models which are identifiably indistinguishable.

This analysis extends to the MA(q) model. The factors of the MA polynomial can be replaced by their
inverses, and consequently the coefficients are not identified.

The standard solution is to confine attention to MA(q) models with invertible roots. This technically
solves the identification dilemma. One reason why this choice may be considered reasonable is because
this corresponds to the Wold decomposition. This is because the Wold decomposition is defined in terms
of the projection errors, which correspond to the invertible representation.

A deeper identification failure occurs in ARMA models. Consider an ARMA(1,1) model

yt =Æyt°1 +et +µet°1.
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Written in lag operator notation
(1°ÆL) yt = (1+µL)et .

The identification failure is that when Æ=°µ then the model simplifies to

yt = et .

This means that the continuum of models with Æ=°µ are all identical and the coefficients are not iden-
tified.

This extends to higher order ARMA models. Take the ARMA(2,2) model written in factored lag oper-
ator notation

(1°Æ1L)(1°Æ2L) yt = (1+µ1L)(1+µ2L)et .

Here we see that the models with Æ1 =°µ1, Æ1 =°µ2, Æ2 =°µ1, or Æ2 =°µ2 all simplify to an ARMA(1,1)
model. Thus all these models are identical and hence the coefficients are not identified.

The problem is called “cancelling roots” due to the fact that it arises when there are two identical lag
polynomial factors in the AR and MA polynomials.

The standard solution in the ARMA literature is to assume that there are no cancelling roots. The
trouble with this solution is that this is an assumption about the true process, which is unknown. Thus
it is not really a solution to the identification problem. One recommendation is to be careful when using
ARMA models, and be aware that highly parameterized models may not have unique coefficients.

Now consider the AR(p) model (14.35). It can be written as

yt = x
0
tÆ+et (14.44)

whereÆ= (Æ0,Æ1, ...Æp )0 and x t = (1, yt°1, ..., yt°p )0. The MDS assumption implies that E [et ] = 0, E
£

y° j et
§
=

0, and hence
E [x t et ] = 0.

This means that from our standard analysis of projection models the coefficient Æ satisfies

Æ=
°
E
£

x t x
0
t
§¢°1 °

E
£

x t yt
§¢

. (14.45)

This equation is unique if Q = E
£

x t x
0
t

§
is positive definite. It turns out that this is generically true, soÆ is

unique and identified.

Theorem 14.27 In the AR(p) model (14.35), if 0 < æ2 <1 then Q > 0 and Æ is
unique and identified.

The assumption æ2 > 0 means that yt is not purely deterministic.
We can extend this result to approximating AR(p) models. That is, consider the equation (14.44)

without the assumption that yt is necessarily a true AR(p) with a MDS error. Instead, suppose that yt

is a non-deterministic stationary process. (Recall, non-deterministic means that æ2 > 0 where æ2 is the
projection error variance (14.19).) We then define the coefficient Æ as the best linear predictor, which is
(14.45). The error et is then defined by the equation (14.44). This is a linear projection model.

As in the case of any linear projection, the error et satisfies E [x t et ] = 0. This means that E [et ] = 0 and
E
£

yt° j et
§
= 0 for j = 1, ..., p. However, the error et is not necessarily a MDS nor white noise.

The coefficientÆ is identified if Q > 0. The proof of Theorem 14.27 (presented in Section 14.46) does
not make use of the assumption that yt is an AR(p) with a MDS error. Rather, it only uses the assumption
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that æ2 > 0. This holds in the approximate AR(p) model as well under the assumption that yt is non-
deterministic. We conclude that any approximating AR(p) is identified.

Theorem 14.28 If yt is strictly stationary, not purely deterministic, and
E
£

y2
t

§
< 1, then for any p, Q = E

£
x t x

0
t

§
> 0 and thus the coefficient vector

(14.45) is identified.

14.29 Estimation of Autoregressive Models

We consider estimation of an AR(p) model for stationary, ergodic, and non-deterministic yt . The
model is

yt = x
0
tÆ+et (14.46)

where x t = (1, yt°1, ..., yt°p )0. The coefficientÆ is defined by projection in (14.45). The error is defined by
(14.46), and has variance æ2 = E

£
e2

t

§
. This allows yt to follow a true AR(p) process, but it is not necessary.

The least squares estimator of the AR(p) model is

bÆ=
µ nX

t=1
x t x

0
t

∂°1 µ nX

t=1
x t yt

∂
.

This notation presumes that there are n +p observations on yt , from which the first p are used as initial
conditions so that x1 = (1, y0, y°1, ..., y°p+1) is defined. Effectively, this redefines the sample period. (An
alternative notational choice is to define the estimator to have the sums range from observations p +1
to n.)

The least squares residuals are
bet = yt °x

0
t bÆ.

The error variance can be estimated by

bæ2 = 1
n

nX

t=1
be2

t

or

s2 = 1
n °p °1

nX

t=1
be2

t .

If yt is strictly stationary and ergodic, then so are x t x
0
t and x t yt . They have finite means if E

£
y2

t

§
<1.

Under these assumptions the Ergodic Theorem implies that

1
n

nX

t=1
x t yt °!p E

£
x t yt

§
(14.47)

and
1
T

TX

t=1
x t x

0
t °!p E

£
x t x

0
t
§
=Q .

Theorem 14.28 shows that Q > 0. Combined with the continuous mapping theorem, we see that

bÆ=
√

1
T

TX

t=1
x t x

0
t

!°1 √
1
T

TX

t=1
x t yt

!

°!
p

°
E
£

x t x
0
t
§¢°1

E
£

x t yt
§
=Æ.

It is straightforward to show that bæ2 is consistent as well.
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Theorem 14.29 If yt is strictly stationary, ergodic, not purely deterministic,
and E

£
y2

t

§
<1, then for any p, bÆ°!

p
Æ and bæ2 °!

p
æ2 as n !1.

This shows that under very mild conditions, the coefficients of an AR(p) model can be consistently
estimated by least squares. Once again, this does not require that the series yt is actually an AR(p) pro-
cess. It holds for any stationary process with the coefficient defined by projection.

14.30 Asymptotic Distribution of Least Squares Estimator

The asymptotic distribution of the least squares estimator bÆ depends on the stochastic assumptions.
In this section we derive the asymptotic distribution under the assumption of correct specification.

Specifically, we assume that the error et is a MDS. An important implication of the MDS assumption
is that since x t = (1, yt°1, ..., yt°p )0 is part of the information set Ft°1, by the conditioning theorem,

E [x t et |Ft°1] = x tE [et |Ft°1] = 0.

Thus x t et is a MDS. It has a finite variance if x t and et have finite fourth moments, which holds if yt

does. We can then apply the martingale difference CLT (Theorem 14.11) to see that

1
p

n

nX

t=1
x t et °!

d
N(0,ß)

where ß= E
£

x t x
0
t e2

t

§
.

Theorem 14.30 If yt follows the AR(p) model (14.35) with E [et |Ft°1] = 0,
E
£

y4
t

§
<1, and æ2 > 0, then as n !1,

p
n (bÆ°Æ) °!

d
N(0,V )

where V =Q
°1ßQ

°1.

This is identical in form to the asymptotic distribution of least squares in cross-section regression.
The implication is that asymptotic inference is the same. In particular, the asymptotic covariance matrix
is estimated just as in the cross-section case.

14.31 Distribution Under Homoskedasticity

In cross-section regression we found that the variance matrix simplifies under the assumption of
conditional homoskedasticity. The same occurs in the time series context. Assume that the error is a
homoskedastic MDS:

E [et |Ft°1] = 0

E
£
e2

t |Ft°1
§
=æ2.
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In this case
ß= E

£
x t x

0
tE

£
e2

t |Ft°1
§§

=Qæ2

and the asymptotic distribution simplifies.

Theorem 14.31 If yt follows the AR(p) model (14.35) with E [et |Ft°1] = 0,
E
£

y4
t

§
<1, and E

£
e2

t |Ft°1
§
=æ2 > 0, then as n !1,

p
n (bÆ°Æ) °!

d
N

°
0,V

0¢

where V
0 =æ2

Q
°1.

These results show that under correct specification (a MDS error) the format of the asymptotic dis-
tribution of the least squares estimator exactly parallels the cross-section case. In general the covariance
matrix takes a sandwich form, with components exactly equal to the cross-section case. Under condi-
tional homoskedasticity the covariance matrix simplies exactly as in the cross-section case.

A particularly useful insight which can be derived from Theorem 14.31 is to focus on the simple AR(1)
with no intercept. In this case Q = E

£
y2

t

§
=æ2/(1°Æ2

1) so the asymptotic distribution simplifies to

p
n (bÆ1 °Æ1) °!

d
N

°
0,1°Æ2

1
¢

.

Thus the asymptotic variance depends only onÆ1 and is decreasing withÆ2
1. An intuition is that largerÆ2

1
means greater signal and hence greater estimation precision. This result also shows that the asymptotic
distribution is non-similar: the variance is a function of the parameter of interest. This means that we
can expect (from advanced statistical theory) asymptotic inference to be less accurate than indicated by
nominal levels.

In the context of cross-section data we argued that the homoskedasticity assumption was dubi-
ous except for occassional theoretical insight. For practical applications, it is recommended to use
heteroskedasticity-robust theory and methods when possible. The same argument applies to the time
series case. While the distribution theory simplifies under conditional homoskedasticity, there is no
reason to expect homoskedasticity to hold in practice. Therefore in applications it is better to use the
heteroskedasticity-robust distributional theory when possible.

Unfortunately, many existing time series textbooks report the distribution theory from (14.31). This
has influenced computer software packages, many of which also by default (or exclusively) use the ho-
moskedastic distribution theory. This is unfortunate.

14.32 Asymptotic Distribution Under General Dependence

If the AR(p) model (14.35) holds with with white noise errors, or if the AR(p) is an approximation with
Æ defined as the best linear predictor, then the MDS central limit theory does not apply. Instead, if yt is
strong mixing we can use the central limit theory for mixing processes (Theorem 14.15).
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Theorem 14.32 If yt is strictly stationary, ergodic, 0 < æ2 < 1, and for some
r > 4, E

ØØyt
ØØr <1 and the mixing coefficients satisfy

P1
`=1Æ(`)1°4/r <1, then

≠=
1X

`=°1
E
£

x t°`x
0
t et et°`

§

is convergent, and for the AR(p) least squares estimator bÆ and projection coef-
ficients (14.45), p

n (bÆ°Æ) °!
d

N(0,V )

as n !1, where
V =Q

°1≠Q
°1.

This result is substantially different from the cross-section case. It shows that model misspecification
(misspecifying the order of the autoregression, or missing proper specification of the conditional mean)
renders invalid the conventional “heteroskedasticity-robust” covariance matrix formula. Misspecified
models do not have unforecastable (martingale difference) errors, so the regression scores x t et are po-
tentially serially correlated.

14.33 Covariance Matrix Estimation

Under the assumption of correct specification, covariance matrix estimation is identical to the cross-
section case. The asymptotic covariance matrix estimator under homoskedasticity is

bV 0 = bæ2 bQ°1

bQ = 1
n

nX

t=1
x t x

0
t

The estimator s2 may be used instead of bæ2.
The heteroskedasticity-robust asymptotic covariance matrix estimator is

bV = bQ°1 bßbQ°1
(14.48)

where
bß= 1

n

nX

t=1
x t x

0
t be

2
t .

Degree-of-freedom adjustments may be made as in the cross-section case, though a theoretical justifi-
cation has not been developed in the time series case.

Standard errors s
°
bÆ j

¢
for individual coefficient estimates can be formed by taking the scaled diagonal

elements of bV .

Theorem 14.33 Under the assumptions of Theorem 14.32 as n !1, bV °!
p

V

and
bÆ j °Æ j

s(bÆ j )
°!

d
N(0,1) .
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Theorem 14.33 shows that standard covariance matrix estimation is consistent and the resulting t-
ratios are asymptotically normal. This means that for stationary autoregressions, inference can proceed
using conventional regression methods.

14.34 Covariance Matrix Estimation Under General Dependence

Under the assumptions of Theorem 14.32, the conventional covariance matrix estimators are incon-
sistent as they do not capture the serial dependence in the regression scores x t et . To consistently esti-
mate the covariance matrix, we need a different estimator. The appropriate class of estimators are called
Heteroskedasticity and Autocorrelation Consistent (HAC) or Heteroskedasticity and Autocorrelation
Robust (HAR) covariance matrix estimators.

To understand the methods, it is helpful to define the vector series u t = x t et and autocovariance
matrices °(`) = E

£
u t°`u

0
t

§
so that

≠=
1X

`=°1
°(`).

Since this sum is convergent the autocovariance matrices converge to zero as `!1. Therefore ≠ can
be approximated by taking a finite sum of autocovariances, such as

≠M =
MX

`=°M
°(`).

The number M is sometimes called the lag truncation number. Other authors call it the bandwidth. An
estimator of °(`) is

b°(`) = 1
n

X

1∑t°`∑n
bu t°`bu0

t

where bu t = x t bet . By the ergodic theorem we can show that for any `, b°(`) °!
p
°(`). Thus for any fixed M ,

the estimator

b≠M =
MX

`=°M

b°(`) (14.49)

is consistent for≠M .
If the serial correlation in x t et is known to be zero after M lags, then ≠M = ≠ and the estimator

(14.49) is consistent for≠. This estimator was proposed by L. Hansen and Hodrick (1980) in the context
of multiperiod forecasts, and by L. Hansen (1982) for the generalized method of moments weight matrix.

In the general case, we can select M to increase with sample size n. If the rate at which M increases
is sufficiently slow, then b≠M will be consistent for≠, as first shown by White and Domowitz (1984).

Once we view the lag truncation number M as a choice made by the user, the estimator (14.49) has
two potential deficiencies. One is that b≠M can change non-smoothly with M , which makes estimation
results sensitive to the choice of M . The other is that b≠M may not be positive semi-definite and is there-
fore not a valid variance matrix estimator. We can see this in the simple case of scalar ut and M = 1. In
this case

b≠1 = b∞(0)
°
1+2bΩ(1)

¢

which is negative when bΩ(1) <°1/2. Thus if the data are strongly negatively autocorrelated the variance
estimator can be negative. A negative variance estimator means that standard errors are ill-defined (a
naive compuation will produce a complex standard error which makes no sense5).

5A common computational mishap is a complex standard error. This occurs when a covariance matrix estimator has nega-
tive elements on the diagonal.
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These two deficiencies can be resolved if we amend (14.49) by a weighted sum of autocovariances. In
particular, Newey and West (1987b) suggested the estimator

b≠nw =
MX

`=°M

µ
1° |`|

M +1

∂
b°(`). (14.50)

This is a weighted sum of the autocovariances. Other weight functions can be used; the one in (14.50)
is known as the Bartlett kernel6. Newey and West (1987b) showed that this estimator has the algebraic
property that b≠NW ∏ 0 (it is positive semi-definite), solving the negative variance problem, and it is also
a smooth function of M . Thus this estimator solves the two problems described above.

For b≠NW to be consistent for≠, the lag trunction number M must increase to infinity with n. Suffi-
cient conditions were established by B. Hansen (1992).

Theorem 14.34 Under the assumptions of Theorem 14.32, plusP1
`=1Æ(`)1/2°4/r <1, if M !1 yet M 3/n =O(1), then as n !1,

b≠nw °!
p
≠.

The assumption M 3/n = O(1) technically means that M grows no faster than n1/3, but this does not
have a meaningful practical counterpart other than the implication that “M should be much smaller
than n”.

A important practical issue is how to select M . One way to think about it is that M impacts the
precision of the estimator b≠NW through its bias and variance. Since b°(`) is a sample average, its variance
is O (1/n) so we expect the variance of b≠M to be of order O (M/n). The bias of b≠NW for ≠ is harder to
calculate, but depends on the rate at which the covariances °(`) decay to zero. Andrews (1991b) found
that the M which minimizes the mean squared error of b≠NW satisfies the rate M = C n1/3 where the
constant C depends on the autocovariances. Practical rules to estimate and implement this optimal lag
truncation parameter have been proposed by Andrews (1991b) and Newey and West (1994). Stock and
Watson (2014) show that a simplified version of Andrews’ rule is M = 0.75n1/3.

14.35 Testing the Hypothesis of No Serial Correlation

In some cases it may be of interest to test the hypothesis that the series yt is serially uncorrelated
against the alternative that it is serially correlated. There have been many proposed tests of this hypoth-
esis. The most appropriate is based on the least squares regression of an AR(p) model. Take the model

yt =Æ0 +Æ1 yt°1 +Æ2 yt°2 +·· ·+Æp yt°p +et

with et a MDS. In this model, the series yt is serially uncorrelated if the slope coefficieints are all zero.
Thus the hypothesis of interest is

H0 :Æ1 = ·· · =Æp = 0

H1 :Æ j 6= 0 for some j ∏ 1.

6See Andrews (1991b) for a description of popular options. In practice, the choice of weight function is much less important
than the choice of lag truncation number M .
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The test can be implemented by a Wald (or F) test. Estimate the AR(p) model by least squares. Form
the Wald (or F) statistic using the variance estimator (14.48). (The Newey-West estimator should not be
used as there is no serial correlation under the null hypothesis.) Accept the hypothesis if the test statistic
is smaller than a conventional critical value (or if the p-value exceeds the significance level), and reject
the hypothesis otherwise.

Implementation of this test requires a choice of autoregressive order p. This choice affects the power
of the test. A sufficient number of lags should be included so to pick up potential serial correlation
patterns, but not so many that the power of the test is diluted. A reasonable choice in many applications
is to set p to equals s, the seasonal periodicity. Thus include four lags for quarterly data, or twelve lags
for monthly data.

14.36 Testing for Omitted Serial Correlation

When using an AR(p) model it may be of interest to know if there is any remaining serial correlation.
This can be expressed as a test for serial correlation in the error or equivalently as a test for a higher-order
autogressive model.

Take the AR(p) model
yt =Æ0 +Æ1 yt°1 +Æ2 yt°2 +·· ·+Æp yt°p +ut . (14.51)

The null hypothesis is that ut is serially uncorrelated, and the alternative hypothesis is that it is serially
correlated. We can model the latter as a mean-zero autoregressive process

ut = µ1ut°1 +·· ·+µq ut°q +et . (14.52)

The hypothesis is

H0 : µ1 = ·· · = µq = 0

H1 : µ j 6= 0 for some j ∏ 1.

A seemingly natural test for H0 uses a two-step method. First estimate (14.51) by least squares and
obtain the residuals but . Second, estimate (14.52) by least squares by regressing but on its lagged values,
and obtain the Wald (or F) test for H0. This seems like a natural approach, but it is muddled by the fact
that the distribution of the Wald statistic is distorted by the two-step procedure. The Wald statistic is not
asymptotically chi-square distributed, so it is inappropriate to make a decision based on the conven-
tional critical values and p-values. One approach to obtain the correct asymptotic distribution is to use
the generalized method of moments, treating (14.51)-(14.52) as a two-equation just-identified system.

An easier solution is to re-write (14.51)-(14.52) as a higher-order autoregression so that we can use a
standard test statistic. To illustrate how this works, for simplicity take the case q = 1. Take (14.51) and lag
the equation once:

yt°1 =Æ0 +Æ1 yt°2 +Æ2 yt°3 +·· ·+Æp yt°p°1 +ut°1.

We then multiply this by µ1 and subtract from (14.51), to find

yt °µ1 yt°1 =Æ0 +Æ1 yt°1 +Æ2 yt°2 +·· ·+Æp yt°p +ut

°µ1Æ0 °µ1Æ1 yt°2 °µ1Æ2 yt°3 ° · · ·°µ1Æp yt°p°1 °µ1ut°1

or
yt =Æ0(1°µ1)+ (Æ1 +µ1) yt°1 + (Æ2 °µ1Æ1) yt°2 +·· ·°µ1Æp yt°p°1 +et .

This is an AR(p+1). It simplifies to an AR(p) when µ1 = 0. Thus H0 is equivalent to the restriction that the
coefficient on yt°p°1 is zero.
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Thus testing the null hypothesis of an AR(p) (14.51) against the alternative that the error is an AR(1)
is equivalent to testing an AR(p) against an AR(p+1). The latter test is implemented as a Wald (or F) test
on the coefficient on yt°p°1.

More generally, testing the null hypothesis of an AR(p) (14.51) against the alternative that the error is
an AR(q) is equivalent to testing that yt is an AR(p) against the alternative that yt is an AR(p+q). The latter
test is implemented as a Wald (or F) test on the coefficients on yt°p°1, ..., yt°p°1. If the statistic is smaller
than the critical values (or the p-value is larger than the significance level) then we reject the hypothesis
that the AR(p) is correctly specified in favor of the alternative that there is omitted serial correlation.
Otherwise we accept the hypothesis that the AR(p) model is correctly specified.

Another way of deriving the test is as follows. Write (14.51) and (14.52) using lag operator notation

Æ(L)yt =Æ0 +ut

µ(L)ut = et .

Applying the operator µ(L) to the first equation we obtain

µ(L)Æ(L)yt =Æ§
0 +et

where Æ§
0 = µ(1)Æ0. The product µ(L)Æ(L) is a polynomial of order p +q , so yt is an AR(p+q).

While this discussion is all good fun, it is unclear if there is good reason to use the test described
in this section. Economic theory does not typically produce hypotheses concerning the autoregressive
order. Consequently there is rarely a case where there is scientific interest in testing, say, the hypothesis
that a series is an AR(4), or any other specific autoregressive order. Instead, practitioners tend to use
hypothesis tests for another purpose – model selection. That is, in practice users want to know “What
autoregressive model should be used” in a specific application, and resort to hypothesis tests to aid in
this decision. This is an inappropriate use of hypothesis tests because tests are designed to provide
answers to scientific questions, rather than being designed to select models with good approximation
properties. Instead, model selection should be based on model selection tools. One is described in the
following section.

14.37 Model Selection

What is an appropriate choice of autoregressive order p? This is the problem of model selection.
A good choice is to minimize the Akaike information criterion (AIC)

AIC(p) = n log bæ2(p)+2p

where bæ2(p) is the estimated residual variance from an AR(p). The AIC is a penalized version of the
Gaussian log-likelihood function for the estimated regression model. It is an estimate of the divergence
between the fitted model and the true conditional density. By selecting the model with the smallest
value of the AIC, you select the model with the smallest estimated divergence – the highest estimated fit
between the estimated and true densities.

The AIC is also a monotonic transformation of an estimator of the one-step-ahead forecast mean
squared error. Thus selecting the model with the smallest value of the AIC you are selecting the model
with the smallest estimated forecast error.

One possible hiccup in computing the AIC criterion for multiple models is that the sample size avail-
able for estimation changes as p changes. (If you increase p, you need more initial conditions.) This
renders AIC comparisons inappropriate. The same sample – the same number of observations – should



CHAPTER 14. TIME SERIES 516

be used for estimation of all models. The appropriate remedy is to fix a upper value p, and then reserve
the first p as initial conditions. Then estimate the models AR(1), AR(2), ..., AR(p) on this (unified) sample.

The AIC of an estimated regression model can be displayed in Stata by using the
command.

14.38 Illustrations

We illustrate autoregressive estimation with three empirical examples using U.S. quarterly time series
from the FRED-QD data file.

Table 14.1: U.S. GDP AR Models

AR(0) AR(1) AR(2) AR(3) AR(4)
Æ0 0.65 0.40 0.34 0.34 0.34

(0.06) (0.08) (0.10) (0.10) (0.11)
[0.09] [0.08] [0.09] [0.09] [0.09]

Æ1 0.39 0.34 0.33 0.34
(0.09) (0.10) (0.10) (0.10)
[0.10] [0.10] [0.10] [0.10]

Æ2 0.14 0.13 0.13
(0.11) (0.13) (0.14)
[0.10] [0.10] [0.11]

Æ3 0.02 0.03
(0.11) (0.12)
[0.07] [0.09]

Æ4 °0.02
(0.12)
[0.13]

AIC 329 306 305 307 309

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.

The first example is real GDP growth rates (growth rate of gdpc1). We estimate autoregressive models
of order 0 through 4 using the sample from 1980-20177. This is a very commonly estimated model in
applied macroeconomic practice, and is the empirical version of the Samuelson multiplier-accelerator
model discussed in Section 14.23. The coefficient estimates, conventional (heteroskedasticity-robust)
standard errors, Newey-West (with M = 5) standard errors, and AIC, are displayed in Table 14.1. This
sample has 152 observations. The model selected by the AIC criterion is the AR(2). The estimated model
has positive and small values for the first two autoregressive coefficients. This means that quarterly
output growth rates are positively correlated from quarter to quarter, but only mildly so, and most of the
correlation is captured by the first lag. The coefficients of this model are in the real section of Figure
14.8, meaning that the dynamics of the estimated model do not display oscillations. The coefficients of
the estimated AR(4) model are nearly identical to the AR(2) model. The conventional and Newey-West

7This sub-sample was used for estimation as it has been argued that the growth rate of U.S. GDP slowed around this period.
The goal was to estimate the model over a period of time when the series is plausibly stationary.
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standard errors are somewhat different from one another for the AR(0) and AR(4) models, but are nearly
identical to one another for the AR(1) and AR(2) models

Our second example is real non-durables consumption growth rates (growth rate of pcndx). This is
motivated by an influential paper by Robert Hall (1978), who argued that the permanent income hypoth-
esis implies that changes in consumption should be unpredictable (martingale differences). To test this
model Hall (1978) estimated an AR(4) model. Our estimated regression using the full sample (n = 231),
with heteroskedasticity-robust standard errors, are reported in the following equation. Let ct denote the
consumption growth rate.

bct = 0.15
(0.07)

ct°1 + 0.11
(0.07)

ct°2 + 0.13
(0.07)

ct°3 + 0.02
(0.08)

ct°4 + 0.35
(0.09)

.

Hall’s hypothesis is that all autoregressive coefficients should be zero. We test this joint hypothesis with
an F statistic, and find F = 3.32, with a p-value of p = 0.012. This is significant at the 5% level, and
close to the 1% level. The first three autoregressive coefficients appear to be positive, but small, indi-
cating positive serial correlation. This evidence is (mildly) inconsistent with Hall’s hypothesis. We report
heteroskedasticity-robust standard errors, not Newey-West standard errors, since the purpose was to test
the hypothesis of no serial correlation.

Table 14.2: U.S. Inflation AR Models

AR(1) AR(2) AR(3) AR(4) AR(5)
Æ0 0.004 0.003 0.003 0.003 0.003

(0.034) (0.032) (0.032) (0.032) (0.032)
[0.023] [0.028] [0.029] [0.031] [0.032]

Æ1 °0.26 °0.36 °0.36 °0.36 °0.37
(0.08) (0.07) (0.07) (0.07) (0.07)
[0.05] [0.07] [0.07] [0.07] [0.07]

Æ2 °0.36 °0.37 °0.42 °0.43
(0.07) (0.06) (0.06) (0.06)
[0.06] [0.05] [0.07] [0.07]

Æ3 °0.00 °0.06 °0.08
(0.09) (0.10) (0.11)
[0.09] [0.12] [0.13]

Æ4 °0.16 °0.18
(0.08) (0.08)
[0.09] [0.09]

Æ5 °0.04
(0.07)
[0.06]

AIC 342 312 314 310 312

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.
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The third example is the first difference of CPI inflation (first difference of growth rate of cpiaucsl).
This is motivated by Stock and Watson (2007) who examined forecasting models for inflation rates. We
estimate autoregressive models of order 1 through 8 using the full sample (n = 226); we report models
1 through 5 in Table 14.2. The model with the lowest AIC is the AR(4). All four estimated autoregressive
coefficients are negative, most particularly the first two. The two sets of standard errors are quite similar
for the AR(4) model. There are meaningful differences only for the lower order AR models.

14.39 Time Series Regression Models

Least squares regression methods can be used broadly with stationary time series. Interpretation and
usefulness can depend, however, on constructive dynamic specifications. Furthermore, it is necessary to
be aware of the serial correlation properties of the series involved, and to use the appropriate covariance
matrix estimator when the dynamics have not been explicitly modeled.

Let (yt , x t ) be paired observations with yt the dependent variable and x t a vector of regressors in-
cluding an intercept. The regressors can contain lagged yt so this framework includes the autoregressive
model as a special case. A linear regression model takes the form

yt = x
0
tØ+et . (14.53)

The coefficient vector is defined by projection and therefore equals

Ø=
°
E
£

x t x
0
t
§¢°1

E
£

x t yt
§

. (14.54)

The error et is defined by (14.53) and thus is properties are determined by that relationship. Implicitly the
model assumes that the variables have finite second moments and E

£
x t x

0
t

§
> 0, otherwise there model

is not uniquely defined and a regressor could be eliminated. By the property of projection the error is
uncorrelated with the regressors

E [x t et ] = 0.

The least squares estimator of the coefficient is

bØ=
√

TX

t=1
x t x

0
t

!°1 √
TX

t=1
x t yt

!

.

Under the assumption that the joint series (yt , x t ) is strictly stationary and ergodic, the estimator is con-
sistent. Under the mixing and moment conditions of Theorem 14.32 the estimator is asymptotically
normal with a general covariance matrix

However, under the stronger assumption that the error is a MDS the asymptotic covariance matrix
simplifies. It is worthwhile investigating this condition further. The necessary condition is

E [et |Ft°1] = 0

where Ft°1 is an information set to which (et°1, x t ) is adapted. This notation may appear somewhat
odd, but recall in the autoregessive context that x t = (1, yt°1, ..., yt°p ) contains variables dated time t °1
and previously, thus x t in this context is a “time t ° 1” variable. The reason why we need (et°1, x t ) to
be adapted to Ft°1 is for the MDS condition to hold the regression function x

0
tØ in (14.53) must be the

conditional mean of yt given Ft°1 and thus x t must be part of the information set Ft°1. Under this
assumption

E [x t et |Ft°1] = x tE [et |Ft°1] = 0

so (x t et ,Ft ) is a MDS. This means we can apply the MDS CLT to obtain the asymptotic distribution.
We summarize this discussion with the following formal statement.
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Theorem 14.35 If (yt , x t ) is strictly stationary, ergodic, with finite second mo-
ments, and Q = E

£
x t x

0
t

§
> 0, then Ø in (14.54) is uniquely defined and the least

squares estimator is consistent, bØ°!
p
Ø.

If in addition, E [et |Ft°1] = 0, where Ft°1 is an information set to which
(et°1, x t ) is adapted, E

ØØyt
ØØ4 <1 , and Ekx tk4 <1, then

p
n

°bØ°Ø
¢
°!

d
N

°
0,Q

°1≠Q
°1¢ (14.55)

as n !1, where≠= E
£

x t x
0
t e2

t

§
.

Alternatively, if in addition, for some r > 4, E
ØØyt

ØØr <1 , Ekx tkr <1, and the
mixing coefficients for (yt , x t ) satisfy

P1
`=1Æ(`)1°4/r < 1, then (14.55) holds

with

≠=
1X

`=°1
E
£

x t°`x
0
t et et°`

§
.

14.40 Static, Distributed Lag, and Autoregressive Distributed Lag Models

In this section we describe standard linear time series regression models.
Let (yt , z t ) be paired observations with yt the dependent variable and z t an observed regressor vector

(which does not include lagged yt ).
The simplest regression model is the static equation

yt =Æ+ z
0
tØ+et .

This is (14.53) by setting x t = (1, z
0
t )0. Static models are motivated to describe how yt and z t co-move.

Their advantage is their simplicity. The disadvantage is that they are difficult to interpret. The coefficient
is the best linear predictor (14.54) but almost certainly is dynamically misspecified. The regression of
yt on contemporeneous z t is also difficult to interpret without a causal framework since the two can be
simultaneous. If this regression is estimated it is important that the standard errors be calculated using
the Newey-West method to account for serial correlation in the error.

A model which allows the regressor to have impact over several periods is called a distributed lag
(DL) model. It takes the form

yt =Æ+ z
0
t°1Ø1 + z

0
t°2Ø2 +·· ·+ z

0
t°qØq +et .

It is also possible to include the contemporenous regressor z t . In this model the leading coefficient Ø1
represents the initial impact of z t on yt , Ø2 represents the impact in the second period, and so on. The
cumulative impact is the sum of the coefficients Ø1 +·· ·+Øq which is called the long-run multiplier.

The distributed lag model falls in the class (14.53) by setting x t = (1, z
0
t°1, z

0
t°2, . . . , z

0
t°q )0. While it

allows for a lagged impact of z t on yt , the model does not incorporate serial correlation, so the error
et should be expected to be serially correlated. Thus the model is (typically) dynamically misspecified
which can make interpretation difficult. It is also necessary to use Newey-West standard errors to ac-
count for the serial correlation.

A more complete model combines autoregressive and distributed lags. It takes the form

yt =Æ0 +Æ1 yt°1 +·· ·+Æp yt°p + z
0
t°1Ø1 +·· ·+ z

0
t°qØq +et .
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This is called an autoregressive distributed lag (AR-DL) model. It nests both the autoregressive and
distributed lag models, thereby combining serial correlation and dynamic impact. The AR-DL model
falls in the class (14.53) by setting x t = (1, yt°1, ..., yt°p , z

0
t°1, . . . , z

0
t°q )0.

If the lag orders p and q are selected sufficiently large, the AR-DL model will have an error which is
approximately white noise in which case the model can be interpreted as dynamically well-specified and
conventional standard error methods can be used.

In an AR-DL specification the long-run multiplier is

LR =
Ø1 +·· ·+Øq

1°Æ1 ° · · ·°Æp

which is a nonlinear function of the coefficients.

14.41 Time Trends

Many economic time series have means which change over time. A useful way to think about this is
the components model

yt = Tt +ut

where Tt is the trend component and ut is the stochastic component. The latter can be modeled by a
linear process or autoregression

Æ(L)ut = et .

The trend component is often modeled as a linear function in the time index

Tt =Ø0 +Ø1t

or a quadratic function in time
Tt =Ø0 +Ø1t +Ø2t 2.

These models are typically not thought of as being literally true, but rather as useful approximations.
When we write down time series models we write the index as t = 1, ...,n. But in practical applica-

tions the time index corresponds to a date, e.g. t = 1960,1961, ...,2017. Furtheremore, if the data is at
a higher frequency than annual then it is incremented in fractional units. This is not of fundamental
importance; it merely changes the meaning of the intercept Ø0 and slope Ø1. Consequently these should
not be interpreted outside of how the time index is defined.

One traditional way of dealing with time trends is to “detrend” the data. This means using an es-
timation method to estimate the trend and subtract it off. The simplest method is least squares linear
detrending. Given the linear model

yt =Ø0 +Ø1t +ut (14.56)

the coefficients are estimated by least squares. The detrended series is the residual but . More intricate
methods can be used but they have a similar flavor.

To understand the properties of the detrending method we can apply an asymptotic approximation.
A time trend is not a stationary process so we should be thoughtful before applying standard theory. We
will study asymptotics for non-stationary processes in more detail in Chapter 16, so our treatment here
will be brief. It turns out that most of our conventional procedures work just fine with time trends (and
quadratics in time) as regressors. The rates of convergence change but this does not affect anything of
practical importance.
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Let us demonstrate that the least squares estimator of the coefficients in (14.56) is consistent. We can
write the estimator as µ bØ0 °Ø0

bØ1 °Ø1

∂
=

µ
n

Pn
t=1 tPn

t=1 t
Pn

t=1 t 2

∂°1 µ Pn
t=1 utPn

t=1 tut

∂
.

We need to study the behavior of the sums in the design matrix. For this the following result is useful,
which follows by taking the limit of the Riemann sum for the integral

R1
0 xr d x = 1/(1+ r ).

Theorem 14.36 For any r > 0, as n !1, n°1°r Pn
t=1 t r °! 1/(1+ r ).

Theorem 14.36 implies that
1

n2

nX

t=1
t ! 1

2

and
1

n3

nX

t=1
t 2 ! 1

3
.

What is interesting about these results is that the sums require normalizations other than n°1!
To handle this in multiple regression it is convenient to define a scaling matrix which normalizes each

elements in the regression by its convergence rate. Define the matrix Dn =
∑

1
n

∏
. The first element

is the the intercept and second for the time trend. Then

Dn

µ bØ0 °Ø0
bØ1 °Ø1

∂
= Dn

µ
n

Pn
t=1 tPn

t=1 t
Pn

t=1 t 2

∂°1

DnD°1
n

µ Pn
t=1 utPn

t=1 tut

∂

=
µ
Dn

µ
n

Pn
t=1 tPn

t=1 t
Pn

t=1 t 2

∂
Dn

∂°1 µ Pn
t=1 ut

1
n

Pn
t=1 tut

∂

=
µ

n 1
n

Pn
t=1 t

1
n

Pn
t=1 t 1

n2

Pn
t=1 t 2

∂°1 µ Pn
i=1 ut

1
n

Pn
i=1 tut

∂

Then multiplying by n1/2 we obtain

µ
n1/2 ° bØ0 °Ø0

¢

n3/2 ° bØ1 °Ø1
¢

∂
=

µ
1 1

n2

Pn
t=1 t

1
n2

Pn
t=1 t 1

n2

Pn
t=1 t 2

∂°1 µ 1
n1/2

Pn
t=1 ut

1
n3/2

Pn
t=1 tut

∂
.

The denominator matrix satisfies
µ

1 1
n2

Pn
t=1 t

1
n2

Pn
t=1 t 1

n2

Pn
t=1 t 2

∂
!

µ
1 1

2
1
2

1
3

∂

which is invertible. Setting xnt = (t/n 1), the numerator vector can be written as 1
n1/2

Pn
t=1 xnt ut . It has

variance
∞∞∞∞var

∑
1

n1/2

nX

t=1
xnt ut

∏∞∞∞∞=
∞∞∞∞∞

1
n

nX

t=1

nX

j=1
x t x

0
jE

£
ut u j

§
∞∞∞∞∞

∑
p

2
1X

`=°1

∞∞E
£
ut u j

§∞∞<1
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by Theorem 14.15 if ut satisfies the mixing and moment conditions for the central limit theory. This
means that the numerator vector is Op (1). (It is also asymptotically normal but we defer this demonstra-
tion for now.) We conclude that µ

n1/2 ° bØ0 °Ø0
¢

n3/2 ° bØ1 °Ø1
¢

∂
=Op (1).

This shows that both coefficients are consistent, bØ0 converges at the standard n1/2 rate, and bØ1 converges
at the faster n3/2 rate. The consistency of the coefficient estimators means that the detrending method
is consistent.

An alternative is to include a time trend in an estimated regression model. If we have an autoregres-
sion, a distributed lag, or an AL-DL model, we add a time index to obtain a model of the form

yt =Æ0 +Æ1 yt°1 +·· ·+Æp yt°p + z
0
t°1Ø1 +·· ·+ z

0
t°qØq +∞t +et .

Estimation by least squares is equivalent to estimation after linear detrending (by the FWL theorem).
Inclusion of a linear (and possibly quadratic) time trend in a regression model is typically the easiest
method to incorporate time trends.

14.42 Illustration

We illustrate the model described in the previous section using a classical macroeconomic model
for inflation prediction based on the Phillips curve. A. W. Phillips (1958) famously observed that the un-
employment rate and the wage inflation rate are negatively correlated over time. Equations relating the
inflation rate, or the change in the inflation rate, to macroeconomic indicators such as the unemploy-
ment rate are typically described as “Phillips curves”. A simple Phillips curve takes the form

¢ºt =Æ+Øurt +et (14.57)

where ºt is price inflation and urt is the unemployment rate. This specification relates the change in
inflation in a given period to the level of the unemployment rate in the previous period.

The least squares estimate of (14.57) using U.S. quarterly series from FRED-QD is reported in the
first column Table 14.3. Both heteroskedasticity-robust and Newey-West standard errors are reported.
The Newey-West standard errors are the appropriate choice since the estimated equation is static – no
modeling of the serial correlation. In this example, the measured impact of the unemployment rate on
inflation appears minimal. The estimate is consistent with a small effect of the unemployment rate on
the inflation rate, but it is not precisely estimated.

A distributed lag (DL) model takes the form

¢ºt =Æ+Ø1urt°1 +Ø2urt°2 +·· ·+Øq urt°q +et . (14.58)

The least squares estimate of (14.58) is reported in the second column of Table 14.3. The estimates are
quite different from the static model. We see large negative impacts in the first and third periods, coun-
tered by a large positive impact in the second period. The model suggests that the unemployment rate
has a strong impact on the inflation rate, but the long-run impact is mitigated. The long-run multiplier
is reported at the bottom of the column. The point estimate of °0.022 is quite small, and very similar to
the static estimate. It implies that an increase in the unemployment rate by 5 percentage points (a typical
recession) decreases the long-run annual inflation rate by about one-half of one percentage points.

An AR-DL takes the form

¢ºt =Æ0 +Æ1¢ºt°1 +·· ·+Æp¢ºt°p +Ø1urt°1 +·· ·+Øq urt°q +et . (14.59)
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The least squares estimate of (14.59) is reported in the third column of Table 14.3. The coefficient esti-
mates appear similar to those from the distributed lag model. The point estimate of the long-run multi-
plier is also nearly identical, but with a somewhat smaller standard error.

Table 14.3: Phillips Curve Regressions

Static Model DL Model AR-DL Model
urt °0.023

(0.025)
[0.017]

urt°1 °0.59 °0.62
(0.20) (0.16)
[0.16] [0.12]

urt°2 1.14 0.88
(0.29) (0.25)
[0.28] [0.21]

urt°3 °0.68 °0.36
(0.22) (0.25)
[0.25] [0.24]

urt°4 0.12 0.05
(0.11) (0.12)
[0.11] [0.12]

ºt°1 °0.43
(0.08)
[0.08]

ºt°2 °0.47
(0.10)
[0.09]

ºt°3 °0.14
(0.10)
[0.11]

ºt°4 °0.19
(0.08)
[0.09]

Multiplier °0.023 °0.022 °0.021
[0.017] [0.012] [0.008]

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.

14.43 Granger Causality

In the AR-DL model (14.59) the unemployment rate would have no predictive impact on the inflation
rate under the coefficient restriction Ø1 = ·· · = Øq = 0. This restriction is called “Granger non-causality”.
This definition of causality was developed by Granger (1969) and Sims (1972). When the coefficients are
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non-zero we say that the unemployment rate “Granger causes” the inflation rate.
The reason why we call this “Granger Causality” rather than “causality” is because this is not a phys-

ical or structure definition of causality. An alternative label is “predictive causality”.
To be precise, assume that we have two series (yt , zt ). Consider the projection of yt onto the lagged

history of both series

yt =P t°1(yt )+et

=Æ0 +
1X

j=1
Æ j yt° j +

1X

j=1
Ø j zt° j +et .

We say that zt does not Granger-cause yt if Ø j = 0 for all j . If Ø j 6= 0 for some j then we say that zt

Granger-causes yt .
It is important that the definition includes the projection on the past history of yt . Granger causality

means that zt helps to predict yt even after the past history of yt has been accounted for.
The definition can alternatively be written in terms of conditional expectations rather than projec-

tions. We can say that zt does not Granger-cause yt if

E
£

yt | yt°1, yt°2...; zt°1, zt°2, ...
§
= E

£
yt | yt°1, yt°2, ...

§
.

Granger causality can be tested in AR-DL models using a standard Wald or F test. In the context of
model (14.59) we report the F statistic for Ø1 = ·· · =Øq = 0. The test rejects the hypothesis (and thus finds
evidence of Granger causality) if the statistic is larger than the critical value (if the p-value is small), and
fails to reject the hypothesis (and thus finds no evidence of causality) if the statistic is smaller than the
critical value.

For example, in the results presented in Table 14.3, the F statistic for the hypothesis Ø1 = ·· · = Ø4 = 0
using the Newey-West covariance matrix is F = 6.98 with a p-value of 0.000. This is statistically signifi-
cant at any conventional level so we can conclude that the unemployment rate has a predictively causal
impact on inflation.

Granger causality should not be interpreted structurally outside the context of an economic model.
For example consider the regression of GDP growth rates yt on stock price growth rates rt . We use the
quarterly series from FRED-QD, using an AR-DL specification with two lags

yt = 0.22
(0.09)

yt°1 + 0.14
(0.10)

yt°2 + 0.03
(0.01)

rt°1 + 0.01
(0.01)

rt°2.

The coefficients on the lagged stock price growth rates are small in magnitude, but the first lag appears
statistically significant. The F statistic for exclusion of (rt°1,rt°2) is F = 9.3 with a p-value of 0.0002,
which is highly significant. We can therefore reject the hypothesis of no Granger causality, and deduce
that stock price changes Granger-cause GDP growth. This should not be interpreted as suggesting that
the stock market causes output fluctuations, as a more reasonable explanation from economic theory
is that stock prices are forward-looking measures of expected future profits. When corporate profits are
forecasted to rise, the value of corporate stock rises, bidding up stock prices. Thus stock prices move in
advance of actual economic activity, but are not necessarily structurally causal.
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Clive W. J. Granger

Clive Granger (1934-2009) of England was one of the leading figures in time-
series econometrics, and co-winner in 2003 of the Nobel Memorial Prize in Eco-
nomic Sciences (along with Robert Engle). In addition to formalizing the defini-
tion of causality known as Granger causality, he invented the concept of cointe-
gration, introduced spectral methods into econometrics, and formalized meth-
ods for the combination of forecasts.

14.44 Testing for Serial Correlation in Regression Models

Consider the problem of testing for omitted serial correlation in an AR-DL model such as

yt =Æ0 +Æ1 yt°1 +·· ·+Æp yt°p +Ø1zt°1 +·· ·+Øq zt°q +ut . (14.60)

The null hypothesis is that ut is serially uncorrelated, and the alternative hypothesis is that it is serially
correlated. We can model the latter as a mean-zero autoregressive process

ut = µ1ut°1 +·· ·+µr ut°r +et . (14.61)

The hypothesis is

H0 : µ1 = ·· · = µr = 0

H1 : µ j 6= 0 for some j ∏ 1.

There are two ways to implement a test of H0 against H1. The first is to estimate equations (14.60)-
(14.61) sequentially by least squares and construct a test forH0 on the second equation. This test is com-
plicated by the fact that the two-step nature of the second regression invalidates conventional asymp-
totic approximations. Therefore this approach is not recommended.

The second approach is to combine equations (14.60)-(14.61) into a single model and execute the test
as a restriction within this model. One way to make this combination is by using lag operator notation.
Write (14.60)-(14.61) as

Æ(L)yt =Æ0 +Ø(L)zt°1 +ut

µ(L)ut = et

Then applying the operator µ(L) to the first equation we obtain

µ(L)Æ(L)yt = µ(L)Æ0 +µ(L)Ø(L)zt°1 +µ(L)ut

or
Æ§(L)yt =Æ§

0 +Ø§(L)zt°1 +et

where Æ§(L) is a p + r order polynomial and Ø§(L) is a q + r order polynomial. The restriction H0 is that
these are p and q order polynomials. Thus we can implement a test of H0 against H1 by estimating an
AR-DL model with p + r and q + r lags, and testing the exclusion of the final r lags of yt and zt . This test
has a conventional asymptotic distribution so is simple to implement.

The basic message is that testing for omitted serial correlation can be implement in regression mod-
els by estimating and contrasting different dynamic specifications.
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14.45 Bootstrap for Time Series

Recall that the bootstrap approximates the sampling distribution of estimators and test statistics by
the empirical distribution of the observations. The traditional non-parametric bootstrap is appropriate
for independent observations. For dependent observations alternative methods should be used.

Bootstrapping for time series is considerably more complicated than the cross section case. Many
methods have been proposed. One of the challenges is that theoretical justifications are more difficult to
establish than in the independent observation case.

In this section we describe the most popular methods to implement bootstrap resampling for time
series data.

Recursive Bootstrap

1. Estimate a complete model such as an AR(p) producing coefficient estimates bÆ and residuals bet .

2. Fix the initial condition (y°p+1, y°p+2, ..., y0).

3. Simulate i.i.d. draws e§t from the empirical distribution of the residuals {be1, ..., ben}.

4. Create the bootstrap series y§
t by the recursive formula

y§
t = bÆ0 + bÆ1 y§

t°1 + bÆ2 y§
t°2 +·· ·+ bÆp y§

t°p +e§t .

This construction creates bootstrap samples y§
t with the stochastic properties of the estimated AR(p)

model, including the auxiliary assumption that the errors are i.i.d. This method can work well if the true
process is an AR(p). One flaw is that it imposes homoskedasticity on the errors e§t , which may be different
than the properties of the actual et . Another limitation is that it is inappropriate for AR-DL models unless
the conditioning variables are treated as strictly exogenous.

There are alternative versions of this basic method. First, instead of fixing the initial conditions at
the sample values a random block can be drawn from the sample. The difference is that this produces
an unconditional distribution rather than a conditional one. Second, instead of drawing the errors from
the residuals a parametric (typically normal) distribution can be used. This can improve precision when
sample sizes are very small but otherwise is not recommended.

Pairwise Bootstrap

1. Write the sample as {yt , x t } where x t = (yt°1, ..., yt°p )0 contains the lagged values used in estima-
tion.

2. Apply the traditional nonparametric bootstrap which samples pairs (y§
t , x

§
t ) i.i.d. from {yt , x t } with

replacement to create the bootstrap sample.

3. Create the bootstrap estimates on this bootstrap sample, e.g. regress y§
t on x

§
t .

This construction is essentially the traditional nonparametric bootstrap, but applied to the paired
sample {yt , x t }. It does not mimic the time series correlations across observations. However, it does
produce bootstrap statistics with the correct first-order asymptotic distribution (under MDS errors). This
method may be useful when we are interested in the distribution of nonlinear functions of the coefficient
estimates and therefore desire an improvement on the Delta Method approximation.

Fixed Design Residual Bootstrap
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1. Write the sample as {yt , x t , bet } where x t = (yt°1, ..., yt°p )0 contains the lagged values used in esti-
mation and bet are the residuals.

2. Fix the regressors x t at their sample values.

3. Simulate i.i.d. draws e§t from the empirical distribution of the residuals {be1, ..., ben}.

4. Set y§
t = x

0
t
bØ+e§t

This construction is similar to the pairwise bootstrap, but imposes an i.i.d. error. It is therefore only
valid when the errors are i.i.d. (and thus excludes heteroskedasticity).

Fixed Design Wild Bootstrap

1. Write the sample as {yt , x t , bet } where x t = (yt°1, ..., yt°p )0 contains the lagged values used in esti-
mation and bet are the residuals.

2. Fix the regressors x t and residuals bet at their sample values.

3. Simulate i.i.d. auxiliary random ª§t with mean zero and variance one. See Section 10.29 for a dis-
cussion of choices.

4. Set e§t = ª§t bet and y§
t = x

0
t
bØ+e§t .

This construction is similar to the pairwise and fixed design bootstrap methods, but uses the wild
bootstrap method. This imposes the conditional mean assumption on the error but allows heteroskedas-
ticity.

Block Bootstrap

1. Write the sample as {yt , x t } where x t = (yt°1, ..., yt°p )0 contains the lagged values used in estima-
tion.

2. Divide the sample of paired observations {yt , x t } into n/m blocks of length m.

3. Resample complete blocks. For each simulated sample, draw n/m blocks.

4. Paste the blocks together to create the bootstrap time series {y§
t , x

§
t }.

This construction allows for arbitrary stationary serial correlation, heteroskedasticity, and for model-
misspecification. One challenge is that the block bootstrap is sensitive to the block length and the way
that the data are partitioned into blocks. The method may also work less well in small samples. Notice
that the block bootstrap with m = 1 is equal to the pairwise bootstrap, and the latter is the traditional
nonparametric bootstrap. Thus the block bootstrap is a natural generalization of the nonparametric
bootstrap.
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14.46 Technical Proofs*

Proof of Theorem 14.2 Define ey t =
°

y t , y t°1, y t°2, ...
¢
2 Rm£1 as the history of y t up to time t . We can

then write x t =¡(ey t ). Let B be the pre-image of {x t ∑ x} (the vectors ey 2Rm£1 such that¡(ey) ∑ x). Then

P [x t ∑ x] =P
£
¡(ey t ) ∑ x

§
=P

£
ey t 2 B

§
.

Since y t is strictly stationary the probabilityP
£
ey t 2 B

§
is independent8 of t . This means that the distribu-

tion of x t is independent of t . This argument can be extended to show that the distribution of (x t , ..., x t+`)
is independent of t . This means that x t is strictly stationary as claimed. Á

Proof of Theorem 14.3 By the Cauchy criterion for convergence (see Theorem A.2 of Introduction to
Econometrics), SN =PN

j=0 a j yt° j converges almost surely if for all "> 0,

inf
N

sup
j>N

ØØSN+ j °SN
ØØ∑ ".

Let A" be this event. Its complement is

Ac
" =

1\

N=1

(

sup
j>N

ØØØØØ

N+ jX

i=N+1
ai yt°i

ØØØØØ> "

)

.

This has probability

P
£

Ac
"

§
∑ lim

N!1
P

"

sup
j>N

ØØØØØ

N+ jX

i=N+1
ai yt°i

ØØØØØ> "

#

∑ lim
N!1

1
"
E

"

sup
j>N

ØØØØØ

N+ jX

i=N+1
ai yt°i

ØØØØØ

#

∑ 1
"

lim
N!1

1X

i=N+1
|ai |E

ØØyt°i
ØØ= 0.

The second equality is Markov’s inequality (B.36) and the following is the triangle inequality (B.1). The
limit is zero since

P1
i=0 |ai | <1 and E

ØØyt
ØØ<1. Hence for all "> 0, P

£
Ac
"

§
= 0 and P [A"] = 1. This means

that SN converges with probability one, as claimed.
Since yt is strictly stationary then xt is as well by Theorem 14.2. Á

Proof of Theorem 14.4 See Theorem 14.14. Á

Proof of Theorem 14.5 Strict stationarity follows from Theorem 14.2. Let ey t and ex t be the histories of y t
and x t . We can write x t =¡

°
ey t

¢
. Let A be an invariant event for x t . We want to show P [A] = 0 or 1. The

event A is a collection of ex t histories, and occurs if and and only if an associated collection of ey t histories
occur. That is, for some sets G and H ,

A = {ex t 2G} =
©
¡

°
ey t

¢
2G

™
=

©
ey t 2 H

™
.

The assumption that A is invariant means it is unaffected by the time shift, thus can be written as

A = {ex t+` 2G} =
©
ey t+` 2 H

™
.

This means the event
©
ey t+` 2 H

™
is invariant. Since y t is ergodic, the event has probability 0 or 1. Hence

P [A] = 0 or 1, as desired. Á
8An astute reader may notice that the independence of P

£
ey t 2 B

§
from t does not follow directly from the definition of strict

stationarity. Indeed, a full derivation requires a measure-theoretic treatment. See Section 1.2.B of Petersen (1983) or Section
3.5 of Stout (1974).
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Proof of Theorem 14.7 Suppose yt is discrete with support on (ø1, ...,øN ) and without loss of generality
assume E

£
yt

§
= 0. Then by Theorem 14.8

lim
n!1

1
n

nX

`=1
cov

°
yt , yt+`

¢
= lim

n!1
1
n

nX

`=1
E
£

yt yt+`
§

= lim
n!1

1
n

nX

`=1

NX

j=1

NX

k=1
ø jøkP

£
yt = ø j , yt+` = øk

§

=
NX

j=1

NX

k=1
ø jøk lim

n!1
1
n

nX

`=1
P

£
yt = ø j , yt+` = øk

§

=
NX

j=1

NX

k=1
ø jøkP

£
yt = ø j

§
P

£
yt+` = øk

§

= E
£

yt
§
E
£

yt+`
§

= 0.

which is (14.4). This can be extended to the case of continuous distributions using the monotone con-
vergence theorem. See Corollary 13.14 of Davidson (1994). Á

Proof of Theorem 14.9 We show (14.6). (14.7) follows by Markov’s inequality (B.36).
Without loss of generality we focus on the scalar case, and assume E

£
yt

§
= 0. Fix " > 0. Pick B large

enough such that

E

ØØyt
°ØØyt

ØØ> B
¢ØØ∑ "

4
(14.62)

which is feasible since E
ØØyt

ØØ<1. Define

wt = yt
°ØØyt

ØØ∑ B
¢
°E

£
yt

°ØØyt
ØØ∑ B

¢§

zt = yt
°ØØyt

ØØ> B
¢
°E

£
yt

°ØØyt
ØØ> B

¢§
.

Notice that wt is a bounded transformation of the ergodic series yt . Thus by (14.4) and (14.9) there is an
n sufficiently large so that

var[wt ]
n

+ 2
n

nX

m=1

≥
1° m

n

¥
cov

°
wt , w j

¢
∑ "2

4
(14.63)

By the triangle inequality (B.1)

E

ØØy
ØØ= E

ØØw + z
ØØ∑ E

ØØw
ØØ+E

ØØz
ØØ . (14.64)

By another application of the triangle inequality and (14.62)

E

ØØz
ØØ∑ E |zt |∑ 2E

ØØyi
°ØØyt

ØØ> B
¢ØØ∑ "

2
. (14.65)

By Jensen’s inequality (B.27), direct calculation, and (14.63)
°
E

ØØw
ØØ¢2 ∑ E

hØØw
ØØ2

i

= 1
n2

nX

t=1

nX

j=1
E
£
wt w j

§

= var[wt ]
n

+ 2
n

nX

m=1

≥
1° m

n

¥
cov

°
wt , w j

¢

∑ "2

4
.
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Thus
E

ØØw
ØØ∑ "

2
. (14.66)

Together, (14.64), (14.65) and (14.66) show that E
ØØy

ØØ ∑ ". Since " is arbitrary, this establishes (14.6) as
claimed. Á

Proof of Theorem 14.11 (sketch) By the Cramér-Wold device (Theorem 8.4 from Introduction to Econo-
metrics) it is sufficient to establish the result for scalar ut . Let æ2 = E

£
u2

t

§
. By a Taylor series expansion,

for x small

log(1+x) ' x ° x2

2
.

Taking exponentials and rearranging, we obtain the approximation

exp(x) ' (1+x)exp
µ

x2

2

∂
. (14.67)

Fix ∏. Define

T j =
jY

i=1

µ
1+ ∏

p
n

ut

∂

Vn = 1
n

nX

t=1
u2

t .

Since ut is strictly stationary and ergodic, Vn
p°!æ2 by the Ergodic Theorem (Theorem 14.9). Since ut is

a MDS
E [Tn] = 1. (14.68)

To see this, define Ft =æ (...,ut°1,ut ). Note T j = T j°1

≥
1+ ∏p

n
u j

¥
. By iterated expectations

E [Tn] = E [E [Tn |Fn°1]]

= E
∑

Tn°1E

∑
1+ ∏

p
n

un

ØØØØ Fn°1

∏∏

= E [Tn°1] = ·· · = E [T1]

= 1.

This is (14.68).
The moment generating function of Sn is

E

∑
exp

µ
∏
p

n

nX

t=1
ut

∂∏
= E

"
nY

i=1
exp

µ
∏
p

n
ut

∂#

' E
"

nY

i=1

∑
1+ ∏

p
n

ut

∏
exp

µ
∏2

2n
u2

t

∂#

(14.69)

= E
∑

Tn exp
µ
∏2Vn

2

∂∏

' E
∑

Tn exp
µ
∏2æ2

2

∂∏
(14.70)

= exp
µ
∏2æ2

2

∂
.
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The approximation in (14.69) is (14.67). The approximation (14.70) is Vn °!
p

æ2. (A rigorous justifica-

tion which allows this substitution in the expectation is quite technical.) The final equality is (14.68).
This calculation shows that the moment generating function of Sn is approximately that of N

°
0,æ2¢, as

claimed.
The assumption that ut is a MDS is critical for (14.68). Tn is a nonlinear function of the errors ut so

a white noise assumption cannot be used instead. The MDS assumption is exactly the minimal condi-
tion needed to obtain (14.68). This is why the MDS assumption cannot be easily replaced by a milder
assumption such as white noise. Á

Proof of Theorem 14.13.1 Without loss of generality suppose E [xt ] = 0 and E [zt ] = 0. Set¥= sgn
°
E
£
zt |F t°m

°1
§¢

.
By iterated expectations, |xt |∑C1,

ØØE
£
zt |F t°m

°1
§ØØ= ¥E

£
zt |F t°m

°1
§
, and again using iterated expectations

|cov(xt°m , zt )| =
ØØE

£
E
£
xt°m zt |F t°m

°1
§§ØØ

=
ØØE

°
xt°mE

£
zt |F t°m

°1
§¢ØØ

∑C1E
ØØE

£
zt |F t°m

°1
§ØØ

=C1E
£
¥E

£
zt |F t°m

°1
§§

=C1E
£
E
£
¥zt |F t°m

°1
§§

=C1E
£
¥zt

§

=C1 cov
°
¥, zt

¢
. (14.71)

Setting ª = sgn
°
E
£
xt°m |F1

t

§¢
, by a similar argument (14.71) is bounded by C1C2 cov

°
¥,ª

¢
. Set A1 =°

¥= 1
¢
, A2 =

°
¥=°1

¢
, B1 = (ª= 1), B2 = (ª=°1). We calculate

ØØcov
°
¥,ª

¢ØØ= |P [A1 \B1]+P [A2 \B2]°P [A2 \B1]°P [A1 \B2]

°P [A1]P [B1]°P [A2]P [B2]+P [A2]P [B1]+P [A1]P [B2]|
∑ 4Æ(m).

Together, |cov(xt°m , zt )|∑ 4C1C2Æ(m) as claimed. Á

Proof of Theorem 14.13.2 Assume E [xt ] = 0 and E [zt ] = 0. We first show that if |xt |∑C then

|cov(xt°`, zt )|∑ 6C
°
E |zt |r

¢1/r
Æ(`)1°1/r . (14.72)

Indeed, ifÆ(`) = 0 the result it immediate so assumeÆ(`) > 0. Set D =Æ(`)°1/r (E |zt |r )1/r , vt = zt (|zt |∑ D)
and wt = zt (|zt | > D). Using the triangle inequality (B.1) and then part 1, since |xt |∑C and |vt |∑ D ,

|cov(xt°`, zt )|∑ |cov(xt°`, vt )|+ |cov(xt°`, wt )|
∑ 4C DÆ(`)+2CE |wt | .

Also,

E |wt | = E |zt (|zt | > D)| = E
ØØØØ
|zt |r

|zt |r°1 (|zt | > D)
ØØØØ∑

E |zt |r
Dr°1 =Æ(`)(r°1)/r °

E |zt |r
¢1/r

using the definition of D . Together we have

|cov(xt°`, zt )|∑ 6C
°
E |xt |r

¢1/r
Æ(`)1°1/r .

which is (14.72) as claimed.
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Now set C = Æ(`)°1/r (E |xt |r )1/r , vt = xt (|xt |∑C ) and wt = xt (|xt | >C ). Using the triangle in-
equality and (14.72)

|cov(xt°`, zt )|∑ |cov(vt°`, zt )|+ |cov(wt°`, zt )| .

Since |vt |∑C , using (14.72) and the definition of C

|cov(vt°`, zt )|∑ 6C
°
E |zt |q

¢1/q
Æ(`)1°1/q = 6

°
E |xt |r

¢1/r °
E |zt |q

¢1/q
Æ(`)1°1/q°1/r .

Using Hölder’s inequality (B.31) and the definition of C

|cov(wt°`, zt )|∑ 2
°
E |wt |q/(q°1)¢(q°1)/q °

E |zt |q
¢1/q

= 2
°
E
£
|xt |q/(q°1) (|xt | >C )

§¢(q°1)/q °
E |zt |q

¢1/q

= 2
µ
E

∑ |xt |r

|xt |r°q/(q°1) (|xt | >C )
∏∂(q°1)/q °

E |zt |q
¢1/q

∑ 2

C r (q°1)/q°1

°
E |xt |r

¢(q°1)/q °
E |zt |q

¢1/q

= 2
°
E |xt |r

¢1/r °
E |zt |q

¢1/q
Æ(`)1°1/q°1/r .

Together we have

|cov(xt°`, zt )|∑ 8
°
E |xt |r

¢1/r °
E |zt |q

¢1/q
Æ(`)1°1/r°1/q

as claimed. Á

Proof of Theorem 14.13.3 Set ¥= sgn
°
E
£

yt
ØØF t°`

°1
§¢

which satisfies
ØØ¥

ØØ∑ 1. Since ¥ is F t°`
°1 -measurable,

iterated expectations, using (14.72) with C = 1, the conditional Jensen’s inequality (B.28), and iterated
expectations,

E

ØØØE
h

yt

ØØØF t°`
°1

iØØØ= E
h
¥E

h
yt

ØØØF t°`
°1

ii

= E
h
E

h
¥yt

ØØØF t°`
°1

ii

= E
£
¥yt

§

∑ 6
≥
E

ØØØE
h

yt

ØØØF t°`
°1

iØØØ
r ¥1/r

Æ(`)1°1/r

∑ 6
≥
E

≥
E

hØØyt
ØØr

ØØØF t°`
°1

i¥¥1/r
Æ(`)1°1/r

= 6
°
E

ØØyt
ØØr |

¢1/r
Æ(`)1°1/r

as claimed. Á

Proof of Theorem 14.15 By the Cramér-Wold device (Theorem 8.4 of Introduction to Econometrics) it is
sufficient to prove the result for the scalar case. Our proof method is based on a MDS approximation.
The trick is to establish the relationship

ut = et + zt ° zt+1 (14.73)

where et is a strictly stationary and ergodic MDS with E
£
e2

t

§
=≠ and E |zt | <1. Defining Se

n = 1p
n

Pn
t=1 et ,

we have

Sn = 1
p

n

nX

t=1
(et + zt ° zt+1) = Se

n + z1p
n
° zn+1p

n
. (14.74)
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The first component on the right side is asymptotically N(0,≠) by the MDS CLT (Theorem 14.11), and
the second and third terms are op (1) by Markov’s inequality (B.36).

The desired relationship (14.73) holds as follows. Set Ft =æ (...,ut°1,ut ),

et =
1X

`=0
(E [ut+` |Ft ]°E [ut+` |Ft°1]) (14.75)

and

zt =
1X

`=0
E [ut+` |Ft°1] .

You can verify that these definitions satisfy (14.73), given E [ut |Ft ] = ut . The variable zt has a finite
mean since by the triangle inequality (B.1), Theorem 14.13.3, and the assumptions

E |zt | = E
ØØØØØ

1X

`=0
E [ut+` |Ft°1]

ØØØØØ

∑ 6
°
E |ut |r

¢1/r
1X

`=0
Æ(`)1°1/r

<1.

Since
P1
`=0Æ(`)1°2/r <1 implies

P1
`=0Æ(`)1°1/r <1.

The series et in (14.75) has a finite mean by the same calculation as for zt . It is a MDS since by iterated
expectations

E [et |Ft°1] = E
"

1X

`=0
(E [ut+` |Ft ]°E [ut+` |Ft°1]) |Ft°1

#

=
1X

`=0
(E [E [ut+` |Ft ] |Ft°1]°E [E [ut+` |Ft°1] |Ft°1])

=
1X

`=0
(E [ut+` |Ft°1]°E [ut+` |Ft°1])

= 0.

It is strictly stationary and ergodic by Theorem 14.2 since it is a function of the history (...,ut°1,ut ).
The proof is completed by showing that et has a finite variance which equals ≠. The trickiest step is

to show that var[et ] <1. Since
E |Sn |∑

p
var[Sn] °!

p
≠

(as shown in (14.17)) it follows that E |Sn |∑ 2
p
≠ for n sufficiently large. Using (14.74) and E |zt | <1, for

n sufficiently large,

E

ØØSe
n

ØØ∑ E |Sn |+
E |z1|p

n
+ E |zn+1|p

n
∑ 3

p
≠. (14.76)

Now define eB t = et (|et |∑ B) ° E [et (|et |∑ B) |Ft°1] which is a bounded MDS. By Theorem 14.11,
1p
n

Pn
t=1 eB t

d°! N
°
0,æ2

B

¢
where æ2

B = E
£
e2

B t

§
. Since the sequence is uniformly integrable, this implies

E

ØØØØ
1
p

n

nX

t=1
eB t

ØØØØ°! E

ØØN
°
0,æ2

B

¢ØØ=
r

2
º
æB (14.77)

using E |N(0,1)| = 2/º. We want to show that var[et ] <1. Suppose not. ThenæB !1 as B !1, so there
will be some B sufficiently large such that the right-side of (14.77) exceeds the right-side of (14.76). This
is a contradiction. We deduce that var[et ] <1.
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Examining (14.74), we see that since var[Sn] !≠<1 and var
£
Se

n
§
= var[et ] <1 then var[z1 ° zn+1]/n <

1. Since zt is stationary, we deduce that var[z1 ° zn+1] <1. Equation (14.74) implies var[et ] = var
£
Se

n
§
=

var[Sn]+o(1) !≠. We deduce that var[et ] =≠ as claimed. Á

Proof of Theorem 14.17 Consider the projection of yt onto (...,et°1,et ). Since the projection errors et are

uncorrelated, the coefficients of this projection are the bivariate projection coefficients b j = E
£

yt et° j
§

/E
h

e2
t° j

i
.

The leading coefficient is

b0 =
E
£

yt et
§

æ2 =
P1

j=1Æ jE
£

yt° j et
§
+E

£
e2

t

§

æ2 = 1

using Theorem 14.16. By Bessel’s Inequality (Brockwell and Davis, 1991, Corollary 2.4.1),

1X

j=1
b2

j =æ°4
1X

j=1

°
E
£

yt et
§¢2 ∑æ°4 °

E
£

y2
t
§¢2 <1

since E
£

y2
t

§
<1 by the assumption of covariance stationarity.

The error from the projection of yt onto (...,et°1,et ) is µt = yt °
P1

j=0 b j et° j . The fact that this can
be written as (14.22) is technical. For the complete argument see Theorem 5.7.1 of Brockwell and Davis
(1991). Á

Proof of Theorem 14.19 Part 1 follows from Theorem 14.3. For part 2, we need to verify that the series
SN =PN

j=0µ j et° j converges almost surely as N !1. By the Cauchy criterion for convergence (Theorem

A.2 of Introduction to Econometrics), SN =PN
j=0µ j et° j converges almost surely if for all "> 0,

inf
N

sup
j>N

ØØSN+ j °SN
ØØ∑ ".

Let A" be this event. Its complement is

Ac
" =

1\

N=1

(

sup
j>N

ØØØØØ

N+ jX

i=N+1
µi et°i

ØØØØØ> "

)

.

This has probability

P
£

Ac
"

§
∑ lim

N!1
P

"

sup
j>N

ØØØØØ

N+ jX

i=N+1
µi et°i

ØØØØØ> "

#

∑ lim
N!1

1
"2

1X

i=N+1
E (µi et°i )2 = 1

"2 lim
N!1

1X

i=N+1
µ2

i E
£
e2

t°i

§
= 0.

The second equality is Markov’s inequality Kolmogorov’s inequality (B.53) which holds under the as-
sumption that et is a MDS9 with E

£
e2

t

§
= æ2 < 1. The limit is zero since

P1
i=0µ

2
i < 1 and E

£
e2

t

§
< 1.

Hence for all "> 0, P [A"] = 1. This means that SN converges with probability one, as claimed.
Since et is strictly stationary and ergodic then yt is as well by Theorem 14.5. Á

Proof of Theorem 14.22 In the text we showed that
ØØØ j

ØØ< 1 is sufficient for yt to be strictly stationary and

ergodic. We now verify that this is equivalent to (14.32)-(14.34). The roots are Ø j =
≥
Æ1 ±

q
Æ2

1 +4Æ2

¥
/2.

Consider separately the cases of real roots and complex roots.

9We state Kolmogorov’s inequality (B.53) under the assumption of independent errors, but it holds more broadly under MDS
errors.
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Suppose that the roots are real, which occurs when Æ2
1 +4Æ2 ∏ 0. Then

ØØØ j
ØØ< 1 iff |Æ1| < 2 and

Æ1 +
q
Æ2

1 +4Æ2

2
< 1 and °1 <

Æ1 °
q
Æ2

1 +4Æ2

2
.

Equivalently, this holds iff

Æ2
1 +4Æ2 < (2°Æ1)2 = 4°4Æ1 +Æ2

1 and Æ2
1 +4Æ2 < (2+Æ1)2 = 4+4Æ1 +Æ2

1

or equivalently iff
Æ2 < 1°Æ1 and Æ2 < 1+Æ1

which are (14.32) and (14.33). Æ2
1 +4Æ2 ∏ 0 and |Æ1| < 2 imply Æ2 ∏°Æ2

1/4 ∏°1, which is (14.34).
Now suppose the roots are complex, which occurs when Æ2

1 +4Æ2 < 0. The squared modulus of the

roots Ø j =
≥
Æ1 ±

q
Æ2

1 +4Æ2

¥
/2 are

ØØØ j
ØØ2 =

≥Æ1

2

¥2
°

0

B@

q
Æ2

1 +4Æ2

2

1

CA

2

=°Æ2.

Thus the requirement
ØØØ j

ØØ< 1 is satisfied iffÆ2 >°1, which is (14.34). Æ2
1+4Æ2 < 0 andÆ2 >°1 implyÆ2

1 <
°4Æ2 < 4, so |Æ1| < 2. Æ2

1+4Æ2 < 0 and |Æ1| < 2 imply Æ1+Æ2 <Æ1°Æ2
1/4 < 1 and Æ2°Æ1 <°Æ2

1/4°Æ1 < 1
which are (14.32) and (14.33). Á

Proof of Theorem 14.24 The assumption that the roots of Æ(z) lie outside the unit circle implies that the
factors Ø` satisfy

ØØØ`
ØØ< 1. Using the factorization (14.38), and (14.28) under

ØØØ`
ØØ< 1, we find

Æ(z)°1 =
pY

`=1

°
1°Ø`z

¢°1

=
pY

`=1

√
1X

j=0
Ø

j
`

z j

!

=
1X

j=0

√
X

i1+···+ip= j
Øi1

1 · · ·Øip
p

!

z j

=
1X

j=0
b j z j

with
b j =

X

i1+···+ip= j
Øi1

1 · · ·Øip
p .

Set Ø= max`
ØØØ`

ØØ< 1. Using the triangle inequality and the stars and bars theorem (Theorem 1.10 of
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ØØb j
ØØ∑

X

i1+···+ip= j

ØØØ1
ØØi1 · · ·

ØØØp
ØØip

∑
X

i1+···+ip= j
Ø j

∑
√

p + j °1
j

!

Ø j

=
°
p + j °1

¢
!

°
p °1

¢
! j !

Ø j

∑
°

j +1
¢p
Ø j

=O
≥

j pØ j
¥

.

From Theorem 14.20.3,
P1

j=0

ØØb j
ØØ∑P1

j=0

°
j +1

¢p
Ø j <1 is convergent since Ø< 1. Á

Proof of Theorem 14.27 If Q is singular then there is some ∞ such that ∞0
Q∞= 0. We can normalize ∞ to

have a unit coefficient on yt°1 (or the first non-zero coefficient other than the intercept). We then have

that E
∑≥

yt°1 °
°
1, yt°2, ..., yt°p)

¢0
¡

¥2
∏
= 0 for some ¡, or equivalently E

∑≥
yt °

°
1, yt°1, ..., yt°p+1)

¢0
¡

¥2
∏
=

0. Setting Ø = (¡0,0)0 this implies E
h°

yt °Ø0
x t

¢2
i
= 0. Since Æ is the best linear predictor we must have

Ø=Æ. This implies æ2 = E
h°

yt °Æ0
x t

¢2
i
= 0. This contradicts the assumption æ2 > 0. We conclude that

Q is not singular. Á
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14.47 Exercises

Exercise 14.1 For a scalar time series yt define the sample autocovariance and autocorrelation

b∞(k) = n°1
nX

t=k+1

°
yt ° y

¢°
yt°k ° y

¢

bΩ(k) =
b∞(k)
b∞(0)

=
Pn

t=k+1

°
yt ° y

¢°
yt°k ° y

¢

Pn
t=1

°
yt ° y

¢2 .

Assume the series is strictly stationary, ergodic, and strictly stationary and E
£

y2
t

§
<1.

Show that b∞(k) °!
p

∞(k) and bΩ(k) °!
p

∞(k) as n !1. (Use the Ergodic Theorem.)

Exercise 14.2 Show that if (et ,Ft ) is a MDS and xt is Ft -measurable that ut = xt°1et is a MDS.

Exercise 14.3 Let æ2
t = E

£
e2

t |Ft°1
§
. Show that ut = e2 °æ2

t is a MDS.

Exercise 14.4 Continuing the previous exercise, show that if E
£
e4

t

§
<1 then

n°1/2
nX

t=1

°
e2

t °æ2
t
¢
°!

d
N

°
0, v2¢ .

Express v2 in terms of the moments of et .

Exercise 14.5 A stochastic volatility model is

yt =æt et

logæ2
t =!+Ø logæ2

t°1 +ut

where et and ut are independent i.i.d. N(0,1) shocks.

(a) Write down an information set for which yt is a MDS.

(b) Show that if
ØØØ

ØØ< 1 then yt is strictly stationary and ergodic.

Exercise 14.6 Verify the formula Ω(1) = µ/
°
1+µ2¢ for a MA(1) process.

Exercise 14.7 Verify the formula Ω(k) =
≥P1

j=0µ j+kµ j

¥
/
≥Pq

j=0µ
2
j

¥
for a MA(1) process.

Exercise 14.8 Suppose yt = yt°1 +et with et i.i.d. (0,1) and y0 = 0. Find var
£

yt
§
. Is yt stationary?

Exercise 14.9 Take the AR(1) model with no intercept yt =Æ1 yt°1 +et .

(a) Find the impulse response function b j = @
@et

yt+ j .

(b) Let bÆ1 be the least squares estimator of Æ1. Find the estimator of b j .

(c) Let s (bÆ1) be a standard error for bÆ1. Use the delta method to find a 95% asymptotic confidence
interval for b j .

Exercise 14.10 Take the AR(2) model yt =Æ1 yt°1 +Æ2 yt°1 +et .



CHAPTER 14. TIME SERIES 538

(a) Find expressions for the impulse responses b1, b2, b3 and b4.

(b) Let (bÆ1, bÆ2) be the least squares estimator. Find the estimator of b2.

(c) Let bV be the estimated covariance matrix for the coefficients. Use the delta method to find a 95%
asymptotic confidence interval for b2.

Exercise 14.11 Show that the models
Æ(L)yt =Æ0 +et

and

Æ(L)yt =µ+ut

Æ(L)ut = et

are identical. Find an expression for µ in terms of Æ0 and Æ(L).

Exercise 14.12 Take the model

Æ(L)yt = ut

Ø(L)ut = et

where Æ(L) and Ø(L) are p and q order lag polynomials, respectively. Show that these equations imply
that

∞(L)yt = et

for some lag polynomial ∞(L). What is the order of ∞(L)?

Exercise 14.13 Suppose that

yt = ut +et

ut = vt +µvt°1

where ut and et are mutually independent i.i.d. mean zero processes. Show that yt is a MA(1) process

yt = ¥t +√¥t°1

for an i.i.d. error ¥t . Find an expression for √.

Exercise 14.14 Suppose that

yt = xt +et

xt =Æxt°1 +ut

where the errors et and ut are mutually independent i.i.d. processes. Show that yt is an ARMA(1,1)
process.

Exercise 14.15 A Gaussian AR model is an autoregression with i.i.d. N(0,æ2) errors. Consider the Gaus-
sian AR(1) model

yt =Æ0 +Æ1 yt°1 +et

et ª N
°
0,æ2¢
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with |Æ1| < 1. Show that the marginal distribution of yt is also normal:

yt ª N

√
Æ0

1°Æ1
,

æ2

1°Æ2
1

!

.

Hint: Use the MA representation of yt .

Exercise 14.16 Assume that yt is a Gaussian AR(1) as in the previous exercise. Calculate the moments

µ= E
£

yt
§

æ2
y = E

h°
yt °µ

¢2
i

∑= E
h°

yt °µ
¢4

i

A colleague suggests estimating the parameters (Æ0,Æ1,æ2) of the Gaussian AR(1) model by GMM ap-
plied to the corresponding sample moments. He points out that there are three moments and three
parameters, so it should be identified. Can you find a flaw in his approach?

Hint: This is subtle.

Exercise 14.17 Take the nonlinear process

yt = yÆt°1u1°Æ
t

where ut is i.i.d. with strictly positive support.

(a) Find the condition under which yt is strictly stationary and ergodic.

(b) Find an explicit expression for yt as a function of (ut ,ut°1, ...).

Exercise 14.18 Take the quarterly series pnfix (nonresidential real private fixed investment) from .

(a) Transform the series into quarterly growth rates.

(b) Estimate an AR(4) model. Report using heteroskedastic-consistent standard errors.

(c) Repeat using the Newey-West standard errors, using M = 5.

(d) Comment on the magnitude and interpretation of the coefficients.

(e) Calculate (numerically) the impulse responses for j = 1, ...,10.

Exercise 14.19 Take the quarterly series oilpricex (real price of crude oil) from .

(a) Transform the series by taking first differences.

(b) Estimate an AR(4) model. Report using heteroskedastic-consistent standard errors.

(c) Test the hypothesis that the real oil prices is a random walk by testing that the four AR coefficients
jointly equal zero.

(d) Interpret the coefficient estimates and test result.

Exercise 14.20 Take the monthly series unrate (unemployment rate) from .
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(a) Estimate AR(1) through AR(8) models, using the sample starting in 1960m1 so that all models use
the same observations.

(b) Compute the AIC for each AR model and report.

(c) Which AR model has the lowest AIC?

(d) Report the coefficient estimates and standard errors for the selected model.

Exercise 14.21 Take the quarterly series unrate (unemployment rate) and claimsx (initial claims) from
. “Initial claims” are the number of individuals who file for unemployment insurance.

(a) Estimate a distributed lag regression of the unemployment rate on initial claims. Use lags 1 through
4. Which standard error method is appropriate?

(b) Estimate an autoregressive distributed lag regression of the unemployment rate on initial claims.
Use lags 1 through 4 for both variables.

(c) Test the hypothesis that initial claims does not Granger cause the unemployment rate.

(d) Interpret your results.

Exercise 14.22 Take the quarterly series gdpc1 (real GDP) and houst (housing starts) from .
“Housing starts” are the number of new houses which on which construction is started.

(a) Transform the real GDP series into its one quarter growth rate.

(b) Estimate a distributed lag regression of GDP growth on housing starts. Use lags 1 through 4. Which
standard error method is appropriate?

(c) Estimate an autoregressive distributed lag regression of GDP growth on housing starts. Use lags 1
through 2 for GDP growth and 1 through 4 for housing starts.

(d) Test the hypothesis that housing starts does not Granger cause GDP growth.

(e) Interpret your results.



Chapter 15

Multivariate Time Series

15.1 Introduction

A multivariate time series y t = (y1t , ..., ymt )0 is an m £ 1 vector process observed in sequence over
time, t = 1, ...,n. Multivariate time series models primarily focus on the joint modeling of the vector series
y t . The most common multivariate time series models used by economists are vector autoregressions
(VARs). VARs were introduced to econometrics by Sims (1980).

Some excellent textbooks and review articles on multivariate time series include Hamilton (1994),
Watson (1994), Canova (1995), Lütkepohl (2005), Ramey (2016), Stock and Watson (2016), and Kilian and
Lütkepohl (2017).

15.2 Multiple Equation Time Series Models

To motivate vector autoregressions let us start by reviewing the autoregressive distributed lag model
of Section 14.40 for the case of two series y t = (y1t , y2t )0 with a single lag. An AR-DL model for y1t takes
the form

y1t =Æ0 +Æ1 y1t°1 +Ø1 y2t°1 +e1t .

Similarly, an AR-DL model for y2t takes the form

y2t = ∞0 +∞1 y2t°1 +±1 y1t°1 +e2t .

These two equations specify that each variable is a linear function of its own lag and the lag of the
other variable. In so doing, we find that the variables on the right hand side of each equation are identical
and equal y t°1.

We can simplify the equations by combining the regressors, stacking the two equations together, and
writing the vector error as e t = (e1t ,e2t )0 to find

y t = a0 + A1 y t°1 +e t

where a0 is 2£1 and A1 is 2£2. This is a bivariate vector autoregressive model for y t . It specifies that the
multivariate process y t is a linear function of its own lag y t°1 plus the e t . It is the combination of two
equations, each of which is an autoregressive distributed lag model. Thus a multivariate autoregression
is simply a set of autoregressive distributed lag models.

The above derivation assumed a single lag. If the equations include p lags of each variable, we obtain
the pth order vector autoregressive (VAR) model

y t = a0 + A1 y t°1 + A2 y t°2 +·· ·+ Ap y t°p +e t . (15.1)

541
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This is a bivariate vector autoregressive model for y t .
Furthermore, there is nothing special about the two variable case. The notation in (15.1) allows y t to

be a vector of dimension m, in which case the matrices A` are m £m and the error e t is m £1. We will
denote the elements of A` using the notation

A` =

2

66664

a11,` a12,` · · · a1m,`

a21,` a22,` · · · a2m,`
...

...
...

am1,` am2,` · · · amm,`

3

77775
.

The error e t = (e1t , ...,emt )0 is the component of y t = (y1t , ..., ymt )0 which is unforecastable at time t °
1. However, the components of e t are contemporaneously correlated. Therefore the contemporaneous
covariance matrix

ß= E
£
e t e

0
t
§

is non-diagonal.
The VAR model falls in the class of multivariate regression models studied in Chapter 11.
In the following several sections we take a step back and provide a rigorous foundation for vector

autoregressions for stationary time series.

15.3 Linear Projection

In Section 14.14 we derived the linear projection of the univariate series yt on its infinite past his-
tory. We now extend this to the multivariate case. Define the multivariate infinite past history ey t°1 =
(..., y t°2, y t°1). The best linear predictor of each component of y t is linear in the lags y t°`. Stacking
together we obtain the linear projection of the vector y t on its past history

P t°1
£

y t
§
=P

£
y t | ey t°1

§
= a0 +

1X

`=1
A`y t°`.

The projection error is the difference
e t = y t °P t°1

£
y t

§
(15.2)

giving rise to the regression equation

y t = a0 +
1X

`=1
A`y t°`+e t . (15.3)

We will typically call the projection errors e t the “innnovations”.
The innovations e t are mean zero, uncorrelated with lagged y t°1, and are serially uncorrelated. We

state this formally.



CHAPTER 15. MULTIVARIATE TIME SERIES 543

Theorem 15.1 If y t is covariance stationary it has the projection equation

y t = a0 +
1X

`=1
A`y t°`+e t .

The innovations e t satisfy

E [e t ] = 0

E
£

y t°`e
0
t
§
= 0 `∏ 1

E
£
e t°`e

0
t
§
= 0 `∏ 1

and
ß= E

£
e t e

0
t
§
<1.

If y t is strictly stationary then e t is strictly stationary.

We can write the model using the lag operator notation as

A (L) y t = a0 +e t

where

A (z) = I m °
1X

`=1
A`z`.

The multivariate innovations e t are mean zero and serially uncorrelated. This describes what is
known as a multivariate white noise process.

Definition 15.1 The vector process e t is multivariate white noise if E [e t ] = 0,
E
£
e t e

0
t

§
=ß<1, and E

£
e t e

0
t°`

§
= 0 for ` 6= 0.

15.4 Multivariate Wold Decomposition

By projecting y t onto the past history of the white noise innovations e t we obtain a multivariate
version of the Wold decomposition.

Theorem 15.2 If y t is covariance stationary and non-deterministic then it has
the linear representation

y t =µ+
1X

`=0
£`e t°` (15.4)

where e t are the white noise projection errors and £0 = I m . The coefficient
matrices£` are m £m.
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We can write the moving average representation using the lag operator notation as

y t =µ+£ (L)e t

where

£ (z) =
1X

`=0
£`z`.

If invertible, the lag polynomials satisfy the relationships£ (z) = A (z)°1 and A (z) =£ (z)°1.
For some purposes (such as impulse response calculations) we need to calculate the moving average

coefficient matrices £` from the projection coefficient matrices A`. While there is not a closed-form
solution there is a simple recursion by which the coefficients may be calculated.

Theorem 15.3 For j ∏ 1

£ j =
jX

`=1
A`£ j°`

To see this, suppose for simplicity a0 = 0 and that the innovations satisfy et = 0 for t 6= 0. Then y t = 0
for t < 0. Using the regression equation (15.3) for t ∏ 0 we solve for each y t . For t = 0

y 0 = e0 =£0e0

where
£0 = I m .

For t = 1
y 1 = A1 y 0 = A1£0e0 =£1e0

where
£1 = A1£0.

For t = 2
y 2 = A1 y 1 + A2 y 0 = A1£1e0 + A2£0e0 =£2e0

where
£2 = A1£1 + A2£0.

For t = 3
y 3 = A1 y 2 + A2 y 1 + A3 y 0 = A1£2e0 + A2£1e0 + A3£0e0 =£3e0

where
£3 = A1£2 + A2£2 + A2£0.

The coefficients satisfy the stated recursion as claimed.
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15.5 Impulse Response

One of the most important concepts in applied multivariate time series is the impulse response
function (IRF), which is defined as the change in y t due to a change in an innovation or shock. In this
section we define the baseline IRF – the unnormalized non-orthogonalized impulse response function
– which is the change in y t due to a change in an innovation e t . Specifically, we define the impulse re-
sponse of variable i with respect to innovation j as the change in the time t projection of the i th variable
yi t+h due to the j th innovation e j t

IRFi j (h) = @

@e j t
P t

£
yi t+h

§
.

There are m2 such responses for each horizon h. We can write them as an m £m matrix

IRF(h) = @

@e
0
t
P t

£
y t+h

§
.

Recall the multivariate Wold representation

y t =µ+
1X

`=0
£`e t°`.

We can calculate that the projection onto the history at time t is

P t
£

y t+h
§
=µ+

1X

`=h
£`e t+h°` =µ+

1X

`=0
£h+`e t°`.

We deduce that the impulse response matrix is

IRF(h) =£h

the hth moving average coefficient matrix. The invididual impulse response is

IRFi j (h) =£h,i j

the i j th element of£h .
Here we have defined the impulse response in terms of the linear projection operator. An alternative

is to define the impulse response in terms of the conditional expectation operator. The two coincide
when the innovations e t are a martingale difference sequence (and thus when the true process is linear)
but otherwise will not coincide.

Typically we view impulse responses as a function of the horizon h, and plot them as a function
of h for each pair (i , j ). The impulse response function IRFi j (h) is interpreted as how the i th variable
responds over time to the j th innovation.

In a linear vector autoregression, the impulse response function is symmetric in negative and positive
innovations. That is, the impact on yi t+h of a positive innovation e j t = 1 is IRFi j (h) and the impact of
a negative innovation e j t = °1 is °IRFi j (h). Furthermore, the magnitude of the impact is linear in the
magnitude of the innovation. Thus the impact of the innovation e j t = 2 is 2IRFi j (h) and the impact of
the innovation e j t = °2 is °2IRFi j (h). This means that the shape of the impulse response function is
unaffected by the magnitude of the innovation. (These are consequences of the linearity of the vector
autoregressive model, not necessarily features of the true world.)

The impulse response functions can be scaled as desired. One standard choice is to scale so that the
innovations correspond to one unit of the impulse variable. Thus if the impulse variable is measured
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in dollars, the impulse response can be scaled to correspond to a change in $1 or some multiple such
as a million dollars. If the impulse variable is measured in percentage points (e.g. an interest rate) then
the impulse response can be scaled to correspond to a change of one full percentage point (e.g. from
3% to 4%) or to correspond to a change of one basis point (e.g. from 3.05% to 3.06%). Another standard
choice is to scale the impulse responses to correspond to a “one standard deviation” innovation. This
occurs when the innovations have been scaled to have unit variances. In this latter case impulse response
functions can be interpreted as responses due to a “typical” sized (one standard deviation) innovation.

Closely related is the cumulative impulse response function (CIRF), defined as

CIRF(h) =
hX

`=1

@

@"0t
P t

£
y t+`

§
=

hX

`=1
£`.

The cumulative impulse response is the accumulated (summed) responses on y t from time t to t +h.
The limit of the cumulative impulse response as h !1 is the long-run impulse response

C = lim
h!1

CIRF(h) =
1X

`=1
£` =£ (1) = A (1)°1 .

This is the full (summed) effect of the innovation, over all time.
It is useful to observe that when a VAR is estimated on differenced observations¢y t then cumulative

impulse response is

CIRF(h) = @

@"0t
P t

"
hX

`=1
¢y t+`

#

= @

@"0t
P t

£
y t+h

§

which is the impulse response function for the variable y t in levels. More generally, when a VAR is es-
timated with some variables in levels and some in differences, then the cumulative impulse response
function for the second group will coincide with the impulse responses for the same variables measured
in levels.

It is typical to report cumulative impulse response functions (rather than impulse response func-
tions) for variables which enter a VAR in differences. In fact, many authors will label a cumulative im-
pulse response as “the impulse response”.

15.6 VAR(1) Model

The first-order vector autoregressive process, denoted VAR(1), is

y t = a0 + A1 y t°1 +e t

where e t is a strictly stationary and ergodic white noise process.
We are interested in conditions under which y t is a stationary process. Let ∏max(A) be the largest

absolute eigenvalue of A.

Theorem 15.4 If ∏max(A1) < 1 then the VAR(1) process y t is strictly stationary
and ergodic.

The VAR(1) generalizes the AR(1) model to multivariate systems. The dynamics of a VAR(1) can be
considerably more involved than those of an AR(1).

The proof of Theorem 15.4 follows from the following technical result by applying back-substitution
to write y t =

P1
`=0 A

`
1 (A0 +e t°`).
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Theorem 15.5 Suppose ∏max(A) < 1, u t is strictly stationary and ergodic, and
Eku tk <1. Then x t =

P1
`=0 A

`
u t°` is convergent with probability one, and is

strictly stationary and ergodic.

The proof is given in Section 15.31.

15.7 VAR(p) Model

The pth-order vector autoregressive process, denoted VAR(p), is

y t = a0 + A1 y t°1 +·· ·+ Ap y t°p +e t

where e t is a strictly stationary and ergodic white noise process.
We can write the model using the lag operator notation as

A (L) y t = a0 +e t

where
A (z) = I m ° A1z ° · · ·° Ap zp .

The condition for stationarity of the system can be expressed as a restriction on the roots of the
determinantal equation.

Theorem 15.6 If all roots ∏ of det(A (z)) = 0 satisfy |∏| > 1 then the VAR(p) pro-
cess y t is strictly stationary and ergodic.

The proof is given in Section 15.31.

15.8 Regression Notation

Defining the
°
mp +1

¢
£1 vector

x t =

0

BBBBBB@

1
y t°1
y t°2

...
y t°p

1

CCCCCCA

and the m £ (mp +1) matrix
A
0 =

°
a0 A1 A2 · · · Ap

¢
.

Then the VAR system of equations can be written as

y t = A
0
x t +e t . (15.5)

This is a multivariate regression model. The error has covariance matrix

ß= E
£
e t e

0
t
§

. (15.6)
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We can also write the coefficient matrix as

A =
°

a1 a2 · · · am
¢

where a j is the vector of coefficients for the j th equation. Thus

y j t = a
0
j x t +e j t .

In general, if y t is strictly stationary we can define the coefficient matrix A by linear projection.

A =
°
E
£

x t x
0
t
§¢°1

E
£

x t y
0
t
§

.

This holds whether or not y t is actually a VAR(p) process. By the properties of projection errors

E
£

x t e
0
t
§
= 0. (15.7)

The projection coefficient matrix A is identified if E
£

x t x
0
t

§
is invertible.

Theorem 15.7 If y t is strictly stationary and 0 <ß<1 for ß defined in (15.6),
then Q = E

£
x t x

0
t

§
> 0 and the coefficient vector (14.45) is identified.

The proof is given in Section 15.31.

15.9 Estimation

From Chapter 11, the systems estimator of a multivariate regression is least squares. The estimator
can be written as

bA =
µ nX

t=1
x t x

0
t

∂°1 µ nX

t=1
x t y

0
t

∂
.

Alternatively, the coefficient estimator for the j th equation is

ba j =
µ nX

t=1
x t x

0
t

∂°1 µ nX

t=1
x t y j t

∂
.

The least squares residual vector is
be t = y t ° bA0

x t .

The estimator of the variance matrix is
bß= 1

n

nX

t=1
be t be 0

t . (15.8)

(This may be adjusted for degrees-of-freedom if desired, but there is no established finite-sample justi-
fication for a specific adjustment.)

If y t is strictly stationary and ergodic with finite variances then we can apply the Ergodic Theorem
(Theorem 14.9) to deduce that

1
n

nX

t=1
x t y

0
t °!p E

£
x t y

0
t
§
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and
nX

t=1
x t x

0
t °!p E

£
x t x

0
t
§

.

Since the latter is positive definite by Theorem 15.7, we conclude that bA is consistent for A. Standard
manipulations show that bß is consistent as well.

Theorem 15.8 If y t is strictly stationary and ergodic and 0 <ß<1 then bA °!
p

A and bß°!
p
ß as n !1.

VAR models can be estimated in Stata using the command.

15.10 Asymptotic Distribution

Set

a = vec(A) =

0

B@
a1
...

am

1

CA , ba = vec
°bA

¢
=

0

B@
ba1
...

bam

1

CA .

By the same analysis as in Theorem 14.30 combined with Theorem 11.1 we obtain the following.

Theorem 15.9 If y t follows the VAR(p) model with E [e t |Ft°1] = 0, E
∞∞y t

∞∞4 <
1, and ß> 0, then as n !1,

p
n (ba °a) °!

d
N(0,V )

where

V =Q
°1
≠Q

°1

Q = I m ≠Q

Q = E
£

x t x
0
t
§

≠= E
£
e t e

0
t ≠x t x

0
t
§

.

Notice that we added the stronger assumption that the innovation is a martingale difference se-
quence E [e t |Ft°1] = 0. This means that this distributional result assumes that the VAR(p) model is the
correct conditional mean for each variable. In words, these are the correct lags and there is no omitted
nonlinearity.

If we further strengthen the MDS assumption to conditional homoskedasticity

E
£
e t e

0
t |Ft°1

§
=ß
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then the asymptotic variance simplifies as

≠=ß≠Q

V =ß≠Q
°1.

In contrast, if the VAR(p) is an approximation then the MDS assumption is not appropriate. In this
case the asymptotic distribution can be derived under mixing conditions.

Theorem 15.10 If y t is strictly stationary, ergodic, ß > 0, and for some r > 4,
E

∞∞y t

∞∞r <1 and the mixing coefficients satisfy
P1
`=1Æ(`)1°4/r <1, then as n !

1, p
n (ba °a) °!

d
N(0,V )

where

V =Q
°1
≠Q

°1

Q = I m ≠Q

Q = E
°
x t x

0
t
¢

≠=
1X

`=°1
E
£
e t°`e

0
t ≠x t°`x

0
t
§

.

This distributional result does not require that the true process is a VAR. Instead, the coefficients are
defined as those which produce the best (mean square) approximation, and the only requirements on
the true process are general dependence conditions. The distributional result shows that the coefficient
estimators are asymptotically normal, with a covariance matrix which takes a “long-run” sandwich form.

15.11 Covariance Matrix Estimation

The classic homoskedastic estimator of the covariance matrix for ba equals

bV 0
ba = bß≠

°
X

0
X

¢°1 . (15.9)

Estimators adjusted for degree-of-freedom can also be used, though there is no established finite-sample
justification. This variance estimator is appropriate under the assumption that the conditional mean is
correctly specified as a VAR(p), and the innovations are conditionally homoskedastic.

The heteroskedasticity-robust estimator equals

bV ba =
≥

I n ≠
°

X
0
X

¢°1
¥µ nX

t=1

°
be t be 0

t ≠x t x
0
t
¢∂≥

I n ≠
°

X
0
X

¢°1
¥

. (15.10)

This variance estimator is appropriate under the assumption that the conditional mean is correctly spec-
ified as a VAR(p), but does not require that the innovations are conditionally homoskedastic.

The Newey-West estimator equals

bV ba =
≥

I n ≠
°

X
0
X

¢°1
¥

b≠M

≥
I n ≠

°
X

0
X

¢°1
¥

. (15.11)
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b≠M =
MX

`=°M
w`

X

1∑t°`∑n
x t°`bet°`x

0
t bet

w` = 1° |`|
M +1

.

The number M is called the lag truncation number. An unweighted version sets w` = 1. The Newey-West
estimator does not require that the VAR(p) is correctly specified.

Traditional textbooks have only used the homoskedastic variance estimation formula (15.9) and con-
sequently existing software follows the same convention. For example, the command in Stata dis-
plays only homoskedastic standard errors. Some researchers use the heteroskedasticity-robust estimator
(15.10). The Newey-West estimator (15.11) is not commonly used for VAR models.

Asymptotic approximations tend to be much less accurate under time series dependence than for
independent observations. Therefore bootstrap methods are popular. In Section 14.45 we described
several bootstrap methods for time series observations. While Section 14.45 focused on univariate time
series, the extension to multivariate observations is straightforward.

15.12 Selection of Lag Length in an VAR

For a data-dependent rule to pick the lag length p in a VAR it is recommended to minimize an infor-
mation criterion. The formula for the AIC and BIC are

AIC(p) = n logdet b≠(p)+2K (p)

BIC(p) = n logdet b≠(p)+ log(n)K (p)

bß(p) = 1
n

nX

t=1
be t (p)be t (p)0

K (p) = m(pm +1)

where K (p) is the number of parameters in the model, and be t (p) is the OLS residual vector from the
model with p lags. The log determinant is the criterion from the multivariate normal likelihood.

In Stata, the AIC for a set of estimated VAR models can be compared using the command.
It should be noted, however, that the Stata routine actually displays AIC(p)/n = logdet b≠(p)+2K (p)/n.
This does not affect the ranking of the models, but makes the differences between models appear smaller
than they actually are.

15.13 Illustration

We estimate a three-variable system which is a simplified version of a model often used to study
the impact of monetary policy. The three variables are quarterly from FRED-QD: real GDP growth rate
(100¢ log(GDPt )), GDP inflation rate (100¢ log(Pt )), and the Federal funds interest rate. VARs from lags
1 through 8 were estimated by least squares. The model with the smallest AIC was the VAR(6). The
coefficient estimates and (homoskedastic) standard errors for the VAR(6) are reported in Table 15.1.

Examining the coefficients in the table, we can see that GDP displays a moderate degree of serial
correlation, and shows a large response to the federal funds rate, especially at lags 2 and 3. Inflation
also displays serial correlation, shows minimal response to GDP, and also has meaningful response to
the federal funds rate. The federal funds rate has the strongest serial correlation. Overall, it is difficult to
read too much meaning into the coefficient estimates, due to the complexity of the interactions. Because
of this difficulty, it is typical to focus on other representations of the coefficient estimates such as impulse
responses, which we discuss in the upcoming sections.
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Table 15.1: Vector Autoregression

GDP INF FF
GDPt°1 0.25 0.01 0.08

(0.07) (0.02) (0.02)
GDPt°2 0.23 °0.02 0.04

(0.07) (0.02) (0.02)
GDPt°3 0.00 0.03 0.01

(0.07) (0.02) (0.02)
GDPt°4 0.14 0.04 °0.02

(0.07) (0.02) (0.02)
GDPt°5 °0.02 °0.03 0.04

(0.07) (0.02) (0.02)
GDPt°6 0.05 °0.00 °0.01

(0.06) (0.02) (0.02)
I N Ft°1 0.11 0.57 0.01

(0.20) (0.07) (0.05)
I N Ft°2 °0.17 0.10 0.17

(0.23) (0.08) (0.06)
I N Ft°3 0.01 0.09 °0.05

(0.23) (0.08) (0.06)
I N Ft°4 0.16 0.14 °0.05

(0.23) (0.08) (0.06)
I N Ft°5 0.12 °0.05 °0.05

(0.24) (0.08) (0.06)
I N Ft°6 °0.14 0.10 0.09

(0.21) (0.07) (0.05)
F Ft°1 0.13 0.28 1.14

(0.26) (0.08) (0.07)
F Ft°2 °1.50 °0.27 °0.53

(0.38) (0.12) (0.10)
F Ft°3 1.40 0.12 0.53

(0.40) (0.13) (0.10)
F Ft°4 °0.57 °0.13 °0.28

(0.41) (0.13) (0.11)
F Ft°5 0.01 0.25 0.28

(0.40) (0.13) (0.10)
F Ft°6 0.47 °0.27 °0.24

(0.26) (0.08) (0.07)
Intercept 1.15 0.22 °0.33

(0.54) (0.18) (0.14)
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15.14 Predictive Regressions

In some contexts (including prediction) it is useful to consider models where the dependent variable
is dated multiple periods ahead of the right-hand-side variables. These equations can be single equation
or multivariate; we can consider both as special cases of a VAR (as a single equation model can be written
as one equation taken from a VAR system). An h-step predictive VAR(p) takes the form

y t+h = b0 +B 1 y t +·· ·+B p y t°p+1 +u t . (15.12)

The integer h ∏ 1 is the horizon. A one-step predictive VAR equals a standard VAR. The coefficients
should be viewed as the best linear predictors of y t+h given (y t , ..., y t°p+1).

There is an interesting relationship between a VAR model and the corresponding h-step predictive
VAR model.

Theorem 15.11 If y t is a VAR(p) process, then its h-step predictive regression
is a predictive VAR(p) with u t a MA(h-1) process and B 1 =£h = IRF(h).

The proof of Theorem 15.11 is presented in Section 15.31.
There are several implications of this theorem. First, if y t is a VAR(p) process then the correct number

of lags for an h-step predictive regression is also p lags. Second, the error in a predictive regression is a
MA process, and is thus serially correlated. The linear dependence, however, is capped by the horizon.
Third, the leading coefficient matrix corresponds to the hth moving average coefficient matrix, which
also equals the hth impulse response matrix.

The predictive regression (15.12) can be estimated by least-squares. We can write the estimates as

y t+h = bb0 + bB 1 y t +·· ·+ bB p y t°p+1 + bu t . (15.13)

For a distribution theory we need to apply Theorem 15.10 since the innovations u t are a moving average
and thus clearly violate the MDS assumption. It follows as well that the covariance matrix for the esti-
mators should be estimated by the Newey-West (15.11) estimator. There is a difference, however. Since
u t is known to be a MA(h-1) a reasonable choice is to set M = h °1 and use the simple weights w` = 1.
Indeed, this was the original suggestion by Hansen and Hodrick (1980).

For a distributional theory we can apply Theorem 15.10. Let b be the vector of coefficients in (15.12)
and bb the corresponding least squares estimator. Let x t be the vector of regressors in (15.12).

Theorem 15.12 If y t is strictly stationary, ergodic, ß > 0, and for some r > 4,
E

∞∞y t

∞∞r <1 and the mixing coefficients satisfy
P1
`=1Æ(`)1°4/r <1, then as n !

1, p
n

°bb °b
¢
°!

d
N(0,V )

where

V =Q
°1
≠Q

°1

Q = I m ≠Q

Q = E
£

x t x
0
t
§

≠=
1X

`=°1
E
£
u t°`u

0
t ≠x t°`x

0
t
§

.
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15.15 Impulse Response Estimation

Reporting of impulse response estimates is one of the most common applications of vector autore-
gressive modeling. There are several methods to estimate the impulse response function. In this section
we review the most common estimator based on the estimated VAR parameters.

Within a VAR(p) model, the impulse responses are determined by the VAR coefficients. We can write
this mapping as £h = gh (A). The plug-in approach suggests the estimator b£h = gh(bA) given the VAR(p)
coefficient estimator bA. These are the impulse responses implied by the estimated VAR coefficients.
While it is possible to explicitly write the function gh (A), a computationally simple approach is to use
Theorem 15.3, which shows that the impulse response matrices can be written as a simple recursion in
the VAR coefficients. Thus the impulse response estimator satisfies the recursion

b£h =
min[h,p]X

`=1

bA`
b£h°`.

We then set dIRF(h) = b£h .
This is the the most commonly used method for impulse response estimation, and it is the method

implemented in standard packages.
Since bA is random, so is dIRF(h) as it is a nonlinear function of bA. Using the delta method, we deduce

that the elements of dIRF(h) (the impulse responses) are asymptotically normally distributed. With some
messy algebra explicit expressions for the asymptotic variances can be obtained. Sample versions can be
used to calculate asymptotic standard errors. These can be used to form asymptotic confidence intervals
for the impulse responses.

The asymptotic approximations, however, can be quite poor. As we discussed earlier, the asymptotic
approximations for the distribution of the coefficients bA can be quite poor due to the serial dependence
in the observations. The asymptotic approximations for dIRF(h) can be significantly worse, because the
impulse responses are highly nonlinear functions of the coefficients. For example, in the simple AR(1)
model with coefficient estimate bÆ, the hth impulse response is bÆh which is highly nonlinear for even
moderate horizons h.

Consequently, asymptotic approximations are less popular than bootstrap approximations. The
most popular bootstrap approximation uses the recursive bootstrap (see Section 14.45) using the fit-
ted VAR model, and then calculates confidence intervals for the impulse responses with the percentile
method. An unfortunate feature of this choice is that the percentile bootstrap confidence interval is quite
biased, since the nonlinear impulse response estimates are highly biased and the percentile bootstrap
accentuates bias.

Some advantages of the estimation method as described is that it produces impulse response esti-
mates which are directly related to the estimated VAR(p) model, and are internally consistent with one
another. The method is also numerically stable. It is efficient when the true process is a true VAR(p)
with conditionally homoskedastic MDS innovations. When the true process is not a VAR(p) it can be
thought of as a non-parametric estimator of the impulse response if p is large (or selected appropriately
in a data-dependent fashion, such as by the AIC).

A disadvantage of this estimator is that it is a highly non-linear function of the VAR coefficient esti-
mators. Therefore the distribution of the impulse response estimator is unlikely to be well approximated
by the normal distribution. When the VAR(p) is not the true process then it is possible that the nonlinear
transformation accentuates the misspecification bias.

Impulse response functions can be calculated and displayed in Stata using the command. The
command is used to calculate impulse response functions and confidence intervals. The
default confidence intervals are asymptotic (delta method). Bootstrap (recursive method) standard er-
rors can be substituted using the option. The command produces graphs of the
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impulse response function along with 95% asymptotic confidence intervals. The command
produces the cumulative impulse response function. It may be useful to know that the impulse

response estimates are unscaled, so represent the response due to a one-unit change in the impulse
variable. A limitation of the Stata command is that there are limited options for standard error and
confidence interval construction. The asymptotic standard errors are calculated using the homoskedas-
tic formula, not the correct heteroskedastic formula. The bootstrap confidence intervals are calculated
using the normal approximation bootstrap confidence interval, the least reliable bootstrap confidence
interval method. Better options such as the bias-corrected percentile confidence interval are not pro-
vided as options.

15.16 Local Projection Estimator

Jordà (2005) observed that the impulse response can be estimated by a least squares predictive re-
gression. The key is Theorem 15.11, which established that£h = B 1, the leading coefficient matrix in the
h-step predictive regression.

The method is as follows. For each horizon h estimate a predictive regression (15.12) to obtain the
leading coefficient matrix estimator bB 1. The estimator is dIRF(h) = bB 1, and is known as the local projec-
tion estimator.

Theorem 15.12 shows that the local projection impulse response estimator is asymptotically normal.
Newey-West methods must be used for calculation of asymptotic standard errors since the regression
errors are serially correlated.

Jordà (2005) speculates that the local projection estimator will be less sensitive to misspecification
since it is a straightforward linear estimator. This is intuitive but unclear. Theorem 15.11 relies on the
assumption that y t is a VAR(p) process, and fails otherwise. Thus if the true process is not a VAR(p) then
the coefficient matrix B 1 in (15.12) does not correspond to the desired impulse response matrix£h , and
hence will be misspecified. The accuracy (in the sense of low bias) of both the conventional and the local
projection estimator relies on p being sufficiently large that the VAR(p) model is a good approximation
to the true infinite-order regression (15.3). Without a formal theory it is difficult to know which estimator
is more robust than the other.

One implementation challenge is the choice of p. While the method allows for p to vary across hori-
zon h, there is no well-established method for selection of the VAR order for predictive regressions. (Stan-
dard selection criteria such as AIC are inappropriate under serially correlated errors, just as conventional
standard errors are inappropriate.) Therefore the seemingly natural choice is to use the same p for all
horizons, and base this choice on the one-step VAR model where AIC can be used for model selection.

An advantage of the local projection method is that it is a direct estimator of the impulse response,
and thus possibly more robust than the conventional method. It is a linear estimator and thus likely to
have a better-behaved asymptotic distribution.

A disadvantage is that the method relies on a regression (15.12) that has serially correlated errors. The
latter are highly correlated at long horizons and this renders the estimator imprecise. Local projection
estimators tend to be less smooth and more erratic than those produced by the conventional estimator,
reflecting a possible lack of precision.

15.17 Regression on Residuals

If the innovations e t were observed it would be natural to directly estimate the coefficients of the
multivariate Wold decomposition. We would pick a maximum horizon h and then estimate the equation

y t =µ+£1e t°1 +£2e t°2 +·· ·+£he t°h +u t
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where

u t = e t +
1X

`=h+1
£`e t°`.

The variables (e t°1, ...,e t°h) are uncorrelated with u t so the least-squares estimator of the coefficients is
consistent and asymptotically normal. Since u t is serially correlated the Newey-West method should be
used to calculate standard errors.

In practice the innovations e t are not observed. If they are replaced by the residuals be t from an
estimated VAR(p) then we can estimate the coefficients by least squares applied to the equation

y t =µ+£1be t°1 +£2be t°2 +·· ·+£hbe t°h + bu t .

This idea originated with Durbin (1960).
This is a two-step estimator with generated regressors. (See Section 12.26.) The impulse response

estimators are consistent and asymptotically normal, but with a covariance matrix which is complicated
due to the two-step estimation. Conventional, robust and Newey-West standard errors do not account
for this without modification.

Chang and Sakata (2007) proposed a simplified version of the Durbin regression. Notice that for any
horizon h we can rewrite the Wold decomposition as

y t+h =µ+£he t +v t+h

where

v t =
h°1X

`=0
£`e t°`+

1X

`=h+1
£`e t°`.

The regressor e t is uncorrelated with v t+h . Thus £h can be estimated by a regression of y t+h on e t .
In practice we can replace e t by the least-squares residual be t from an estimated VAR(p) to estimate the
regression

y t+h =µ+£hbe t + bv t+h . (15.14)

Similar to the Durbin regression the Chang-Sakata estimator is a two-step estimator with a generated
regressor. However, as it takes the form studied in Section 12.27, it can be shown that the Chang-Sakata
two-step estimator has the same asymptotic distribution as the idealized one-step estimator as if e t were
observed. Thus the standard errors do not need to be adjusted for generated regressors. (The Newey-
West method should be used to account for the serial correlation.) This feature is an advantage of their
estimator over the Durbin estimator. However, the variance of the error v t+h in the Chang-Sakata regres-
sion is larger than the variance of the error u t in the Durbin regression, so the Chang-Sakata estimator
may be less precise than the Durbin estimator.

Chang and Sakata (2007) also point out the following interesting connection. The least-squares slope
estimator in (15.14) is algebraically identical1 to the slope estimator bB 1 in a predictive regression with p°
1 lags. This holds by the FWL Theorem. Thus the Chang-Sakata estimator is similar to a local projection
estimator.

15.18 Orthogonalized Shocks

We can use the impulse response function to examine how the innnovations impact the time-paths
of the variables. A difficulty in interpretation, however, is that the elements of the innovation vector e t

are contemporeneously correlated. Thus e j t and ei t are (in general) not independent, so consequently it

1Technically, if the sample lengths are adjusted.
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does not make sense to treat e j t and ei t as fundamental “shocks”. Another way of describing the problem
is that it does not make sense, for example, to describe the impact of e j t while “holding” ei t constant.

The natural solution is to orthogonalize the innovations so that they are uncorrelated, and then view
the orthogonalized errors as the fundamental “shocks”. Recall that e t is mean zero with variance matrix
ß. We can factor ß into the product of an m £m matrix B with its transpose

ß= B B
0.

The matrix B is called a “square root” of ß. (See Section A.13.) Define "t = B
°1

e t . The random vector "t

has mean zero and variance matrix B
°1ßB

°10 = B
°1

B B
0
B

°10 = I m . Thus the elements "t = ("1t , ...,"mt )
are mutually uncorrelated. We can write the innovations as a function of the orthogonalized errors as

e t = B"t . (15.15)

To distinguish "t from e t we will typically call "t the “orthogonalized shocks” or more simply as the
“shocks” and continue to call e t the “innovations”.

When m > 1 there is not a unique square root matrix B so there is not a unique orthogonalization.
The most common choice (and was originally advocated by Sims (1980)) is to use the Cholesky decom-
position (see Section A.16). This sets B to be lower triangular, meaning that it takes the form

B =

2

4
b11 0 0
b21 b22 0
b31 b32 b33

3

5

with non-negative diagonal elements. We can write the Cholesky decomposition of the matrix A as C =
chol(A) which means that A =CC

0 with C lower triangular. We thus set

B = chol(ß). (15.16)

Equivalently, the innovations are related to the orthogonalized shocks by the equations

e1t = b11"1t

e2t = b21"1t +b22"2t

e3t = b31"1t +b31"2t +b33"3t .

This structure is recursive. The innovation e1t is a function only of the single shock "1t . The inno-
vation e2t is a function of the shocks "1t and "2t , and the innovation e3t is a function of all three shocks.
This means that within a single time period e1t receives no feedback from the other variables, and e2t is
only affected by e1t (but not e3t ).

Another way of looking at the structure is that the first shock "1t affects all three innovation, the
second shock "2t affects e2t and e3t , and the third shock "3t only affects e3t .

A recursive structure is an exclusion restriction. The recursive structure excludes the possibility of "2t

or "3t contemporeneously affecting e1t , and excludes the possibility of "3t contemporeneously affecting
e2t .

When using the Cholesky decomposition the recursive structure is determined by the ordering of the
variables in the system. The order matters, and is the key identifying assumption. We will return to this
issue later.

Finally, we mention that the system (15.15) is equivalent to the system

Ae t = "t (15.17)

where A = B
°1 is lower triangular when B is lower triangular. The representation (15.15) is more conve-

nient, however, for most of our purposes.
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15.19 Orthogonalized Impulse Response Function

We have defined the impulse response function as the change in the time t projection of the variables
y t due to the innovation e t . As we discussed in the previous section, since the innovations are contem-
poreneously correlated it makes better sense to focus on changes due to the orthogonalized shocks "t .
Consequently we define the orthgonalized impulse response function (OIRF) as

OIRF(h) = @

@"0t
P t

£
y t+h

§
.

We can write the multivariate Wold representation as

y t =µ+
1X

`=0
£`e t°` =µ+

1X

`=0
£`B"t°`

where B is from (15.16). We deduce that

OIRF(h) =£hB = IRF(h)B .

This is the non-orthogonalized impulse response matrix multiplied by the matrix square root B .
Write the rows of the matrix£h as

£h =

2

4
µ01h

µ0mh

3

5

and the columns of the matrix B as
B = [b1, ...,bm] .

We can see that
OIRFi j (h) = [£hB ]i j = µ0i hb j .

There are m2 such responses for each horizon h.
The cumulative orthogonalized impulse response function (COIRF) is

COIRF(h) =
hX

`=1
OIRF(`) =

hX

`=1
£`B .

15.20 Orthogonalized Impulse Response Estimation

We have already discussed estimation of the moving average matrices £`. We need an estimator of
B .

We first estimate the VAR(p) model by least squares. This gives us the coefficient matrices bA and
the error variance matrix bß. From the latter we apply the Cholesky decomposition bB = chol

°bß
¢

so that
bß= bB bB 0

. (See Section A.16 for the algorithm.) The orthogonalized impulse response estimators are then

ÅOIRF(h) = b£h bB = bµ0i h
bb j .

The estimator ÅOIRF(h) is a complicated nonlinear function of bA and bß. They are asymptotically
normally distributed by the delta method. This allows for explicit calculation of asymptotic standard
errors. These can be used to form asymptotic confidence intervals for the impulse responses.

As discussed earlier, the asymptotic approximations can be quite poor. Consequently bootstrap ap-
proximations are more widely used than asymptotic methods.
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Orthogonalized impulse response functions can be displayed in Stata using the command. The
command produces graphs of the orthogonalized impulse response function along
with 95% asymptotic confidence intervals. The command produces the cumulative
orthogonalized impulse response function. It may also be useful to know that the OIRF are scaled for a
one-standard deviation shock, so the impulse response represents the response due to a one-standard-
deviation change in the impulse variable. As discussed earlier, a limitation of the Stata command
is that there are limited options for standard error and confidence interval construction. The asymp-
totic standard errors are calculated using the homoskedastic formula, not the correct heteroskedastic
formula. The bootstrap confidence intervals are calculated using the normal approximation bootstrap
confidence interval.

15.21 Illustration

To illustrate we use the three-variable system from Section 15.13. We use the ordering (1) real GDP
growth rate, (2) inflation rate, (3) Federal funds interest rate. We discuss the choice later when we dis-
cuss identification. We use the estimated VAR(6) and calculate the orthogonalized impulse response
functions using the standard VAR estimator.

In Figure 15.1 we display the estimated orthogonalized impulse response of the GDP growth rate
in response to a one standard deviation increase in the federal funds rate. The left plot shows the im-
pulse response function and the middle plot the cumulative impulse response function. As we discussed
earlier, the interpretation of the impulse response and the cumulative impulse response depends on
whether the variable enters the VAR in differences or in levels. In this case, GDP growth is the first dif-
ference of the natural logarithm. Thus the left plot (the impulse response function) shows the effect of
interest rates on the growth rate of GDP. The middle plot (the cumulative impulse response) shows the
effect on the log-level of GDP. The left plot shows that the GDP growth rate is negatively affected in the
second quarter after an interest rate increase (a drop of about 0.2%, non-annualized), and the negative
effects continue for several quarters following. The middle plot shows the effect on the level of GDP,
measured as percentage changes. It shows that an interest rate increase causes GDP to fall for about 8
quarters, reducing GDP by about 0.6%.
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(c) Error Decomposition

Figure 15.1: Response of GDP Growth to Orthogonalized Fed Funds Shock
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15.22 Forecast Error Decomposition

An alternative tool to investigate an estimated VAR is the forecast error decomposition which de-
composes multi-step forecast error variances by the component shocks. The forecast error decomposi-
tion indicates which shocks contribute towards the fluctuations of each variable in the system.

It is defined as follows. Take the moving average representation of the i th variable yi ,t+h written as a
function of the orthogonalized shocks

yi ,t+h =µi +
1X

`=0
µi (`)0B"t+h°`.

The best linear forecast of y t+h at time t is

yi ,t+h|t =µi +
1X

`=h
µi (`)0B"t+h°`.

Thus the h-step forecast error is the difference

yi ,t+h ° yi ,t+h|t =
h°1X

`=0
µi (`)0B"t+h°`.

The variance of this forecast error is

var
£

yi ,t+h ° yi ,t+h|t
§
=

h°1X

`=0
var

£
µi (`)0B"t+h°`

§

=
h°1X

`=0
µi (`)0B B

0µi (`). (15.18)

To isolate the contribution of the j th shock, notice that

e t = B"t = b1"1t +·· ·+bm"mt .

Thus the contribution of the j th shock is b j" j t . Now imagine replacing B"t in the variance calculation
by the j th contribution b j" j t . This is

var
£

yi t+h ° yi ,t+h|t
§
=

h°1X

`=0
var

£
µi (`)0b j" j t+h°`

§
=

h°1X

`=0

°
µi (`)0b j

¢2 . (15.19)

Examining (15.18) and using B = [b1, ...,bm] we can write (15.18) as

var
£

yi ,t+h ° yi ,t+h|t
§
=

mX

j=1

h°1X

`=0

°
µi (`)0b j

¢2 . (15.20)

The forecast error decomposition is defined as the ratio of the j th contribution to the total which is
the ratio of (15.19) to (15.20):

FEi j (h) =
Ph°1
`=0

°
µi (`)0b j

¢2

Pm
j=1

Ph°1
`=0

°
µi (`)0b j

¢2 .

The FEi j (h) lies in [0,1] and varies across h. Small values indicate that " j t contributes only a small
amount to the variance of yi t . Large values indicate that " j t contributes a major amount of the vari-
ance of "i t .
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A forecast error decomposition requires that orthogonalized innovations. There is no non-orthogonalized
version.

The forecast error decomposition can be calculated and displayed in Stata using the command.
The command produces graphs of the forecast error decomposition along with 95%
asymptotic confidence intervals.

To illustrate, in Figure 15.1 (right plot) we display the estimated forecast error decomposition of the
GDP growth rate due to the federal funds rate. This shows the contribution of movements in the fed-
eral funds rate towards fluctuations in GDP growth. The estimated effect is about 15% at long horizons.
This is a small but important share of the variance of GDP growth. Combined with the impulse response
functions we learn two lessons. That monetary policy (movements in the federal funds rate) can mean-
ingfully affect GDP growth, but monetary policy only accounts for a small component of fluctuations in
U.S. GDP.

15.23 Identification of Recursive VARs

As we have discussed, a common method to orthogonalize the VAR errors is to use the lower triangu-
lar Cholesky decomposition, which implies a recursive structure. The ordering of the variables is critical
to a recursive structure. Unless the errors are uncorrelated, different orderings will lead to different im-
pulse response functions and forecast error decompositions. The ordering must be selected by the user;
there is no data-dependent choice.

In order for impulse responses and forecast error decompositions to be interpreted causally the or-
thogonalization must be identified by the user based on a structural economic argument. The choice is
similar to the exclusion restrictions necessary for specification of an instrumental variables regression.
By ordering the variables recursively, we are effectively imposing exclusion restrictions. Recall that in our
empirical example we used the ordering: (1) real GDP growth rate, (2) inflation rate, (3) Federal funds in-
terest rate. This means that in the equation for GDP we excluded the contemporeneous inflation rate
and interest rate, and in the equation for inflation we excluded the contemporenous interest rate. These
are exclusion restrictions. Are they justified?

One approach is to order first the variables which are believed to be contemporaneously affected by
the fewest number of shocks. One way of thinking about it is that they are the variables which are “most
sticky” within a period. The variables listed last are those which are believed to be contemporanously
affected by the greatest number of shocks. These are the ones which are able to respond within a single
period to the shocks, or are most flexible. In our example, we listed output first, prices second and
interest rates last. This is consistent with the view that output is effectively pre-determined (within a
period) and does not (within a period) respond to price and interest rate movements. Prices are allowed
to respond within a period in response to output changes, but not in response to interest rate changes.
The latter could be justified if interest rate changes affect investment decisions, but the latter take at
least one period to implement. By listing the federal funds rate last, the model allows monetary policy to
respond within a period to contemporeneous information about output and prices.

In general, this line of reasoning suggests that production measures should be listed first, goods
prices second, and financial prices last. This reasoning is more credible when the time periods are short,
and less credible for longer time periods.

Further justifications for possible recursive orderings can include: (1) information delays; (2) imple-
mentation delays; (3) institutions; (4) market structure; (5) homogeneity; (6) imposing estimates from
other sources. In most cases such arguments can be made, but will be viewed as debatable and restric-
tive. In any situation it is best to be explicit about the choice and your reasoning for your choice.

Returning to the empirical illustration, it is fairly conventional to order the fed funds rate last. This
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allows the fed funds rate to respond to contemporeneous information about output and price growth,
and identifies the fed funds policy shock by the assumption that it does not have a contemporenous
impact on the other variables. It is not clear, however, how to order the other two variables. For simplicity
consider a traditional aggregate supply/aggregate demand model of the determination of output and the
price level. If the aggregate supply curve is perfectly inelastic in the short run (one quarter), then output
is effectively fixed (sticky), so changes in aggregate demand affect prices but not output. Changes in
aggregate supply affect both output and prices. Thus we would want to order GDP first and inflation
second. This choice would identify the GDP error as the aggregate supply shock. This is the ordering
choice used in our example.

In contrast, suppose that the aggregate supply curve is perfectly elastic in the short run. Then prices
are fixed and output is flexible. Changes in aggregate supply affect both price and output, but changes
in aggregate demand only affect output. In this case we would want to order inflation first and GDP
second. This choice identifies the inflation error as the aggregate supply shock, the opposite case from
the previous assumption!

If the choice between perfectly elastic and perfectly inelastic aggregate supply is not credible then
the supply and demand shocks cannot be separately identified based on ordering alone. In this case
the full set of impulse responses and error decompositions are not identified. However, a subset may be
identified. In general, if the shocks can be ordered in groups, then we can identify any shock for which a
group has a single variable. In our example, consider the ordering (1) GDP and inflation; (2) federal funds
rate. This means that the model assumes that GDP and inflation do not contemporeneously respond to
interest rate movements, but no other restrictions are imposed. In this case the fed funds policy shock is
identified. This means that impulse responses of all three variables with respect to the policy shock are
identified, and similarly the forecast error composition of the effect of the fed funds shock on each vari-
able is identified. These can be estimated by a VAR using the ordering (GDP, inflation, federal funds rate)
as done in our example, or using the ordering (inflation, GDP, federal funds rate). Both choices will lead
to the same estimated impulse responses as described. The remaining impulse responses (responses to
GDP and inflation shocks), however, will differ across these two orderings.

15.24 Oil Price Shocks

To further illustrate the identification of impulse response functions by recursive structural assump-
tions we repeat here some of the analysis from Kilian (2009). His paper concerns the identification of
the factors affecting crude oil prices, in particular separating supply and demand shocks. The goal is to
determine how oil prices respond to economic shocks, and how the responses differ by the type of shock.

To answer this question Kilian uses a three-variable VAR, with monthly measures of global oil pro-
duction, global economic activity, and the global price of crude oil for 1973m2-2007m12. He uses global
variables since the price of crude oil is globally determined. One innovation in the paper is that Kil-
ian develops a new index of global economic activity based on ocean freight rates. His motivation is
that shipping rates are directly related to the global demand for industrial commodities. This data set is
posted on the text webpage as .

Kilian argues that these three variables are determined by three economic shocks: oil supply, aggre-
gate demand, and oil demand. He suggests that oil supply shocks should be thought of as disruptions
in production, processing, or shipping. Aggregate demand is global economic activity. Kilian also ar-
gues that oil demand shocks are primarily due to the precautionary demand for oil driven by uncertainty
about future oil supply shortfalls.

To identify the shocks, Kilian makes the following exclusion restrictions. First, he assumes that the
short-run (one month) supply of crude oil is inelastic with respect to price. Equivalently, oil production
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takes at least one month to respond to price changes. This restriction is believed to be plausible because
of technological factors in crude oil production. It is costly to open new oil fields; and it is nearly impossi-
ble to cap an oil well once tapped. Second, Kilian assumes that in the short-run (one month) global real
economic activity does not respond to changes in oil prices (due to shocks specific to the oil market),
while economic activity is allowed to respond to oil production shocks. This assumption is viewed by
Kilian as plausible due to the sluggishness in the response of economic activity to price changes. Crude
oil prices, however, are allowed to respond simultaneously to all three shocks.

Kilian’s identification strategy is similar to that described in the previous section for the simple ag-
gregate demand/aggregate supply model. The separation of supply and demand shocks is achieved by
exclusion restrictions which imply short-run inelasticities. The plausibility of these assumptions rests in
part on the monthly frequency of the data. While it is plausible that oil production and economic activity
may not respond within one month to price shocks, it is much less plausible that there is no response for
a full quarter. The least convincing identifying assumption (in my opinion) is the assumption that eco-
nomic activity does not respond simultaneously to oil price changes. While much economic activity is
pre-planned and hence sluggish to respond, other economic activity (recreational driving, for example)
can immediately respond to price changes.

Kilian estimates the three-variable VAR using 24 lags, and calculates the orthogonalized impulse re-
sponse functions using the ordering implied by these assumptions. He does not discuss the choice of 24
lags, but presumably this is intended to allow for flexible dynamic responses. If the AIC is used for model
selection, three lags would be selected. For the analysis reported here, I used 4 lags. The results are
qualitatively similar to those obtained using 24 lags. For ease of interpretation, oil supply is entered neg-
atively (multiplied by °1) so that all three shocks are scaled to increase oil prices. The impulse response
functions for the price of crude oil are displayed in Figure 15.2 for 1-24 months. Panel (a) displays the re-
sponse of crude oil prices due to an oil supply shock, panel (b) displays the response due to an aggregate
demand shock, and panel (c) displays the response due to an oil-demand shock. Notice that all three
figures have been displayed using the same y-axis scalings so that the figures are comparable.

What is noticeable about the figures is how differently crude oil prices respond to the three types of
shocks. Panel (a) shows that oil prices are only minimally affected by oil production shocks. There is an
estimated small short term increase in oil prices, but it is not statistically significant and it reverses within
one year. Panel (b) shows that oil prices are significantly affected by aggregate demand shocks, and the
effect cumulatively increases over two years. This is not surprising. Economic activity relies on crude
oil, and economic activity is serially correlated. Panel (c) shows that oil prices are strongly immediately
affected by oil demand shocks, but the effect attenuates over time. This is a reverse pattern than that
found for aggregate demand shocks.

The Kilian (2009) paper is an excellent example of how recursive orderings can be used to identify an
orthogonalized VAR through a careful discussion of the causal system and the use of monthly observa-
tions.

15.25 Structural VARs

Recursive models do not allow for simultaneity between the elements of e t and thus the variables
y t cannot be contemporeneously endogenous. This is highly restrictive, and may not credibly describe
many economic systems. There is a general preference in the economics community for structural vec-
tor autoregressive models (SVARs) which use alternative identification restrictions which do not rely
exclusively on recursiveness. Two popular categories of structural VAR models are those based on short-
run (contemporeneous) restrictions and those based on long-run (cumulative) restrictions. In this sec-
tion we review SVARs based on short-run restrictions.
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(c) Oil Demand Schock

Figure 15.2: Response of Oil Prices to Orthogonalized Shocks

When we introduced methods to orthogonalize the VAR errors we pointed out that we can represent
the relationship between the errors and shocks using either the equation e t = B"t (15.15) or the equation
Ae t = "t (15.17). Equation (15.15) writes the errors as a function of the shocks. Equation (15.17) writes
the errors as a simultaneous system. A broader class of models can be captured by the equation system

Ae t = B"t (15.21)

where (in the 3£3 case)

A =

2

4
1 a12 a13

a21 1 a23

a31 a32 1

3

5 , B =

2

4
b11 b12 b13

b21 b22 b23

b31 b32 b33

3

5 . (15.22)

(Note: This matrix A has nothing to do with the regression coefficient matrix A. I apologize for the double
use of A, but I use the notation (15.21) to be consistent with the notation elsewhere in the literature.)

Written out,

e1t =°a12e2t °a13e3t +b11"1t +b12"2t +b13"3t

e2t =°a21e1t °a23e3t +b21"1t +b22"2t +b23"3t

e3t =°a31e1t °a32e2t +b31"1t +b32"2t +b33"3t .

The diagonal elements of the matrix A are set to 1 as normalizations. This normalization allows the
shocks "i t to have unit variance, which is convenient for impulse response calculations.

The system as written is under-identified. In this three-equation example, the matrix ß provides
only six moments, but the above system has 15 free parameters! To achieve identification we need nine
restrictions.

In most applications, it is common to start with the restriction that for each common non-diagonal
element of A and B at most one can be non-zero. That is, for any pair i 6= j , either b j i = 0 or a j i = 0.

We will illustrate by using a simplified version of the model employed by Blanchard and Perotti
(2002), who were interested in decomposing the effects of government spending and taxes on GDP. They
proposed a three-variable system consisting of real government spending (net of transfers), real tax rev-
enues (including transfer payments as negative taxes), and real GDP. All variables are measured in logs.
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They start with the restrictions a21 = a12 = b31 = b32 = b13 = b23 = 0, or

A =

2

4
1 0 a13

0 1 a23

a31 a32 1

3

5 , B =

2

4
b11 b12 0
b21 b22 0

0 0 b33

3

5 .

This is done so that that the relationship between the shocks "1t and "2t is treated as reduced-form, but
the coefficients in the A matrix can be interpreted as contemporeneous elasticities between the vari-
ables. For example, a23 is the within-quarter elasticity of tax revenue with respect to GDP, a31 is the
within-quarter elasticity of GDP with respect to government spending, etc.

We just described six restrictions, while nine are required for identification. Blanchard and Perotti
(2002) made a strong case for two additional restrictions. First, the within-quarter elasticity of govern-
ment spending with respect to GDP is zero, a13 = 0. This is because government fiscal policy does not
(and cannot) respond to news about GDP within the same quarter. Since the authors defined govern-
ment spending as net of transfer payments there is no “automatic stabilizer” component of spending.
Second, the within-quarter elasticity of tax revenue with respect to GDP can be estimated from exist-
ing microeconometric studies. The authors survey the available literature and set a23 = °2.08. To fully
identify the model we need one final restriction. The authors argue that there is no clear case for any
specific restriction, and so impose a recursive B matrix (setting b12 = 0) and experiment with the alter-
native b21 = 0, finding that the two specifications are near-equivalent since the two shocks are nearly
uncorrelated. In summary the estimated model takes the form

A =

2

4
1 0 0
0 1 °2.08

a31 a32 1

3

5 , B =

2

4
b11 0 0
b21 b22 0

0 0 b33

3

5 .

Blanchard and Perotti (2002) make use of both matrices A and B . Other authors use either the sim-
pler structure Ae t = "t or e t = B"t . In general, either of the two simpler structures are simpler to compute
and interpret.

Taking the variance of the variables on each side of (15.21) we find

AßA
0 = B B

0. (15.23)

This is a system of quadratic equations in the free parameters. If the model is just identified it can be
solved numerically to find the coefficients of A and B given ß. Similarly, given the least-squares error
covariance matrix bßwe can numerically solve for the coefficients of bA and bB .

While most applications use just-identified models, if the model is over-identified (if there are fewer
free parameters than estimated components of ß) then the coefficients of bA and bB can be found using
minimum distance. The implementation in Stata uses MLE (which simultaneously estimates the VAR
coefficients). The latter is appropriate when the model is correctly specified (including normality) but
otherwise an unclear choice.

Given the parameter estimates the structural impulse response function is

ÅSIRF(h) = b£(h)bA°1 bB .

The structural forecast error decompositions are calculated as before, with b j replaced by the j th column

of bA°1 bB .
The structural impulse responses are non-linear functions of the VAR coefficient and variance matrix

estimators, so by the delta method are asymptotically normal. Thus asymptotic standard errors can
be calculated (using numerical derivatives if convenient). As for orthogonalized impulse responses the
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asymptotic normal approximation is unlikely to be a good approximation so bootstrap methods are an
attractive alternative.

Structural VARs should be interpreted similarly as instrumental variable estimators. Their interpre-
tation relies on valid exclusion restrictions, which can only be justified by external information.

We replicate a simplified version of Blanchard-Perotti (2002). We use2 quarterly variables from FRED-
QD for 1959-2017: real GDP ( ), real tax revenue ( ), and real government spending ( ),
all in natural logarithms. Using the AIC for lag length selection, we estimate VARs from one to eight lags
and select a VAR(5). The model also includes a linear and quadratic function of time3. The estimated
structural impulse responses of the three variables with respect to the government spending shock are
displayed in Figure 15.3, and the impulse responses with respect to the tax revenue shock are displayed
in Figure 15.4. The estimated impulse responses are very similar to those reported in Blanchard and
Perotti (2002).

In Figure 15.3 we see that the effect of a government spending shock is persistent, increasing govern-
ment spending about 1% for the four-year horizon. The effect on tax revenue is minimal. The effect on
GDP is positive, small (around 0.25%), but persistent.
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(c) GDP

Figure 15.3: Response to a Government Spending Shock

In Figure 15.4 we see that the effect of a tax revenue shock is quite different. The initial effect on
tax revenue is high, but diminishes to zero by about two years. The effect on government spending is
mildly negative4. The effect on GDP is negative and persistent, and more substantial than the effect of
a spending shock, reaching about °0.5% at six quarters. Together, the impulse response estimates show
that changes in government spending and tax revenue have meaningful economic impacts. Increased
spending has a positive effect on GDP, while increased taxes has a negative effect.

The Blanchard-Perotti (2002) paper is an excellent example of how credible exclusion restrictions can
be used to identify a non-recursive structural system to help answer an important economic question.
The within-quarter exogeneity of government spending is compelling, and the use of external informa-
tion to fix the elasticity of tax revenue with respect to GDP is clever.

Structural vector autoregressions can be estimated in Stata using the command. Short-run
restrictions of the form (15.21) can be imposed using the and options. Structural impulse re-
sponses can be displayed using and structural forecast error decompositions using

2These are similar to, but not the same as, the variables used by Blanchard and Perotti.
3The authors detrend their data using a quadratic function of time. By the FWL Theorem this is equivalent to including a

quadratic in time in the regression.
4The estimated negative effect is difficult to explain, and was not discussed in Blanchard-Perotti.
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Figure 15.4: Response to a Tax Revenue Shock

. Unfortunately Stata does not provide a convenient way to display cumulative struc-
tural impulse response functions. The same limitations for standard error and confidence interval con-
struction in Stata hold for structural impulse response functions as for non-structural impulse response
functions.

15.26 Identification of Structural VARs

The coefficient matrices A and B in (15.21) are identified if they can be uniquely solved from (15.23).
This is a set of m(m+1)/2 unique equations so the total number of free coefficients in A and B cannot be
larger than m(m +1)/2, e.g., 6 when m = 3. This is the order condition for identification. It is necessary,
but not sufficient. It is quite easy to write down restrictions which satisfy the order condition but do not
produce an identified system.

It is difficult to see if the system is identified simply by looking at the restrictions (except in the recur-
sive case, which is relatively straightforward to identify). An intuitive way of verifying identification is to
use our knowledge of instrumental variables. We can identify the equations sequentially, one at a time,
or in blocks, using the metaphor of instrumental variables.

The general technique is as follows. Start by writing out the system imposing all restrictions and
absorbing the diagonal elements of B into the shocks (so that they are still uncorrelated but have non-
unit variances). For the Blanchard-Perotti (2002) example, this is

e1t = "1t

e2t = 2.08e3t +b21"1t +"2t

e3t =°a31e1t °a32e2t +"3t .

Take the equations one at a time and ask if they can be estimated by instrumental variables using the
excluded variables as instruments. Once an equation has been verified as identified, then its shock is
identified and can be used as a valid instrument (since it is uncorrelated with the shocks in the other
equations).

In this example take the equations as ordered. The first equation is identified as there are no coef-
ficients to estimate. Thus "1t is identified. For the second equation there is one free parameter which
can be estimated by least squares of e2t °2.08e3t on "1t , which is valid since "1t and "2t are uncorrelated.
This identifies the second equation and the shock "2t . The third equation has two free parameters and
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two endogenous regressors, so we need two instruments. We can use the shocks "1t and "2t , as they are
uncorrelated with "3t and are correlated with the variables e1t and e2t . Thus this equation is identified.
We deduce that the system is identified.

Consider another example, based on Keating (1992). He estimated a four-variable system with prices,
the fed funds rate, M2, and GDP. His model for the errors takes the form Ae t = "t . Written out explicitly:

eP = "AS

eF F = a23eM +"MS

eM = a31 (eP +eGDP )+a32eF F +"MD

eGDP = a41eP +a42eF F +a43eM +"I S

where the four shocks are “aggregate supply”, “money supply”, “money demand”, and “I-S”. This struc-
ture can be based on the following assumptions: An elastic short-run aggregate supply curve (prices do
not respond within a quarter); a simple monetary supply policy (the fed funds rate only responds within
quarter to the money supply); money demand only responds to nominal output (log price plus log real
output) and fed funds rate within quarter; and unrestricted I-S curve.

To analyze conditions for identification we start by checking the order condition. There are 10 coeffi-
cients in the system (including the four variances), which equals m(m+1)/2 since m = 4. Thus the order
condition is exactly satisfied.

We then check the equations for identification. We start with the first equation. It has no coefficients
so is identified and thus so is "AS . The second equation has one coefficient. We can use "AS as an in-
strument because it is uncorrelated with "MS . The relevance condition will hold if "AS is correlated with
eM . From the third equation we see that this will hold if a31 6= 0. Given this assumption a23 and "MS are
identified. The third equation has two coefficients so we can use ("AS , "MS) as instruments since they
are uncorrelated with "MD . "MS is correlated with eF F and "AS is correlated with eP . Thus the relevance
condition is satisfied. The final equation has three coefficients, so we use ("AS , "MS ,"MD ) as instruments.
They are uncorrelated with "I S and correlated with the variables (eP ,eF F ,eM ) so this equation is identi-
fied.

We find that the system is identified if a31 6= 0. This requires that money demand responds to nom-
inal GDP, which is a prediction from standard monetary economics. This condition seems reasonable.
Regardless, the point of this exercise is to determine specific conditions for identification, and articulate
them in your analysis.

15.27 Long-Run Restrictions

To review, the algebraic identification problem for impulse response estimation is that we require a
square root matrix B = ß1/2 yet the latter is not unique and the results are sensitive to the choice. The
non-uniqueness arises because B has m2 elements while ß has m(m +1)/2 free elements The recursive
solution is to set B to equal the Cholesky decomposition ofß, or equivalently to specify B as lower trian-
gular. Structural VARs based on short-run (contemporeneous) restrictions generalize this idea by allow-
ing general restrictions on B based on economic assumptions about contemporeneous causal relations
and prior knowledge about B . Identification requires m(m ° 1)/2 restrictions. Even more generally, a
structural VAR can be constructed by imposing m(m ° 1)/2 restrictions due to any known structure or
features of the impulse response functions.

One important class of such structural VARs are those based on long-run restrictions. Some eco-
nomic hypotheses imply restrictions on long-run impulse responses. These can provide a compelling
case for identification.
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An influential example of a structural VAR based on a long-run restriction is Blanchard and Quah
(1989). They were interested in decomposing the effects of demand and supply shocks on output. Their
hypothesis is that demand shocks are long-run neutral, meaning that the long-run impact of a demand
shock on output is zero. This implies that the long-run impulse response of output with respect to de-
mand is zero. This can be used as an identifying restriction.

The long-run structural impulse response is the cumulative sum of all impulse responses

C =
1X

`=1
£`B =£(1)B = A (1)°1

B .

A long-run restriction is a restriction placed on the matrix C . Since the sum A (1) is identified this pro-
vides identifying information on the matrix B .

Blanchard and Quah (1989) suggest a bivariate VAR for the first-differenced logarithm of real GDP
and the unemployment rate. Blanchard-Quah assume that the structural shocks are aggregate supply
and aggregate demand. They adopt the hypothesis that aggregate demand has no long-run impact on
GDP. This means that the long-run impulse response matrix satisfies

C =
∑

c11 c12

c21 c22

∏
=

∑
c11 0
c21 c22

∏
. (15.24)

Another way of thinking about this is that Blanchard-Quah label “aggregate supply” as the long-run com-
ponent of GDP and label “aggregate demand” as the transitory component of GDP.

The relations C = A (1)°1
B and B B

0 =ß imply

CC
0 = A (1)°1

B B
0
A (1)°10 = A (1)°1ßA (1)°10 . (15.25)

This is a set of m2 equations but because the matrices are positive semi-definite there are m(m + 1)/2
independent equations. If the matrix C has m(m+1)/2 free coefficients then the system is identified. This
requires m(m °1)/2 restrictions. In the Blanchard-Quah example, m = 2 so one restriction is sufficient
for identification.

In many applications, including Blanchard-Quah, the matrix C is lower triangular which permits the
following elegant solution. Examining (15.25) we see that C is a matrix square root of A (1)°1ßA (1)°10,
and since C is lower triangular it must be the Cholesky decomposition for which simple algorithms are
available. We can then write

C = chol
°

A (1)°1ßA (1)°1¢ .

The plug-in estimator for C is
bC = chol

°bA(1)°1 bßbA(1)°1¢

where
bA(1) = I m ° bA1 ° · · ·° bAp .

By construction, the solution bC will be lower triangular and satisfy the desired restriction.
More generally if the restrictions on C do not take a lower triangular form then the estimator can be

found by numerically solving the system of quadratic equations

bC bC 0 = bA (1)°1 bßbA (1)°10 .

In either case the estimator for B is
bB = bA(1)bC
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and the estimator of the structural impulse response is

ÅSIRF(h) = b£h bB = b£h bA(1)bC .

Notice that by construction the long-run impulse response is

1X

`=1

ÅSIRF(h) =
1X

`=1

b£h bA(1)bC = bA(1)°1 bA(1)bC = bC

so indeed bC is the estimated long-run impulse response, and satisfies the desired restriction.
Long-run structural vector autoregressions can be estimated in Stata using the command using

the option. Structural impulse responses can be displayed using and structural
forecast error decompositions using . This Stata option does not produce asymptotic
standard errors when imposing long-run restrictions, so for confidence intervals bootstrapping is rec-
ommended. The same limitations for such intervals constructed in Stata hold for structural impulse
response functions as the other cases discussed.

Unfortunately a major limitation of the Stata command is that it does not provide a way to dis-
play cumulative structural impulse response functions. In order to display these, one needs to cumulate
the impulse response estimates. This can be done, but then standard errors and confidence intervals are
not available. This means that for serious applied work the programming needs to be done outside of
Stata.

15.28 Blanchard and Quah (1989) Illustration

As we described in the previous section, Blanchard and Quah (1989) estimated a bivariate VAR in GDP
growth and the unemployment rate assuming that the the structural shocks are aggregate supply and
aggregate demand, imposing that that the long-run response of GDP with respect to aggregate demand
is zero. Their original application used U.S. data for 1950-1987. We revisit using FRED-QD (1959-2017).
While Blanchard and Quah used a VAR(8) model, the AIC selects a VAR(3). We use a VAR(4). To ease
the interpretation of the impulse responses the unemployment rate is entered negatively (multiplied by
°1) so that both series are pro-cyclical and positive shocks increase output. Blanchard and Quah used a
careful detrending method; instead we including a linear time trend in the estimated VAR.

The fitted reduced form model coefficients satisfy

bA(1) = I m °
4X

j=1

bA j =
µ

0.42 0.05
°0.15 0.04

∂

and the residual covariance matrix is

bß=
µ

0.531 0.095
0.095 0.053

∂
.

We calculate

bC = chol
°bA (1)°1 bßbA (1)°10¢=

µ
1.00 0
4.75 5.42

∂

bB = bA(1)bC =
µ

0.67 0.28
0.05 0.23

∂
.

Examining bB , the unemployment rate is contemporeneously mostly affected by the aggregate demand
shock, while GDP growth is affected by both shocks.
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Using this square root of bß, we construct the structural impulse response functions for GDP and
the unemployment rate as a function of the two shocks (aggregate supply and aggregate demand). The
calculations were done in Stata. Unfortunately the Stata svar command is highly limited and does not
produce cumulative structural impulse responses, which are needed for GDP (as it is estimated in growth
rates). We calculated the impulse responses for GDP by cumulating the impulse responses for GDP
growth. This can be done for the point estimates but does not produce standard errors. For confidence
intervals explicit programming of the estimation would be required.
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(b) Demand Shock

Figure 15.5: Response of GDP

In Figures 15.5 and 15.6 we display the estimated structural impulse response functions. Figure 15.5
displays the impulse responses of GDP and Figure 15.6 displays the impulse responses of the (negative)
unemployment rate. The left panels display the impulse responses with respect to the aggregate supply
shock, and the right panels the impulse responses with respect to the aggregate demand shock. Figure
15.6 displays 95% normal approximation bootstrap intervals, calculated from 10,00 bootstrap replica-
tions. The four estimated impulse responses have similar hump shapes with a peak around four quarters.
The estimated functions are similar to those found by Blanchard and Quah (1989).
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(b) Demand Shock

Figure 15.6: Response of Unemployment Rate

Let’s examine and contrast panels (a) and (b) of Figure 15.5. These are the responses of GDP to ag-
gregate supply and demand shocks, respectively. We can see in panel (a) that the impulse response due
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to a supply shock is immediate, strong, and persistent. The effect peaks around four quarters, and then
flattens, with an effect at 24 quarters similar to the immediate effect. In contrast we can see in panel (b)
that the effect of a demand shock is more modest, peaks sooner, and decays, with the effect near zero by
24 quarters. The decay reflects the long-run neutrality of demand shocks. While the estimated effect is
transitory the duration of the effect is still meaningful out to three years.

Figure 15.6 displays the responses of the unemployment rate. Its response to a supply shock (panel
(a)) takes several quarters to take effect, peaks around 5 quarters, and then decays. The response of the
unemployment rate to a demand shock (panel (b)) is more immediate, peaks around 4 quarters, and then
decays. Both are near zero by 6 years. The confidence intervals for the supply shock impulse responses
are much wider than those for the demand shocks, indicating that the estimates of the impulse responses
due to supply shocks are not precisely estimated.
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(b) Unemployment Rate

Figure 15.7: Forecast Error Decomposition, % due to Supply Shock

Figure 15.7 displays the estimated structural forecast error decompositions. Since there are only two
errors we only display the percentage squared error due to the supply shock. In panel (a) we display the
forecast error decomposition for GDP and in panel (b) the forecast error decomposition for the unem-
ployment rate. We can see that about 80% of the fluctuations in GDP are attributed to the supply shock.
For the unemployment rate, the short-term fluctuations are mostly attributed to the demand shock, but
the long-run impact is about 40% due to the supply shock. The confidence intervals are very wide, how-
ever, indicating that these estimates are not precise.

It is fascinating that the structural impulse response estimates shown here are nearly identical in
form to those found by Blanchard and Quah (1989), despite the fact that we have used a much different
sample period.

15.29 External Instruments

Structural VARs can also be identified and estimated using external instrumental variables. This
method is also called Proxy SVARs. Consider the three-variable simultaneous equation system for the
innovations

e1t +a12e2t +a13e3t = "1t (15.26)

a21e1t +e2t = "2t +b23"3t = u2t (15.27)

a31e1t + e3t = b32"2t +"3t = u3t . (15.28)
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In this system we have used the normalization b11 = b22 = b33 = 1 rather than normalizing the variances
of the shocks.

Suppose we have an external instrumental variable zt which satisfies the properties

E [zt"1t ] 6= 0 (15.29)

E [zt"2t ] = 0 (15.30)

E [zt"3t ] = 0. (15.31)

Equation (15.29) is the relevance condition, that the instrument and the shock "1t are correlated. Equa-
tions (15.30)-(15.31) are the exogeneity condition, that the instrument is uncorrelated with the shocks
"2t and "3t . Identification rests on the validity of these assumptions.

Suppose e1t , e2t and e3t were observed. Then the coefficient a21 in (15.27) can be estimated by in-
strumental variables regression of e2t on e1t using the instrumental variable zt . This is valid because zt

is uncorrelated with u2t = "2t +b23"3t under the assumptions (15.30)-(15.31) yet is correlated with e1t

under (15.29). Given this estimator we obtain a residual bu2t . Similarly we can estimate a31 in (15.27)
by instrumental variables regression of e3t on e1t using the instrumental variable zt , obtaining a resid-
ual bu3t . We can then estimate a12 and a13 in in (15.26) by instrumental variables regression of e1t on
(e2t ,e3t ) using the instrumental variables ( bu2t , bu3t ). The latter are valid instruments since E [u2t"1t ] = 0
and E [u3t"1t ] = 0 since the structural errors are uncorrelated, and because (u2t ,u3t ) is correlated with
(e2t ,e3t ) by construction. This regression also produces a residual b"1t which is an appropriate estimator
for the shock "1t .

This estimation method is not special for a three-variable system; it can be applied for any m. The
identified coefficients are those in the first equation (15.26), the structural shock "1t , and the impacts (a21

and Æ31) of this shock on the other variables. The other shocks "2t and "3t are not separately identified,
and their correlation structure (b23 and b32) is not identified. An exception arises when m = 2, in which
case all coefficients and shocks are identified.

While e1t , e2t and e3t are not observed we can replace their values by the residuals be1t , be2t and be3t

from the estimated VAR(p) model. All of the coefficient estimates are then two-step estimators with gen-
erated regressors. This affects the asymptotic distribution so conventional asymptotic standard errors
should not be used. Bootstrap confidence intervals are appropriate.

The structure (15.26)-(15.28) is convenient as four coefficients can be identified. Other structures
can also be used. Consider the structure

e1t = "1t +b12"2t +b23"3t

e2t = b21"1t +"2t +b23"3t

e3t = b31"1t +b32"2t +"3t

If the same procedure is applied, we can identify the coefficients b21 and b31 and the shock "1t but no
other coefficients or shocks. In this structure the coefficients b12 and b23 cannot be separately identified
because the shocks "2t and "3t are not separately identified.

For more details see Stock and Watson (2012) and Mertens and Ravn (2013).

15.30 Dynamic Factor Models

Dynamic factor models are increasingly popular in applied time series, in particular for forecasting.
For a recent detailed review of the methods see Stock and Watson (2016) and the references therein. For
some of the foundational theory see Bai (2003) and Bai and Ng (2002, 2006).
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In Section 11.12 we introduced the standard multi-factor model (11.23):

x t = H f t +u t (15.32)

where x t and u t are k£1, H is k£r with r < k, and f t is r £1. The elements of f t are called the common
factors as they affect all elements of x t . The columns of H are called the factor loadings. The variables u t

are called the individual errors. It is assumed that the elements of x t have been transformed to be mean
zero and have common variances.

In the time-series case it is natural to augment the model to allow for dynamic relationships. In
particular we would like to allow f t and u t to be serially correlated. It is convenient to consider vector
autoregressive models which can be written using lag operator notation as

A (L) f t = v t (15.33)

B (L)u t = e t (15.34)

where A (L) and B (L) are lag polynomials with p and q lags, respectively. Equations (15.32)-(15.33)-
(15.34) together make the standard dynamic factor model. To simplify the model and aid identification,
further restrictions are often imposed, in particular that the lag polynomial B (L) is diagonal.

Furthermore we may wish to generalize (15.32) to allow f t to impact x t via a distributed lag relation-
ship. This generalization can be written as

x t = H (L) f t +u t (15.35)

where H (L) is an `th order distributed lag of dimension k £ r . Equation (15.35), however, is not fun-
damentally different from (15.32). That is, if we define the stacked factor vector F t =

°
f
0
t , f

0
t°1, ..., f

0
t°`

¢0

then (15.35) can be written in the form (15.32) with F t replacing f t and the matrix H replaced by (H 1, H 2, ..., H`).
Hence we will focus on the standard model (15.32)-(15.33)-(15.34).

Define the inverse lag operators D (L) = A (L)°1 and C (L) = B (L)°1. Then by applying C (L) to (15.32)
and D (L) to (15.33) we obtain

C (L) x t =C (L) H f t +C (L)u t

=C (L) HD (L) v t +e t

= H (L) v t +e t

where H (L) = C (L) HD (L). For simplicity treat this lag polynomial as if it has ` lags. Using the same
stacking trick from the previous paragraph and defining V t =

°
v
0
t , v

0
t°1, ..., v

0
t°`

¢0 we find that this model
can be written as

C (L) x t = HV t +e t (15.36)

for some k £ r` matrix H . This is known as the static form of the dynamic factor model. It shows that x t

can be written as a function of its own lags plus a linear function of the serially uncorrelated factors V t

and a serially uncorrelated error e t .
The static form (15.36) is convenient as PCA methods can be used for estimation. The model is iden-

tical to PCA with additional regressors as described in Section 11.13. (The additional regressors are the
lagged values of x t .) In that section it is described how to estimate the coefficients and factors by iterating
between multivariate least squares and PCA.

To estimate the explicit dynamic model (15.32)-(15.33)-(15.34) state-space methods are convenient.
For details and references see Stock and Watson (2016).

The dynamic factor model (15.32)-(15.33)-(15.34) can be estimated in Stata using the com-
mand.
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15.31 Technical Proofs*

Proof of Theorem 15.4 First, observe that if we write A
` =

£
Bi j ,`

§
, x t = (x1t , ..., xmt )0 and u t = (u1t , ...,umt )0

then x t =
P1
`=0 A

`
u t°` is the same as

xi t =
mX

j=1

1X

`=0
Bi j ,`u j t .

Applying Theorem 14.6, this is convergent, strictly stationary, and ergodic if
P1
`=0

ØØBi j ,`
ØØ <1 for each i

and j .
By the Jordan matrix decomposition, A = P J P

°1 where J = diag{J 1, ..., J r } is in Jordan normal form.
Thus

x t =
1X

`=0
A
`

u t°` = P

1X

`=0
J
`

v t°` (15.37)

where v t = P
°1

u t is strictly stationary and ergodic and satisfies Ekv tk<1. Since J is block diagonal the
sum in (15.37) converges if and only if each block converges.

The dimension of each Jordan block J i is determined by the multiplicity of the eigenvalues of A. For
unique eigenvalues ∏, J i =∏ so J

`
i =∏` which is absolutely summable if |∏| < 1.

For eigenvalues with double multiplicity the Jordan blocks take the form

J i =
∑
∏ 1
0 ∏

∏

where ∏ is an eigenvalue of A. We calculate that

J
`
i =

∑
∏` `∏`°1

0 ∏`

∏
.

If |∏| < 1 these elements are absolutely summable by Theorem 14.20.
For eigenvalues with higher multiplicity s the Jordan blocks are s £ s with a similar form. Similar

calculations show that the elements of J
`
i are absolutely summable if |∏| < 1. This verifies the conditions

for summability as required. Á

Proof of Theorem 15.6 Factor the autoregressive polynomial as

A (z) = I m ° A1z ° · · ·° Ap zp =
pY

j=1

°
I m °G j z

¢
.

Then

det(A (z)) =
pY

j=1
det

°
I m °G j z

¢
.

If ∏ is a solution to det(A (z)) = 0 this means det
°

I m °G j∏
¢
= 0 for some j , which means ∏°1 is an eigen-

value of G j . The assumption |∏| > 1 means the eigenvalues of G1, ...,Gm are less than one. By Theorem
15.5 the processes

u1t =G1u1t°1 +e t

u2t =G2u2t°1 +u1t

...

umt =Gmumt°1 +um°1,t



CHAPTER 15. MULTIVARIATE TIME SERIES 576

are all strictly stationary and ergodic. But

umt = (I m °GmL)°1
um°1,t

= (I m °GmL)°1 (I m °Gm°1L)°1
um°2,t

=
pY

j=1

°
I m °G j L

¢°1
e t

= A (L)°1
e t

= y t .

Thus y t is strictly stationary and ergodic. Á

Proof of Theorem 15.7 The assumption thatß> 0 means that if we regress y1t on y2t , ..., ypt and y t°1, ..., y t°p
that the error will have positive variance. If Q is singular then there is some ∞ such that ∞0

Q∞= 0. As in
the proof of Theorem 14.28 this means that the regression of y1t on y2t , ..., ypt , y t°1, ..., y t°p+1 has a zero
variance. This is a contradiction. We conclude that Q is not singular. Á

Proof of Theorem 15.11 The first part of the theorem is established by back-substitution. Since y t is a
VAR(p) process,

y t+h = a0 + A1 y t+h°1 + A2 y t+h°2 +·· ·+ Ap y t+h°p +e t .

We then substitute out the first lag. We find

y t+h = a0 + A1

≥
a0 + A1 y t+h°2 + A2 y t+h°3 +·· ·+ Ap y t+h°p°1 +e t°1

¥
+ A2 y t+h°2 +·· ·+ Ap y t+h°p +e t

= a0 + A1a0 + (A1 A1 + A2) y t+h°2 + (A1 A2 + A3) y t+h°3 +·· ·+ Ap Ap y t+h°p°1 + A1e t°1 +e t .

We continue making substitutions. With each substitution the error increases its MA order. After h °1
substitutions the equation takes the form (15.12) with u t an MA(h-1) process.

To recognize that B 1 = £h , notice that the deduction that u t is an MA(h-1) process means that we
can equivalently write (15.12) as

y t+h = b0 +
1X

j=1
B j y t+1° j +u t

with B j = 0 for j > p. That is, the equation (15.12) includes all relevant lags. By the projection properties
of regression coefficients this means that the coefficient B 1 is invariant to replacing the regressor y t by
the innovation from its regression on the other lags. This is the VAR(p) model itself which has innovation
e t . We have deduced that the coefficient B 1 is equivalent to that in the regression

y t+h = b0 +B 1e t +
1X

j=2
B j y t+1° j +u t .

Notice that e t is uncorrelated with the other regressors. Thus B 1 = @
@e

0
t
P t

£
y t+h

§
=£h as claimed. This

completes the proof. Á
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15.32 Exercises

Exercise 15.1 Take the VAR(1) model y t = Ay t°1 + e t . Assume e t is i.i.d. For each specified matrix A

below, check if y t is strictly stationary. Feel free to use mathematical software to compute eigenvalues if
needed.

(a) A =
∑

0.7 0.2
0.2 0.7

∏

(b) A =
∑

0.8 0.4
0.4 0.8

∏

(c) A =
∑

0.8 0.4
°0.4 0.8

∏

Exercise 15.2 Take the VAR(2) model y t = A1 y t°1+A2 y t°2+e t with A1 =
∑

0.3 0.2
0.2 0.3

∏
and A2 =

∑
0.4 °0.1
°0.1 0.4

∏
.

Assume e t is i.i.d. Is y t strictly stationary? Feel free to use mathematical software if needed.

Exercise 15.3 Suppose y t = Ay t°1 +u t and u t = Bu t°1 + e t . Show that y t is a VAR(2) and derive the
coefficient matrices and equation error.

Exercise 15.4 Suppose yi t , i = 1, ...,m, are independent AR(p) processes. Derive the form of their joint
VAR representation.

Exercise 15.5 In the VAR(1) model y t = A1 y t°1 + e t find an explicit expression for the h-step moving
average matrix£h from (15.4).

Exercise 15.6 In the VAR(2) model y t = A1 y t°1 + A2 y t°2 + e t find explicit expressions for the moving
average matrix£h from (15.4) for h = 1, ...4.

Exercise 15.7 Derive a VAR(1) representation of a VAR(p) process analogously to equation (14.41) for au-
toregressions. Use this to derive an explicit formula for the h-step impulse response IRF(h) analogously
to (14.42).

Exercise 15.8 Let y t = (y1t , y2t )0 be 2£1 and consider a VAR(2) model. Suppose y2t does not Granger-
cause y1t . What are the implications for the VAR coefficient matrices A1 and A2?

Exercise 15.9 Continuting the previous exercise, suppose that both y2t does not Granger-cause y1t , and
y1t does not Granger-cause y2t . What are the implications for the VAR coefficient matrices A1 and A2?

Exercise 15.10 Suppose that you have 20 years of monthly observations on m = 8 variables. Your advisor
generally recommends p = 12 lags to account for annual patterns. How many coefficients per equation
will you be estimating? How many observations do you have? In this context does it make sense to you
to estimate a VAR(12) with all eight variables?

Exercise 15.11 Let be t be the least squares residuals from an estimated VAR, bß be the residual covariance
matrix, and bB = chol(bß). Show that bB can be calculated by recursive least squares using the residuals.

Exercise 15.12 Cholesky factorization
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(a) Derive the Cholesky decomposition of the covariance matrix
∑

æ2
1 Ωæ1æ2

Ωæ1æ2 æ2
1

∏
.

(b) Write the answer for the correlation matrix (the special case æ2
1 = 1 and æ2

2 = 1).

(c) Find an upper triangular decomposition for the correlation matrix. That is, an upper-triangular

matrix R which satisfies RR 0 =
∑

1 Ω

Ω 1

∏
.

(d) Suppose£h =
∑

1 0
1 1

∏
,æ2

1 = 1, andæ2
2 = 1, and Ω = 0.8. Find the orthogonalized impulse response

OIRF(h) using the Cholesky decomposition.

(e) Suppose that the ordering of the variables is reversed. This is equivalent to using the upper trian-
gular decomposition from part (c). Calculate the orthogonalized impulse response OIRF(h).

(f) Compare the two orthogonalized impulse responses.

Exercise 15.13 You read an empirical paper which estimates a VAR in a listed set of variables, and dis-
plays estimated orthogonalized impulse response functions. No comment is made in the paper about
the ordering or the identification of the system, and you have no reason to believe that the order used is
“standard” in the literature. How should you interpret the estimated impulse response functions?

Exercise 15.14 Take the quarterly series gdpc1 (real GDP), gdpctpi (GDP price deflator), and fedfunds
(Fed funds interest rate) from . Transform the first two into growth rates as in Section 15.13.
Estimate the same three-variable VAR(6) using the same ordering. The identification strategy discussed
in Section 15.23 specifies the supply shock as the orthogonalized shock to the GDP equation. Calculate
the impulse response function of GDP, the price level, and the Fed funds rate with respect to this supply
shock. For the first two this will require calculating the cumulative impulse response function. (Explain
why.) Comment on the estimated functions.

Exercise 15.15 Take the dataset which has the variables oil (oil production), output (global
economic activity), and price (price of crude oil). Estimate an orthogonalized VAR(4) using the same
ordering as in Kilian (2009) as described in Section 15.24. (As described in that section, multiply “oil” by
°1 so that all shocks increase prices.) Estimate the impulse response of output with respect to the three
shocks. Comment on the estimated functions.

Exercise 15.16 Take the monthly series permit (building permits), houst (housing starts), and realln (real
estate loans) from FRED-MD. The listed ordering is motivated by transaction timing. A developer is
required to obtain a building permit before they start building a house (the latter is known as a “housing
start”). A real estate loan is obtained when the house is purchased.

(a) Transform realln into growth rates (first difference of logs).

(b) Select an appropriate lag order for the three-variable system by comparing the AIC of VARs of order
1 through 8.

(c) Estimate the VAR model and plot the impulse response functions of housing starts with respect to
the three shocks.

(d) Interpret your findings.



CHAPTER 15. MULTIVARIATE TIME SERIES 579

Exercise 15.17 Take the quarterly series gpdic1 (Real Gross Private Domestic Investment), gdpctpi (GDP
price deflator), gdpc1 (real GDP), and fedfunds (Fed funds interest rate) from . Transform the
first three into logs, e.g. gdp= 100log(gdpc1). Consider a structural VAR based on short-run restrictions.
Use a structure of the form Ae t = "t . Impose the restrictions that the first three variables do not react
to the fed funds rate, that investment does not respond to prices, and that prices do not respond to
investment. Finally, impose that investment is short-run unit elastic with respect to GDP (in the equation
for investment, the A coefficient on GDP is °1).

(a) Write down the matrix A similar to (15.22), imposing the identifying constraints as defined above.

(b) Is the model identified? Is there a condition for identification? Explain.

(c) In this model are output and price simultaneous, or recursive as in the example described in Sec-
tion 15.23.

(d) Estimate the structural VAR using 6 lags, or a different number of your choosing (justify your
choice), and include an exogenous time trend. Report your estimates of the A matrix. Can you
interpret the coefficients?

(e) Estimate and report the following three impulse response functions:

1. The effect of the fed funds rate on GDP.

2. The effect of the GDP shock on GDP.

3. The effect of the GDP shock on Prices.

Exercise 15.18 Take the dataset which has the variables oil (oil production), output (global
economic activity), and price (price of crude oil). Consider a structural VAR based on short-run restric-
tions. Use a structure of the form Ae t = "t . Impose the restrictions that oil production does not respond
to output or oil prices, and that output does not respond to oil production. The last restriction can be
motivated by the observation that supply disruptions take more than a month to reach the retail market,
so the effect on economic activity is similarly delayed by one month.

(a) Write down the matrix A similar to (15.22), imposing the identifying constraints as defined above.

(b) Is the model identified? Is there a condition for identification? Explain.

(c) Estimate the structural VAR using 4 lags, or a different number of your choosing (justify your
choice). (As described in that section, multiply “oil” by °1 so that all shocks increase prices.) Re-
port your estimates of the A matrix. Can you interpret the coefficients?

(d) Estimate the impulse response of oil price with respect to the three shocks. Comment on the esti-
mated functions.

Exercise 15.19 Take the quarterly series gdpc1 (real GDP), m1realx (real M1 money stock), and cpiaucsl
(CPI) from . Create nominal M1 (multiply m1realx times cpiaucsl), and transform real GDP and
nominal M1 to growth rates. The hypothesis of monetary neutrality is that the nominal money supply
has no effect on real outcomes such as GDP. Strict monetary neutrality states that there is no short or
long-term effect. Long-run neutrality states that there is no long-term effect.

(a) To test strict neutrality use a Granger-causality test. Regress GDP growth on four lags of GDP
growth and four lags of money growth. Test the hypothesis that the four money lags jointly have
zero coeffficients. Use robust standard errors. Interpret the results.
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(b) To test long-run neutrality test if the sum of the four coefficients on money growth equals zero.
Interpret the results.

(c) Estimate a structural VAR in real GDP growth and nominal money growth, imposing the long-run
neutrality of money. Explain your method.

(d) Report estimates of the impulse responses of the levels of GDP and nominal money to the two
shocks. Interpret the results.

Exercise 15.20 Shapiro and Watson (1988) estimated a structural VAR imposing long-run constraints.
We will replicate a simplified version of their model. Take the quarterly series hoanbs (hours worked,
nonfarm business sector), gdpc1 (real GDP), and gdpctpi (GDP deflator) from . Transform the
first two to growth rates, and for the third (GDP deflator), take the second difference of the logarithm
(differenced inflation). Shapiro and Watson estimated a structural model imposing the constraints that
labor supply hours are long-run unaffected by output and inflation, and GDP is long-run unaffected by
demand shocks. This implies a recursive ordering in the variables for a long-run restriction.

(a) Write down the matrix C as in (15.24), imposing the identifying constraints as defined above.

(b) Is the model identified?

(c) Use the AIC to select the number of lags for a VAR.

(d) Estimate the structural VAR. Report the estimated C matrix. Can you interpret the coefficients?

(e) Estimate the structural impulse responses of the level of GDP with respect to the three shocks.
Interpret the results.



Chapter 16

Non Stationary Time Series

16.1 Introduction

This chapter is preliminary.

16.2 Trend Stationarity

yt =µ0 +µ1t +St (16.1)

St =Æ1St°1 +Æ2St°2 +·· ·+Æp St°p +et , (16.2)

or
yt =Æ0 +∞t +Æ1 yt°1 +Æ2 yt°1 +·· ·+Æp yt°p +et . (16.3)

There are two essentially equivalent ways to estimate the autoregressive parameters (Æ1, ...,Æp ).

• You can estimate (16.3) by OLS.

• You can estimate (16.1)-(16.2) sequentially by OLS. That is, first estimate (16.1), get the residual
bSt , and then perform regression (16.2) replacing St with bSt . This procedure is sometimes called
Detrending.

The reason why these two procedures are (essentially) the same is the Frisch-Waugh-Lovell theorem.

16.3 Autoregressive Unit Roots

The AR(p) model is

Æ(L)yt =Æ0 +et

Æ(L) = 1°Æ1L° · · ·°Æp Lp .

As we discussed before, yt has a unit root when Æ(1) = 0, or

Æ1 +Æ2 +·· ·+Æp = 1.

In this case, yt is non-stationary. The ergodic theorem and MDS CLT do not apply, and test statistics are
asymptotically non-normal.

581
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A helpful way to write the equation is the so-called Dickey-Fuller reparameterization:

¢yt = Ω0 yt°1 +Ω1¢yt°1 +·· ·+Ωp°1¢yt°(p°1) +et . (16.4)

These models are equivalent linear transformations of one another. The DF parameterization is conve-
nient because the parameter Ω0 summarizes the information about the unit root, since Æ(1) = °Ω0. To
see this, observe that the lag polynomial for the yt computed from (16.4) is

(1°L)°Ω0L°Ω1(L°L2)° · · ·°Ωp°1(Lp°1 °Lp )

But this must equal Ω(L), as the models are equivalent. Thus

Æ(1) = (1°1)°Ω0 ° (1°1)° · · ·° (1°1) =°Ω0.

Hence, the hypothesis of a unit root in yt can be stated as

H0 : Ω0 = 0.

Note that the model is stationary if Ω0 < 0. So the natural alternative is

H1 : Ω0 < 0.

Under H0, the model for yt is

¢yt =µ+Ω1¢yt°1 +·· ·+Ωp°1¢yt°(p°1) +et ,

which is an AR(p-1) in the first-difference ¢yt . Thus if yt has a (single) unit root, then ¢yt is a stationary
AR process. Because of this property, we say that if yt is non-stationary but ¢d yt is stationary, then yt is
“integrated of order d”, or I (d). Thus a time series with unit root is I (1).

Since Æ0 is the parameter of a linear regression, the natural test statistic is the t-statistic for H0 from
OLS estimation of (16.4). Indeed, this is the most popular unit root test, and is called the Augmented
Dickey-Fuller (ADF) test for a unit root.

It would seem natural to assess the significance of the ADF statistic using the normal table. How-
ever, under H0, yt is non-stationary, so conventional normal asymptotics are invalid. An alternative
asymptotic framework has been developed to deal with non-stationary data. We do not have the time to
develop this theory in detail, but simply assert the main results.

Theorem 16.1 Dickey-Fuller Theorem. If Ω0 = 0 then as n !1,

n bΩ0 °!
d

°
1°Ω1 °Ω2 ° · · ·°Ωp°1

¢
DFÆ

ADF = bΩ0

s(bΩ0)
! DFt .

The limit distributions DFÆ and DFt are non-normal. They are skewed to the left, and have negative
means.

The first result states that bΩ0 converges to its true value (of zero) at rate n, rather than the conven-
tional rate of n1/2. This is called a “super-consistent” rate of convergence.
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The second result states that the t-statistic for bΩ0 converges to a limit distribution which is non-
normal, but does not depend on the parameters Ω. This distribution has been extensively tabulated,
and may be used for testing the hypothesis H0. Note: The standard error s(bΩ0) is the conventional (“ho-
moskedastic”) standard error. But the theorem does not require an assumption of homoskedasticity.
Thus the Dickey-Fuller test is robust to heteroskedasticity.

Since the alternative hypothesis is one-sided, the ADF test rejects H0 in favor of H1 when ADF < c,
where c is the critical value from the ADF table. If the test rejectsH0, this means that the evidence points
to yt being stationary. If the test does not reject H0, a common conclusion is that the data suggests
that yt is non-stationary. This is not really a correct conclusion, however. All we can say is that there is
insufficient evidence to conclude whether the data are stationary or not.

We have described the test for the setting of with an intercept. Another popular setting includes as
well a linear time trend. This model is

¢yt =µ1 +µ2t +Ω0 yt°1 +Ω1¢yt°1 +·· ·+Ωp°1¢yt°(p°1) +et . (16.5)

This is natural when the alternative hypothesis is that the series is stationary about a linear time trend.
If the series has a linear trend (e.g. GDP, Stock Prices), then the series itself is non-stationary, but it may
be stationary around the linear time trend. In this context, it is a silly waste of time to fit an AR model to
the level of the series without a time trend, as the AR model cannot conceivably describe this data. The
natural solution is to include a time trend in the fitted OLS equation. When conducting the ADF test, this
means that it is computed as the t-ratio for Ω0 from OLS estimation of (16.5).

If a time trend is included, the test procedure is the same, but different critical values are required.
The ADF test has a different distribution when the time trend has been included, and a different table
should be consulted.

Most texts include as well the critical values for the extreme polar case where the intercept has been
omitted from the model. These are included for completeness (from a pedagogical perspective) but have
no relevance for empirical practice where intercepts are always included.

16.4 Cointegration

The idea of cointegration is due to Granger (1981), and was articulated in detail by Engle and Granger
(1987).

Definition 16.1 The m £1 series y t is cointegrated if y t is I (1) yet there exists
Ø, m £ r , of rank r, such that z t = Ø0

y t is I (0). The r vectors in Ø are called the
cointegrating vectors.

If the series y t is not cointegrated, then r = 0. If r = m, then y t is I (0). For 0 < r < m, y t is I (1) and
cointegrated.

In some cases, it may be believed that Ø is known a priori. Often, Ø= (1 °1)0. For example, if y t is a
pair of interest rates, then Ø= (1 °1)0 specifies that the spread (the difference in returns) is stationary.
If y = (log(C ) log(I ))0, then Ø= (1 °1)0 specifies that log(C /I ) is stationary.

In other cases, Ø may not be known.
If y t is cointegrated with a single cointegrating vector (r = 1), then it turns out that Ø can be consis-

tently estimated by an OLS regression of one component of y t on the others. Thus y t = (Y1t ,Y2t ) and
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Ø = (Ø1 Ø2) and normalize Ø1 = 1. Then bØ2 = (y
0
2 y 2)°1

y
0
2 y 1 °!

p
Ø2. Furthermore this estimator is super-

consistent: T ( bØ2°Ø2) =Op (1), as first shown by Stock (1987). While OLS is not, in general, a good method
to estimate Ø, it is useful in the construction of alternative estimators and tests.

We are often interested in testing the hypothesis of no cointegration:

H0 : r = 0

H1 : r > 0.

Suppose that Ø is known, so z t = Ø0
y t is known. Then under H0 z t is I (1), yet under H1 z t is I (0).

Thus H0 can be tested using a univariate ADF test on z t .
WhenØ is unknown, Engle and Granger (1987) suggested using an ADF test on the estimated residual

ẑt = bØ0
y t , from OLS of y1t on y2t . Their justification was Stock’s result that bØ is super-consistent underH1.

Under H0, however, bØ is not consistent, so the ADF critical values are not appropriate. The asymptotic
distribution was worked out by Phillips and Ouliaris (1990).

When the data have time trends, it may be necessary to include a time trend in the estimated coin-
tegrating regression. Whether or not the time trend is included, the asymptotic distribution of the test is
affected by the presence of the time trend.

16.5 Cointegrated VARs

We can write a VAR as

A(L)y t = e t

A(L) = I ° A1L° A2L2 ° · · ·° Ak Lk

or alternatively as
¢y t =¶y t°1 +D(L)¢y t°1 +e t

where

¶=°A(1)

=°I + A1 + A2 +·· ·+ Ak .

Theorem 16.2 Granger Representation Theorem y t is cointegrated with m£
r Ø if and only if rank(¶) = r and¶=ÆØ0 where Æ is m £ r , rank(Æ) = r.

Thus cointegration imposes a restriction upon the parameters of a VAR. The restricted model can be
written as

¢y t =ÆØ0
y t°1 +D(L)¢y t°1 +e t

¢y t =Æz t°1 +D(L)¢y t°1 +e t .

If Ø is known, this can be estimated by OLS of ¢y t on z t°1 and the lags of ¢y t .
If Ø is unknown, then estimation is done by “reduced rank regression”, which is least-squares subject

to the stated restriction. Equivalently, this is the MLE of the restricted parameters under the assumption
that e t is iid N(0,≠).
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One difficulty is that Ø is not identified without normalization. When r = 1, we typically just nor-
malize one element to equal unity. When r > 1, this does not work, and different authors have adopted
different identification schemes.

In the context of a cointegrated VAR estimated by reduced rank regression, it is simple to test for
cointegration by testing the rank of ¶. These tests are constructed as likelihood ratio (LR) tests. As they
were discovered by Johansen (1988, 1991, 1995), they are typically called the “Johansen Max and Trace”
tests. Their asymptotic distributions are non-standard, and are similar to the Dickey-Fuller distributions.



Chapter 17

Panel Data

17.1 Introduction

Economists traditionally use the term panel data to refer to data structures consisting of observa-
tions on individuals for multiple time periods. Other fields such as statistics typically call this structure
longitudinal data. The observed “individuals” can be, for example, people, households, workers, firms,
schools, production plants, industries, regions, states, or countries. The distinguishing feature relative
to cross-sectional data sets is the presence of multiple observations for each individual. More broadly,
panel data methods can be applied to any context with cluster-type dependence.

There are several distinct advantages of panel data relative to cross-section data. One is the possibil-
ity of controlling for unobserved time-invariant endogeneity without the use of instrumental variables.
A second is the possibility of allowing for broader forms of heterogeneity. A third is modeling dynamic
relationships and effects.

There are two broad categories of panel data sets in economic applications: micro panels and macro
panels. Micro panels are typically surveys or administrative records on individuals and are characterized
by a large number of individuals (often in the 1000’s or higher) and a relatively small number of time
periods (often 2 to 20 years). Macro panels are typically national or regional macroeconomic variables
and are characterized by a moderate number of individuals (e.g. 7-20) and a moderate number of time
periods (20-60 years).

Panel data was once relatively esoteric in applied economic practice. Now, it is a dominant feature of
applied research.

A typical maintained assumption for micro panels (which we follow in this chapter) is that the in-
dividuals are mutually independent while the observations for a given individual are correlated across
time periods. This means that the observations follow a clustered dependence structure. Because of
this, current econometric practice is to use cluster-robust covariance matrix estimators when possible.
Similar assumptions are often used for macro panels, though the assumption of independence across
individuals (e.g. countries) is much less compelling.

The application of panel data methods in econometrics started with the pioneering work of Mundlak
(1961) and Balestra and Nerlove (1966).

Several excellent monographs and textbooks have been written on panel econometrics, including
Arellano (2003), Hsiao (2003), Wooldridge (2010), and Baltagi (2013). This chapter will summarize some
of the main themes, but for a more in-depth treatment see these references.

One challenge arising in panel data applications is that the computational methods can require
meticulous attention to detail. It is therefore advised to use established packages for routine applica-
tions. For most panel data applications in economics, Stata is the standard application package.

586
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17.2 Time Indexing and Unbalanced Panels

It is typical to index observations by both the individual i and the time period t , thus yi t denotes a
variable for individual i in period t . We wil index individuals as i = 1, ..., N and time periods as t = 1, ...T .
Thus N is the number of individuals in the panel and T is the number of time series periods.

Panel data sets can involve data at any time series frequency, though the typical application involves
annual data. The observations in a data set will be indexed by calendar time, which for the case of annual
observations is the year. However, for notational convenience it is customary to denote the time periods
as t = 1, ...,T , so that t = 1 is the first time period observed and T is the final time period.

When observations are available on all individuals for the same time periods we say that the panel
is balanced. In this case there are an equal number T of observations for each individual, and the total
number of observations is n = N T .

When different time periods are available for the individuals in the sample we say that the panel is
unbalanced. This is the most common type of panel data set. It does not pose a problem for applica-
tions, but does make the notation a bit cumbersome and can also considerably complicate computer
programming.

To illustrate, consider the data set on the textbook webpage. This is a sample of 1962 U.S.
firms extracted from Compustat and assembled by Bronwyn Hall, and used in the empirical work in Hall
and Hall (1993). In Table 17.1 we display a set of variables from the data set for the first 13 observations.
The first variable is the firm code number. The second variable is the year of the observation. These two
variables are essential for any panel data analysis. In Table 17.1 you can see that the first firm (#32) is
observed for the years 1970 through 1977. The second firm (#209) is observed for 1987 through 1991.
You can see that the years vary considerably across the firms, so this is an unbalanced panel.

For unbalanced panels the time index t = 1, ...,T denotes the full set of time periods. For example, in
the data set there are observations for the years 1960 through 1991, so the total number of
time periods is T = 32. Each individual is observed for a subset of Ti periods. The set of time periods for
individual i is denoted as Si so that individual-specific sums (over time periods) are written as

P
t2Si

.
The observed time periods for a given individual are typically contiguous (for example, in Table 17.1,

firm #32 is observed for each year from 1970 through 1977) but in some cases are non-continguous (if, for
example, 1973 was missing for firm #32). The total number of observations in the sample is n =PN

i=1 Ti .

Table 17.1: Observations from Investment Data Set

Firm Code Number Year Ii t I i İi t Qi t Qi Q̇i t bei t

32 1970 0.122 0.155 -0.033 1.17 0.62 0.55 .
32 1971 0.092 0.155 -0.063 0.79 0.62 0.17 -0.005
32 1972 0.094 0.155 -0.061 0.91 0.62 0.29 -0.005
32 1973 0.116 0.155 -0.039 0.29 0.62 -0.33 0.014
32 1974 0.099 0.155 -0.057 0.30 0.62 -0.32 -0.002
32 1975 0.187 0.155 0.032 0.56 0.62 -0.06 0.086
32 1976 0.349 0.155 0.194 0.38 0.62 -0.24 0.248
32 1977 0.182 0.155 0.027 0.57 0.62 -0.05 0.081

209 1987 0.095 0.071 0.024 9.06 21.57 -12.51 .
209 1988 0.044 0.071 -0.027 16.90 21.57 -4.67 -0.244
209 1989 0.069 0.071 -0.002 25.14 21.57 3.57 -0.257
209 1990 0.113 0.071 0.042 25.60 21.57 4.03 -0.226
209 1991 0.034 0.071 -0.037 31.14 21.57 9.57 -0.283
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17.3 Notation

This chapter focuses on panel data regression models whose observations are pairs (yi t , x i t ) where
yi t is the dependent variable and x i t is a k-vector of regressors. These are the observations on individual
i for time period t .

It will be useful to cluster the observations at the level of the individual. We borrow the notation from
Section 4.22 to write y i as the Ti £1 stacked observations on yi t for t 2 Si , stacked in chronological order.
Similarly, we write X i as the Ti £k matrix of stacked x

0
i t for t 2 Si , stacked in chronological order.

We will also sometimes use matrix notation for the full sample. To do so, let y = (y
0
1, ..., y

0
N )0 denote

the n £1 vector of stacked y i , and set X = (X
0
1, ..., X

0
N )0 similarly.

17.4 Pooled Regression

The simplest model in panel regresion is pooled regresssion

yi t = x
0
i tØ+ei t

E [x i t ei t ] = 0. (17.1)

where Ø is a k £ 1 coefficient vector and ei t is an error. The model can be written at the level of the
individual as

y i = X iØ+e i

E
£

X
0
i e i

§
= 0

where e i is Ti £1. The equation for the full sample is

y = XØ+e

where e is n £1.
The standard estimator of Ø in the pooled regression model is least squares, which can be written as

bØpool =
√

NX

i=1

X

t2Si

x i t x
0
i t

!°1 √
NX

i=1

X

t2Si

x i t yi t

!

=
√

NX

i=1
X

0
i X i

!°1 √
NX

i=1
X

0
i y i

!

=
°

X
0
X

¢°1 °
X

0
y
¢

.

The vector of least-squares residuals for the i th individual is be i = y i°X i bØpool. While it is the conventional

least-squares estimator, in the context of panel data bØpool is called the pooled regression estimator.
The pooled regression model is ideally suited for the context where the errors ei t satisfy strict mean

independence:
E [ei t | X i ] = 0. (17.2)

This occurs when the errors ei t are mean independent of all regressors x i j for all time periods j = 1, ...,T .
Strict mean independence is stronger than pairwise mean independence E [ei t | x i t ] = 0 as well the pro-
jection assumption (17.1). Strict mean independence requires that neither lagged nor future values of x i t

help to forecast ei t . It excludes lagged dependent variables (such as yi t°1) from x i t (otherwise ei t would
be predictable given x i t+1). It also requires that x i t is exogenous in the sense discussed in Chapter 12.
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We now describe some statistical properties of bØpool under (17.2). First, notice that by linearity and
the cluster-level notation we can write the estimator as

bØpool =
√

NX

i=1
X

0
i X i

!°1 √
NX

i=1
X

0
i

°
X iØ+e i

¢
!

=Ø+
√

NX

i=1
X

0
i X i

!°1 √
NX

i=1
X

0
i e i

!

.

Then using (17.2)

E

h
bØpool | X

i
=Ø+

√
NX

i=1
X

0
i X i

!°1 √
NX

i=1
X

0
iE (e i | X i )

!

= 0

so bØpool is unbiased for Ø.
Under the additional assumption that the error ei t is serially uncorrelated and homoskedastic, the

covariance estimator takes a classical form and the classical homoskedastic variance estimator can be
used. If the error ei t is heteroskedastic but serially uncorrelated then a heteroskedasticity-robust covari-
ance matrix estimator can be used.

In general, however, we expect the errors ei t to be correlated across time t for a given individual.
This does not necessarily violate (17.2) but invalidates classical covariance matrix estimation. The con-
ventional solution is to use a cluster-robust covariance matrix estimator which allows arbitrary within-
cluster dependence. Cluster-robust covariance matrix estimators for pooled regression take the form

bV pool =
°

X
0
X

¢°1

√
NX

i=1
X

0
i be i be 0

i X i

!
°

X
0
X

¢°1 .

As in (4.50) this can be multiplied by a degree-of-freedom adjustment. The adjustment used by the Stata
command is

bV pool =
µ

n °1
n °k

∂µ
N

N °1

∂°
X

0
X

¢°1

√
NX

i=1
X

0
i be i be 0

i X i

!
°

X
0
X

¢°1 .

The pooled regression estimator with cluster-robust standard errors can be obtained using the Stata
command where indicates the individual.

When strict mean independence (17.2) fails, however, the pooled least-squares estimator bØpool is
not necessarily consistent for Ø. Since strict mean independence is a strong and typically undesirable
restriction, it is typically preferred to adopt one of the alternative estimation approaches described in
the following sections.

To illustrate the pooled regression estimator, consider the data set described earlier. We
consider a simple investment model

Ii t =Ø1Qi t°1 +Ø2Di t°1 +Ø3C Fi t°1 +Ø4Ti +ei t (17.3)

where I is investment/assets, Q is market value/assets, C F is cash flow/assets, D is long term debt/assets,
and T is a dummy variable indicating if the corporation’s stock is traded on the NYSE or AMEX. The
regression also includes 19 dummy variables indicating an industry code. The Q theory of investment
suggests that Ø1 > 0 while Ø2 = Ø3 = 0. Theories of liquidity constraints suggest that Ø2 < 0 and Ø3 > 0.
We will be using this example throughout this chapter. The values of I and Q for the first 13 observations
are also displayed in Table 17.1.

In Table 17.2 we present the pooled regression estimates of (17.3) in the first column with cluster-
robust standard errors.
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Table 17.2: Estimates of Investment Equation

Pooled Random Effects Fixed Effects Two-Way Hausman-Taylor

Qi t°1
0.0024

(0.0010)
0.0019

(0.0009)
0.0017

(0.0008)
0.0016

(0.0008)
0.0017

(0.0008)

Di t°1
0.0096

(0.0041)
°0.0092
(0.0039)

°0.0139
(0.0049)

°0.0140
(0.0051)

0.0132
(0.0050)

C Fi t°1
0.0261

(0.0111)
0.0412

(0.0125)
0.0491

(0.0132)
0.0476

(0.0129)
0.0408

(0.0119)

Ti
°0.0167
(0.0024)

°0.0181
(0.0028)

°0.0348
(0.0048)

Industry Dummies Yes Yes No No Yes
Time Effects No No No Yes Yes

Cluster-robust standard errors in parenthesis.

17.5 One-Way Error Component Model

One approach to panel data regression is to model the correlation structure of the regression error
ei t . The most common choice is an error-components structure. The simplest takes the form

ei t = ui +"i t (17.4)

where ui is an individual-specific effect and "i t are idiosyncratic (i.i.d.) errors. This is known as a one-
way error component model.

In vector notation we can write
e i = 1i ui +"i

where 1i is a Ti £1 vector of 1’s.
The one-way error component regression model is

yi t = x
0
i tØ+ui +"i t

written at the level of the observation, or

y i = X iØ+1i ui +"i

written at the level of the individual.
To illustrate why an error-component structure such as (17.4) might be appropriate, examine Table

17.1. In the final column we have included the pooled regression residuals bei t for these observations.
(There is no residual for the first year for each firm due to the lack of lagged regressors for this obser-
vation.) What is quite striking is that the residuals for the second firm (#209) are all highly negative,
clustering around °0.25. While informal, this suggests that it may be appropriate to model these errors
using (17.4), expecting that firm #209 has a large negative value for its individual effect u.

17.6 Random Effects

The random effects model assumes that the errors ui and "i t in (17.4) are conditionally mean zero,
uncorrelated, and homoskedastic.
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Assumption 17.1 Random Effects. Model (17.4) holds with

E ["i t | X i ] = 0 (17.5)

E
£
"2

i t | X i
§
=æ2

" (17.6)

E
£
"i t" j t | X i

§
= 0 (17.7)

E [ui | X i ] = 0 (17.8)

E
£
u2

i | X i
§
=æ2

u (17.9)

E [ui"i t | X i ] = 0 (17.10)

where (17.7) holds for all j 6= t .

Assumption 17.1 is known as a random effects specification. It implies that the vector of errors e i for
individual i has the covariance structure

E [e i | X i ] = 0

E
£
e i e

0
i | X i

§
= 1i 10

iæ
2
u + I iæ

2
"

=

0

BBBB@

æ2
u +æ2

" æ2
u · · · æ2

u
æ2

u æ2
u +æ2

" · · · æ2
u

...
...

. . .
...

æ2
u æ2

u · · · æ2
u +æ2

"

1

CCCCA

=æ2
"≠i ,

say, where I i is an identity matrix of dimension Ti . Note≠i = I i +1i 10
iæ

2
u/æ2

".
Observe that Assumptions 17.1.1 and 17.1.4 state that the idiosyncratic error "i t and individual-

specific error ui are strictly mean independent, so the total error ei t is strictly mean independent as
well.

The random effects model is equivalent to an equi-correlation model. That is, suppose that the error
ei t satisfies

E [ei t | X i ] = 0

E
£
e2

i t | X i
§
=æ2

and
E
£
ei j ei t | X i

§
= Ωæ2

for j 6= t . These conditions imply that ei t can be written as (17.4) with the components satisfying As-
sumption 17.1, withæ2

u = Ωæ2 andæ2
" = (1°Ω)æ2. Thus random effects and equi-correlation are identical

models.
The random effects regression model is

yi t = x
0
i tØ+ui +"i t

or
y i = X iØ+1i ui +"i

where the errors satisfy Assumption 17.1.
Given the error structure, the natural estimator for Ø is GLS. Suppose æ2

u and æ2
" are known. The GLS

estimator of Ø is

bØgls =
√

NX

i=1
X

0
i≠

°1
i X i

!°1 √
NX

i=1
X

0
i≠

°1
i y i

!

.
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A feasible GLS estimator replaces the unknown æ2
u and æ2

" with estimates. We discuss this in Section
17.15.

We now describe some statistical properties of the estimator under Assumption 17.1. By linearity we
can write

bØgls °Ø=
√

NX

i=1
X

0
i≠

°1
i X i

!°1 √
NX

i=1
X

0
i≠

°1
i e i

!

.

Thus

E

h
bØgls °Ø | X

i
=

√
NX

i=1
X

0
i≠

°1
i X i

!°1 √
NX

i=1
X

0
i≠

°1
i E [ei | X i ]

!

= 0.

Thus bØgls is unbiased for Ø. The variance of bØgls is

V gls =
√

nX

i=1
X

0
i≠

°1
i X i

!°1

. (17.11)

Now let’s compare bØgls with the pooled estimator bØpool. Under Assumption 17.1 the latter is also
unbiased for Ø and has variance

V pool =
√

nX

i=1
X

0
i X i

!°1 √
nX

i=1
X

0
i≠i X i

!°1 √
nX

i=1
X

0
i X i

!°1

. (17.12)

Using the algebra of the Gauss-Markov Theorem, we can deduce that

V gls ∑V pool (17.13)

and thus the random effects estimator bØgls is more efficient than the pooled estimator bØpool under As-
sumption 17.1. (See Exercise 17.1.) The two variance matrices are identical when there is no individual-
specific effect (when æ2

u = 0) for then

V gls =V pool =
√

nX

i=1
X

0
i X i

!°1

æ2
".

Under the assumption that the random effects model is a useful approximation but not literally true,
then we may consider a cluster-robust covariance matrix estimator such as

bV gls =
√

NX

i=1
X

0
i≠

°1
i X i

!°1 √
NX

i=1
X

0
i≠

°1
i be i be 0

i≠
°1
i X i

!√
nX

i=1
X

0
i≠

°1
i X i

!°1

(17.14)

where be i = y i °X i bØgls. This may be re-scaled by a degree of freedom adjustment if desired.

The random effects estimator bØgls can be obtained using the Stata command . The default
covariance matrix estimator is (17.11). For the cluster-robust covariance matrix estimator (17.14) use the
command . (The command must be used first to declare the group identifier.
For example, is the group identifier in Table 17.1.)

To illustrate, in Table 17.2 we present the random effect regression estimates of the investment model
(17.3) in the second column with cluster-robust standard errors (17.14). The point estimates are reason-
ably different from the pooled regression estimator. The coefficient on debt switches from positive to
negative (the latter consistent with theories of liquidity constraints) and the coefficient on cash flow in-
creases significantly in magnitude.
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17.7 Fixed Effect Model

Consider the one-way error component regression model

yi t = x
0
i tØ+ui +"i t (17.15)

or
y i = X iØ+1i ui +"i . (17.16)

In many applications it is useful to interpret the individual-specific effect ui as a time-invariant unob-
served missing variable. For example, in a wage regression ui may be the unobserved ability of individual
i . In the investment model (17.3) ui may be a firm-specific productivity factor.

When ui is interpreted as a missing variable it is natural to expect it to be correlated with the regres-
sors x i t . This is especially the case when x i t includes choice variables.

To illustrate, consider the entries in Table 17.1. The final column displays the pooled regression resid-
uals bei t for the first 13 observations, which we interpret as estimates of the error ei t = ui + "i t . As de-
scribed before, what is particularly striking about the residuals is that they are all strongly negative for
firm #209, clustering around °0.25. We can interpret this as an estimate of ui for this firm. Examining
the values of the regressor Q for the two firms, we can also see that firm #209 has very large values (in
all time periods) for Q. (The average value Qi for the two firms appears in the seventh column.) Thus it
appears (though we are only looking at two observations) that ui and Qi t may be negatively correlated.
It is not reasonable to infer too much from these limited observations (indeed the correlation between
ui and Qi is positive in the full sample), but the point is that it seems reasonable that the unobserved
common effect ui may be correlated with the regressors x i t .

In the econometrics literature, if the stochastic structure of ui is treated as unknown and possibly
correlated with x i t then ui is called a fixed effect.

Correlation between ui and x i t will cause both pooled and random effect estimators to be biased.
This is due to the classic problems of omitted variables bias and endogeneity. To see this in a generated
example, view Figure 17.1. This shows a scatter plot of three observations (yi t , xi t ) from each of three
firms. The true model is yi t = 9°xi t +ui . (Thus the true slope coefficient is °1.) The variables ui and xi t

are highly correlated, so the fitted pooled regression line through the nine observations has a slope close
to +1. (The random effects estimator is identical.) The apparent positive relationship between y and x is
driven entirely by the positive correlation between x and u. Conditional on u, however, the slope is °1.
Thus regression techniques which do not control for ui will produce biased and inconsistent estimates.

The presence of the unstructured individual effect ui means that it is not possible to identifyØ under
a simple projection assumption such as E (x i t"t ) = 0. It turn out that a sufficient condition for identifica-
tion is the following.

Definition 17.1 The regressor x i t is strictly exogenous for the error "i t if

E [x i s"i t ] = 0 (17.17)

for all s = 1, ...,T .

Strict exogeneity is a strong projection condition, meaning that if x i s for any s 6= t is added to (17.15)
it will have a zero coefficient. Strict exogeneity is a projection analog of strict mean independence

E ["i t | X i ] = 0. (17.18)
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Figure 17.1: Scatter Plot and Pooled Regression Line

(17.18) implies (17.17), but not conversely. While (17.17) is sufficient for identification and asymptotic
theory, we will also use the stronger condition (17.18) for finite sample analysis.

While (17.17) and (17.18) are strong assumptions they are much weaker than (17.2) or Assumption
17.1, which require that the individual effect ui is also strictly mean independent. In contrast, (17.17)
and (17.18) make no assumptions about ui .

Strict exogeneity (17.17) is typically inappropriate in dynamic models. In Section 17.41 we discuss
estimation under the weaker assumption of predetermined regressors.

17.8 Within Transformation

In the previous section we showed that if ui and x i t are correlated, then pooled and random-effects
estimators will be biased and inconsistent. If we leave the relationship between ui and x i t fully unstruc-
tured, then the only way to consistently estimate the coefficient Ø is by an estimator which is invariant
to ui . This can be achieved by transformations which eliminate ui .

One such transformation is the within transformation. In this section we describe this transforma-
tion in detail.

Define the mean of a variable for a given individual as

yi =
1

Ti

X

t2Si

yi t .

We call this the individual-specific mean, since it is the mean of a given individual. Contrarywise, some
authors call this the time-average or time-mean since it is the average over the time periods.

Subtracting the individual-specific mean from the variable we obtain the deviations

ẏi t = yi t ° yi .

This is known as the within transformation. We also refer to ẏi t as the demeaned values or deviations
from individual means. Some authors refer to ẏi t as deviations from time means. What is important is
that the demeaning has occured at the individual level.
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Some algebra may also be useful. We can write the individual-specific mean as yi =
°
10

i 1i
¢°1 10

i y i .
Stacking the observations for individual i we can write the within transformation using the notation

ẏ i = y i °1i y i

= y i °1i
°
10

i 1i
¢°1 10

i y i

= Mi y i

where
M i = I i °1i

°
10

i 1i
¢°1 10

i

is the individual-specific demeaning operator. Notice that M i is an idempotent matrix.
Similarly for the regressors we define the individual-specific means and demeaned values:

x i =
1

Ti

X

t2Si

x i t

ẋ i t = x i t °x i

Ẋ i = M i X i .

We illustrate demeaning in Table 17.1. In the fourth and seventh columns we display the firm-specific
means I i and Qi and in the fifth and eighth columns the demeaned values İi t and Q̇i t .

We can also define the full-sample within operator. Define D = diag
©

1T1 , ...,1TN

™
and M D = I n °

D
°
D

0
D

¢°1
D

0. Note that M D = diag{M 1, ..., M N }. Thus

M D y = ẏ =

0

B@
ẏ 1
...

ẏ N

1

CA , M D X = Ẋ =

0

B@
Ẋ 1

...
Ẋ N

1

CA . (17.19)

Now apply these operations to equation (17.15). Taking individual-specific averages we obtain

yi = x
0
iØ+ui +"i (17.20)

where "i = 1
Ti

P
t2Si

"i t . Subtracting from (17.15) we obtain

ẏi t = ẋ
0
i tØ+ "̇i t (17.21)

where "̇i t = "i t °"i t . The individual effect ui has been eliminated!
We can alternatively write this in vector notation. Applying the demeaning operator M i to (17.16) we

obtain
ẏ i = Ẋ iØ+ "̇i . (17.22)

The individual-effect ui is eliminated since M i 1i = 0. Equation (17.22) is a vector version of (17.21).
The equation (17.21) is a linear equation in the transformed (demeaned) variables. As desired, the

individual effect ui has been eliminated. Consequently estimators constructed from (17.21) (or equiva-
lently (17.22)) will be invariant to the values of ui . This means that the the endogeneity bias described in
the previous section will be eliminated.

Another consequence, however, is that all time-invariant regressors are also eliminated. That is, if
the original model (17.15) had included any regressors x i t = x i which are constant over time for each
individual, then for these regressors the demeaned values are identically 0. What this means is that if
equation (17.21) is used to estimate Ø it will be impossible to estimate (or identify) a coefficient on any
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regressor which is time invariant. This is not a consequence of the estimation method but rather a conse-
quence of the model assumptions. In other words, if the individual effect ui has no known structure then
it is impossible to disentangle the effect of any time-invariant regressor xi . The two have observationally
equivalent effects and cannot be separately identified.

The within transformation can greatly reduce the variance of the regressors. This can be seen in
Table 17.1, where you can see that the variation between the elements of the transformed variables İi t

and Q̇i t is less than that of the untransformed variables since much of the variation is captured by the
firm-specific means.

It is not typically needed to directly program the within transformation, but if it is desired the follow-
ing Stata commands easily do so.

Stata Commands for Within Transformation

* x is the original variable
* id is the group identifier
* xdot is the within-transformed variable
egen xmean = mean(x), by(id)
gen xdot = x - xmean

17.9 Fixed Effects Estimator

Consider least-squares applied to the demeaned equation (17.21) or equivalently (17.22). This is

bØfe =
√

NX

i=1

X

t2Si

ẋ i t ẋ
0
i t

!°1 √
NX

i=1

X

t2Si

ẋ i t ẏi t

!

=
√

NX

i=1
Ẋ

0
i Ẋ i

!°1 √
NX

i=1
Ẋ

0
i ẏ i

!

=
√

NX

i=1
X

0
i M i X i

!°1 √
NX

i=1
X

0
i M i y i

!

.

This is known as the fixed-effects or within estimator ofØ. It is called the fixed-effects estimator because
it is appropriate for the fixed effects model (17.15). It is called the within estimator because it is based on
the variation of the data within each individual.

The above definition implicitly assumes that the matrix
PN

i=1 Ẋ
0
i Ẋ i is full rank. This requires that all

components of x i t have time variation for at least some individuals in the sample.
The fixed effects residuals are

b"i t = ẏi t ° ẋ
0
i t

bØfe

b"i = ẏ i ° Ẋ i bØfe. (17.23)

Let us describe some of the statistical properties of the estimator under strict mean independence
(17.18). By linearity and the fact M i 1i = 0, we can write

bØfe °Ø=
√

NX

i=1
X

0
i M i X i

!°1 √
NX

i=1
X

0
i M i"i

!

.
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Then (17.18) implies

E
£bØfe °Ø | X

§
=

√
NX

i=1
X

0
i M i X i

!°1 √
NX

i=1
X

0
i M iE ["i | X i ]

!

= 0.

Thus bØfe is unbiased for Ø under (17.18).
Let

ßi = E
£
"i"

0
i
| X i

§

denote the Ti £Ti conditional covariance matrix of the idiosyncratic errors. The variance of bØfe is

V fe = var
£bØfe | X

§
=

√
NX

i=1
Ẋ

0
i Ẋ i

!°1 √
NX

i=1
Ẋ

0
ißi Ẋ i

!√
NX

i=1
Ẋ

0
i Ẋ i

!°1

. (17.24)

This expression simplifies when the idiosyncratic errors are homoskedastic and serially uncorrelated:

E
£
"2

i t | X i
§
=æ2

" (17.25)

E
£
"i j"i t | X i

§
= 0 (17.26)

for all j 6= t . In this case, ßi = I iæ
2
" and (17.24) simplifies to

V
0
fe =æ2

"

√
NX

i=1
Ẋ

0
i Ẋ i

!°1

. (17.27)

It is instructive to compare the variances of the fixed-effects estimator and the pooled estimator un-
der (17.25)-(17.26) and the assumption that there is no individual-specific effect ui = 0. In this case we
see that

V
0
fe =æ2

"

√
NX

i=1
Ẋ

0
i Ẋ i

!°1

∏æ2
"

√
NX

i=1
X

0
i X i

!°1

=V pool. (17.28)

The inequality holds since the demeaned variables Ẋ i have reduced variation relative to the original
observations X i . (See Exercise 17.28.) This shows the cost of using fixed effects relative to pooled esti-
mation. The estimation variance increases due to reduced variation in the regressors. This reduction in
efficiency is a necessary by-product of the robustness of the estimator to the individual effects ui .

17.10 Differenced Estimator

The within transformation is not the only transformation which eliminates the individual-specific
effect. Another important transformation which does the same is first-differencing.

The first-differencing transformation is

¢yi t = yi t ° yi t°1.

This can be applied to all but the first observation (which is essentially lost). At the level of the individual
this can be written as

¢y i = D i y i

where D i is the (Ti °1)£Ti matrix differencing operator

D i =

2

66664

°1 1 0 · · · 0 0
0 °1 1 0 0
...

. . .
...

0 0 0 · · · °1 1

3

77775
.
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Applying the transformation ¢ to (17.15) or (17.16) we obtain

¢yi t =¢x
0
i tØ+¢"i t

or
¢y i =¢X iØ+¢"i . (17.29)

Least squares applied to the differenced equation is

bØ¢ =
√

NX

i=1

X

t∏2
¢x i t¢x

0
i t

!°1 √
NX

i=1

X

t∏2
¢x i t¢yi t

!

=
√

NX

i=1
¢X

0
i¢X i

!°1 √
NX

i=1
¢X

0
i¢y i

!

=
√

NX

i=1
X

0
i D

0
i D i X i

!°1 √
NX

i=1
X

0
i D

0
i D i y i

!

. (17.30)

(17.30) is called the differenced estimator. For T = 2, bØ¢ = bØfe equals the fixed effects estimator. See
Exercise 17.6. They differ, however, for T > 2.

When the errors "i t are serially uncorrelated and homoskedastic, then the error¢"i = D i"i in (17.29)
has variance matrix Hæ2

" where

H = D i D
0
i =

0

BBBBB@

2 °1 0 0

°1 2
. . . 0

0
. . . . . . °1

0 0 °1 2

1

CCCCCA
. (17.31)

We can reduce estimation variance by using GLS, which is

bØ¢ =
√

NX

i=1
¢X

0
i H

°1¢X i

!°1 √
NX

i=1
¢X

0
i H

°1¢y i

!

=
√

NX

i=1
X

0
i D

0
i

°
D i D

0
i

¢°1
D i X i

!°1 √
NX

i=1
X

0
i D

0
i

°
D i D

0
i

¢°1
D i y i

!

=
√

NX

i=1
X

0
i P D X i

!°1 √
NX

i=1
X

0
i P D y i

!

where P D = D
0
i

°
D i D

0
i

¢°1
D i . Recall, the matrix D i is (Ti °1)£Ti with rank Ti °1 and is orthogonal to

the vector of ones 1i . This means P D projects orthogonally to 1i and thus equals P D = M i , the within
transformation matrix. Hence bØ¢ = bØfe, the fixed effects estimator!

What we have shown is that GLS applied to the first-differenced equation precisely equals the fixed
effects estimator. Since the Gauss-Markov theorem shows that GLS has lower variance than least-squares,
this means that the fixed effects estimator is more efficient than first differencing under the assumption
that "i t is i.i.d.

This argument extends to any other transformation which eliminates the fixed effect. GLS applied
after such a transformation is equal to the fixed effects estimator, and is more efficient than least-squares
applied after the same transformation. This shows that the fixed effects estimator is Gauss-Markov effi-
cient in the class of estimators which eliminate the fixed effect.
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17.11 Dummy Variables Regression

An alternative way to estimate the fixed effects model is by least squares of yi on x i t and a full set of
dummy variables, one for each individual in the sample. It turns out that this is algebraically equivalent
to the within estimator.

To see this, start with the error-component model without a regressor:

yi t = ui +"i t . (17.32)

Consider least-squares estimation of the vector of fixed effects u = (u1, ...,uN )0. Since each fixed effect
ui is an individual-specific mean, and the least-squares estimate of the intercept is the sample mean, it
follows that the least-squares estimate of ui is bui = yi . The least-squares residual is then b"i t = yi t ° yi =
ẏi t , the within transformation.

If you would prefer an algebraic argument, let d i be a vector of N dummy variables where the i th

element indicates the i th individual. Thus the i th element of d i is 1 and the remaining elements are
zero. Notice that ui = d

0
i u and (17.32) equals

yi t = d
0
i u +"i t .

This is a regression with the regressors d i and coefficients u. We can also write this in vector notation at
the level of the individual as

y i = 1i d
0
i u +"i

or using full matrix notation as
y = Du +"

where D = diag
©

1T1 , ...,1TN

™
.

The least-squares estimate of u is

bu =
°
D

0
D

¢°1 °
D

0
y
¢

= diag
°
10

i 1i
¢°1 vec

°
10

i y i
¢

= vec
≥°

10
i 1i

¢°1 10
i y i

¥

= vec
°
yi

¢
.

The least-squares residuals are
b"=

≥
I n °D

°
D

0
D

¢°1
D

0
¥

y = ẏ

as shown in (17.19). Thus the least-squares residuals from the simple error-component model are the
within transformed variables.

Now consider the error-component model with regressors, which can be written as

yi t = x
0
i tØ+d

0
i u +"i t (17.33)

since ui = d
0
i u as discussed above. In matrix notation

y = XØ+Du +". (17.34)

We consider estimation of (Ø,u) by least-squares, and write the estimates as

y = X bØ+D bu +b".
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We call this the dummy variable estimator of the fixed effects model.
By the Frisch-Waugh-Lovell Theorem (Theorem 3.5), the dummy variable estimator bØ and residuals

b" may be obtained by the least-squares regression of the residuals from the regression of y on D on the
residuals from the regression of X on D . We learned above that residuals from the regression on D are
the within transformations. Thus the dummy variable estimator bØ and residuals b"may be obtained from
least-squares regression of the within transformed ẏ on the within transformed Ẋ . This is exactly the
fixed effects estimator bØfe. Thus the dummy variable and fixed effects estimators of Ø are identical.

This is sufficiently important that we state this result as a theorem.

Theorem 17.1 The fixed effects estimator ofØ algebraically equals the dummy
variable estimator of Ø. The two estimators have the same residuals.

This may be the most important practical application of the Frisch-Waugh-Lovell Theorem. It shows
that we can estimate the coefficients either by applying the within transformation, or by inclusion of
dummy variables (one for each individual in the sample). This is important because in some cases one
approach is more convenient than the other, and it is important to know that the two methods are alge-
braically equivalent.

When N is large it is advisable to use the within transformation rather than the dummy variable ap-
proach. This is because the latter requires considerably more computer memory. To see this, consider
the matrix D in (17.34) in the balanced case. It has T N 2 elements, and for dummy variable estimation
it must be created and stored in memory. When N is large this can be excessive. For example, if T = 10
and N = 10,000, the matrix D has one billion elements! Whether or not a package can technically handle
a matrix of this dimension depends on several particulars (system RAM, operating system, package ver-
sion), but even if it can execute the calculation the computation time will be considerably slowed. Hence
for fixed effects estimation with large N it is recommended to use the within transformation rather than
dummy variable regression.

The dummy variable formulation may add insight about how the fixed effects estimator achieves
invariance to the fixed effects. Given the regression equation (17.34) we can write the least-squares esti-
mator of Ø using the residual regression formula:

bØfe =
°

X
0
M D X

¢°1 °
X

0
M D y

¢

=
°

X
0
M D X

¢°1 °
X

0
M D

°
XØ+Du +"

¢¢

=Ø+
°

X
0
M D X

¢°1 °
X

0
M D"

¢
(17.35)

since M D D = 0. The expression (17.35) is free of the vector u and thus bØfe is invariant to u. This is another
demonstration that the fixed effects estimator is invariant to the actual values of the fixed effects, and
thus its statistical properties do not rely on assumptions about ui .

17.12 Fixed Effects Covariance Matrix Estimation

First consider estimation of the classical covariance matrix V
0
fe as defined in (17.27). This is

bV 0
fe = bæ2

"

≥
Ẋ

0
Ẋ

¥°1
(17.36)
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with

bæ2
" =

1
n °N °k

nX

i=1

X

t2Si

b"2
i t =

1
n °N °k

nX

i=1
b"0i b"i . (17.37)

The N +k degree of freedom adjustment is motivated by the dummy variable representation. Indeed,
you can verify that bæ2

" is unbiased for æ2
" under assumptions (17.18), (17.25) and (17.26). See Exercise

17.8.
Notice that the assumptions (17.18), (17.25) and (17.26) are identical to (17.5)-(17.7) of Assumption

17.1. The assumptions (17.8)-(17.10) are not needed. Thus the fixed effect model weakens the random
effects model by eliminating the assumptions on ui but retaining those on "i t .

The classical covariance matrix estimator (17.36) for the fixed effects estimator is valid when the er-
rors "i t are homoskedastic and serially uncorrelated but is invalid otherwise. A covariance matrix estima-
tor which allows "i t to be heteroskedastic and serially correlated across t is the cluster-robust covariance
matrix estimator, clustered by individual

bV cluster
fe =

≥
Ẋ

0
Ẋ

¥°1
√

NX

i=1
Ẋ

0
i b"i b"0i Ẋ i

!≥
Ẋ

0
Ẋ

¥°1
(17.38)

where b"i as the fixed effects residuals as defined in (17.23). (17.38) was first proposed by Arellano (1987).

As in (4.50) bV cluster
fe can be multiplied by a degree-of-freedom adjustment. The adjustment recommended

by the theory of C. Hansen (2007) is

bV cluster
fe =

µ
N

N °1

∂≥
Ẋ

0
Ẋ

¥°1
√

NX

i=1
Ẋ

0
i b"i b"0i Ẋ i

!≥
Ẋ

0
Ẋ

¥°1
(17.39)

and that corresponding to (4.50) is

bV cluster
fe =

µ
n °1

n °N °k

∂µ
N

N °1

∂≥
Ẋ

0
Ẋ

¥°1
√

NX

i=1
Ẋ

0
i b"i b"0i Ẋ i

!≥
Ẋ

0
Ẋ

¥°1
. (17.40)

These estimators are convenient because they are simple to apply and allow for unbalanced panels.
In typical micropanel applications, N is very large and k is modest. Thus the adjustment in (17.39)

is minor, while that in (17.40) is approximately T /(T °1) where T = n/N is the average number of time
periods per individual. When T is small this can be a very large adjustment. Hence the choice between
(17.38), (17.39), or (17.40) can be substantial.

To understand if the degree of freedom adjustment in (17.40) is appropriate, consider the simplified
setting where the residuals are constructed with the true Ø. This is a useful approximation since the
number of estimated slope coefficients Ø is small relative to the sample size n. Then b"i = "̇i = M i"i so
Ẋ

0
i b"i = Ẋ

0
i"i and (17.38) equals

bV cluster
fe =

≥
Ẋ

0
Ẋ

¥°1
√

NX

i=1
Ẋ

0
i"i"

0
i Ẋ i

!≥
Ẋ

0
Ẋ

¥°1

which is the idealized estimator with the true errors rather than the residuals. Since E
£
"i"

0
i
| X i

§
=ßi it

follows that E
h
bV cluster

fe | X

i
= V fe and bV cluster

fe is unbiased for V fe! Thus no degree of freedom adjustment
is required. This is despite the fact that N fixed effects have been estimated. While this analysis concerns
the idealized case where the residuals have been constructed with the true coefficients Ø, so does not
translate into a direct recommendation for the feasible estimator, it still suggests that the strong ad hoc
adjustment in (17.40) is unwarranted.
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This (crude) analysis suggests that for the cluster robust covariance estimator for fixed effects regres-
sion, the adjustment recommended by C. Hansen (17.39) may be the most appropriate, and is typically
well approximated by the unadjusted estimator (17.38). Based on current theory, there is no justifica-
tion for the ad hoc adjustment (17.40). The main argument for the latter is that it produces the largest
standard errors, and is thus the most conservative choice.

In current practice the estimators (17.38) and (17.40) are the most commonly used covariance matrix
estimators for fixed effects estimation.

In Sections 17.22 and 17.23 we discuss covariance matrix estimation under heteroskedasticity but no
serial correlation.

To illustrate, in Table 17.2 we present the fixed effect regression estimates of the investment model
(17.3) in the third column with cluster-robust standard errors. The trading indicator Ti and the industry
dummies cannot be included as they are time-invariant. The point estimates are similar to the random
effects estimates, though the coefficients on debt and cash flow increase in magnitude.

17.13 Fixed Effects Estimation in Stata

There are several methods to obtain the fixed effects estimator bØfe in Stata.
The first method is to use full dummy variable regression, which can be obtained using the Stata

command, for example where is the group (individual) iden-
tifier. In most cases, as discussed in Section 17.11, this is not recommended due to the excessive com-
puter memory requirements and slow computation.

The second method is to manually create the within transformed variables as described in Section
17.8, and then use .

The third method is , which is specifically written for panel data. This estimates the slope
coefficients using the partialling out approach. The default covariance matrix estimator is classical,
as defined in (17.36). The cluster-robust covariance matrix (17.38) can be obtained using the option

, or simply .
The fourth method is , where is the group (individual) identifier. This com-

mand is more general than panel data, also implementing the partialling out regression estimator. The
default covariance matrix estimator is the classical (17.36). The cluster-robust covariance matrix esti-
mator (17.40) can be obtained using the option. The heteroskedasticity-robust covariance
matrix is obtained when or is specified, but this is not recommended unless Ti is large,
as will be discussed in Section 17.22.

An important difference between the Stata and commands is that they implement differ-
ent cluster-robust covariance matrix estimators: (17.38) in the case of , and (17.40) in the case of

. As discussed in the previous section, the adjustment used by is ad hoc and not well-justified,
but produces the largest and hence most conservative standard errors.

In current econometric practice, both and are used, though appears to be the more
popular choice.

17.14 Between Estimator

The between estimator is calculated from the individual-mean equation (17.20)

yi = x
0
iØ+ui +"i . (17.41)
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Estimation can be done at the level of individuals or at the level of observations. Least squares ap-
plied to (17.41) at the level of the N individuals is

bØbe =
√

NX

i=1
x i x

0
i

!°1 √
NX

i=1
x i y i

!

.

Least squares applied to (17.41) at the level of observations is

eØbe =
√

NX

i=1

X

t2Si

x i x
0
i

!°1 √
NX

i=1

X

t2Si

x i y i

!

=
√

NX

i=1
Ti x i x

0
i

!°1 √
NX

i=1
Ti x i y i

!

.

In balanced panels eØbe = bØbe but they differ on unbalanced panels. eØbe equals weighted least squares
applied at the level of individuals with weight Ti .

Under the random effects assumptions (Assumption 17.1), bØbe is unbiased for Ø and has variance

V be = var
£bØbe | X

§

=
√

NX

i=1
x i x

0
i

!°1 √
NX

i=1
x i x

0
iæ

2
i

!√
NX

i=1
x i x

0
i

!°1

where

æ2
i = var

£
ui +"i

§
=æ2

u +
æ2
"

Ti

is the variance of the error in (17.41). When the panel is balanced the variance formula simplifies to

V be = var
£bØbe | X

§
=

√
NX

i=1
x i x

0
i

!°1 µ
æ2

u +
æ2
"

T

∂
.

Under the random effects assumption the between estimator bØbe is unbiased for Ø but is less effi-
cient than the random effects estimator bØgls. Consequently there seems little direct use for the between
estimator in linear panel data applications.

Instead, its primary application is to construct an estimate of æ2
u . First, consider estimation of

æ2
b = 1

N

NX

i=1
æ2

i

=æ2
u + 1

N

NX

i=1

æ2
"

Ti

=æ2
u +

æ2
"

T

where T = N /
PN

i=1 T °1
i is the harmonic mean of Ti . (In the case of a balanced panel T = T .) A natural

estimator of æ2
b is

bæ2
b = 1

N °k

NX

i=1
be2

bi . (17.42)

where bebi = yi °x
0
i
bØbe are the between residuals. (Either bØbe or eØbe can be used.)



CHAPTER 17. PANEL DATA 604

From the relation æ2
b = æ2

u +æ2
"/T and (17.42) we can deduce an estimator for æ2

u . We have already
described an estimator bæ2

" foræ2
" in (17.37) for the fixed effects model. Since the fixed effects model holds

under weaker conditions than the random effects model, bæ2
" is valid for the latter as well. This suggests

the following estimator for æ2
u

bæ2
u = bæ2

b °
bæ2
"

T
. (17.43)

To summarize, the fixed effect estimator is used for bæ2
", the between estimator for bæ2

b , and bæ2
u is con-

structed from the two.
It is possible for (17.43) to be negative. It is typical to use the constrained estimator

bæ2
u = max

∑
0, bæ2

b °
bæ2
"

T

∏
. (17.44)

(17.44) is the most common estimator for æ2
u in the random effects model.

The between estimator bØbe can be obtained using Stata command . The estimator eØbe can
be obtained by .

17.15 Feasible GLS

The random effects estimator can be written as

bØre =
√

NX

i=1
X

0
i≠

°1
i X i

!°1 √
NX

i=1
X

0
i≠

°1
i y i

!

=
√

NX

i=1

eX 0
i
eX i

!°1 √
NX

i=1

eX 0
i ey i

!

(17.45)

where eX i =≠°1/2
i X i and ey i =≠°1/2

i y i . It is instructive to study these transformations.

Define P i = 1i
°
10

i 1i
¢°1 10

i so that M i = I i °P i . Thus while M i is the within operator, P i can be called
the individual-mean operator, since P i y i = 1i y i . We can write

≠i = I i +1i 10
iæ

2
u/æ2

"

= I i +
Tiæ

2
u

æ2
"

P i

= M i +Ω°2
i P i

where
Ωi =

æ"q
æ2
"+Tiæ

2
u

. (17.46)

Since the matrices M i and P i are idempotent and orthogonal, we find that

≠°1
i = M i +Ω2

i P i

and
≠°1/2

i = M i +Ωi P i = I i °
°
1°Ωi

¢
P i . (17.47)

Therefore the transformation used by the GLS estimator is

ey i =
°

I i °
°
1°Ωi

¢
P i

¢
y i

= y i °
°
1°Ωi

¢
1i y i ,
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which is a partial within transformation.
The transformation as written depends on Ωi which is unknown. It can be replaced by the estimate

bΩi =
bæ"q

bæ2
"+Ti bæ2

u

(17.48)

where the estimators bæ2
" and bæ2

u are given in (17.37) and (17.44). We thus obtain the feasible transforma-
tions

ey i = y i °
°
1° bΩi

¢
1i y i (17.49)

and
eX i = X i °

°
1° bΩi

¢
1i x

0
i . (17.50)

The feasible random effects estimator is (17.45) using (17.49) and (17.50).
In the previous section we noted that it is possible for bæ2

u = 0. In this case bΩi = 1 and bØre = bØpool.
What this shows is the following. The random effects estimator (17.45) is least-squares applied to

the transformed variables eX i and ey i defined in (17.50) and (17.49). When bΩi = 0 these are the within
transformations, so eX i = Ẋ i , ey i = ẏ i , and bØre = bØfe is the fixed effects estimator. When bΩi = 1 the data
are untransformed eX i = X i , ey i = y i , and bØre = bØpool is the pooled estimator. In general, eX i and ey i can be
viewed as partial within transformations.

Recalling the definition bΩi = bæ"/
q

bæ2
"+Ti bæ2

u , we see that when the idiosyncratic error variance bæ2
"

is large relative to Ti bæ2
u then bΩi º 1 and bØre º bØpool. Thus when the variance estimates suggest that the

individual effect is relatively small, the random effect estimator simplifies to the pooled estimator. On the
other hand when the individual effect error variance bæ2

u is large relative to bæ2
" then bΩi º 0 and bØre º bØfe.

Thus when the variance estimates suggest that the individual effect is relatively large, the random effect
estimator is close to the fixed effects estimator.

17.16 Intercept in Fixed Effects Regression

The fixed effect estimator does not apply to any regressor which is time-invariant for all individuals.
This includes an intercept. Yet some authors and packages (e.g. Amemiya (1971) and in Stata)
report an intercept. To see how to construct an estimator of an intercept, take the components regression
equation adding an explicit intercept

yi t =Æ+x
0
i tØ+ui +"i t .

We have already discussed estimation of Ø by bØfe. Replacing Ø in this equation with bØfe and then esti-
mating Æ by least-squares, we obtain

bÆfe = y °x
0bØfe

where y and x are averages from the full sample. This is the estimator reported by .
It is unclear if bÆfe is particularly useful. It may be best to ignore the reported intercepts and focus on

the slope coefficients.

17.17 Estimation of Fixed Effects

For most applications researchers are interested in the coefficients Ø, not the fixed effects ui . But
in some cases the fixed effects themselves are interesting. This arises when we want to measure the
distribution of ui to understand its heterogeneity. It also arises in the context of prediction. As discussed
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in Section 17.11 the fixed effects estimate bu is obtained by least-squares applied to the regression (17.33).
To find their solution, replace Ø in (17.33) with the least squares minimizer bØfe and apply least-squares.
Since this is the individual-specific intercept, the solution is

bui =
1

Ti

NX

i=1

°
yi t °x

0
i
bØfe

¢
= yi °x

0
i
bØfe. (17.51)

Alternatively, using (17.34), this is

bu =
°
D

0
D

¢°1
D

0 °
y °X bØfe

¢

= diag
©
T °1

i

™ NX

i=1
di 10

i

°
y i °X i bØfe

¢

=
NX

i=1
di

°
yi °x

0
i
bØfe

¢

= ( bu1, ..., buN )0 .

Thus the least-squares estimates of the fixed effects can be obtained from the individual-specific
means, and does not require a regression with N +k regressors.

If an intercept has been estimated (as discussed in the previous section) it should be subtracted from
(17.51). In this case the estimated fixed effects are

bui = yi °x
0
i
bØfe ° bÆfe. (17.52)

With either estimator, when the number of time series observations Ti is small, bui will be an impre-
cise estimator of ui . Thus calculations based on bui should be interpreted cautiously.

The fixed effects (17.52) may be obtained in Stata after using the command,
or after using the command.

17.18 GMM Interpretation of Fixed Effects

We can also interpret the fixed effects estimator through the generalized method of moments.
Take the fixed effects model after applying the within transformation (17.21). We can view this as a

system of T equations, one for each time period t . This is a multivariate regression model. Using the
notation of Chapter 11, define the T £kT regressor matrix

X i =

0

B@
ẋ
0
i 1 0 · · · 0
... ẋ

0
i 2

...
0 0 · · · ẋ

0
i T

1

CA . (17.53)

If we treat each time period as a separate equation, we have the kT moment conditions

E

h
X

0
i
°

ẏ i ° Ẋ iØ
¢i

= 0.

This is an overidentified system of equations when T ∏ 3 as there are k coefficients and kT moments.
(However, the moments are collinear due to the within transformation. There are k(T °1) effective mo-
ments.) Interpreting this model in the context of multivariate regression, overidentification is achieved
by the restriction that the coefficient vector Ø is constant across time periods.
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This model can be interpreted as a regression of ẏ i on Ẋ i using the instruments X i . The 2SLS esti-
mator, using matrix notation, is

bØ=
µ≥

Ẋ
0
X

¥≥
X

0
X

¥°1 ≥
X

0
Ẋ

¥∂°1 µ≥
Ẋ

0
X

¥≥
X

0
X

¥°1 ≥
X

0
ẏ

¥∂
.

Notice that

X
0
X =

nX

i=1

0

B@
ẋ i 1 0 · · · 0

... ẋ i 2
...

0 0 · · · ẋ i T

1

CA

0

B@
ẋ
0
i 1 0 · · · 0
... ẋ

0
i 2

...
0 0 · · · ẋ

0
i T

1

CA

=

0

B@

Pn
i=1 ẋ i 1ẋ

0
i 1 0 · · · 0

...
Pn

i=1 ẋ i 2ẋ
0
i 2

...
0 0 · · · Pn

i=1 ẋ i T ẋ
0
i T

1

CA ,

X
0
Ẋ =

0

B@

Pn
i=1 ẋ i 1ẋ

0
i 1

...Pn
i=1 ẋ i T ẋ

0
i T

1

CA ,

and

X
0
ẏ =

0

B@

Pn
i=1 ẋ i 1 ẏi 1

...Pn
i=1 ẋ i T ẏi T

1

CA .

Thus the 2SLS estimator simplifies to

bØ2sls =
√

TX

t=1

√
nX

i=1
ẋ i t ẋ

0
i t

!√
nX

i=1
ẋ i t ẋ

0
i t

!°1 √
nX

i=1
ẋ i t ẋ

0
i t

!!°1

·
√

TX

t=1

√
nX

i=1
ẋ i t ẋ

0
i t

!√
nX

i=1
ẋ i t ẋ

0
i t

!°1 √
nX

i=1
ẋ i t ẏi t

!!

=
√

TX

t=1

nX

i=1
ẋ i t ẋ

0
i t

!°1 √
TX

t=1

nX

i=1
ẋ i t ẏi t

!

= bØfe

the fixed effects estimator!
This shows that if we treat each time period as a separate equation with its separate moment equa-

tion so that the system is over-identified, and then estimate by GMM using the 2SLS weight matrix, the
resulting GMM estimator equals the simple fixed effects estimator. There is no change by adding the
additional moment conditions.

The 2SLS estimator is the appropriate GMM estimator when the equation error is serially uncorre-
lated and homoskedastic. If we use a two-step efficient weight matrix which allows for heteroskedasticity
and serial correlation the GMM estimator is

bØgmm =
√

TX

t=1

√
nX

i=1
ẋ i t ẋ

0
i t

!√
nX

i=1
ẋ i t ẋ

0
i t be

2
i t

!°1 √
nX

i=1
ẋ i t ẋ

0
i t

!!°1

£
√
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√
nX

i=1
ẋ i t ẋ

0
i t

!√
nX

i=1
ẋ i t ẋ

0
i t be

2
i t

!°1 √
nX

i=1
ẋ i t ẏi t

!!
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where bei t are the fixed effects residuals.
Notationally, this GMM estimator has been written for a balanced panel. For an unbalanced panel

the sums over i need to be replaced by sums over individuals observed during time period t . Otherwise
no changes need to be made.

17.19 Identification in the Fixed Effects Model

The identification of the slope coefficient Ø in fixed effects regression is similar to that in conven-
tional regression but somewhat more nuanced.

It is most useful to consider the within-transformed equation, which can be written as

ẏi t = ẋ
0
i tØ+ "̇i t

or
ẏ i = Ẋ iØ+ "̇i .

From regression theory we know that the coefficient Ø is the linear effect of ẋ i t on ẏi t . The variable
ẋ i t is the deviation of the regressor from its individual-specific mean, and similarly for ẏi t . Thus the fixed
effects model does not identify the effect of the average level of x i t on the average level of yi t , but rather
the effect of the deviations in x i t on yi t .

In any given sample the fixed effects estimator is only defined if
PN

i=1 Ẋ
0
i Ẋ i is full rank. The popula-

tion analog (when individuals are i.i.d.) is

E

h
Ẋ

0
i Ẋ i

i
> 0. (17.54)

In the case of a balanced panel we can write this as

TX

t=1
E
£

ẋ i t ẋ
0
i t

§
> 0.

Equation (17.54) is the identification condition for the fixed effects estimator. It requires that the regres-
sor matrix is full-rank in expectation after application of the within transformation. Thus the regressors
cannot contain any variable which does not have time-variation at the individual level, nor a set of re-
gressors whose time-variation at the individual level is collinear.

17.20 Asymptotic Distribution of Fixed Effects Estimator

In this section we present an asymptotic distribution theory for the fixed effects estimator in the case
of a balanced panel. The case of unbalanced panels is considered in the following section.

We use the following assumptions.
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Assumption 17.2

1. yi t = x
0
i tØ+ui +"i t for i = 1, ..., N and t = 1, ...,T with T ∏ 2.

2. The variables ("i , X i ), i = 1, ..., N , are independent and identically dis-
tributed.

3. E [x i s"i t ] = 0 for all s = 1, ...,T.

4. QT = E
h

Ẋ
0
i Ẋ i

i
> 0.

5. E
£
"4

i t

§
<1.

6. Ekx i tk4 <1.

Given Assumption 17.2 we can establish asymptotic normality for bØfe.

Theorem 17.2 Under Assumption 17.2, as N !1,

p
N

°bØfe °Ø
¢
°!

d
N

°
0,V Ø

¢

where

V Ø =Q
°1
T ≠T Q

°1
T

≠T = E
h

Ẋ
0
i"i"

0
i Ẋ i

i
.

This asymptotic distribution is derived as the number of individuals N diverges to infinity while the
time number of time periods T is held fixed. Therefore the normalization is

p
N rather than

p
n (though

either could be used since T is fixed). This approximation is appropriate for the context of a large number
of individuals i . We could alternatively derive an approximation for the case where both N and T diverge
to infinity, but this would not be a stronger result. One way of thinking about this is that Theorem 17.2
does not require T to be large.

Theorem 17.2 may appear quite standard given our arsenal of asymptotic theory but in a fundamen-
tal sense it is quite different from any other result we have introduced. Fixed effects regression is effec-
tively estimating N +k coefficients – the k slope coefficients Ø plus the N fixed effects u – and the theory
specifies that N ! 1. Thus the number of estimated parameters is diverging to infinity at the same
rate as sample size, yet the the estimator obtains a conventional mean-zero sandwich-form asymptotic
distribution. In this sense Theorem 17.2 is quite new and special.

We now discuss the assumptions.
Assumption 17.2.2 states that the observations are independent across individuals i . This is com-

monly used for panel data asymptotic theory. An important implied restriction is that it means that we
exclude from the regressors any serially correlated aggregate time series variation.

Assumption 17.2.3 imposes that x i t is strictly exogeneous for "i t . This is stronger than simple pro-
jection, but is weaker than strict mean independence (17.18). It does not impose any condition on the
individual-specific effects ui .
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Assumption 17.2.4 is the identification condition discussed in the previous section.
Assumptions 17.2.5 and 17.2.6 are needed for the central limit theorem.
We now prove Theorem 17.2. The assumptions imply that the variables (Ẋ i ,"i ) are i.i.d. across i and

have finite fourth moments. Thus by the WLLN

1
N

NX

i=1
Ẋ

0
i Ẋ i °!p E

h
Ẋ

0
i Ẋ i

i
=QT .

The random vectors Ẋ
0
i"i are i.i.d. Assumption 17.2.3 implies

E

h
Ẋ

0
i"i

i
=

TX

t=1
E [ẋ i t"i t ] =

TX

t=1
E [x i t"i t ]°

TX

t=1

TX

j=1
E
£

x i j"i t
§
= 0

so they are mean zero. Assumptions 17.2.5 and 17.2.6 imply that Ẋ
0
i"i has a finite covariance matrix,

which is≠T . The assumptions for the CLT (Theorem 6.3) hold, thus

1
p

N

NX

i=1
Ẋ

0
i"i °!

d
N(0,≠T ) .

Together we find

p
N

°bØfe °Ø
¢
=

√
1
N

NX

i=1
Ẋ

0
i Ẋ i

!°1 √
1
N

NX

i=1
Ẋ

0
i"i

!

°!
d

Q
°1
T N(0,≠T ) = N

°
0,V Ø

¢

as stated.

17.21 Asymptotic Distribution for Unbalanced Panels

In this section we extend the theory of the previous section to cover the case of unbalanced panels
under random selection. Our presentation is built on Section 17.1 of Wooldridge (2010).

The key is to think of an unbalanced panel as a shortened version of an idealized balanced panel,
where the shortening is due to “missing” observations due to random selection. Thus suppose that the
underlying (potentially latent) variables are y i = (yi 1, ..., yi T )0 and X i = (x i 1, ..., X i T )0. Let si = (si 1, ..., si T )0

be a vector of selection indicators, meaning that si t = 1 if the time period t is observed for individual
i , and si t = 0 otherwise. Then, algebraically, we can describe the estimators on the observed sample as
follows.

Let S i = diag(si ) and M i = S i ° si
°
s
0
i si

¢°1
s
0
i , which is an idempotent matrix. The within transfor-

mations can be written as ẏ i = M i y i and Ẋ i = M i X i . They have the property that if the si t = 0 (so that
time period t is missing) then the t th element of ẏ i and the t th row of Ẋ i are all zeros. Thus the missing
observations have been replaced by zeros. Consequently, they do not appear in matrix products and
sums.

The fixed effects estimator of Ø based on the observed sample is

bØfe =
√

NX

i=1
Ẋ

0
i Ẋ i

!°1 √
NX

i=1
Ẋ

0
i ẏ i

!

.

Centered and normalized,

p
N

°bØfe °Ø
¢
=

√
1
N
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Ẋ
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i Ẋ i

!°1 √
1
N

NX

i=1
Ẋ

0
i"i

!

.
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Notationally this appears to be identical to the case of a balanced panel, but the difference is that the
within operator M i incorporates the sample selection induced by the unbalanced panel structure.

To derive a distribution theory for bØfe we need to be explicit about the stochastic nature of si . That
is, why are some time periods observed and some not? We can take several approaches:

1. We could treat si as fixed (non-random). This is the easiest approach but the most unsatisfactory.

2. We could treat si as random but independent of (y i , X i ). This is known as “missing at random” and
is a common assumption used to justify methods with missing observations. It is justified when
the reason why observations are not observed is independent of the observations. This is appro-
priate, for example, in panel data sets where individuals enter and exit in “waves”. The statistical
treatment is not substantially different from the case of fixed si .

3. We could treat (y i , X i , si ) as jointly random but impose a condition sufficient for consistent esti-
mation of Ø. This is the approach we take below. The condition turns out to be a form of mean
independence. The advantage of this approach is that it is less restrictive than full independence.
The disadvantage is that we must use a conditional mean restriction rather than uncorrelatedness
to identify the coefficients.

The specific assumptions we impose are as follows.

Assumption 17.3

1. yi t = x
0
i tØ+ui +"i t for i = 1, ..., N with Ti ∏ 2

2. The variables ("i , X i , si ), i = 1, ..., N , are independent and identically dis-
tributed.

3. E ["i t | X i , si ] = 0.

4. QT = E
≥

Ẋ
0
i Ẋ i

¥
> 0.

5. E
£
"4

i t

§
<1.

6. Ekx i tk4 <1.

The primary difference with Assumption 17.2 is that we have strengthened strict exogeneity to strict
mean independence. This imposes that the regression model is properly specified, and that selection
(si ) does not affect the mean of "i t . It is less restrictive than assuming full independence since si can
affect other moments of "i t , and more importantly does not restrict the joint dependence between si

and X i .
Given the above development it is straightforward to establish asymptotic normality.
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Theorem 17.3 Under Assumption 17.3, as N !1,

p
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where
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.

We now prove Theorem 17.3. The assumptions imply that the variables (Ẋ i ,"i ) are i.i.d. across i and
have finite fourth moments. By the WLLN

1
N

NX

i=1
Ẋ

0
i Ẋ i °!p E

h
Ẋ

0
i Ẋ i

i
=QT .

The random vectors Ẋ
0
i"i are i.i.d. The matrix Ẋ i is a function of (X i , si ) only. Assumption 17.3.3 and the

law of iterated expectations implies

E

h
Ẋ

0
i"i

i
= E

h
Ẋ

0
iE ["i | X i , si ]

i
= 0.

so that Ẋ
0
i"i is mean zero. Assumptions 17.3.5 and 17.3.6 and the fact that si is bounded implies that

Ẋ
0
i"i has a finite covariance matrix, which is≠T . The assumptions for the CLT hold, thus

1
p

N

NX

i=1
Ẋ

0
i"i °!

d
N(0,≠T ) .

Together we obtain the stated result.

17.22 Heteroskedasticity-Robust Covariance Matrix Estimation

We have introduced two covariance matrix estimators for the fixed effects estimator. The classical
estimator (17.36) is appropriate for the case where the idiosyncratic errors "i t are homoskedastic and
serially uncorrelated. The cluster-robust estimator (17.38) allows for heteroskedasticity and arbitrary
serial correlation. In this and the following section we consider the intermediate case where "i t is het-
eroskedastic but serially uncorrelated.

That is, assume that (17.18) and (17.26) hold but not necessarily (17.25). Define the conditional vari-
ances

E
£
"2

i t | X i
§
=æ2

i t . (17.55)

Then ßi = E
£
"i"

0
i
| X i

§
= diag

°
æ2

i t

¢
. The covariance matrix (17.24) can be written as

V fe =
≥
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¥°1
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X
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ẋ i t ẋ
0
i tæ

2
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Ẋ

0
Ẋ

¥°1
. (17.56)

A natural estimator of æ2
i t is b"2

i t . Replacing æ2
i t with b"2

i t in (17.56) and making a degree-of-freedom
adjustment we obtain a White-type covariance matrix estimator

bV fe =
n

n °N °k

≥
Ẋ

0
Ẋ

¥°1
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NX

i=1

X

t2Si

ẋ i t ẋ
0
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2
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!≥
Ẋ

0
Ẋ

¥°1
.
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Following the insight of White (1980) it may seem appropriate to expect bV fe to be a reasonable esti-
mator of V fe. Unfortunately this is not the case, as discovered by Stock and Watson (2008). The problem
is that bV fe is a function of the individual-specific means "i which are negligible only if the number of
time series observations Ti are large.

We can see this by a simple bias calculation. Assume that the sample is balanced and that the resid-
uals are constructed with the true Ø. Then

b"i t = "̇i t = "i t °
1
T

TX

t=1
"i j .

Using (17.26) and (17.55)

E
£
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i t | X i
§
=

µ
T °2

T

∂
æ2

i t +
æ2

i

T
(17.57)

where æ2
i = T °1 PT

t=1æ
2
i t . (See Exercise 17.10.) Using (17.57) and setting k = 0 we obtain
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Thus bV fe is a biased estimator for V fe, with a bias of order O
°
T °1¢. Unless T !1, this bias will persist

as N !1.
The estimator bV fe is unbiased in two contexts. The first is when the errors "i t are homoskedastic.

The second is when T = 2. (To show the latter requires some algebra.)
To correct the bias for the case T > 2, Stock and Watson (2008) proposed the estimator

eV fe =
µ

T °1
T °2

∂
bV fe °

1
T °1

bB fe (17.58)
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Ẋ
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i Ẋ i bæ2

i

!≥
Ẋ
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TX

t=1
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i t . (17.59)

You can check that E
£
bæ2

i | X i
§
=æ2

i and E
£eV fe | X i

§
=V fe so eV fe is unbiased for V fe. (See Exercise 17.11.)

Stock and Watson (2008) show that eV fe is consistent with T fixed and N !1. In simulations they
show that eV fe has excellent performance.

Because of the Stock-Watson analysis, Stata no longer calculates the heteroskedasticity-robust co-
variance matrix estimator bV fe when the fixed effects estimator is calculated using the command.

Instead, the cluster-robust estimator bV cluster
fe is reported when robust standard errors are requested.

However, fixed effects is often implemented using the command, which will report the biased es-
timator bV fe if robust standard errors are requested. These leads to the practical recommendation that

should typically be used with the option.
At present, the corrected estimator (17.58) has not been programmed as a Stata option.

17.23 Heteroskedasticity-Robust Estimation – Unbalanced Case

A limitation with the bias-corrected robust covariance matrix estimator of Stock and Watson (2008)
is that it was only derived for balanced panels. In this section we generalize their estimator to cover the
case of unbalanced panels.
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The proposed estimator is

eV fe =
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Ẋ
0
Ẋ

¥°1 e≠fe

≥
Ẋ
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Ẋ
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(17.60)
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i t .

To justify this estimator, as in the previous section make the simplifying assumption that the residuals
are constructed with the true Ø. We calculate that

E
£
b"2

i t | X i
§
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Ti °2
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æ2

i t +
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Ti
(17.61)

E
£
bæ2

i | X i
§
=æ2

i . (17.62)

You can show that under these assumptions, E
£eV fe | X

§
= V fe and thus eV fe is unbiased for V fe. (See

Exercise 17.12.)
The estimator eV fe simplifies to the Stock-Watson estimator in the context of balanced panels and

k = 0.

17.24 Hausman Test for Random vs Fixed Effects

The random effects model is a special case of the fixed effects model. Thus we can test the null
hypothesis of random effects against the alternative of fixed effects. The Hausman test is typically used
for this purpose. The statistic is a quadratic in the difference between the fixed effects and random effects
estimators. The statistic is

H =
°bØfe ° bØre

¢0 cvar
£bØfe ° bØre

§°1 °bØfe ° bØre
¢

=
°bØfe ° bØre

¢0 °bV fe ° bV re
¢°1 °bØfe ° bØre

¢

where both bV fe and bV re take the classical (non-robust) form.
The test can be implemented on a subset of the coefficients Ø. In particular this needs to be done if

the regressors x i t contain time-invariant elements so that the random effects estimator contains more
coefficients than the fixed effects estimator. In this case the test should be implemented only on the
coefficients on the time-varying regressors (and are thus estimated by both random and fixed effects).

An asymptotic 100Æ% test rejects if H exceeds the 1°Æth quantile of the ¬2
k distribution, where k =

dim(Ø). If the test rejects, this is evidence that the individual effect ui is correlated with the regressors,
so the random effects model is not appropriate. On the other hand if the test fails to reject, this evidence
says that the random effects hypothesis cannot be rejected.

It is tempting to use the Hausman test to select whether to use the fixed effects or random effects
estimator. One could imagine using the random effects estimator if the Hausman test fails to reject the
random effects hypothesis, and using the fixed effects estimator if the Hausman test rejects random
effects. This is not, however, a wise approach. This procedure – selecting an estimator based on a test – is
known as a pretest estimator and is quite biased. The bias arises because the result of the test is random
and correlated with the estimators.

Instead, the Hausman test can be used as a specification test. If you are planning to use the random
effects estimator (and believe that the random effects assumptions are appropriate in your context), the
Hausman test can be used to check this assumption and provide evidence to support your approach.
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17.25 Random Effects or Fixed Effects?

We have presented the random effects and fixed effects estimators of the regression coefficients.
Which should be used in practice? How should we view the difference?

The basic distinction is that the random effects estimator requires the individual error ui to satisfy the
conditional mean assumption (17.8). The fixed effect estimator does not require (17.8), and is robust to
its violation. In particular, the individual effect ui can be arbitrarily correlated with the regressors. On the
other hand the random effect estimator is efficient under the random effects assumption (Assumption
17.1).

Current econometric practice is to prefer robustness over efficiency. Consequently current practice
is (nearly uniformly) to use the fixed effects estimator for linear panel data models. Random effects
estimators are only used in contexts where fixed effects estimation is unknown or challenging (which
turns out to be the case in many nonlinear models).

The labels “random effects” and “fixed effects” are misleading. These are labels which arose in the
early literature and we are stuck with them today. The term “fixed effects” was applied to ui when it was
viewed as an unobserved missing regressor in the era where regressors were viewed as “fixed”. Calling
ui “fixed” was equivalent to calling it a regressor. Today, we rarely refer to regressors as “fixed” when
dealing with observational data. We view all variables as random. Consequently describing ui as “fixed”
does not make much sense, and it is hardly a contrast with the “random effect” label since under either
assumption ui is treated as random. Once again, the labels are unfortunate, but the key difference is
whether ui is correlated with the regressors.

17.26 Time Trends

In general we expect that economic agents will experience common shocks during the same time
period. For example, business cycle fluctations, inflation, and interest rates affect all agents in the econ-
omy. Therefore it is often desirable to include time effects in a panel regression model.

The simplest specification is a linear time trend

yi t = x
0
i tØ+∞t +ui +"i t .

For a introduction to time trends see Section 14.41. More flexible specifications (such as a quadratic) can
also be used. For estimation, it is appropriate to include the time trend t as an element of the regressor
vector x i t and then apply fixed effects.

In some cases the time trends may be individual-specific. Series may be growing (or declining) at dif-
ferent rates. A linear time trend specification only extracts a common time trend. To allow for individual-
specific time trends we need to include an interaction effect. This can be written as

yi t = x
0
i tØ+∞i t +ui +"i t .

In a fixed effects specification, the coefficients (∞i ,ui ) are treated as possibly correlated with the re-
gressors. To eliminate them from the model we treat them as unknown parameters and estimate all by
least squares. By the FWL theorem the estimator for Ø equals

bØFE =
≥

Ẋ
0
Ẋ

¥°1 ≥
Ẋ

0
ẏ

¥

where the elements of Ẋ and Y are individual-level detrended observations. These are the residuals from
the least-squares regressions

xi t = bÆi + b∞i t + ẋi t ,

fit individual-by-individual, variable-by-variable.
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17.27 Two-Way Error Components

In the previous section we discussed inclusion of time trends and individual-specific time trends.
The functional forms imposed by linear time trends are very limiting. There is no economic reason to
expect the “trend” of a series to be linear. If the “trend” is the business cycle it can alternate even in
sign. This suggests that it is desirable to be more flexible than a simple linear (or quadratic) specifica-
tion. In this section we consider the most flexible specification where the trend is allowed to take any
arbitrary shape, but will require that it is common rather than individual-specific (otherwise it cannot be
identified).

The model we consider is the two-way error component model

yi t = x
0
i tØ+ vt +ui +"i t . (17.63)

In this model, ui is an unobserved individual-specific effect, vt is an unobserved time-specific effect,
and "i t is an idiosyncratic error.

The two-way model (17.63) can be handled either using random effects or fixed effects. In a random
effects framework, the errors vt and ui are modeled as in Assumption 17.1. When the panel is balanced
and using matrix notation, the covariance matrix of the error vector e = v ≠1N +1T ≠u +" is

var[e] =≠=
°

I T ≠1N 10
N

¢
æ2

v +
°
1T 10

T ≠ I N
¢
æ2

u + I næ
2
". (17.64)

When the panel is unbalanced a similar but cumbersome expression for (17.64) can be derived. This
variance (17.64) can be used for GLS estimation of Ø.

More typically (17.63) is handled using fixed effects. The two-way within transformation subtracts
both individual-specific means and time-specific means to eliminate both vt and ui from the two-way
model (17.63). For a variable yi t we define the time-specific mean as follows. Let St be the set of individu-
als i for which the observation t is included in the sample, and let Nt be the number of these individuals.
Then the time-specific mean at time t is

eyt =
1

Nt

X

i2St

yi t .

This is the average across all values of yi t observed at time t .
For the case of balanced panels the two-way within transformation is

ÿi t = yi t ° yi ° eyt + y (17.65)

where y = n°1 PN
i=1

PT
t=1 yi t is the full-sample mean. If yi t satisfies the two-way component model

yi t = vt +ui +"i t

then yi = v +ui +"i , eyt = vt +u +e"t and y = v +u +". Hence

ÿi t = vt +ui +"i t °
°
v +ui +"i

¢
°

°
vt +u +e"t

¢
+ v +u +"

= "i t °"i °e"t +"
= "̈i t

so the individual and time effects are eliminated.
The two-way within transformation applied to (17.63) yields

ÿi t = ẍ
0
i tØ+ "̈i t (17.66)
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which is invariant to both vt and ui . The two-way within estimator of Ø is least-squares applied to
(17.66).

For the unbalanced case there is a similar but algebraically more cumbersome two-way within trans-
formation due to Wansbeek and Kapteyn (1989) and is described in Baltagi (2013, Section 9.4). We do
not describe the algebra here as it is easier to implement using the technique described below.

If the two-way within estimator is used, then the regressors x i t cannot include any time-invariant
variables xi or common time series variables xt . Both are eliminated by the two-way within transfor-
mation. Thus coefficients are only identified for regressors which have variation both across individuals
and across time.

Similarly to the one-way estimator, the two-way within estimator is equivalent to least squares es-
timation after including dummy variables for all individuals and for all time periods. Let øt be a set of
T dummy variables where the t th indicates the t th time period. Thus the t th element of øt is 1 and the
remaining elements are zero. Set v = (v1, ..., vT )0 as the vector of time fixed effects. Notice that vt = ø0t v .
Then we can write the two-way model as

yi t = x
0
i tØ+ø0t v +d

0
i u +"i t . (17.67)

This is the dummy variable representation of the two-way error components model.
The two-way dummy variable model (17.67) is collinear as written, for both the individual-specific

dummies d i and the time-specific dummiesøt span the intercept. Hence if (17.67) is to be estimated one
dummy variable must be removed or otherwise normalized. The individual effects cannot be separately
identified from the time effects.

Another way of thinking about (and estimating) the two-way fixed effects model is to write it as

yi t = x
0
i tØ+ø0t v +ui +"i t . (17.68)

This is a one-way fixed effects model with regressors x i t and øt , with coefficient vectors Ø and v . This
can be be estimated by standard one-way fixed effects methods, including or in Stata. This
produces estimates of the slopes Ø as well as the time effects v . Again to prevent singularity and achieve
identification one time dummy variable is omitted from øt so the estimated time effects are all relative
to this baseline time period. This is the most common method in practice to estimate a two-way fixed
effects model.

If desired the relevance of the time effects can be tested by an exclusion test on the coefficients v . If
the test rejects the hypothesis of zero coefficients then this indicates that the time effects are relevant in
the regression model.

The fixed effect estimator of (17.63) is invariant to the values of vt and ui , thus no assumptions need
to be made concerning their stochastic properties.

To illustrate, the fourth column of Table 17.2 presents fixed effects estimates of the investment equa-
tion, augmented to included year dummy indicators, and is thus a two-way fixed effects model. In this
example the coefficient estimates and standard errors are not greatly affected by the inclusion of the year
dummy variables.

17.28 Instrumental Variables

Take the fixed effects model
yi t = x

0
i tØ+ui +"i t . (17.69)

We say x i t is exogenous for "i t if E [x i t"i t ] = 0, and we say x i t is endogenous for "i t if E [x i t"i t ] 6= 0.
In Chapter 12 we discussed several economic examples of endogeneity, and the same issues apply in
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the panel data context. The primary difference is that in the fixed effects model, we only need to be
concerned if the regressors are correlated with the idiosyncratic error "i t , as correlation between x i t and
ui is allowed.

As in Chapter 12 if the regressors are endogenous then the fixed effects estimator will be biased and
inconsistent for the structural coefficientØ. The standard approach to handling endogeneity is to specify
instrumental variables z i t which are both relevant (correlated with x i t ) yet exogenous (uncorrelated with
"i t ).

Let z i t be an `£1 instrumental variable where ` ∏ k. As in the cross-section case, z i t may contain
both included exogenous variables (variables in x i t that are exogenous) and excluded exogenous vari-
ables (variables not in x i t ). Let Z i be the stacked instruments for the individual i , and Z be the stacked
instruments for the full sample.

The dummy variable formulation of the fixed effects model is

yi t = x
0
i tØ+d

0
i u +"i t

where d i is an N £ 1 vector of dummy variables, one for each individual in the sample. The model in
matrix notation for the full sample is

y = XØ+Du +". (17.70)

Theorem 17.1 shows that the fixed effects estimator for Ø can be calculated by least squares estimation
of (17.70). Thus the dummies D should be viewed as an included exogenous variable.

Now consider 2SLS estimation of Ø using the instruments Z for X . Since D is an included exogenous
variable it should also be used as an instrument. Thus 2SLS estimation of the fixed effects model (17.69)
is algebraically 2SLS of the regression (17.70) of y on (X ,D), using the pair (Z ,D) as instruments.

Since the dimension of D can be excessively large, as discussed in Section 17.11, it is advisable to use
residual regression to compute the 2SLS estimator, as we now describe.

In Section 12.12, we described several alternative representations for the 2SLS estimator. The fifth
(equation (12.34)) shows that the 2SLS estimator for Ø can be written as

bØ2sls =
≥

X
0
M D Z

°
Z

0
M D Z

¢°1
Z

0
M D X

¥°1 ≥
X

0
M D Z

°
Z

0
M D Z

¢°1
Z

0
M D y

¥

where M D = I n °D
°
D

0
D

¢°1
D

0. The latter is the matrix within operator, thus M D y = ẏ , M D X = Ẋ , and
M D Z = Ż . It follows that the 2SLS estimator is

bØ2sls =
µ

Ẋ
0
Ż

≥
Ż

0
Ż

¥°1
Ż

0
Ẋ

∂°1 µ
Ẋ

0
Ż

≥
Ż

0
Ż

¥°1
Ż

0
ẏ

∂
.

This is quite convenient. It shows that the 2SLS estimator for the fixed effects model can be calculated
by applying the standard 2SLS formula to the within-transformed yi t , x i t , and z i t . The 2SLS residuals
are be = ẏ ° Ẋ bØ2sls.

This estimator can be obtained using the Stata command . It can also be obtained using
the Stata command after making the within transformations.

The presentation above focused for clarity on the one-way fixed effects model. There is no substantial
change in the two-way fixed effects model

yi t = x
0
i tØ+ui + vt +"i t .

The easiest way to estimate the two-way model is to add T °1 time-period dummies to the regression
model, and include these dummy variables as both regressors and instruments.
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17.29 Identification with Instrumental Variables

To understand the identification of the structural slope coefficient Ø in the fixed effects model it is
necessary to examine the reduced form equation for the endogenous regressors x i t . This is

x i t =°z i t +w i +≥i t

where w i is a k £1 vector of fixed effects for the k regressors and ≥i t is an idiosyncratic error.
The coefficient matrix ° is the linear effect of z i t on x i t , holding the fixed effects w i constant. Thus

° has a similar interpretation as the coefficient Ø in the fixed effects regression model. It is the effect of
the variation in z i t about its individual-specific mean on x i t .

The 2SLS estimator is a function of the within transformed variables. Applying the within transfor-
mation to the reduced form we find

ẋ i t =°ż i t + ≥̇i t .

Again we see that ° is the effect of the within-transformed instruments on the within-transformed re-
gressors. If there is no time-variation in the within-transformed instruments, or there is no correlation
between the instruments and the regressors after removing the individual-specific means, then the co-
efficient ° will be either not identified or singular. In either case the structural coefficient Ø will not be
identified.

Thus for identification of the fixed effects instrumental variables model we need

E

h
Ż

0
i Ż i

i
> 0 (17.71)

and
rank

≥
E

h
Ż

0
i Ẋ i

i¥
= k. (17.72)

Condition (17.71) is the same as the condition for identification in fixed effects regression – the instru-
ments must have full variation after the within transformation. Condition (17.72) is analogous to the
relevance condition for identification of instrumental variable regression in the cross-section context,
but applies to the within-transformed instruments and regressors.

Condition (17.72) shows that to examine instrument validity in the context of fixed effects 2SLS, it is
important to estimate the reduced form equation using fixed effects (within) regression. Standard tests
for instrument validity (F tests on the excluded instruments) can be applied. However, since the corre-
lation structure of the reduced form equation is in general unknown, it is appropriate to use a cluster-
robust covariance matrix, clustered at the level of the individual.

17.30 Asymptotic Distribution of Fixed Effects 2SLS Estimator

In this section we present an asymptotic distribution theory for the fixed effects estimator. We pro-
vide a formal theory for the case of balanced panels, and discuss an extension to the case of unbalanced
panels.

We use the following assumptions for balanced panels.
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Assumption 17.4

1. yi t = x
0
i tØ+ui +"i t for i = 1, ..., N and t = 1, ...,T with T ∏ 2.

2. The variables ("i , X i , Z i ), i = 1, ..., N , are independent and identically dis-
tributed.

3. E [z i s"i t ] = 0 for all s = 1, ...,T.

4. Q zz = E
h

Ż
0
i Ż i

i
> 0.

5. rank
°
Q zx

¢
= k where Q zx = E

h
Ż

0
i Ẋ i

i
.

6. E
£
"4

i t

§
<1.

7. Ekx i tk2 <1.

8. Ekz i tk4 <1.

Given Assumption 17.4 we can establish asymptotic normality for bØ2sls.

Theorem 17.4 Under Assumption 17.4, as N !1,

p
N

°bØ2sls °Ø
¢
°!

d
N

°
0,V Ø

¢

where

V Ø =
°
Q

0
zx≠

°1
zz Q zx

¢°1 °
Q

0
zx≠

°1
zz≠z"≠

°1
zz Q zx

¢°
Q

0
zx≠

°1
zz Q zx

¢°1

≠z" = E
h

Ż
0
i"i"

0
i Ż i

i
.

The proof of the result is similar to Theorem 17.2 so is omitted. The key orthogonality condition is
Assumption 17.4.3, which states that the instruments are strictly exogenous for the idiosyncratic errors.
The identification conditions are Assumptions 17.4.4 and 17.4.5, which were discussed in the previous
section.

The theorem is stated for balanced panels. For unbalanced panels we can modify the theorem as in
Theorem 17.3 by adding the selection indicators si , and replacing Assumption 17.4.3 with E ("i t | Z i , si ) =
0, which states that the idiosyncratic errors are mean independent of the instruments and selection.

If the idiosyncratic errors "i t are homoskedastic and serially uncorrelated, then the covariance matrix
simplifies to

V Ø =
°
Q

0
zx≠

°1
zz Q zx

¢°1
æ2
".

In this case a classical homoskedastic covariance matrix estimator can be used. Otherwise a cluster-
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robust covariance matrix estimator can be used, which takes the form

bV bØ =
µ

Ẋ
0
Ż

≥
Ż

0
Ż

¥°1
Ż

0
Ẋ

∂°1 ≥
Ẋ

0
Ż

¥≥
Ż

0
Ż

¥°1
√

NX

i=1
Ż

0
i b"i b"0i Ż i

!

£
≥

Ż
0
Ż

¥°1 ≥
Ż

0
Ẋ

¥µ
Ẋ

0
Ż

≥
Ż

0
Ż

¥°1
Ż

0
Ẋ

∂°1

.

As for the case of fixed effects regression, the heteroskedasticity-robust covariance matrix estimator is
not recommended due to bias when T is small, and a bias-corrected version has not been developed.

The Stata command by default reports the classical homoskedastic covariance matrix
estimator. To obtain a cluster-robust covariance matrix, use the option or

.

17.31 Linear GMM

Consider the just-identified 2SLS estimator. It solves the equation

Ż
0 °

ẏ ° ẊØ
¢
= 0

or equivalently
Ż

0 °
y °XØ

¢
= 0.

These are sample analogs of the population moment condition

E

h
Ż

0
i
°

ẏ i ° Ẋ iØ
¢i

= 0.

or equivalenlty

E

h
Ż

0
i
°

y i °X iØ
¢i

= 0.

These population conditions hold at the true Ø since Ż
0
u = Z

0
MDu = 0 since u lies in the null space of

D , and E
h

Ż
0
i"

i
= 0 is implied by Assumption 17.4.3.

The population orthogonality conditions hold in the overidentified case as well. In this case an alter-
native to 2SLS is GMM. Let b≠i be an estimate of

W = E
h

Ż
0
i"i"

0
i Ż i

i
,

for example

cW = 1
N

NX

i=1
Ż

0
i b"i b"0i Ż i (17.73)

where b"i are the 2SLS fixed effects residuals. The GMM fixed effects estimator is

bØgmm =
≥

Ẋ
0
Ż cW °1

Ż
0
Ẋ

¥°1 ≥
Ẋ

0
Ż cW °1

Ż
0
ẏ

¥
. (17.74)

The estimator (17.74)-(17.73) does not have a Stata command, but can be obtained by generating the
within transformed variables Ẋ , Ż and ẏ , and then estimating by GMM a regression of ẏ on Ẋ using Ż

as instruments, using a weight matrix clustered by individual.



CHAPTER 17. PANEL DATA 622

17.32 Estimation with Time-Invariant Regressors

One of the disappointments with the fixed effects estimator is that it cannot estimate the effect of re-
gressors which are time-invariant. They are not identified separately from the fixed effect, and are elim-
inated by the within transformation. In contrast, the random effects estimator allows for time-invariant
regressors, but does so only by assuming strict exogeneity, which is stronger than typically desired in
economic applications.

It turns out that we can consider an intermediate case which maintains the fixed effects assumptions
for the time-varying regressors, but uses stronger assumptions on the time-invariant regressors. For
our exposition we will denote the time-varying regressors by the k £1 vector x i t , and the time-invariant
regressors by the `£1 vector z i .

Consider the linear regression model

yi t = x
0
i tØ+ z

0
i∞+ui +"i t .

At the level of the individual this can be written as

y i = X iØ+Z i∞+ ı i ui +"i

where Z i = ı i z
0
i . For the full sample in matrix notation we can write this as

y = XØ+Z∞+u +". (17.75)

We will maintain the assumption that the idiosyncratic errors "i t are uncorrelated with both x i t and
z i at all time horizons:

E [x i s"i t ] = 0 (17.76)

E [z i"i t ] = 0. (17.77)

In this section we consider the case where z i is uncorrelated with the individual-level error ui , thus

E [z i ui ] = 0, (17.78)

but the correlation of x i t and ui is left unrestricted. In this context we say that z i is exogenous with
respect to the fixed effect ui , while x i t is endogenous with respect to ui . Note that this is a different
type of endogeneity than considered in the sections on instrumental variables: there endogeneity meant
correlation with the idiosyncratic error "i t . Here endogeneity means correlation with the fixed effect ui .

We consider estimation of (17.75) by instrumental variables, and thus need instruments which are
uncorrelated with the error u +". The time-invariant regressors Z satisfy this condition due to (17.77)
and (17.78), thus

E
£

Z
0
i

°
y i °X iØ°Z i∞

¢§
= 0.

While the time-varying regressors X are correlated with u, the within transformed variables Ẋ are un-
correlated with u +" under (17.76), thus

E

h
Ẋ

0
i
°

y i °X iØ°Z i∞
¢i

= 0.

Therefore we can estimate (Ø,∞) by instrumental variable regression, using the instrument set (Ẋ , Z ).
That is, regression of y on X and Z , treating X as endogenous, Z as exogenous, and using the instrument
Ẋ . Write this estimator as (bØ, b∞). This can be implemented using the Stata command after
constructing the within transformed Ẋ .
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This instrumental variables estimator is algebraically equal to a simple two-step estimator. The first
step bØ = bØfe is the fixed effects estimator. The second step sets b∞ =

°
Z

0
Z

¢°1 °
Z

0bu
¢

, the least-squares
coefficient from the regression of the estimated fixed effect bu on Z . To see this equivalence, observe that
the instrumental variables estimator estimator solves the sample moment equations

Ẋ
0 °

y °XØ°Z∞
¢
= 0 (17.79)

Z
0 °

y °XØ°Z∞
¢
= 0. (17.80)

Notice that Ẋ
0
i Z i = Ẋ

0
i ı i z

0
i = 0 so Ẋ

0
Z = 0. Thus (17.79) is the same as Ẋ

0 °
y °XØ

¢
= 0 whose solution is

bØfe. Plugging this into the left-side of (17.80) we obtain

Z
0 °

y °X bØfe °Z∞
¢
= Z

0
≥

y °X bØfe °Z∞
¥

= Z
0 °bu °Z∞

¢

where y and X are the stacked individual means ı i y i and ı i x
0
i . Set equal to 0 and solving we obtain the

least-squares estimator b∞=
°

Z
0
Z

¢°1 °
Z

0bu
¢

as claimed. This equivalence was first observed by Hausman
and Taylor (1981).

For standard error calculation it is recommended to estimate (Ø,∞) jointly by instrumental variable
regression, using a cluster-robust covariance matrix estimator, clustered at the individual level. Classical
and heteroskedasticity-robust estimators are misspecified due to the individual-specific effect ui .

The estimator (bØ, b∞) is a special case of the Hausman-Taylor estimator described in the next section.
(However, for an unknown reason the above estimator cannot be estimated using the Stata
command.)

17.33 Hausman-Taylor Model

Hausman and Taylor (1981) consider a generalization of the model of the previous section. The
model is

yi t = x
0
1i tØ1 +x

0
2i tØ2 + z

0
1i∞+ z

0
2i∞+ui +"i t

where x1i t and x2i t are time-varying and z1i and z2i are time-invariant. Let the dimensions of x1i t , x2i t ,
z1i , and z2i be k1, k2, `1, and `2, respectively.

Write the model in matrix notation as

y = X 1Ø1 +X 2Ø2 +Z 1∞1 +Z 2∞2 +u +". (17.81)

Let X 1 and X 2 denote conformable matrices of individual-specific means, and let Ẋ 1 = X 1 ° X 1 and
Ẋ 2 = X 2 °X 2 denote the within-transformed variables.

The Hausman-Taylor model assumes that all regressors are uncorrelated with the idiosyncratic error
"i t at all time horizons, and also that x1i t and z1i are exogenous with respect to the fixed effect ui , so that

E [x1i t ui ] = 0

E [z1i ui ] = 0.

The regressors x2i t and z2i , however, are allowed to be correlated with ui .
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Set X = (X 1, X 2, Z 1, Z 2) and Ø =
°
Ø1,Ø2,∞1,∞2

¢
. The assumptions imply the following population

moment conditions

E

h
Ẋ

0
1
°

y °XØ
¢i

= 0

E

h
Ẋ

0
2
°

y °XØ
¢i

= 0

E

h
X

0
1
°

y °XØ
¢i

= 0

E
£

Z
0
1
°

y °XØ
¢§
= 0.

There are 2k1+k2+`1 moment conditions and k1+k2+`1+`2 coefficients. Thus identification requires
k1 ∏ `2: that there are at least as many exogenous time-varying regressors as endogenous time-invariant
regressors. (This includes the model of the previous section, where k1 = `2 = 0.)

Given the moment conditions, the coefficients Ø =
°
Ø1,Ø2,∞1,∞2

¢
can be estimated by 2SLS regres-

sion of (17.81) using the instruments Z = (Ẋ 1, Ẋ 2, X 1, Z 1), or equivalently Z = (X 1, Ẋ 2, X 1, Z 1). This is
2SLS regression treating X 1 and Z 1 as exogenous and X 2 and Z 2 as endogenous, using the excluded
instruments Ẋ 2 and X 1. Setting X = (X 1, X 2, Z 1, Z 2), this is

bØ2sls =
≥

X
0
Z

°
Z

0
Z

¢°1
Z

0
X

¥°1 ≥
X

0
Z

°
Z

0
Z

¢°1
Z

0
y

¥
.

It is recommended to use cluster-robust covariance matrix estimation clustered at the individual
level. Neither conventional nor heteroskedasticity-robust covariance matrix estimators should be used,
as they are misspecified due to the individual-specific effect ui .

When the model is just-identified, the estimators simplify as follows. bØ1 and bØ2 are the fixed effects
estimator. b∞1 and b∞2 equal the 2SLS estimator from a regression of bu on Z 1 and Z 2, using X 1 as an
instrument for Z 2. (See Exercise 17.14.)

When the model is over-identified the equation can also be estimated by GMM with a cluster-robust
weight matrix, using the same equations and instruments.

This estimator with cluster-robust standard errors can be calculated using the Stata
command after constructing the transformed variables Ẋ 2 and X 1.

The 2SLS estimator described above corresponds with the Hausman and Taylor (1981) estimator in
the just-identified case with a balanced panel.

Hausman and Taylor derived their estimator under the stronger assumption that the errors "i t and
ui are strictly mean independent and homoskedastic, and consequently proposed a GLS-type estima-
tor which is more efficient when these assumptions are correct. Define ≠ = diag(≠i ) where ≠i = I i +
1i 10

iæ
2
u/æ2

" and æ2
" and æ2

u are the variances of the error components "i t and ui . Define as well the trans-
formed variables ey =≠°1/2

y , eX =≠°1/2
X and eZ =≠°1/2

Z . The Hausman-Taylor estimator is

bØht =
≥

X
0≠°1

Z
°

Z
0≠°1

Z
¢°1

Z
0≠°1

X

¥°1 ≥
X

0≠°1
Z

°
Z

0≠°1
Z

¢°1
Z

0≠°1
y

¥

=
µ
eX 0 eZ

≥
eZ 0 eZ

¥°1 eZ 0 eX
∂°1 µ

eX 0 eZ
≥
eZ 0 eZ

¥°1 eZ 0ey
∂

.
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Recall from (17.47) that≠°1/2
i = M i +Ωi P i where Ωi is defined in (17.46). Thus

ey i = y i °
°
1°Ωi

¢
y i

eX 1i = X 1i °
°
1°Ωi

¢
X 1i

eX 2i = X 2i °
°
1°Ωi

¢
X 2i

eZ 1i = Ωi Z 1i

eZ 2i = Ωi Z 2i

ėX1i = Ẋ 1i

ėX2i = Ẋ 2i

e
X 1i = Ωi X 1i .

It follows that the Hausman-Taylor estimator can be calculated by 2SLS regression of ey i on ( eX 1i , eX 2i ,Ωi Z 1i ,Ωi Z 2i )

using the instruments
≥

Ẋ 1i , Ẋ 2i ,Ωi X 1i ,Ωi Z 2i

¥
.

When the panel is balanced the coefficients Ωi all equal and scale out from the instruments. Thus
the estimator can be calculated by 2SLS regression of ey i on ( eX 1i , eX 2i , Z 1i , Z 2i ) using the instruments≥

Ẋ 1i , Ẋ 2i , X 1i , Z 2i

¥
.

In practice Ωi is unknown. It can be estimated as in (17.48) with the modification that the variance of
the combined error is estimated from the untransformed 2SLS regression. Under the homoskedasticity
assumptions used by Hausman and Taylor the estimator bØht has a classical asymptotic covariance ma-
trix. When these assumptions are relaxed the covariance matrix can be estimated using cluster-robust
methods.

The Hausman-Taylor estimator with cluster-robust standard errors can be implemented in Stata by
the command . This Stata command, for an unknown reason, requires that
there is at least one exogenous time-invariant variable (`1 ∏ 1), and at least one exogenous time-varying
variable (k1 ∏ 1), even when the model is identified. Otherwise, the estimator can be implemented using
the instrumental variable method described above.

The Hausman-Taylor estimator was refined by Amemiya and MaCurdy (1986) and Breusch, Mizon
and Schmidt (1989), who proposed more efficient versions using additional instruments which are valid
under stronger orthogonality conditions. The observation that in the unbalanced case the instruments
should be weighted by Ωi was made by Gardner (1998).

In the over-identified case it is unclear if it is preferred to use the simpler 2SLS estimator bØ2sls or
the GLS-type Hausman-Taylor estimator bØht. The advantages of bØht are that it is asymptotically efficient
under their stated homoskedasticity and serial correlation conditions, and that there is an available pro-
gram in Stata. The advantage of bØ2sls is that it is much simpler to program (if doing so yourself), may
have better finite sample properties (since it avoids variance-component estimation), and is the natural
estimator from the the modern GMM viewpoint.

To illustrate, the final column of Table 17.2 contains Hausman-Taylor estimates of the investment
model, treating Qi t°1, Di t°1, and Ti as endogenous for ui , and C Fi t°1 and the industry dummies as
exogenous. Relative to the fixed effects models this allows estimation of the coefficients on the trading
indicator Ti . The most interesting change relative to the previous estimates is that the coefficient on the
trading indicator Ti doubles in magnitude relative to the random effects estimate. This is consistent with
the hypothesis that Ti is correlated with the fixed effect, and hence the random effects estimate is biased.
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17.34 Jackknife Covariance Matrix Estimation

As an alternative to asymptotic inference the delete-cluster jackknife can be used for covariance ma-
trix calculation. In the context of fixed effects estimation the delete-cluster estimators take the form

bØ(°i ) =
√
X

j 6=i
Ẋ

0
j Ẋ j

!°1 √
X

j 6=i
Ẋ

0
j ẏ j

!

= bØfe °
√

NX

i=1
Ẋ

0
i Ẋ i

!°1

Ẋ
0
i eeg .

where

eeg =
µ

I i ° Ẋ i

≥
Ẋ

0
i Ẋ i

¥°1
Ẋ

0
i

∂°1

be i

be i = ẏ i ° Ẋ i bØfe.

The delete-cluster jackknife estimator of the variance of bØfe is

bV jack
bØ

= N °1
N

NX

i=1

≥
bØ(°i ) °Ø

¥≥
bØ(°i ) °Ø

¥0

Ø= 1
N

NX

i=1

bØ(°i ).

The delete-cluster jackknife estimator bV jack
bØ

is similar to the cluster-robust covariance matrix estimator.

For parameters which are functions bµfe = r (bØfe) of the fixed effects estimator, the delete-cluster jack-
knife estimator of the variance of bµfe is

bV jack
bµ

= N °1
N

NX

i=1

≥
bµ(°i ) °µ

¥≥
bµ(°i ) °µ

¥0

bµ(°i ) = r (bØ(°i ))

µ = 1
N

NX

i=1

bµ(°i ).

The estimator bV jack
bµ

is similar to the delta-method cluster-robust covariance matrix estimator for bµ.
As in the context of i.i.d. samples, one advantage of the jackknife covariance matrix estimators is

that they do not require the user to make a technical calculation of the asymptotic distribution. A down-
side is an increase in computation cost, as N separate regressions are effectively estimated. This can be
particularly costly in micro panels which have a large number N of individuals.

In Stata, jackknife standard errors for fixed effects estimators are obtained by using either
or where is the cluster vari-

able. For the fixed effects 2SLS estimator, use .

17.35 Panel Bootstrap

Bootstrap methods can also be applied to panel data by a straightforward application of the pairs
cluster bootstrap, which samples entire individuals rather than single observations. In the context of
panel data we call this the panel nonparametric bootstrap.
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The panel nonparametric bootstrap samples N individual histories (y i , X i ) to create the bootstrap
sample. Fixed effects (or any other estimation method) is applied to the bootstrap sample to obtain
the coefficient estimates. By repeating B times, bootstrap standard errors for coefficients estimates, or
functions of the coefficient estimates, can be calculated. Percentile-type and percentile-t confidence
intervals can be calculated. The BCa interval requires an estimator of the acceleration coefficient a which
is a scaled jackknife estimate of the third moment of the estimator. In panel data the delete-cluster
jackknife should be used for estimation of a.

In Stata, to obtain bootstrap standard errors and confidence intervals use either
or , where is the cluster

variable and is the number of bootstrap replications. For the fixed effects 2SLS estimator, use
.

17.36 Dynamic Panel Models

The models so far considered in this chapter have been static, with no dynamic relationships. In
many economic contexts it is natural to expect that behavior and decisions are dynamic, explicitly de-
pending on past behavior. In our investment equation, for example, economic models predict that a
firm’s investment in any given year will depend on investment decisions from previous years. These
considerations lead us to consider explicitly dynamic models.

The workhorse dynamic model in a panel framework is the pth-order autoregression with regressors
and a one-way error component structure. This is

yi t =Æ1 yi t°1 +·· ·+Æp yi t°p +x
0
i tØ+ui +"i t . (17.82)

where Æ j are the autoregressive coefficients, x i t is a k vector of regressors, ui is an individual-effect,
and "i t is an idiosyncratic error. It is conventional to assume that the errors ui and "i t are mutually
independent, and the "i t are serially uncorrelated and mean zero. For the present we will assume that
the regressors x i t are strictly exogenous (17.17). In Section 17.41 we discuss the case of predetermined
regressors.

For many illustrations we will focus on the AR(1) model

yi t =Æyi t°1 +ui +"i t (17.83)

The dynamics should be interpreted individual-by-individual. The coefficient Æ in (17.83) equals
the first-order autocorrelation. When Æ = 0 the series is serially uncorrelated (conditional on ui ). Æ > 0
means yi t is positively serially correlated. Æ < 0 means yi t is negatively serially correlated. An autore-
gressive unit root holds when Æ = 1, which means that yi t follows a random walk with possible drift.
Since ui is constant for a given individual, it should be treated as an individual-specific intercept. The
idiosyncratic error "i t plays the role of the error in a standard time series autoregression.

If |Æ| < 1 then the model (17.83) is stationary. By standard autoregressive backwards recursion we
can calculate that

yi t =
1X

j=0
Æ j (ui +"i t ) = (1°Æ)°1 ui +

1X

j=0
Æ j"i t° j . (17.84)

Thus if we condition on ui the conditional mean and variance of yi t is (1°Æ)°1 ui and
°
1°Æ2¢°1

æ2
",

respectively. The kth autocorrelation (conditional on ui ) is Æk . Notice that the effect of cross-section
variation in ui is to shift the (conditional) mean, but not the variance or serial correlation. This implies
that if we view time series plots of yi t against time for a set of individuals i , the series yi t will appear to
have different means, but have similar variances and time series serial correlation.
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As with the case with time series data, serial correlation (large Æ) can proxy for other factors such
as time trends. Thus in applications it will often be useful to include time effects to eliminate spurious
serial correlation.

17.37 The Bias of Fixed Effects Estimation

To estimate the panel autoregression (17.82) it may appear natural to use the fixed effects (within)
estimator. Indeed, the within transformation eliminates the individual effect ui . The trouble is that the
within operator induces correlation between the AR(1) lag and the error. The result is that the within
estimator is inconsistent for the coefficients when T is fixed. A thorough explanation appears in Nickell
(1981). We describe the basic problem in this section focusing on the AR(1) model (17.83).

Applying the within operator to (17.83) we obtain

ẏi t =Æẏi t°1 + "̇i t

for t ∏ 2. As expected the individual effect is eliminated. The difficulty is that E
£

ẏi t°1"̇i t
§
6= 0, since both

ẏi t°1 and "̇i t are functions of the entire time series.
To see this clearly in a simple example, suppose we have a balanced panel with T = 3. There are

two observed pairs (yi t , yi t°1) per individual so the within estimator equals the differenced estimator.
Applying the differencing operator to (17.83) for t = 3 we find

¢yi 3 =Æ¢yi 2 +¢"i 3. (17.85)

Because of the lagged dependent variable and differencing there is effectively one observation per indi-
vidual. Notice that the individual effect has been eliminated.

The fixed effects estimator of Æ is equal to the least-squares estimator applied to (17.85), which is

bÆfe =
√

NX

i=1
¢y2

i 2

!°1 √
NX

i=1
¢yi 2¢yi 3

!

=Æ+
√

NX

i=1
¢y2

i 2

!°1 √
NX

i=1
¢yi 2¢"i 3

!

.

This estimator is inconsistent for Æ since the differenced regressor and error are negatively correlated.
Indeed

E
£
¢yi 2¢"i 3

§
= E

£°
yi 2 ° yi 1

¢
("i 3 °"i 2)

§

= E
£

yi 2"i 3
§
°E

£
yi 1"i 3

§
°E

£
yi 2"i 2

§
+E

£
yi 1"i 2

§

= 0°0°æ2
"+0

=°æ2
".

Using the variance formula for AR(1) models (assuming |Æ| < 1) we can calculate that E
h°
¢yi 2

¢2
i
=

2æ2
"/(1+Æ). It follows that the probability limit of the fixed effects estimator bÆfe of Æ in (17.85) is

plim
N!1

(bÆfe °Æ) =
E
£
¢yi 2¢"i 3

§

E

h°
¢yi 21

¢2
i =°1+Æ

2
. (17.86)

It is typical to call (17.86) the “bias” of bÆfe, though it is technically the probability limit.
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The bias found in (17.86) is large. For Æ= 0 the bias is °1/2 and increases towards 1 as Æ! 1. Thus
for any Æ< 1 the probability limit of bÆfe is negative! This is extreme bias.

From Nickell’s (1981) expressions and some algebra, we can calculate that the probability limit of the
fixed effects estimator for |Æ| < 1 and general T is

plim
N!1

(bÆfe °Æ) = 1+Æ
2Æ

1°Æ ° T °1
1°ÆT°1

. (17.87)

If follows that the bias is of order O(1/T ).
One might guess (and is often asserted) that it is okay to use fixed effects if T is large, say T ∏ 30

or perhaps T ∏ 60. However, from (17.87) we can calculate that for T = 30 the bias of the fixed effects
estimator is °0.056 when Æ = 0.5 and the bias is °0.15 when Æ = 0.9. For T = 60 and Æ = 0.9 the bias is
°0.05. These magnitudes are unacceptably large. This includes the longer time series encountered in
macro panels. Thus the Nickell bias problem applies to both micro and macro panel applications.

The conclusion from this analysis is that the fixed effects estimator should not be used for models
with lagged dependent variables, even if the time series dimension T is large.

17.38 Anderson-Hsiao Estimator

Anderson and Hsiao (1982) made an important breakthrough by showing that a simple instrumental
variables estimator is consistent for the parameters of (17.82).

The method first eliminates the individual effect ui by first-differencing (17.82) for t ∏ p +1

¢yi t =Æ1¢yi t°1 +Æ2¢yi t°2 +·· ·+Æp¢yi t°p +¢x
0
i tØ+¢"i t . (17.88)

This eliminates the individual effect ui . The challenge is that first-differencing induces correlation be-
tween ¢yi t°1 and ¢"i t :

E
£
¢yi t°1¢"i t

§
= E

£°
yi t ° yi t°1

¢
("i t °"i t°1)

§
=°æ2

".

The other regressors are not correlated with ¢"i t . For s > 1

E
£
¢yi t°s¢"i t

§
= 0

and when x i t is strictly exogenous
E [¢x i t¢"i t ] = 0.

The correlation between ¢yi t°1 and ¢"i t is endogeneity. One solution to endogeneity is to use an
instrument. Anderson-Hsiao pointed out that yi t°2 is a valid instrument since it is correlated with¢yi t°1

yet uncorrelated with ¢"i t .

E
£

yi t°2¢"i t
§
= E

£
yi t°2"i t

§
°E

£
yi t°2"i t°1

§
= 0. (17.89)

The Anderson-Hsiao estimator is IV using yi t°2 as an instrument for¢yi t°1. Equivalently, this is IV using
the instruments (yi t°2, ..., yi t°p°1) for (¢yi t°1, ...,¢yi t°p ). The estimator requires T ∏ p +2.

To show that this estimator is consistent, for simplicity assume we have a balanced panel with T = 3,
p = 1, and no regressors. In this case the Anderson-Hsiao IV estimator is

bÆiv =
√

NX

i=1
yi 1¢yi 2

!°1 √
NX

i=1
yi 1¢yi 3

!

=Æ+
√

NX

i=1
yi 1¢yi 2

!°1 √
NX

i=1
yi 1¢"i 3

!

.
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Under the assumption that "i t is serially uncorrelated, (17.89) shows that E
£

yi 1¢"i 3
§
= 0. In general,

E
£

yi 1¢yi 2
§
6= 0. As N !1

bÆiv °!p Æ°
E
£

yi 1¢"i 3
§

E
£

yi 1¢yi 2
§ =Æ.

Thus the IV estimator is consistent for Æ.
The Anderson-Hsiao IV estimator relies on two critical assumptions. First, the validity of the instru-

ment (uncorrelatedness with the equation error) relies on the assumption that the dynamics are correctly
specified so that "i t is serially uncorrelated. For example, many applications use an AR(1). If instead the
true model is an AR(2) then yi t°2 is not a valid instrument and the IV estimates will be biased. Second,
the relevance of the instrument (correlatedness with the endogenous regressor) requires E

£
yi 1¢yi 2

§
6= 0.

This turns out to be problematic and is explored further in Section 17.40. These considerations suggest
that the validity and accuracy of the estimator are likely to be sensitive to these unknown features.

17.39 Arellano-Bond Estimator

The orthogonality condition (17.89) is one of many implied by the dynamic panel model. Indeed, all
lags yi t°2, yi t°3, ... are valid instruments. If T > p +2 these can be used to potentially improve estimation
efficiency. This was first pointed out by Holtz-Eakin, Newey and Rosen (1988) and further developed by
Arellano and Bond (1991).

Using these extra instruments has a complication that there are a different number of instruments
for each time period. The solution is to view the model as a system of T equations as in Section 17.18.

It will be useful to first write the model in vector notation. Stacking the differenced regressors (¢yi t°1, ...¢yi t°p ,¢x
0
i t )

into a matrix ¢X i and the coefficients into a vector µ we can write (17.88) as

¢y i =¢X iµ+¢"i .

Stacking all N individuals this can be written as

¢y =¢Xµ+¢".

For period t = p+2 we have the p+k valid instruments
£

yi 1..., yi p ,¢x i ,p+2
§
. For period t = p+3 there

are p +1+k valid instruments
£

yi 1..., yi p+1,¢x i ,p+3
§
. For period t = p +4 there are p +2+k instruments.

In general, for any t ∏ p +2 there are t °2 instruments
£

yi 1, ..., yi ,t°2,¢x i t
§
. Similarly to (17.53) we can

define the instrument matrix for individual i as

Z i =

2

6666664

h
yi 1..., yi p ,¢x

0
i ,p+2

i
0 0

0
h

yi 1..., yi p+1,¢x
0
i ,p+3

i
0

. . .

0 0
h

yi 1, yi 2, ..., yi ,T°2,¢x
0
i ,T

i

3

7777775
. (17.90)

This is
°
T °p °1

¢
£` where `= k

°
T °p °1

¢
+

°
(T °2)(T °1)°

°
p °2

¢°
p °1

¢¢
/2. This instrument matrix

consists of all lagged values yi t°2, yi t°3, ... which are available in the data set, plus the differenced strictly
exogenous regressors.

The ` moment conditions are
E
£

Z
0
i

°
¢y i °¢X iÆ

¢§
= 0. (17.91)

If T > p + 2 then ` > p and the model is overidentified. Define the `£` covariance matrix for the
moment conditions

≠= E
£

Z
0
i¢"i¢"

0
i Z i

§
.
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Let Z denote Z i stacked into a
°
T °p °1

¢
N £` matrix. The efficient GMM estimator of Æ is

bÆgmm =
°
¢X

0
Z≠°1

Z
0¢X

¢°1 °
¢X

0
Z≠°1

Z
0¢y

¢
.

If the errors "i t are conditionally homoskedastic then

≠= E
£

Z
0
i H Z i

§
æ2
"

where H is given in (17.31). In this case set

b≠1 =
NX

i=1
Z

0
i H Z i

as a (scaled) estimate of≠. Under these assumptions an asymptotically efficient GMM estimator is

bÆ1 =
≥
¢X

0
Z b≠°1

1 Z
0¢X

¥°1 ≥
¢X

0
Z b≠°1

1 Z
0¢y

¥
. (17.92)

Estimator (17.92) is known as the one-step Arellano-Bond GMM estimator.
Under the assumption that the error "i t is homoskedastic and serially uncorrelated, a classical co-

variance matrix estimator for bÆ1 is

bV 0
1 =

≥
¢X

0
Z b≠°1

1 Z
0¢X

¥°1
bæ2
" (17.93)

where bæ2
" is the sample variance of the one-step residuals b"i =¢y i°¢X i bÆ. A covariance matrix estimator

which is robust to violation of these assumptions is

bV 1 =
≥
¢X

0
Z b≠°1

1 Z
0¢X

¥°1 ≥
¢X

0
Z b≠°1

1 Z
0 b≠2Z b≠°1

1 Z
0¢X

¥≥
¢X

0
Z b≠°1

1 Z
0¢X

¥°1
(17.94)

where

b≠2 =
NX

i=1
Z

0
i b"i b"0i Z i

is a (scaled) cluster-robust estimator of≠ using the one-step residuals.
An asymptotically efficient two-step GMM estimator which relaxes the assumption of homoskedas-

ticity is

bÆ2 =
≥
¢X

0
Z b≠°1

2 Z
0¢X

¥°1 ≥
¢X

0
Z b≠°1

2 Z
0¢y

¥
. (17.95)

Estimator (17.95) is known as the two-step Arellano-Bond GMM estimator. An appropriate robust co-
variance matrix estimator for bÆ2 is

bV 2 =
≥
¢X

0
Z b≠°1

2 Z
0¢X

¥°1 ≥
¢X

0
Z b≠°1

2 Z
0 b≠3Z b≠°1

2 Z
0¢X

¥≥
¢X

0
Z b≠°1

2 Z
0¢X

¥°1
(17.96)

where

b≠3 =
NX

i=1
Z

0
i b"i b"0i Z i

is a (scaled) cluster-robust estimator of≠ using the two-step residuals b"i =¢y i °¢X i bÆ2. Asymptotically,
bV 2 is equivalent to

eV 2 =
≥
¢X

0
Z b≠°1

2 Z
0¢X

¥°1
. (17.97)

The GMM estimator can be iterated until convergence to produce an iterated GMM estimator.
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The advantage of the Arellano-Bond estimator over the Anderson-Hsiao estimator is that when T >
p+2 the additional (overidentified) moment conditions reduce the asymptotic variance of the estimator
and stabilize its performance. The disadvantage is that when T is large using the full set of lags as instru-
ments may cause a “many weak instruments” problem. The advised compromise is to limit the number
of lags used as instruments.

The advantage of the one-step Arellano-Bond estimator is that the weight matrix b≠1 does not depend
on residuals and is therefore less random than the two-step weight matrix b≠2. This can result in better
performance by the one-step estimator in small to moderate samples, especially when the errors are
approximately homoskedastic. The advantage of the two-step estimator is that it achieves asymptotic
efficiency allowing for heteroskedasticity, and is thus expected to perform better in large samples with
non-homoskedastic errors.

To summarize, the Arellano-Bond estimator applies GMM to the first-differenced equation (17.88)
using a set of available lags yi t°2, yi t°3, ... as instruments for ¢yi t°1, ...,¢yi t°p .

The Arellano-Bond estimator may be obtained in Stata using either the or command.
The default setting is the one-step estimator (17.92) and non-robust standard errors (17.93). For the
two-step estimator and robust standard errors use the options. Reported stan-
dard errors in Stata are based on Windmeijer’s (2005) finite-sample correction to the asymptotic estimate
(17.97). The robust covariance matrix (17.96) nor the iterated GMM estimator are implemented.

17.40 Weak Instruments

Blundell and Bond (1998) pointed out that the Anderson-Hsiao and Arellano-Bond class of estima-
tors suffer from the problem of weak instruments. This can be seen easiest in the AR(1) model with the
Anderson-Hsiao estimator which uses yi t°2 as an instrument for ¢yi t°1. The reduced form equation for
¢yi t°1 is

¢yi t°1 = yi t°2∞+ vi t .

The reduced form coefficient ∞ is defined by projection. Using ¢yi t°1 = (Æ°1) yi t°2 +ui + "i t°1 and
E
£

yi t°2"i t°1
§
= 0 we can calculate that

∞=
E
£

yi t°2¢yi t°1
§

E
£

y2
i t°2

§

= (Æ°1)+
E
£

yi t°2ui
§

E
£

y2
i t°2

§ .

Assuming stationarity so that (17.84) holds,

E
£

yi t°2ui
§
= E

"√
ui

1°Æ +
1X

j=0
Æ j"i t°2° j

!

ui

#

=
æ2

u

1°Æ
and

E
£

y2
i t°2

§
= E

"√
ui

1°Æ +
1X

j=0
Æ j"i t°2° j

!2#

=
æ2

u

(1°Æ)2 +
æ2
"°

1°Æ2
¢
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where æ2
u = E

£
u2

i

§
and æ2

" = E
£
"2

i t

§
. Using these expressions and a fair amount of algebra, Blundell and

Bond (1998) found that the reduced form coefficient equals

∞= (Æ°1)
µ

k

k +æ2
u/æ2

"

∂
(17.98)

where k = (1°Æ)/(1+Æ).
The Anderson-Hsiao instrument yi t°2 is weak if ∞ is close to zero. From (17.98) we see that ∞ = 0

when either Æ= 1 (a unit root) or æ2
u/æ2

" =1 (the idiosyncratic effect is small relative to the individual-
specific effect). In either case the coefficient Æ is not identified. We know from our earlier study of the
weak instruments problem (Section 12.36) that when ∞ is close to zero then Æ is weakly identified and
the estimators will perform poorly. This means that when the autoregressive coefficient Æ is large or the
individual-specific effect dominates the idiosyncratic effect, these estimators will be weakly identified,
have poor performance, and conventional inference methods will be misleading. Since the value of Æ
and the relative variances are unknown a priori, this means that we should generically treat this class of
estimators as weakly identified.

An alternative estimator which has improved performance under weak identification is discussed in
Section 17.42.

17.41 Dynamic Panels with Predetermined Regressors

The assumption that regressors are strictly exogeneous is restrictive. A less restrictive assumption
is that the regressors are predetermined. Dynamic panel methods can be modified to handle predeter-
mined regressors by using their lags as instruments

Definition 17.2 The regressor x i t is predetermined for the error "i t if

E [x i t°s"i t ] = 0 (17.99)

for all s ∏ 0.

The difference between strictly exogeneous and predetermined regressors is that for the former (17.99)
holds for all s, not just s ∏ 0. One way of interpreting a regression model with predetermined regressors
is that the model is a projection on the complete past history of the regressors.

Under (17.99), leads of x i t can be correlated with "i t , that is E [x i t+s"i t ] 6= 0 for s ∏ 1, or equivalently
x i t can be correlated with lags of "i j , that is E [x i t"i t°s] 6= 0 for s ∏ 1. This means that x i t can respond
dynamically to past values of yi t , as in, for example, an unrestricted vector autoregression.

Consider the differenced equation (17.88)

¢yi t =Æ1¢yi t°1 +Æ2¢yi t°2 +·· ·+Æp¢yi t°p +¢x
0
i tØ+¢"i t .

When the regressors are predetermined but not strictly exogenous, x i t and "i t are uncorrelated, but¢x i t

and ¢"i t are correlated. To see this,

E [¢x i t¢"i t ] = E [x i t"i t ]°E [x i t°1"i t ]°E [x i t"i t°1]+E [x i t°1"i t°1]

=°E [x i t"i t°1]

6= 0.
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This means that if we treat ¢x i t as exogenous, the coefficient estimates will be biased.
To solve the correlation problem we can use instruments for ¢x i t . A valid instrument is x i t°1, since

it is generally correlated with ¢x i t yet uncorrelated with ¢"i t . Indeed, for any s ∏ 1

E [x i t°s¢"i t ] = E [x i t°s"i t ]°E [x i t°s"i t°1] = 0.

Consequently, Arellano and Bond (1991) recommend using the instrument set (x i 1, x i 2, ..., x i t°1). When
the number of time periods is large it is advised to limit the number of instrument lags to avoid the many
weak instruments problem.

Algebraically, GMM estimation is the same as the estimators described in Section 17.39, except that
the instrument matrix (17.90) is modified to

Z i =

2

666664

h
yi 1, ..., yi p , x

0
i 1, .., x

0
i p+1

i
0 0

0
h

yi 1, ..., yi p+1, x
0
i 1, .., x

0
i p+2

i
0

. . .
0 0

£
yi 1, ..., yi ,T°2, x

0
i 1, .., x

0
i T°1

§

3

777775
.

(17.100)
To understand how the model is identified we examine the reduced form equation for the regressor.

For t = p +2 and using the first lag as an instrument the reduced form is

¢x i t = ∞1 yi t°2 +°2x i t°1 +≥i t .

The model is identified if °2 is full rank. This is valid (in general) when x i t is stationary. Identification
fails, however, when x i t has a unit root. This indicates that the model will be weakly identified when the
predetermined regressors are highly persistent.

The method generalizes to handle multiple lags of the predetermined regressors. To see this, write
the model explicitly as

yi t =Æ1 yi t°1 +·· ·+Æp yi t°p +x
0
i tØ1 +·· ·+x

0
i t°qØq +ui +"i t .

In first differences the model is

¢yi t =Æ1¢yi t°1 +·· ·+Æp¢yi t°p +¢x
0
i tØ1 +·· ·+¢x

0
i t°qØq +¢"i t .

A sufficient set of instruments for the regressors are (x i t°1,¢x i t°1, ...,¢x i t°q ), or equivalently (x i t°1, x i t°2, ..., x i t°q°1).
In many cases it is more reasonable to assume that x i t°1 is predetermined but not x i t , since x i t and

"i t may be endogenous. This, for example, is the standard assumption in vector autoregressions. In
this case the estimation method is modified to use the instruments (x i t°2, x i t°3, ..., x i t°q°1). While this
weakens the exogeneity assumption it also weakens the instrument set, as now the reduced form uses
the second lag x i t°2 to predict ¢x i t .

The advantage obtained by treating a regressor as predetermined (rather than strictly exogenous) is
that it is a substantial relaxation of the dynamic assumptions. Otherwise the parameter estimates will be
inconsistent due to endogeneity.

The major disadvantage of treating a regressor as predetermined is that it substantially reduces the
strength of identification, especially when the predetermined regressors are highly persistent.

In Stata, the command by default treats independent regressors as strictly exogenous. To
treat the regressors as predetermined, use the option . By default all regressor lags are used as instru-
ments, but the number can be limited if specified.
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17.42 Blundell-Bond Estimator

Arellano and Bover (1995) and Blundell and Bond (1998) introduced a set of orthogonality conditions
which reduce the weak instrument problem discussed in the Section 17.40 and improve performance in
finite samples.

Consider the levels AR(1) model with no regressors (17.83)

yi t =Æyi t°1 +ui +"i t .

Recall, least squares (pooled) regression is inconsistent because the regressor yi t°1 is correlated with the
error ui . This raises the question: Is there an instrument zi t which solves this problem, in the sense
that zi t is correlated with yi t°1 yet uncorrelated with ui t +"i t ? Blundell-Bond propose the instrument
¢yi t°1. Clearly, ¢yi t°1 and yi t°1 are correlated, so ¢yi t°1 satisfies the relevance condition. Also, ¢yi t°1

is uncorrelated with the idiosyncratic error "i t when the latter is serially uncorrelated. Thus the key to
the Blundell-Bond instrument is whether or not

E
£
¢yi t°1ui

§
= 0. (17.101)

Blundell and Bond (1998) show that a sufficient condition for (17.101) is

E

h≥
yi 1 °

ui

1°Æ

¥
ui

i
= 0. (17.102)

Recall that ui /(1°Æ) is the conditional mean of yi t under stationarity. Condition (17.102) states that the
deviation of the initial condition yi 1 from this conditional mean is uncorrelated with the individual effect
ui . Condition (17.102) is implied by stationarity, but is somewhat weaker.

To see that (17.102) implies (17.101), by applying recursion to (17.88) we find that

¢yi t°1 =Æt°3¢yi 2 +
t°3X

j=0
¢"i t°1° j .

Hence

E
£
¢yi t°1ui

§
=Æt°3

E
£
¢yi 2ui

§

=Æt°3
E
£°

(Æ°1) yi 1 +ui +"i t
¢

ui
§

=Æt°3 (Æ°1)E
h≥

yi 1 °
ui

1°Æ

¥
ui

i

= 0

under (17.102), as claimed.
Now consider the full model (17.82) with predetermined regressors. Consider the assumption that

the regressors have constant correlation with the individual effect

E [x i t ui ] = E [x i sui ]

for all s. This implies
E [¢x i t ui ] = 0 (17.103)

which means that the differenced predetermined regressors¢x i t can also be used as instruments for the
level equation.

Using (17.101) and (17.103), Blundell and Bond propose the following moment conditions for GMM
estimation

E
£
¢yi t°1

°
yi t °Æ1 yi t°1 ° · · ·°Æp yi t°p °x

0
i tØ

¢§
= 0 (17.104)
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E
£
¢x i t

°
yi t °Æ1 yi t°1 ° · · ·°Æp yi t°p °x

0
i tØ

¢§
= 0 (17.105)

for t = p +2, ...,T . Notice that these are for the levels (undifferenced) equation, while the Arellano-Bond
(17.91) moments are in the differenced equation (17.88). We can write (17.104)-(17.105) in vector nota-
tion if we set Z 2i = diag

°
¢yi 2, ...,¢yi T°1,¢x i 3, ...,¢x i T

¢
. Then (17.104)-(17.105) equals

E
£

Z 2i
°

y i °X iµ
¢§
= 0. (17.106)

Blundell and Bond proposed combining the ` Arellano-Bond moments with the levels moments.
This can be done by stacking the moment conditions (17.91) and (17.106). Recall from Section 17.39
the variables ¢y i , ¢X i , and Z i . Now, define the stacked variables y i =

°
¢y

0
i , y

0
i

¢0, X i =
°
¢X

0
i , X

0
i

¢0 and
Z i = diag(Z i , Z 2i ). The stacked moment conditions are

E

h
Z i

≥
y i °X iµ

¥i
= 0.

The Blundell-Bond estimator is found by applying GMM to this equation. They call this a systems
GMM estimator. Let y , X and Z denote y i , X i , and Z i stacked into matrices. Define H = diag(H , I T°2)
where H is from (17.31) and set

b≠1 =
NX

i=1
Z

0
i H Z i .

The Blundell-Bond one-step GMM estimator is

bµ1 =
≥

X
0
Z b≠°1

1 Z
0
X

¥°1 ≥
X

0
Z b≠°1

1 Z
0
y

¥
. (17.107)

The systems residuals are b"i = y i °X i bµ1. A robust covariance matrix estimator is

bV 1 =
≥

X
0
Z b≠°1

1 Z
0
X

¥°1 ≥
X

0
Z b≠°1

1 Z
0 b≠2Z b≠°1

1 Z
0
X

¥≥
X

0
Z b≠°1

1 Z
0
X

¥°1
(17.108)

where

b≠2 =
NX

i=1
Z

0
i b"i b"0i Z i .

The Blundell-Bond two-step GMM estimator is

bµ2 =
≥

X
0
Z b≠°1

2 Z
0
X

¥°1 ≥
X

0
Z b≠°1

2 Z
0
y

¥
. (17.109)

The two-step systems residuals are b"i = y i °X i bµ2. A robust covariance matrix estimator is

bV 2 =
≥

X
0
Z b≠°1

2 Z
0
X

¥°1 ≥
X

0
Z b≠°1

2 Z
0 b≠3Z b≠°1

2 Z
0
X

¥≥
X

0
Z b≠°1

2 Z
0
X

¥°1
(17.110)

where

b≠3 =
NX

i=1
Z

0
i b"i b"0i Z i .

Asymptotically, bV 2 is equivalent to

eV 2 =
≥

X
0
Z b≠°1

2 Z
0
X

¥°1
. (17.111)

The GMM estimator can be iterated until convergence to produce an iterated GMM estimator.
Simulation experiments reported in Blundell and Bond (1998) indicate that their systems GMM esti-

mator performs substantially better than the Arellano-Bond estimator, especially when Æ is close to one
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or the variance ratioæ2
u/æ2

" is large. The explanation is that the orthogonality condition (17.104) does not
suffer the weak instrument problem in these cases.

The advantage of the Blundell-Bond estimator is that the added orthogonality condition (17.104)
greatly improves performance relative to the Arellano-Bond estimator when the latter is weakly identi-
fied. A disadvantage of the Blundell-Bond estimator is that their orthogonality condition is justified by a
stationarity condition (17.102), and violation of the latter may induce estimation bias.

The advantages and disadvantages of the one-step versus two-step Blundell-Bond estimators are the
same as described for the Arellano-Bond estimator as described in Section 17.39. Also as described there,
when T is large it may be desired to limit the number of lags to use as instruments in order to avoid the
many weak instruments problem.

The Blundell-Bond estimator may be obtained in Stata using either the or com-
mand. The default setting is the one-step estimator (17.107) and non-robust standard errors. For the
two-step estimator and robust standard errors use the options. Reported stan-
dard errors in Stata are based on Windmeijer’s (2005) finite-sample correction to the asymptotic estimate
(17.111). The robust covariance matrix estimator (17.110) nor the iterated GMM estimator are imple-
mented.

17.43 Forward Orthogonal Transformation

Arellano and Bover (1995) proposed an alternative transformation to first differencing which elim-
inates the individual-specific effect and may have advantages in dynamic panel models. The forward
orthogonal transformation is

y§
i t = ci t

µ
yi t °

1
Ti ° t

°
yi ,t+1 +·· ·+ yi Ti

¢∂
(17.112)

where c2
i t = (Ti ° t )/(Ti ° t +1). This can be applied to all but the final observation (which is lost). Essen-

tially, y§
i t subtracts from yi t the average of the remaining values, and then rescales so that the variance is

constant under the assumption of homoskedastic errors.
At the level of the individual this can be written as y

§
i = Ai y i where Ai is the (Ti °1)£Ti orthogonal

deviation operator

Ai = diag
µ

Ti °1
Ti

, ...,
1
2

∂

2

66666664

1 ° 1
Ti°1 ° 1

Ti°1 · · · ° 1
Ti°1 ° 1

Ti°1 ° 1
Ti°1

0 1 ° 1
Ti°2 · · · ° 1

Ti°2 ° 1
Ti°2 ° 1

Ti°2
...

...
...

...
...

...
0 0 0 · · · 1 °1

2 °1
2

0 0
... 0 · · · 0 °1 1

3

77777775

.

Important properties of the matrix Ai are that Ai 1i = 0 (so it eliminates individual effects), A
0
i Ai = M i ,

and Ai A
0
i = I Ti°1. These can be verified by direct multiplication.

Applying the transformation Ai to (17.82) we obtain

y§
i t =Æ1 y§

i t°1 +·· ·+Æp y§
i t°p +x

§0
i tØ+"§i . (17.113)

for t = p +1, ...,T °1. This is equivalent to first differencing (17.88) when T = 3 but differs for T > 3.
What is special about the transformed equation (17.113) is that the under the assumption that "i t

are serially correlated and homoskedastic, the error "§i has variance æ2
"Ai A

0
i =æ2

"I Ti°1. This means that
"§i has the same covariance structure as "i . Thus the orthogonal transformation operator eliminates the
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fixed effect while preserving the covariance structure. This is in contrast to (17.88) which has serially
correlated errors ¢"i .

The transformed error "§i t is a function of "i t ,"i t+1, ...,"i T . Thus valid instruments are yi t°1, yi t°2, ....
Using the instrument matrix Z i from (17.90) in the case of strictly exogenous regressors or (17.100) with
predetermined regressors, the ` moment conditions can be written using matrix notation as

E
£

Z
0
i

°
y
§
i °X

§
i µ

¢§
= 0. (17.114)

Define the `£` covariance matrix
≠= E

£
Z

0
i"

§
i "

§0
i Z i

§
.

If the errors "i t are conditionally homoskedastic then ≠= E
£

Z
0
i Z i

§
æ2
". Thus an asymptotically efficient

GMM estimator is 2SLS applied to the orthogonalized equation using Z i as an instrument. In matrix
notation,

bµ1 =
≥

X
§0

Z
°

Z
0
Z

¢°1
Z

0
X

§
¥°1 ≥

X
§0

Z
°

Z
0
Z

¢°1
Z

0
y
§
¥

.

This is the one-step GMM estimator.
Given the residuals b"i = y

§
i °X

§
i
bµ1 the two-step GMM estimator which is robust to heteroskedasticity

and arbitrary serial correlation is

bµ2 =
≥

X
§0

Z b≠°1
2 Z

0
X

§
¥°1 ≥

X
§0

Z b≠°1
2 Z

0
y
§
¥

where

b≠2 =
NX

i=1
Z

0
i b"i b"0i Z i .

Standard errors for bµ1 and bµ2 can be obtained using cluster-robust methods.
Forward orthogonalization may have advantages over first differencing. First, the equation errors in

(17.113) have a scalar covariance structure under i.i.d. idiosyncratic errors, which is expected to improve
estimation precision. It also implies that the one-step estimator is 2SLS rather than GMM. Second, while
there has not been a formal analysis of the weak instrument properties of the estimators after forward
orthogonalization, it appears that if T > p + 2 the method is less affected by weak instruments than
first differencing. The disadvantages of forward orthogonalization are that it treats early observations
asymmetrically from late observations, it is less thoroughly studied than first differencing, and is not
available with several popular estimation methods.

The Stata command includes forward orthogonalization as an option, but not when levels
(Blundell-Bond) instruments are included or if there are gaps in the data. An alternative is the down-
loadable Stata package .

17.44 Empirical Illustration

We illustrate the dynamic panel methods with the investment model (17.3). Estimates from two
models are presented in Table 17.3. Both are estimated by Blundell-Bond two-step GMM with lags 2
through 6 as instruments, a cluster-robust weight matrix, and clustered standard errors.

The first column presents estimates of an AR(2) model. The estimates show that the series has a
moderate amount of positive serial correlation, but appears to be well modeled as an AR(1) as the AR(2)
coefficient is close to zero. This pattern of serial correlation is consistent with the presence of investment
projects which span two years.

The second column presents estimates of the dynamic version of the investment regression (17.3),
excluding the trading indicator. Two lags are included of the dependent variable and each regressor. The
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regressors are treated as predetermined, in contrast to the fixed effects regressions which treated the re-
gressors as strictly exogenous. The regressors not contemporaneous with the dependent variable, but
lagged one and two periods. This is done so that they are valid predetermined variables. Contempora-
neous variables are likely endogenous so should not be treated as predetermined.

The estimates fom the second column of Table 17.3 complement the earlier results. The evidence
shows that investment has a moderate degree of serial dependence, is positively related to the first lag of
Q, and is negatively related to lagged debt. Investment appears to be positively related to change in cash
flow, rather than the level. Thus an increase in cash flow in year t °1 leads to investment in year t .

Table 17.3: Estimates of Dynamic Investment Equation

AR(2) AR(2) with Regressors

Ii t°1
0.3191

(0.0172)
0.2519

(0.0220)

Ii t°2
0.0309

(0.0112)
0.0137

(0.0125)

Qi t°1
0.0018

(0.0007)

Qi t°2
°0.0000
(0.0003)

Di t°1
°0.0154
(0.0058)

Di t°2
°0.0043
(0.0054)

C Fi t°1
0.0400

(0.0091)

C Fi t°2
°0.0290
(0.0051)

Two-step GMM estimates. Cluster-robust standard errors in parenthesis.

All regressions include time effects. GMM instruments include lags 2 through 6.
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Exercises

Exercise 17.1

(a) Show (17.11) and (17.12).

(b) Show (17.13).

Exercise 17.2 Is E ["i t | x i t ] = 0 sufficient for bØfe to be unbiased for Ø? Explain why or why not.

Exercise 17.3 Show that var[ẋi t ] ∑ var[xi t ].

Exercise 17.4 Show (17.24).

Exercise 17.5 Show (17.28).

Exercise 17.6 Show that when T = 2 the differenced estimator equals the fixed effects estimator.

Exercise 17.7 In Section 17.14 it is described how to estimate the individual-effect varianceæ2
u using the

between residuals. Develop an alternative estimator of æ2
u only using the fixed effects error variance bæ2

"

and the levels error variance bæ2
e = n°1 PN

i=1
P

t2Si
be2

i t where bei t = yi t °x 0
i t

bØfe are computed from the levels
variables.

Exercise 17.8 Verify that bæ2
" defined in (17.37) is unbiased for æ2

" under (17.18), (17.25) and (17.26).

Exercise 17.9 Develop a version of Theorem 17.2 for the differenced estimator bØ¢. Can you weaken
Assumption 17.2.3? State an appropriate version which is sufficient for asymptotic normality.

Exercise 17.10 Show (17.57).

Exercise 17.11

(a) For bæ2
i defined in (17.59) show E

£
bæ2

i | X i
§
=æ2

i .

(b) For eV fe defined in (17.58) show E
£eV fe | X

§
=V fe.

Exercise 17.12

(a) Show (17.61).

(b) Show (17.62).

(c) For eV fe defined in (17.60) show E
£eV fe | X

§
=V fe.

Exercise 17.13 Take the fixed effects model yi t = xi tØ1+x2
i tØ2+ui+"i t . A researcher estimates the model

by first obtaining the within transformed ẏi t and ẋi t and then regressing ẏi t on ẋi t and ẋ2
i t . Is the correct

estimation method? If not, describe the correct fixed effects estimator.

Exercise 17.14 In Section 17.33, verify that in the just-identified case, the 2SLS estimator bØ2sls simpli-
fies as claimed: bØ1 and bØ2 are the fixed effects estimator. b∞1 and b∞2 equal the 2SLS estimator from a
regression of bu on Z 1 and Z 2, using X 1 as an instrument for Z 2.



CHAPTER 17. PANEL DATA 641

Exercise 17.15 In this exercise you will replicate and extend the empirical work reported in Arellano and
Bond (1991) and Blundell and Bond (1998). Arellano-Bond gathered a dataset of 1031 observations from
an unbalanced panel of 140 U.K. companies for 1976-1984, and is in the datafile on the textbook
webpage. The variables we will be using are log employment ( ), log real wages ( ), and log capital ( ).
See the description file for definitions.

(a) Estimate the panel AR(1)
ki t =Æki t°1 +ui + vt +"i t

using Arellano-Bond one-step GMM with clustered standard errors. Note that the model includes
year fixed effects.

(b) Re-estimate using Blundell-Bond one-step GMM with clustered standard errors.

(c) Explain the difference in the estimates.

Exercise 17.16 This exercise uses the same dataset as the previous question. Blundell and Bond (1998)
estimated a dynamic panel regression of log employment on log real wages and log capital . The
following specification1 used the Arellano-Bond one-step estimator, treating wi t°1 and ki t°1 as prede-
termined

ni t = .7075
(.0842)

ni t°1 ° .7088
(.1171)

wi t + .5000
(.1113)

wi t°1 + .4660
(.1010)

ki t ° .2151
(.0859)

ki t°1. (17.115)

This equation also included year dummies, and the standard errors are clustered.

(a) Estimate (17.115) using the Arellano-Bond one-step estimator treating wi t and ki t as strictly ex-
ogenous.

(b) Estimate (17.115) treating wi t°1 and ki t°1 as predetermind to verify the results in (17.115). What
is the difference between the estimates treating the regressors as strictly exogeneous versus prede-
termined?

(c) Estimate the equation using the Blundell-Bond one-step systems GMM estimator.

(d) Interpret the coefficient estimates viewing (17.115) as a firm-level labor demand equation.

(e) Describe the impact on the standard errors of the Blundell-Bond estimates in part (c) if you forget
to use clustering. (You do not have to list all the standard errors, but describe the magnitude of the
impact.)

Exercise 17.17 Use the datafile on the textbook webpage. You will be estimating the panel
AR(1)

Di t =ÆDi t°1 +ui +"i t

for D =debt/assets (this is in the datafile). See the description file for definitions.

(a) Estimate the above autoregression using Arellano-Bond twostep GMM with clustered standard er-
rors.

1Blundell and Bond (1998), Table 4, column 3.
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(b) Re-estimate using Blundell-Bond twostep GMM.

(c) Experiment with your results, trying twostep versus onestep, AR(1) versus AR(2), number of lags
used as instruments, and classical versus robust standard errors. What makes the most difference
for the coefficient estimates? For the standard errors?

Exercise 17.18 Use the datafile on the textbook webpage. You will be estimating the model

Di t =ÆDi t°1 +Ø1Ii t°1 +Ø2Qi t°1 +Ø3C Fi t°1 +ui +"i t .

The variables are , , , and in the datafile). See the description file for definitions.

(a) Estimate the above regression using Arellano-Bond twostep GMM with clustered standard errors,
treating all regressors as predetermined.

(b) Re-estimate using Blundell-Bond twostep GMM, treating all regressors as predetermined.

(c) Experiment with your results, trying twostep versus onestep, number of lags used as instruments,
and classical versus robust standard errors. What makes the most difference for the coefficient
estimates? For the standard errors?



Chapter 18

Difference in Differences

18.1 Introduction

One of the most popular methods to estimate the effect of a policy change is by the method of dif-
ference in differences, often called “diff in diffs”. Estimation is typically a two-way panel data regression
with a policy indicator as a regressor. Clustered variance estimation is generally recommended for infer-
ence.

In order to intrepret a difference in difference estimate as a policy effect there are three key condi-
tions. First, that the estimated regression is the correct conditional mean. In particular, this requires that
all trends and interactions are properly included. Second, that the policy is exogenous – it satisfies con-
ditional independence. Third, there are no other relevant unincluded factors coincident with the policy
change. If these assumptions are satisfied then the difference in difference estimand is a valid causal
effect.

18.2 Minimum Wage in New Jersey

The most well known application of the difference in difference methodology is Card and Krueger
(1994) who investigated the impact of New Jersey’s 1992 increase of the minimum hourly wage from
$4.25 to $5.05. Classical economics teaches that an increase in the minimum wage will lead to decreases
in employment and increases in prices. To investigate the magnitude of this impact the authors surveyed
a panel of 331 fast food restaurants in New Jersey during the period 2/15/1992-3/4/1992 (before the en-
actment of the minimum wage increase) and then again during the period 11/5/1992-12/31/1992 (after
the enactment). Fast food restaurants were selected for investigation as they are a major employer of
minimum wage employees. (Before the change about 30% of the sampled workers were paid the mini-
mum wage of $4.25).

Table 18.1: Average Employment at Fast Food Restaurants

New Jersey Pennsylvania Difference
Before Increase 20.43 23.38 2.95
After Increase 20.90 21.10 0.20
Difference 0.47 °2.28 2.75

The data file is extracted from the original Card-Krueger data set and is posted on the text-
book webpage.

643
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Table 18.1 (first column) displays the mean number1 of full-time equivalent employees2 at New Jer-
sey fast food restaurants before and after the minimum wage increase. Before the increase the average
number of employees was 20.4. After the increase the average number of employees was 20.9. Contrary
to the predictions of conventional theory, employment slightly increased (by 0.5 employees per restau-
rant) rather than decreased.

This estimate – the change in employment – could be called a difference estimator. It is the change
in employment coincident with the change in policy. A difficulty in interpretation is that all employment
change is attributed to the policy. It does not provide direct evidence of the counterfactual – what would
have happened if the minimum wage had not been increased.

A difference in difference estimator improves on a difference estimator by comparing the change in
the treatment sample with a comparable change in a control sample.

Card and Krueger selected eastern Pennsylvania for their control sample. The minimum wage was
constant at $4.25 an hour in the state of Pennsylvania during 1992. At the beginning of the year starting
wages at fast food restaurants in the two states were very similar. The two areas (New Jersey and eastern
Pennsylvania) share further similarities. Any trends or economic shocks which affect one state are likely
to affect both. Therefore Card and Krueger argued that it is appropriate to treat eastern Pennsylvania as
a control. This means that in the absence of a minimum wage increase they expected the same changes
in employment to occur in both New Jersey and eastern Pennsylvania.

Card and Krueger surveyed a panel of 79 fast food restaurants in eastern Pennsylvania, simultane-
ously while surveying the New Jersey restaurants. The average number of full-time equivalent employ-
ees is displayed in the second column of Table 18.1. Before the policy change the average number of
employees was 23.4. After the policy change the average number was 21.1. Thus in Pennsylvania average
employment decreased by 2.3 employees per restaurant.

Treating Pennsylvania as a control means comparing the change in New Jersey (0.5) with that in
Pennsylvnia (°2.3). The difference (2.75 employees per restaurant) is the difference-in-difference es-
timate of the impact of the minimum wage increase. In complete contradiction to conventional eco-
nomic theory, the estimate indicates an increase in employment rather than a decrease. This surprising
estimate has been widely discussed among economists3 and the popular press.

It is constructive to re-write the estimates from Table 18.1 in regression format. Let yi t denote em-
ployment at restaurant i surveyed at time t . Let Statei be a dummy variable indicating the state, with
Statei = 1 for New Jersey and Statei = 0 for Pennsylvania. Let Timet be a dummy variable indicating
the time period, with Timet = 0 for the period before the policy change and Timet = 1 for the period
after the policy change. Let Di t denote a treatment dummy, with Di t = 1 if the minimum wage equals
$5.05 and Di t = 0 if the minimum wage equals $4.25. In this application it equals the interaction dummy
Di t =Statei Timet .

Table 18.1 is a saturated regression in the two dummy variables and can therefore be written as the
regression equation

yi t =Ø0 +Ø1Statei +Ø2Timet +µDi t +"i t . (18.1)

Indeed the coefficients can be written in terms of Table 18.1 by the following correspondence:

1Our calculations drop restaurants if they were missing the number of full-type equivalent employees in either survey.
2Following Card and Krueger full-time equivalent employees is defined as the sum of the number of full-time employees,

one-half of the number of part-time employees, and the number of managers and assistant managers.
3Most economists do not take the estimate literally – they do not believe that increasing the minimum wage will cause

employment increases. Instead it has been interpreted as evidence that small changes in the minimum wage may have only
minor impacts on employment levels.
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New Jersey Pennsylvania Difference
Before Increase Ø0 +Ø1 Ø0 Ø1

After Increase Ø0 +Ø1 +Ø2 +µ Ø0 +Ø2 Ø1 +µ
Difference Ø2 +µ Ø2 µ

We see that the coefficients in the regression (18.1) correspond to interpretable difference and differ-
ence in difference estimands. Ø1 is the difference estimand of the effect of “New Jersey vs. Pennsylvania”
in the period before the policy change. Ø2 is the difference estimand of the time effect in the control
state. µ is the difference in difference estimand – the change in New Jersey relative to the change in
Pennsylvania.

Our estimate of the regression (18.1) is

yi t = 23.4
(1.4)

° 2.9
(1.5)

Statei ° 2.3
(1.2)

Timet + 2.75
(1.34)

Di t +"i t . (18.2)

The standard errors are calculated by clustering by restaurant. As expected the coefficient bµ on the treat-
ment dummy precisely corresponds to the difference in difference estimate from Table 18.1. The coeffi-
cient estimates can be interpreted as described. The estimated pre-change difference between New Jer-
sey and Pennsylvania is °2.9, and the estimated time effect is °2.3, but neither is statistically significant.
The estimated difference in difference estimate of 2.75, on the other hand, is statistically significant.

Since the observations are divided into the groups Statei = 0 and Statei = 1, and Timet is equivalent to
a time index, this regression is identical to a two-way fixed effects regression of yi t on Di t with state and
time fixed effects. Furthermore, since the regressor Di t does not vary across individuals within the state,
this fixed effects regression is unchanged if restaurant-level fixed effects are included instead of state
fixed effects. (Restaurant fixed effects are orthogonal to any variable demeaned at the state level. See
Exercise 18.1.) Thus the above regression is algebraically identical to the two-way fixed effects regression

yi t = µDi t +ui + vt +"i t (18.3)

where ui is a restaurant fixed effect and vt is a time fixed effect. The simplest method to implement this
is by a one-way fixed effects regression with time dummies. The estimates are

yi t = 2.75
(1.34)

Di t ° 2.3
(1.2)

Timet +ui +"i t (18.4)

which are identical to the previous regression.
Equation (18.3) is the basic difference-in-difference model. It is a two-way fixed effects regression of

the response yi t on a binary policy Di t . The coefficient µ corresonds to the double difference in sample
means, and can be interpreted as the policy impact (also called the treatment effect) of D on y . (We
discuss identification in the next section.) Our presentation (and the Card-Krueger example) focuses on
the basic case of two aggregate units (states) and two time periods. The regression formulation (18.3)
is convenient as it can be easily generalized to allow for multiple states and time periods. Doing so
can provide more convincing evidence of an identified policy effect. The equation (18.3) can also be
generalized by changing the trend specification, and by using a continuous treatment variable.

Another common generalization is to augment the regression with controls x i t . This model takes the
form

yi t = µDi t +x
0
i tØ+ui + vt +"i t .
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Many empirical studies report estimates both of the basic model and regressions with controls. For
example we could augment the Card-Krueger regression to include the variable hoursopen, the number
of hours a day the restaurant is open. A restaurant with longer hours will tend to have more employees.

yi t = 2.84
(1.31)

Di t ° 2.2
(1.2)

Timet + 1.2
(0.4)

hoursopeni t +ui +"i t .

Indeed the estimated effect is that a restaurant employs an additional 1.2 employees for each hour open,
and this effect is statistically significant. The estimated treatment effect is not meaningfully changed.

18.3 Identification

Consider the difference-in-difference equation

yi t = µDi t +x
0
i tØ+ui + vt +"i t (18.5)

for i = 1, ..., N and t = 1, ...,T . We are interested in conditions under which the coefficient µ is the causal
impact of the treatment Di t on the outcome yi t . The answer can be found by applying Theorem 2.12
from Section 2.30.

In Section 2.30 we introduced the potential outcomes framework which writes the outcome as a
function of the treatment, controls, and unobservables. Thus the outcome (e.g. employment at a restau-
rant) can be written as y = h(D, x ,e) where D is treatment (minimum wage policy), x are controls, and
e is a vector of unobserved factors. Model (18.5) specifies that h(D, x ,e) is separable and linear in its
arguments, and that the unobservables consist of individual-specific, time-specific, and idiosyncratic
effects.

We now present sufficient conditions under which the coefficient µ can be interpreted as a causal
effect. Recall the two-way within transformation (17.65) and set z̈ i t =

°
D̈i t , ẍ

0
i t

¢0.

Theorem 18.1 Suppose the following conditions hold:

1. y i t = µDi t +x
0
i tØ+ui + vt +"i t .

2. E
£

z̈ i t z̈
0
i t

§
> 0.

3. E [x i t"i s] = 0 for all t and s.

4. Conditional on x i 1, x i 2, ..., x i T the random variables Di t and "i s are sta-
tistically independent for all t and s.

Then the coefficient µ in (18.5) equals the average causal effect for D on y con-
ditional on x .

Condition 1 states that the outcome equation equals the specified linear regression model, which is
additively separable in the observables, individual effect, and time effect.

Condition 2 states that the two-way within transformed regressors have a non-singular design matrix.
This requires that all elements of Di t and x i t vary across time and individuals.
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Condition 3 is the standard exogeneity asumption for regressors in a fixed-effects model.
Condition 4 states that the treatment variable is conditionally independent of the idiosyncratic error.

This is the conditional independence assumption for fixed effects regression.
To show Theorem 18.1 apply the two-way within transformation (17.65) to (18.5). We obtain

ÿi t = µD̈i t + ẍ
0
i tØ+ "̈i t .

Under Condition 2 the projection coefficients (µ,Ø) are uniquely defined and under Conditions 3 and 4
they equal the linear regression coefficients. Thus µ is the regression derivative with respect to D . Con-
dition 4 implies that conditional on ẍ i t the random variables D̈i t and "̈i s are statistically independent.
Theorem 2.12 shows that this implies that the regression derivative µ equals the average causal effect as
stated.

The assumption that D and " are independent is the fundamental exogeneity assumption. To in-
trepret µ as a treatment effect it is important that D is defined as the treatment and not simply as an
interaction (time and state) dummy. This is subtle. Examine equation (18.5) recalling that D is defined
as the treatment (an increase in the minimum wage). In this equation the error "i t contains all variables
and effects not included in the regression. Thus if there are other changes in New Jersey which are coin-
cident with the minimum wage increase, the assumption that D and " are independent means that those
coincident changes are independent of ", and thus do not affect employment. This is a strong assump-
tion. Once again, Condition 4 states that all other effects which are coincident with the minimum wage
increase have no effect on employment. Without this assumption it would not be possible to claim that
the diff-in-diff regression identifies the causal effect of the treatment.

Furthermore, independence of Di t and "i s means that neither can be affected by the other. This
means that the policy (treatment) was not enacted in response to knowledge about the response vari-
able in either period, and it means that the outcome (employment) did not change in the first period in
anticipation of the upcoming policy change.

It is difficult to know if the exogeneity of D is a reasonable assumption. It is similar to instrument exo-
geneity in instrumental variable regression. Its validity hinges on a well-articulated structural argument.
An empirical investigation based on a difference-in-difference specification needs to make an explicit
case for exogeneity of D similar to that for IV regression.

In the case of the Card-Krueger application, the authors argue that the policy was exogeneous be-
cause it was adopted two years before taking effect. At the time of the passage of the legislation the
economy was in an expansion, but by the time of adoption the economy has slipped into recession. This
suggests that it is credible to assume that the policy decision in 1990 was not affected by employment
levels in 1992. Furthermore, concern about the impact of the increased minimum wage during a reces-
sion led to a serious discussion about reversing the policy, meaning that there was uncertainty about
whether or not the policy would actually be enacted at the time of the first survey. It thus seems credible
that employment decisions at that time were not determined in anticipation of the upcoming minimum
wage increase.

The authors do not discuss, however, whether or not there were other coincident events in the New
Jersey or Pennsylvania economies during 1992 which could have affected employment differentially in
the two states. It seems plausible that there could have been many such coincident events. This seems
to be the greatest weakness in their identification argument.

Identification (the conditions for Theorem 18.1) also requires that the regression model is correctly
specified. These means that the true model is linear in the specified variables and all interactions are
included. Since the basic 2 £ 2 specification is a saturated dummy variable model it is necessarily a
conditional mean and thus correctly specified. This is not necessarily the case in applications with more
than two states or time periods, and thus model specification needs to be carefully considered in such
cases.
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18.4 Multiple Units

The basic difference-in-difference model has two aggregate units (e.g. states) and two time peri-
ods. Additional information can be obtained if there are multiple units or multiple time periods. In this
section we focus on the case of multiple units. There can be multiple treatment units, multiple control
units, or both. In this section we suppose that the number of periods is T = 2. Let N1 ∏ 1 be the number
of untreated (control) units, and N2 ∏ 1 be the number of treated units, with N = N1 +N2.

The basic regression model
yi t = µDi t +ui + vt +"i t

imposes two strong restrictions. First, that all units are equally affected by time as vt is common across
i . Second, that the treatment effect µ is common across all treated units.

The Card-Krueger data set only contains observations from two states, but the authors did record
additional variables including the region of the state. They divided New Jersey into three regions (North,
Central, and South) and eastern Pennsylvania into two regions (1 for northeast Philadelphia suburbs,
and 2 for the remainder).

Table 18.2 displays the mean number of full-time equivalent employees by region, before and after
the minimum wage increase. We observe that two of the three New Jersey regions had nearly identical
increases in employment, and all three changes are small. We can also observe that both of the Pennsyl-
vania regions had employment decreases, though with different magnitudes.

We can test the assumption of equal treatment effect µ by a regression exclusion test. This can be
done by adding interaction dummies to the regression and testing for the exclusion of the interactions.
As there are three treated regions in New Jersey we include two of the three New Jersey region dummies
interacted with the time index. In general we would include N2 °1 such interactions. These coefficients
measure the treatment effect difference across regions. Testing that these two coefficients are zero we
obtain a p-value of 0.60 which is far from significant. Thus we accept the hypothesis that the treatment
effect µ is common across the New Jersey regions.

In contrast, when the treatment effect µ varies we call this a heterogeneous treatment effect. It is
not a violation of the treatment effect framework, but it can be considerably more complicated to ana-
lyze. (A model which incorrectly imposes a homogeneous treatment effect is misspecified and produces
inconsistent estimates.)

A more serious problem arises if the control effect is heterogeneous. The control effect is the change
in the control group. Table 18.2 breaks down the estimated control effect across the two Pennsylvania
regions. While both estimates are negative they are somewhat different from one another. If the effects
are distinct there is not a homogeneous control effect. We can test the assumption of equal control effects
by a regression exclusion test. As there are two Pennsylvania regions we include the interaction of one
of the Pennsylvania regions with the time index. (In general we would include N1 °1 interactions.) This
coefficient measures the difference in the control effect across the regions. We test that this coefficient
is zero, obtaining a t-statistic of 1.2 and a p-value of 0.23. It is also not statistically significant, meaning
that we cannot reject the hypothesis that the control effect is homogeneous.

In contrast, if the control effect were heterogeneous then the difference-in-difference estimation
strategy is misspecified. The method relies on the ability to identify a credible control sample. Therefore
if a test for equal control effects rejects the hypothesis of homogeneous control effects, this should be
taken as evidence against interpretation of the difference-in-difference parameter as a treatment effect.
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Table 18.2: Average Employment at Fast Food Restaurants

South NJ Central NJ North NJ PA 1 PA 2
Before Increase 16.6 22.0 22.0 24.8 22.2
After Increase 17.3 21.4 22.7 21.0 21.2
Difference 0.7 °0.6 0.7 °3.8 °1.0

18.5 Do Police Reduce Crime?

DiTella and Schargrodsky (2004) use a difference-in-difference approach to study the question of
whether the street presence of police officers reduces car theft. Rational crime models predict that the
the presence of an observable police force will reduce crime rates (at least locally) due to deterrence. The
causal effect is difficult to measure, however, as police forces are not allocated exogenously, but rather
are allocated in anticipation of need. A difference-in-difference estimator requires an exogenous event
which changes police allocations. The innovation in DiTella-Schargrodsky was to use the police response
to a terrorist attack as exogenous variation.

In July 1994 there was a horrific terrorist attack on the main Jewish center in Buenos Aires, Argentina.
Within two weeks the federal government provided police protection to all Jewish and Muslim buildings
in the country. DiTella and Schargrodsky (2004) hypothesized that their presence, while allocated to
deter a terror or reprisal attack, would also deter other street crimes such as automobile theft locally to
the deployed police. The authors collected detailed information on car thefts in selected neighborhoods
of Buenos Aires for April-December 1994, resulting in a panel for 876 city blocks. They hypothesized
that the terrorist attack and the government’s response were exogenous to auto thievery and is thus a
valid treatment. They postulated that the deterrence effect would be strongest for any city block which
contained a Jewish institution (and thus police protection). Potential car thiefs would be deterred from a
burglary due to the threat of being caught. The deterrence effect was expected to weaken as the distance
from the protected sites increased. The authors therefore proposed a difference-in-difference estimator
based on the average number of car thefts per block, before and after the terrorist attack, and between
city blocks with and without a Jewish institution. Their sample has 37 blocks with Jewish institutions (the
treatment sample) and 839 blocks without an institution (the control sample).

The data file is a slightly revised version of the author’s AER replication file and is posted on
the textbook webpage.

Table 18.3: Number of Car Thefts by City Block

Same Block Not on Same Block Difference
April-June 0.112 0.095 °0.017
August-December 0.035 0.105 0.070
Difference °0.077 0.010 °0.087

Table 18.3 displays the average number of car thefts per block, separately for the months before the
July attack and the months after the July attack, and separately for city blocks which have a Jewish insti-
tution (and therefore received police protection starting in late July) and for other city blocks. We can see
that the average number of car thefts dramatically decreased in the protected city blocks, from 0.112 per
month to 0.035, while the average number in non-protected blocks was near-constant, rising from 0.095
to 0.105. Taking the difference in difference we find that the effect of police presence decreased car thefts
by 0.087, which is about 78%.
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The general way to estimate a diff-in-diff model of this form is as a regression of the form (18.3) where
yi t is the number of car thefts on block i during month t , and ui and vt are block and month fixed effects.
This regression4 yields the same estimate of 0.087 since the panel is balanced and there are no control
variables.

Table 18.4: Number of Car Thefts by City Block

Same Block Not on Same Block Difference
Pre-Attack April 0.112 0.110 °0.012

May 0.088 0.100 0.012
June 0.128 0.076 °0.052

Post-Attack August 0.047 0.111 0.064
September 0.014 0.099 0.085
October 0.061 0.108 0.047
November 0.027 0.100 0.073
December 0.027 0.106 0.079

The model (18.3) makes the strong assumption that the treatment effect is constant across the five
treated months. We investigate this assumption in Table 18.4 which breaks down the car thefts by month.
For the control sample the number of car thefts is near constant across the months. For seven of the eight
months the average number per block ranges from .10 to .11, with only one month (June) a bit lower at
0.08. In the treatment sample the average number of thefts per block in the three months before the
terrorist atack are similar to the averages in the control sample. But in the five months following the
attack the number of car thefts is uniformly reduced. The averages range from 0.014 to 0.061. In each
month after the attack the control sample has lower thefts, with averages ranging from 0.047 to 0.085.
Given the small sample size (37) of the treatment sample this is strikingly uniform evidence.

We can formally test the homogeneity of the treatment effect by including four dummy variables for
the interactions of four post-attack months with the treatment sample, and then testing the exclusion of
these variables. The p-value for this test is 0.81, exceedingly far from significant. Thus there is no reason
in the data to be suspicious of the homogeneity assumption.

The goal was to estimate the causal effect of police presence as a deterrence for crime. Let us evaluate
the case for identification. It seems reasonable to treat the terrorist attack as exogenous. The government
response also appears exogenous. Neither is reasonably related to the auto theft rate. We also observe
that the evidence in Tables 18.3 and 18.4 indicate that theft rates were similar in the pre-attack treatment
and control samples. Thus the additional police protection seems credibly provided for the purpose of
attack prevention rather than as an excuse for crime prevention. The general homogeneity of the theft
rate across months, once allowing for the treatment effect, gives credibility to the claim that the police
response was a causal effect. The terror attack itself did not reduce car theft rates as there seems to be no
measurable effect outside of the treatment sample. Finally, while the paper does not explicitly address
whether or not there was any other coincident event in July 1994 which may have effected these specific
city blocks, it is difficult to conceive of an alternative explanation for such a large effect. Our conclusion
is that this is a very strong identification argument. Police presence greatly reduces the incidence of car
theft.

The authors asserted the inference that police presence deters crime more broadly. This is a more
tenuous extension as the paper does not provide direct evidence of such a claim. While it seem reason-
able, we should be cautious about making generalizations without supporting evidence.

4We omit the observations for July as the car theft data is only for the first half of the month.
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Overall, DiTella and Schargrodsky (2004) is an excellent example of a well-articulated and credibly
identified difference-in-difference estimate of an important policy effect.

18.6 Trend Specification

Some applications (including the two introduced earlier in this chapter) apply to a short period of
time such as one year, in which case we may not expect the variables to be trended. Other applications
cover many years or decades, in which case the variables are likely to be trended. These trend can reflect
long-term growth, business cycle effects, changing tastes, or many other features. If trends are incor-
rectly specified then the model will be misspecified, and the estimated policy effect will be inconsistent
due to omitted variable bias. Consider the difference-in-difference equation

yi t = µDi t +x
0
i tØ+ui + vt +"i t .

This model imposes the strong assumption that the trends in yi t are entirely explained by the included
controls x i t and the common unobserved time component vt . This can be quite restrictive. It is reason-
able to expect that trends may differ across units and are not fully captured by observed controls.

One way to think about this is in terms of overidentification. For simplicity suppose there are no
controls and the panel is balanced. Then there are N T observations. The two-way model with a policy
effect has N +T coefficients. Unless N = T = 2 this model is overidentified. In addition to considering
heterogeneous treatment effects it is reasonble to consider heterogeneous trends.

One generalization is to include interactions of a linear time trend with a control variable. This model
takes the form

yi t = µDi t +x
0
i tØ+ z

0
i±t +ui + vt +"i t .

It specifies that the trend in yi t differs across units depending on the controls z i .
A broader generalization is to include unit-specific linear time trends. This model takes the form

yi t = µDi t +x
0
i tØ+ui + vt + t wi +"i t . (18.6)

In this model wi is a time trend fixed effect which varies across units. If there are no controls this model
has 2N +T coefficients, and is identified as long as T ∏ 4.

Estimation of model (18.6) can be done one of three ways. If N is small (for example, applications
with state-level data) then the regression can be estimated using the explicit dummy variable approach.
Let di and St be dummy variables indicating the i th unit and t th time period. Set di t = di t , the interac-
tion of the individual dummy with the time trend. The equation is estimated by regression of yi t on Di t ,
x i t , di , St , and di t . Equivalently, one can apply one-way fixed effects with regressors Di t , x i t , St , and di t .

When N is large a computationally more efficient approach is to use residual regression. For each
unit i , estimate a time trend model for each variable yi t , Di t , x i t and St . That is, for each i estimate

yi t = bÆ0 + bÆ1t + ẏi t .

This is a generalized within transformation. The residuals ẏi t are then used in place of the original ob-
servations. Regress ẏi t on Ḋi t , ẋ i t , and Ṡt to obtain the estimates of (18.6).

The relevance of the trend fixed effects vt can be assessed by a significance test. Specifically the
hypothesis that the coefficients on the period dummies can be tested using a standard exclusion test.
Similarly trend interaction terms can be tested for significance using standard exclusion tests. If the
tests are statistically significant this indicates that their inclusion is relevant for correct specification.
Unfortunately the unit-specific linear time trends cannot be tested for significance when the covariance
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matrix is clustered at the unit level. This is similar to the problem of testing the significance of a dummy
variable with a single observation. The unit-specific time trends can only be tested for significance if the
covariance matrix is clustered at a finer level. Otherwise the covariance matrix estimate is singular and
biased downwards. Naive tests will over-state significance.

18.7 Do Blue Laws Affect Liquor Sales?

Historically many U.S. states prohibited or limited the sale of alcoholic beverages on Sundays (and
are known as “blue laws”). In recent years these laws have been relaxed. Have these changes led to
increased consumption of alcoholic beverages? Bernheim, Meer and Novarro (2016) investigated this
question using a detailed panel on alcohol consumption and sales hours. It is possible that observed
changes coincident with changes in the law might reflect underlying trends. The fact that different states
changed their laws during different years allows for a difference-in-difference methodology to identify
the treatment effect.

The paper focuses on distilled liquor sales, but wine and beer sales are also included in their data.
An abridged version of their data set is posted on the textbook webpage. Liquor is measured
in per capita gallons of pure ethanol equivalent. The data are state-level for 47 U.S. states for the years
1970-2007, unbalanced.

The authors carefully gathered information on the allowable hours that alcohol can be sold on a
Sunday. They make a distinction between off-premise sales (liquor stores, supermarkets) where con-
sumption is off-premise, and on-premise sales (restaurants, bars) where consumption is on-premises.
Let yi t denote the natural logarithm of per-capita liquor sales in state i in year t . A simplified version of
their basic model is

yi t = 0.011
(0.003)

OnHoursi t + 0.003
(0.003)

OffHoursi t ° 0.013
(0.004)

URi t (18.7)

+ 0.029
(0.008)

OnOutFlowsi t ° 0.000
(0.010)

OffOutFlowsi t +ui + vt +"i t .

OnHours and OffHours are the number of allowable Sunday on-premises and off-premises sale hours.
UR is the state unemploment rate. OnOutFlows (OffOutFlows) is the weighted number of on(off)-premises
sale hours less than neighbor states. These are added to adjust for possible cross-border transactions.
The model includes both state and year fixed effects. The standard errors are clustered by state.

The estimates indicate that increased on-premise sale hours lead to a small increase in liquor sales.
This is consistent with alcohol being a complementary good in social (restaurant and bar) settings. The
small and insignificant coefficient on OffHours indicates that increased off-premise sale hours does not
lead to an increase in liquor sales. This is consistent with rational consumers who adjust their purchases
to known hours. The negative effect of the unemployment rate means that liquor sales are pro-cyclical.

The authors were concerned whether their dynamic and trend specifications were correctly speci-
fied, so tried some alternative specifications and interactions. To understand the trend issue, we plot in
Figure 18.1 the time-series path of the log of per-capita liquor sales for three states: California, Iowa, and
New York. You can see that all three exhibit a downward trend from 1970 until about 1995, and then an
increasing trend. The slopes of the three trends, however, are not identical. This suggests that there is
both a national common component as well as a localized component.
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(c) New York

Figure 18.1: Log of Per-Capita Liquor Sales

If we augment the basic model to include state-specific linear trends, the estimates are as follows.

yi t = 0.000
(0.002)

OnHoursi t + 0.002
(0.002)

OffHoursi t ° 0.015
(0.004)

URi t (18.8)

+ 0.005
(0.005)

OnOutFlowsi t ° 0.005
(0.005)

OffOutFlowsi t + t wi +ui + vt +"i t .

The estimated coefficient for OnHours drops to zero and becomes insignificant. The other estimates
do not change meaningfully. The authors only discuss this regression in a footnote, stating that adding
state-specific trends “demands a great deal from the data and leaves too little variation to identify the
effects of interest.” This is an unfortunate claim as actually the standard errors have decreased, not in-
creased, indicating that the effects are better identified. The trouble is that OnHours and OffHours are
trended, and the trends vary by state. This means that these variables are correlated with the state-trend
interaction. Omitting the trend interaction induced omitted variable bias. That explains why the coeffi-
cient estimates change when the trend specification changes.

Bernheim, Meer and Novarro (2016) is an excellent example of meticulous empirical work with care-
ful attention to detail and isolating a treatment strategy. It is also a good example of how attention to
trend specification can affect results.

18.8 Check Your Code: Does Abortion Impact Crime?

In a highly-discussed paper, Donohue and Levitt (2001) used a difference-in-difference approach
to develop an unusual theory. Crime rates fell dramatically throughout the United States in the 1990s.
Donohue and Levitt postulated that one contributing explanation was the landmark 1973 legalization
of abortion. The latter might affect the crime rate through two potential channels. First, it reduced the
cohort size of young males. Second, it reduced the cohort size of young males at risk for criminal behav-
ior. This suggests the substantial increase in abortions in the early 1970s will translate into a substantial
reduction in crime 20 years later.

As you might imagine, this paper was controversial on several dimensions. The paper was also metic-
ulous in its empirical analysis, investigating the potential links using a variety of tools and differing levels
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of granularity. The most detailed-oriented regressions were presented at the very end of the paper, where
the authors exploited differences across age groups. These regressions took the form

log(Arrestsi tb) =ØAbortioni b +ui +∏tb +µi t +"i tb

where i , t , and b index state, year, and birth cohort. Arrests is the raw number of arrests for a given crime
and Abortion is the ratio of abortions per live births. The regression includes state fixed effects, cohort-
year interactions, and state-year interactions. By including all these interaction effects the regression is
estimating a triple-difference, and is identifying the abortion impact on within-state cross-cohort varia-
tion, which is a much stronger identification argument than a simple cross-state diff-in-diff regression.
Donohue and Levitt reported an estimate of Ø equalling °0.028 with a small standard error. Based on
these estimates Donohue and Levitt suggest that legalizing abortion reduced crime by about 15-25%.

Unfortunately their estimates contained an error. In an attempt to replicate Donohue-Levitt’s work,
Foote and Goetz (2008) discovered that Donohue-Levitt’s computer code inadvertently omitted the state-
year interactions µi t . This was an important omission as without µi t the estimates are based on a mix
of cross-state and cross-cohort variation rather than just cross-cohort variation as claimed. Foote and
Goetz re-estimated the regression and found an estimate of Ø equalling °0.010. While still statistically
different from zero, the reduction in magnitude substantially decreased the estimated impact. Foote and
Gootz include more extensive empirical analysis as well.

Regardless of the errors and political ramifications, the Donohue-Levitt paper is a very clever and cre-
ative use of the difference-in-difference method. It is unfortunate that this creative work was somewhat
overshadowed by a debate over computer code.

I believe there are two important messages from this episode. First, include the appropriate controls!
In the Donohue-Levitt regression they were correct to advocate for the regression which includes state-
year interactions as this allows the most precise measurement of the desired causal impact. Second,
check your code! Computation errors are pervasive in applied economic work. It is very easy to make
errors; it is very difficult to clean them out of lengthy code. Errors in most papers are ignored as the
details receive minor attention. Important and influential papers, however, are scrutinized. If you ever
are so blessed as to write a paper which receives significant attention, you will find it most embarrassing
if a coding error is found after publication. The solution is to be pro-active and vigilant.

18.9 Inference

Many difference-in-difference applications use highly aggregate (e.g. state level) data, because they
are investigating the impact of policy changes which occur at an aggregate level. It has become custom-
ary in the recent literature to use clustering methods to calculate standard errors with clustering applied
at a high level of aggregation.

To understand the motivation for this choice it is useful to review the traditional argument for clus-
tered variance estimation. Suppose that the error ei g for individual i in group g is independent of the
regressors, has variance æ2, and has correlation Ω across individuals within the group. If the number
of individuals in each group is N then the exact variance of the least squares estimator (recall equation
(4.48)) is

V bØ =
°

X
0
X

¢°1
æ2 °

1+Ω (N °1)
¢

as originally derived by Moulton (1990). This inflates the “usual” variance by the factor
°
1+Ω (N °1)

¢
.

Even if Ω is very small, if N is huge then this inflation factor can be large as well.
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The clustered variance estimator imposes no structure on the conditional variances and correlations
within each group. It allows for arbitrary relationships. The advantage is that the resulting variance esti-
mators are robust to a broad range of correlation structures. The disadvantage is that the estimators can
be much less precise. Effectively, clustered variance estimators should be viewed as constructed from
the number of groups. If you are using U.S. states as your groups (as is commonly seen in applications)
then the number of groups is (at most) 51. This means that you are estimating the covariance matrix
using 51 observations, regardless of the number of “observations” in the sample. One implication is that
if you are estimating more than 51 coefficients the sample covariance matrix estimator will not be full
rank, which can invalidate potentially relevant inference methods.

The case for using clustered standard errors was made convincingly in an influential paper by Bertrand,
Duflo, and Mullainathan (2004). These authors demonstrated their point by taking the well-known CPS
dataset, and then adding randomly generated regressors. They found that if non-clustered variance esti-
mators were used then standard errors would be much too small and a researcher would inappropriately
conclude that the randomly generated “variable” has a significant effect in a regression. The false rejec-
tions could be eliminated by using clustered standard errors, clustered at the state level. Based on the
recommendations from this paper, researchers in economics now routinely cluster similar estimators at
the state level.

There are limitations, however. Take the Card-Krueger (1994) example introduced earlier. Their sam-
ple had only two states (New Jersey and Pennsylvania). If the standard errors are clustered at the state
level then there are only two effective observations available for standard error calculation, which is
much too few. For this application clustering at the state level is impossible. One implication might be
that this casts doubts on applications involving just a handful of states. If we cannot rule out clustered
dependence structures, and cannot use clustering methods due to the small number of states, then it
may be that it is inappropriate to put too much trust in the reported standard errors.

Another challenge arises when treatment (Di t = 1) applies to only a small number of units. The most
extreme case is where there is only one treated unit. This could arise, for example, when you are inter-
ested in measuring the effect of a policy which only one state has adopted. This situation is particularly
treacherous, and is algebraically identical to the problem of robust covariance matrix estimation with
sparse dummy variables. (See Section 4.17.) As we learned from that analysis, in the extreme case of a
single treated unit, the robust covariance matrix estimator is singular and highly biased towards zero.
The problem is because the variance of the sub-group is being estimated from a single observation.

The same analysis applies to cluster-variance estimators. If there is a single treated unit then the
standard clustered covariance matrix estimator will be singular. If you calculate a standard error for the
sub-group mean it will be algerbraically zero despite being the most imprecisely estimated coefficient.
The treatment effect will have a non-zero reported standard error, but it will be incorrect and highly
biased towards zero. For a more detailed analysis and recommendations for inference see Conley and
Taber (2011).
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Exercises

Exercise 18.1 In the text it was claimed that in a balanced sample, individual-level fixed effects are or-
thogonal to any variable demeaned at the state level.

(a) Show this claim.

(b) Does this claim hold in unbalanced samples?

(c) Explain why this claim implies that the regressions

yi t =Ø0 +Ø1Statei +Ø2Timet +µDi t +"i t

and
yi t = µDi t +ui +±t +"i t

yield identical estimates of µ.

Exercise 18.2 In regression (18.1) with T = 2 and N = 2 suppose the time variable is omitted. Thus the
estimating equation is

yi t =Ø0 +Ø1Statei +µDi t +"i t .

where Di t =Statei Timet is the treatment indicator.

(a) Find an algebraic expression for the least squares estimator bµ.

(b) Show that bµ is a function only of the treated sub-sample and is not a function of the untreated
sub-sample.

(c) Is bµ a difference-in-difference estimator?

(d) Under which assumptions might bµ be an appropriate estimator of the treatment effect?

Exercise 18.3 Take the basic difference-in-difference model

yi t = µDi t +ui +±t +"i t .

Instead of assuming that Di t and "i t are independent, assume we have an instrumental variable zi t

which is independent of "i t but is correlated with Di t . Describe how to estimate µ.
Hint: Review Section 17.28.

Exercise 18.4 For the specification tests of Section 18.4 explain why the regression test for homoge-
neous treatment effects includes only N2 °1 interaction dummy variables rather than all N2 interaction
dummies. Also explian why the regression test for equal control effects includes only N1 °1 interaction
dummy variables rather than all N1 interaction dummies.

Exercise 18.5 Use the datafile on the textbook webpage. Classical economics teaches that in-
creasing the minimum wage will increase product prices. You can therefore use the Card-Krueger diff-
in-diff methodology to estimate the effect of the 1992 New Jersey minimum wage increase on product
prices. The data file contains the variables priceentree, pricefry and pricesoda . Create the variable price
as the sum of these three, indicating the cost of a typical meal.
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(a) Some values of price are missing. Delete these observations. This will produce an unbalanced
panel, as price may be missing for only one of the two surveys. Balance the panel by deleting the
paired observation. This can be accomplished by the commands:

•

•

•

(b) Create an analog of Table 18.1 but with the price of a meal rather than the number of employees.
Interpret the results.

(c) Estimate an analog of regression (18.2), with price as the dependent variable.

(d) Estimate an analog of regression (18.4) with state fixed effects, with price as the dependent vari-
able.

(e) Estimate an analog of regression (18.4) with restaurant fixed effects, with price as the dependent
variable.

(f) Are the results of these regressions the same?

(g) Create an analog of Table 18.2 for the price of a meal. Interpret the results.

(h) Test for homogeneous treatment effects across regions.

(i) Test for equal control effects across regions.

Exercise 18.6 Use the datafile on the textbook webpage. The authors argued that an exogeneous
police presence would deter automobile theft. The evidence presented in the chapter showed that car
theft was reduced for city blocks which received police protection. Does this deterrence effect extend
beyond the same block? The dataset has the dummy variable oneblock which indicates if the city block
is one block away from a protected institution.

(a) Calculate an analog of Table 18.3 which shows the difference between city blocks which are one
block away from a protected institution and those which are more than one block away from a
protected institution.

(b) Estimate a regression model with block and month fixed effects which includes two treatment
variables: for city blocks which are on the same block as a protected institution, and for city blocks
which are one block away, both interacted with a post-July dummy. Exclude the observations for
July.

(c) Comment on your findings. Does the deterrence effect extend beyond the same city block?

Exercise 18.7 Use the datafile on the textbook webpage. The authors report results for liquor
sales. The data file contains the same information for beer and wine sales. For either beer or wine sales,
estimate diff-in-diff models similar to (18.7) and (18.8) and interpret your results. Some relevant vari-
ables are id (state identification), year, unempw (unemployment rate). For beer the relevant variables are
logbeer (log of beer sales), beeronsun (number of hours of allowed on-premise sales), beeroffsun (num-
ber of hours of allowed off-premise sales), beerOnOutflows, beerOffOutflows. For wine the variables have
similar names.
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Chapter 19

Nonparametric Regression

19.1 Introduction

We now turn to nonparametric estimation of the conditional expectation function

E
£

yi | x i = x
§
= m(x).

Unless an economic model restricts the form of m(x) to a parametric function, m(x) can take any nonlin-
ear shape and is therefore nonparametric. In this chapter we discuss nonparametric kernel smoothing
estimators of m(x). These are related to the nonparametric density estimators explored in Chapter 17 of
Introduction to Econometrics. In Chapter 20 of this textbook we explore estimation by series and sieve
methods.

There are many excellent monographs written on nonparametric regression estimation, including
Härdle (1990), Fan and Gijbels (1996), Pagan and Ullah (1999), and Li and Racine (2007).

To get started, suppose that there is a single real-valued regressor xi . We consider the case of vector-
valued regressors later. The nonparametric regression model with a real-valued regressor is

yi = m(xi )+ei

E [ei | xi ] = 0

E
£
e2

i | xi
§
=æ2 (xi ) .

We assume that we have n observations for the pair (yi , xi ). The goal is to estimate m(x) either at
a single point x or at a set of points. For most of our theory we focus on estimation at a single point x
which is in the interior of the support of xi .

In addition to the conventional regression assumptions, we assume that both m(x) and f (x) (the
marginal density of xi ) are continuous in x. For our theoretical treatment we assume that the obser-
vations are i.i.d. The methods extend to the case of time series but the theory is more advanced. An
excellent treatment for the case of dependent data is Fan and Yao (2003). We discuss clustered observa-
tions in Section 19.20.

19.2 Binned Means Estimator

For clarity, fix the point x and consider estimation of m(x). This is the mean of yi for random pairs
(yi , xi ) such that xi = x. If the distribution of xi were discrete then we could estimate m(x) by taking
the average of the sub-sample of observations yi for which xi = x. But when xi is continuous then the
probability is zero that xi exactly equals x. So there is no sub-sample of observations with xi = x and

659
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this estimation idea is infeasible. However, if m(x) is continuous then it should be possible to get a
good approximation by taking the average of the observations for which xi is close to x, perhaps for the
observations for which |xi °x|∑ h for some small h > 0. As for the case of density estimation we call h a
bandwidth. This binned means estimator can be written as

bm(x) =

nX

i=1
(|xi °x|∑ h) yi

nX

i=1
(|xi °x|∑ h)

. (19.1)

This is an step function estimator of the regression function m(x).
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Figure 19.1: Nadaraya-Watson and Local Linear Regression

To visualize, Figure 19.1(a) displays a scatter plot of 100 random pairs (yi , xi ) generated by simulation.
The observations are displayed as the open circles. The estimator (19.1) of m(x) at x = 1 with h = 1 is the
average of the yi for the observations such that xi falls in the interval [0 ∑ xi ∑ 2]. This estimator is bm(1)
and is shown on Figure 19.1 by the first solid square. We repeat the calculation (19.1) for x = 3, 5, 7, and
9, which is equivalent to partitioning the support of xi into the bins [0,2], [2,4], [4,6], [6,8], and [8,10].
These bins are shown in Figure 19.1(a) by the vertical dotted lines, and the estimates (19.1) by the solid
squares.

The binned estimator bm(x) is the step function which is constant within each bin and equals the
binned mean. In Figure 19.1(a) it is displayed by the horizontal dashed lines which pass through the
solid squares. This estimate roughly tracks the central tendency of the scatter of the observations (yi , xi ).
However, the huge jumps at the edges of the partitions are disconcerting, counter-intuitive, and clearly
an artifact of the discrete binning.

If we take another look at the estimation formula (19.1) there is no reason why we need to evaluate
(19.1) only on a course grid. We can evaluate bm(x) for any set of values of x. In particular, we can evaluate
(19.1) on a fine grid of values of x and thereby obtain a smoother estimate of the CEF. This estimator is
displayed in Figure 19.1(a) with the solid line. We call this estimator “Rolling Binned Means”. This is a
generalization of the binned estimator and by construction passes through the solid squares. It turns
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out that this is a special case of the Nadaraya-Watson estimator considered in the next section. This
estimator, while less abrupt than the Binned Means estimator, is still quite jagged.

19.3 Kernel Regression

One deficiency with the estimator (19.1) is that it is a step function in x, even when evaluated on a
fine grid. That is why its plot in Figure 19.1 is jagged. The source of the discontinuity is that the weights
are discontinuous indicator functions. If instead the weights are continuous functions then bm(x) will
also be continuous in x.

Definition 19.1 A (second-order) kernel function K (u) satisfies

1. 0 ∑ K (u) ∑ K <1,

2. K (u) = K (°u),

3.
R1
°1 K (u)du = 1,

4.
R1
°1 |u|r K (u)du <1 for all positive integers r .

Essentially, a kernel function is a bounded probability density function which is symmetric about
zero. Assumption 19.1.4 is not essential for most results but is a convenient simplification and does not
exclude any kernel function used in standard empirical practice. Some of the mathematical expressions
are simplified if we restrict attention to kernels whose variance is normalized to unity.

Definition 19.2 A normalized kernel function satisfies
R1
°1 u2K (u)du = 1.

There are a large number of functions which satisfy Definition 19.1, and many are programmed as
options in statistical packages. We list the most important in Table ?? below: the Rectangular, Gaussian,
Epanechnikov, and Triangular kernels. In practice it is unnecessary to consider kernels beyond these
four. For nonparametric regression we recommend either the Gaussian or Epanechnikov kernel, and
either will give similar results. In Table ?? we express the kernels in normalized form.

For more discussion on kernel functions see Chapter 17 of Introduction to Econometrics.
A generalization of (19.1) is obtained by replacing the indicator function with a kernel function:

bmnw(x) =

nX

i=1
K

≥ xi °x
h

¥
yi

nX

i=1
K

≥ xi °x
h

¥ . (19.2)

The estimator (19.2) is known as the Nadaraya-Watson estimator, the kernel regression estimator, or
the local constant estimator, and was introduced independently by Nadaraya (1964) and Watson (1964).

The rolling binned means estimator (19.1) is the Nadarya-Watson estimator with the rectangular
kernel. The Nadaraya-Watson estimator (19.2) can be used with any standard kernel, and is typically
estimated using the Gaussian or Epanechnikov kernel. In general we recommend the Gaussian kernel
since it produces an estimator bmnw(x) which possesses derivatives of all orders.

The bandwidth h plays a similar role in kernel regression as in kernel density estimation. Namely,
larger values of h will result in estimates bmnw(x) which are smoother in x, and smaller values of h will
result in estimates which are more erratic. It might be helpful to consider the two extreme cases h ! 0
and h ! 1. As h ! 0 we can see that bmnw(xi ) ! yi (if the values of xi are unique), so that bmnw(x) is
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Table 19.1: Common Normalized Second-Order Kernels

Kernel Formula RK DK

Rectangular K (u) =

8
>><

>>:

1

2
p

3
if |u| <

p
3

0 otherwise

1

2
p

3
1.56

Gaussian K (u) = 1
p

2º
exp

µ
°u2

2

∂
1

2
p
º

1.26

Epanechnikov K (u) =

8
>>><

>>>:

3

4
p

5

µ
1° u2

5

∂
if |u| <

p
5

0 otherwise

3
p

5
25

1.43

Triangular K (u) =

8
>><

>>:

1
p

6

µ
1° |u|

p
6

∂
if |u| <

p
6

0 otherwise

p
6

9
1.40

simply the scatter of yi on xi . In contrast, as h !1 then bmnw(x) ! y , the sample mean. For intermediate
values of h, bmnw(x) will smooth between these two extreme cases.

The estimator (19.2) using the Gaussian kernel and h = 1/
p

3 is also displayed in Figure 19.1 with the
long dashes. As you can see, this estimator appears to be much smoother than that using the binned
estimator, but tracks exactly the same path. The bandwidth h = 1/

p
3 for the Gaussian kernel is equiv-

alent to the bandwidth h = 1 for the binned estimator because the latter is a kernel estimator using the
rectangular kernel scaled to have a standard deviation of 1/3.

19.4 Local Linear Estimator

The Nadaraya-Watson (NW) estimator is often called a local constant estimator as it locally (about
x) approximates m(x) as a constant function. One way to see this is to observe that bm(x) solves the
minimization problem

bmnw(x) = argmin
m

nX

i=1
K

≥ xi °x
h

¥°
yi °m

¢2 .

This is a weighted regression of yi on an intercept only.
This means that the NW estimator is making the local approximation m(xi ) ' m(x) for xi ' x, which

means it is making the approximation

yi = m(xi )+ei ' m(x)+ei .

The NW estimator is a local estimator of this approximate model using weighted least squares.
This interpretation suggests that we can construct alternative nonparametric estimators of m(x) by

alternative local approximations. Many such local approximations are possible. A popular choice is
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the Local Linear (LL) approximation. Instead of the approximation m(xi ) ' m(x), LL uses the linear
approximation m(xi ) ' m(x)+m0(x) (xi °x). Thus

yi = m(xi )+ei

' m(x)+m0(x) (xi °x)+ei .

The LL estimator then applies weighted least squares similarly to the NW estimator.
One way to represent the LL estimator is as the solution to the minimization problem

©
bmLL(x), bm0

LL(x)
™
= argmin

Æ,Ø

nX

i=1
K

≥ xi °x
h

¥°
yi °Æ°Ø (xi °x)

¢2 .

Another is to write the approximating model as

yi ' z i (x)0Ø(x)+ei

where Ø(x) =
°
m(x),m0(x)

¢0 and

z i (x) =
µ

1
xi °x

∂
.

This is a linear regression with regressor vector z i (x) and coefficient vectorØ(x). Applying weighted least
squares with the kernel weights we obtain the LL estimator

bØLL(x) =
√

nX

i=1
K

≥ xi °x
h

¥
z i (x)z i (x)0

!°1 nX

i=1
K

≥ xi °x
h

¥
z i (x)yi

=
°

Z
0
K Z

¢°1
Z

0
K y

where K = diag{K ((x1 °x)/h) , ...,K ((xn °x)/h)}, Z is the stacked z i (x)0, and y is the stacked yi . This ex-
pression generalizes the Nadaraya-Watson estimator as the latter is obtained by setting z i (x) = 1. Notice
that the matrices Z and K depend on x and h.

The local linear estimator was first suggested by Stone (1977) and came into prominence through the
work of Fan (1992, 1993).

To visualize, Figure 19.1(b) displays the scatter plot of the same 100 observations from panel (a) di-
vided into the same five bins. A linear regression is fit to the observations in each bin. These five fitted
regression lines are displayed by the short dashed lines. This “binned regression estimator” produces
a flexible appromation for the mean function, but has large jumps at the edges of the partitions. The
midpoints of each of these five regression lines are displayed by the solid squares, and could be viewed
as the target estimate for the binned regression estimator. A rolling version of the binned regresion es-
timator moves these estimation windows continuously across the support of x, and is displayed by the
solid line. This corresponds to the local linear estimator with a rectangular kernel and a bandwidth of
h = 1/

p
3. By construction, this line passes through the solid squares. To obtain a smoother estimator,

we replace the rectangular with the Gaussian kernel (using the same bandwidth h = 1/
p

3). We display
these estimates with the long dashes. This has the same shape as the rectangular kernel estimate (rolling
binned regression) but is visually much smoother. We label this the “Local Linear” estimator since it is
the standard implementation.

One interesting feature is that as h ! 1, the LL estimator approaches the full-sample linear least-
squares estimator bmLL(x) ! bÆ+ bØx. That is because as h ! 1 all observations receive equal weight
regardless of x. In this sense we can see that the LL estimator is a flexible generalization of the linear OLS
estimator.

Another useful property of the LL estimator is that it simultaneously provides estimates of the regres-
sion function m(x) and its slope m0(x) at x.
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19.5 Local Polynomial Estimator

The NW and LL estimators are both special cases of the local polynomial estimator. The idea is to
approximate the regression function m(x) by a polynomial of fixed degree p, and then estimate locally
using the kernel weights.

The approximating model is a pth order Taylor series approximation

yi = m(xi )+ei

' m(x)+m0(x) (xi °x)+·· ·+m(p)(x)
(xi °x)p

p !
+ei

= z i (x)0Ø(x)+ei

where

z i (x) =

0

BBBBBB@

1
xi °x

...
(xi °x)p

p !

1

CCCCCCA
Ø(x) =

0

BBBB@

m(x)
m0(x)

...
m(p)(x)

1

CCCCA
.

The estimator is

bØLP(x) =
√

nX

i=1
K

≥ xi °x
h

¥
z i (x)z i (x)0

!°1 √
nX

i=1
K

≥ xi °x
h

¥
z i (x)yi

!

=
°

Z
0
K Z

¢°1
Z

0
K y .

Notice that this expression includes the Nadaraya-Watson and local linear estimators as special cases
with p = 0 and p = 1, respectively.

There is a trade-off between the polynomial order p and the local smoothing bandwidth h. By in-
creasing p we improve the model approximation and thereby can use a larger bandwidth h. On the
other hand, increasing p increases estimation variance.

19.6 Asymptotic Bias

Since E
£

yi | xi
§
= m(xi ), the conditional mean of the Nadaraya-Watson estimator is

E [ bmnw(x) | X ] =

nX

i=1
K

≥ xi °x
h

¥
E
£

yi | xi
§

nX

i=1
K

≥ xi °x
h

¥

=

nX

i=1
K

≥ xi °x
h

¥
m(xi )

nX

i=1
K

≥ xi °x
h

¥ . (19.3)

We can simplify this expression as n !1.
The following regularity conditions will be maintained through the chapter. Let f (x) denote the

marginal density of xi and let æ2(x) = E
£
e2

i | xi = x
§

denote the conditional variance of ei = yi °m(xi ).
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Assumption 19.1

1. h ! 0.

2. nh !1.

3. m(x), f (x) and æ2(x) are continuous in some neighborhood N of x.

4. f (x) > 0.

These conditions are similar to those used for the asymptotic theory for kernel density estimation.
The assumptions h ! 0 and nh !1 means that the bandwidth gets small yet the number of observa-
tions in the estimation window diverges to infinity. Assumption 19.1.3 are minimal smoothness condi-
tions on the conditional mean m(x), marginal density f (x) and conditional variance æ2(x). Assumption
19.1.4 specifies that the marginal density is non-zero. This is required since we are estimating the condi-
tional mean at x, so there needs to be a non-trivial number of observations for xi near x.

Theorem 19.1 Suppose Assumption 19.1 holds and m00(x) and f 0(x) are con-
tinuous in N . Then

1. E [ bmnw(x) | X ] = m(x)+h2Bnw(x)+op
°
h2¢+Op

≥q
h
n

¥

where

Bnw(x) = 1
2

m00(x)+ f (x)°1 f 0(x)m0(x).

2. E [ bmLL(x) | X ] = m(x)+h2BLL(x)+op
°
h2¢+Op

≥q
h
n

¥

where

BLL(x) = 1
2

m00(x).

The proof for the Nadaraya-Watson estimator is presented in Section 19.25. For a proof for the local
linear estimator see Fan and Gijbels (1996).

In addition to Assumption 19.1, Theorem 19.1 adds additional smoothness conditions on m(x) and
f (x).

We call the terms h2Bnw(x) and h2BLL(x) the asymptotic bias of the estimators.
Theorem 19.1 shows that the asymptotic bias of the Nadaraya-Watson and local linear estimators is

proportional to the squared bandwidth h2 (the degree of smoothing) and to the functions Bnw(x) and
BLL(x). The asymptotic bias of the local linear estimator depends on the curvature (second derivative) of
the CEF function m(x) similarly to the asymptotic bias of the kernel density estimator in Theorem 17.1
of Introduction to Econometrics. When m00(x) < 0 then bmLL(x) is downwards biased. When m00(x) > 0
then bmLL(x) is upwards biased. Local averaging smooths m(x), inducing bias, and this bias is increasing
in the level of curvature of m(x). This is called smoothing bias.

The asymptotic bias of the Nadaraya-Watson estimator adds a second term which depends on the
first derivatives of m(x) and f (x). This is because the Nadaraya-Watson estimator is a local average. If
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the density is upward sloped at x (if f 0(x) > 0) then there are (on average) more observations to the right
of x than to the left, so a local average will be biased if m(x) has a non-zero slope. In contrast the bias of
the local linear estimator does not depend on the local slope m0 (x) since it locally fits a linear regression.
The fact that the bias of the local linear estimator has fewer terms than the bias of the Nadaraya-Watson
estimator (and is invariant to the slope m0(x)) justifies the claim that the local linear estimator has gener-
ically reduced bias relative to Nadaraya-Watson.

We illustrate asymptotic smoothing bias in Figure 19.2(a). The solid line is the true conditional mean
for the data displayed in Figure 19.1. The dashed lines are the asymptotic approximations to the expecta-
tion m(x)+h2B(x) for bandwidths h = 1/2, h = 1, and h = 3/2. (The asymptotic biases of the NW and LL
estimators are the same since xi has a uniform distribution.) You can see that there is minimal bias for
the smallest bandwidth, but considerable bias for the largest. The dashed lines are smoothed versions of
the conditional mean, attenuating the peaks and valleys.

Smoothing bias is a natural by-product of non-parametric estimation of non-linear functions. It can
only be reduced by using a small bandwidth. As we see in the following section this will result in high
estimation variance.
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Figure 19.2: Asymptotic Bias

19.7 Asymptotic Variance

From (19.3) we deduce that

bmnw(x)°E [ bmnw(x) | X ] =

nX

i=1
K

≥ xi °x
h

¥
ei

nX

i=1
K

≥ xi °x
h

¥ .
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Since the denominator is a function only of xi , and the numerator is linear in ei , we can calculate that
the finite sample variance of bmnw(x) is

var[ bmnw(x) | X ] =

nX

i=1
K

≥ xi °x
h

¥2
æ2(xi )

√
nX

i=1
K

≥ xi °x
h

¥!2 . (19.4)

We can simplify this expression as n !1. Let æ2(x) = E
£
e2

i | xi = x
§

denote the conditional variance
of ei = yi °m(xi ).

Theorem 19.2 Under Assumption 19.1,

1. var[ bmnw(x) | X ] = RKæ
2(x)

f (x)nh
+op

µ
1

nh

∂
.

2. var[ bmLL(x) | X ] = RKæ
2(x)

f (x)nh
+op

µ
1

nh

∂
.

In these expressions

RK =
Z1

°1
K (u)2du

is the roughness of the kernel K (u).

The proof for the Nadaraya-Watson estimator is presented in Section 19.25. For the local linear esti-
mator see Fan and Gijbels (1996).

We call the leading terms in Theorem 19.2 the asymptotic variance of the estimators. Theorem 19.2
shows that the asymptotic variance of the two estimators are identical. The asymptotic variance is pro-
portional to the roughness RK of the kernel K (u) and to the conditional variance æ2 (x) of the regression
error. It is inversely proportional to the effective number of observations nh and to the marginal density
f (x). This expression reflects the fact that the estimators are local estimators. The precision of bm(x) is
low for regions where ei has a large conditional variance and/or xi has a low density (where there are
relatively few observations).

19.8 AIMSE

One implication of Theorem 19.9 is that we can define the asymptotic MSE of bm(x) as the sum of the
squared asymptotic bias and asymptotic variance:

AMSE[x]
de f= h4B(x)2 + RKæ

2(x)
nh f (x)

where B(x) = Bnw(x) for the Nadaraya-Watson estimator and B(x) = BLL(x) for the local linear estimator.
This is the asymptotic MSE for bm(x) for a single point x.
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A global measure of fit can be obtained by integrating AMSE(x). It is standard to weight the AMSE
by f (x)w(x) for some integrable weight function w(x). This is called the asymptotic integrated MSE
(AIMSE). Let S be the support of xi (the region where f (x) > 0).

AIMSE =
Z

S

µ
h4B(x)2 + RKæ

2(x)
nh f (x)

∂
f (x)w(x)d x (19.5)

= h4B + RK

nh
æ2

where

B =
Z

S
B(x)2 f (x)w(x)d x

æ2 =
Z

S
æ2(x)w(x)d x.

The weight function w(x) can be omitted if S is bounded. Otherwise, a common choice is w(x) =
(ª1 ∑ x ∑ ª2). An integrable weight function is needed when xi has unbounded support to ensure that

æ2 <1.
The form of the AIMSE is similar to that for kernel density estimation (Theorem 17.3 of Introduction

to Econometrics). It has two terms (squared bias and variance). The first is increasing in the bandwidth
h and the second is decreasing in h. Thus the choice of h affects AIMSE with a trade-off between these
two components. Similarly to density estimation, we can calculate the bandwidth which minimizes the
AIMSE. (See Exercise 19.2.) The solution is given in the following theorem.

Theorem 19.3 The bandwidth which minimizes the AIMSE (19.5) is

h0 =
√

RKæ
2

4B

!1/5

n°1/5. (19.6)

With h ª n°1/5 then AIMSE[ bm(x)] =O
°
n°4/5¢ .

This result characterizes the AIMSE-optimal bandwidth. This bandwidth satisfies the rate h = cn°1/5

which is the same rate as for kernel density estimation. The optimal constant c depends on the kernel
K (x), the weighted average squared bias B , and the weighted average variance æ2. The constant c is
different, however, from that for density estimation.

Inserting (19.6) into (19.5) plus some algebra we find that the AIMSE using the optimal bandwidth is

AIMSE0 =
≥
R4

K Bæ8
¥1/5 °

4°4/5 +41/5¢n°4/5.

Notice that this depends on the kernel K (u) only through the constant RK . Since the Epanechnikov
kernel has the smallest value of RK , it is also the kernel which produces the smallest AIMSE for the NW
and LL estimators. (See Theorem 17.4 of Introduction to Econometrics.)

Theorem 19.4 The AIMSE (19.5) is minimized by the Epanechnikov kernel for
the Nadaraya-Watson and Local Linear regression estimators.
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Despite this result, we recommend the Gaussian kernel for regression estimation for similar reasons
as for density estimation (see Chapter 17 of Introduction to Econometrics). The relative efficiency1 of es-
timation using the Gaussian kernel is

°
RK (Gaussian)/RK

°
Epanechnikov

¢¢2/5 ' 1.02. Thus the Gaussian
kernel is nearly as efficient as the Epanechnikov kernel. Since the Gaussian kernel produces smoother
estimates, which is especially important for estimation of marginal effects, this leads to our recommen-
dation to use the Gaussian kernel for applications.

19.9 Reference Bandwidth

The NW, LL and LP estimators depend on a bandwidth, and without an empirical rule for selection
of h the methods are incomplete. It is useful to have a reference bandwith which mimics the optimal
bandwidth in a simplified setting and provides a baseline for further investigations.

Theorem 19.3 and a little re-writing reveals that the optimal bandwidth takes the form

h0 =
µ

RK

4

∂1/5
√
æ2

nB

!1/5

' 0.58

√
æ2

nB

!1/5

(19.7)

where the approximation holds for all single-peaked kernels by similar calculations2 as in Section 17.9 of
Introduction to Econometrics.

A reference approach can be used to develop a rule-of-thumb for regression estimation. In particular,
Fan and Gijbels (1996, Section 4.2) develop what they call the ROT (rule of thumb) bandwidth for the local
linear estimator. We now describe their derivation.

First, set w(x) = (ª1 ∑ x ∑ ª2). Second, form a preliminary estimator of the regression function m(x)
using a q th-order polynomial regression

m(x) =Ø0 +Ø1x +Ø2x2 · · ·+Øq xq .

(In particular they suggest q = 4 but this is not essential to their recommendation.). By least-squares we
obtain the coefficient estimates bØ0, ..., bØq and implied second derivative bm00(x) = 2 bØ2+6 bØ3x+12 bØ4x2 (for
the case q = 4). Third, notice that B can be written as an expectation

B = E
£
B(xi )2w(xi )

§
= E

∑µ
1
2

m00(xi )
∂2

(ª1 ∑ xi ∑ ª2)
∏

.

A moment estimator is

bB = 1
n

nX

i=1

µ
1
2

bm00(xi )
∂2

(ª1 ∑ xi ∑ ª2) . (19.8)

Third, assume that the regression error is homoskedastic E
£
e2

i | xi
§
=æ2 so thatæ2 =æ2 (ª2 °ª1). Estimate

æ2 by the error variance estimate bæ2 from the preliminary regression. Plugging these into (19.7) we obtain
the reference bandwidth

hrot = 0.58
µ
bæ2 (ª2 °ª1)

n bB

∂1/5

. (19.9)

Fan and Gijbels (1996) call this the rule-of-thumb (ROT) bandwidth.
Fan and Gijbels developed similar rules for higher-order odd local polynomial estimators, but not for

the local constant (Nadaraya-Watson) estimator. However, we can derive a ROT for the NW as well by
using a reference model for the marginal density f (x). A particularly convenient choice is the uniform

1Measured by root AIMSE.
2The constant (RK /4)1/5 is bounded between 0.58 and 0.59.
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density, under which f 0(x) = 0 and the optimal bandwidths for NW and LL coincide. This motivates
using (19.9) as a ROT bandwidth for both the LL and NW estimators.

We now comment on the choice of the weight region [ª1,ª2]. When xi has bounded support then
[ª1,ª2] can be set equal to this support. Otherwise, [ª1,ª2] can be set equal to the region of interest for
bm(x), or the endpoints can be set to equal fixed quantiles (e.g. 0.05 and 0.95) of the distribution of xi .

To illustrate, take the data shown in Figure 19.1. If we fit 4th order polynomial we find bm(x) = .49+
.70x°.28x2°.033x3°.0012x4 which implies bm00(x) =°.56°.20x°.014x2. Setting [ª1,ª2] = [0,10] to equal
to the support of xi , we find bB = 0.00889. The residuals from this polynomial regression have variance
bæ2 = 0.0687. Plugging these into (19.9) we find hrot = 0.551, which is similar to the one used in Figure
19.1.

19.10 Estimation at a Boundary

One advantage of the local linear over the Nadaraya-Watson estimator is that the LL has better per-
formance at the boundary of the support of xi . The NW estimator has excessive smoothing bias near the
boundaries. In many contexts in econometrics the boundaries are of great interest. In these contexts it
is strongly recommended to use the local linear estimator (or a local polynomial estimator with p ∏ 1).

To understand the problem it may be helpful to example Figure 19.2(b). This shows a scatter plot
of 100 observations generated as xi ªU [0,10] and yi ª N(xi ,1) so that m(x) = x. Suppose we are inter-
ested the conditional mean m(0) at the lower boundary x = 0. The Nadaraya-Watson estimator equals a
weighted average of the yi observations for small values of |xi |. Since xi ∏ 0, these are all observations
for which m(xi ) ∏ m(0), and therefore bmnw(0) is biased upwards. Symmetrically, the Nadaraya-Watson
estimator at the upper boundary x = 10 is a weighted average of observations for which m(xi ) ∑ m(10)
and therefore bmnw(10) is biased downwards.

In contrast, the local linear estimators bmLL(0) and bmLL(10) are unbiased in this example since m(x)
is linear in x. The local linear estimator fits a linear regression line. Since the mean is correctly specified
there is no estimation bias.

The exact bias3 of the NW estimator is shown in Figure 19.2(b) by the dashed lines. The long dashes
is the mean E [ bmnw(x)] for h = 1 and the short dashes is the mean E [ bmnw(x)] for h = 2. We can see that
the bias is substantial. For h = 2 the bias is visible for all values of x. For the smaller bandwidth h = 1
the bias is minimal for x in the central range of the support, but is still quite substantial for x near the
boundaries.

To calculate the asymptotic smoothing bias we can revisit the proof of Theorem 19.1.1 which calcu-
lated the asymptotic bias at interior points. Equation (19.29) calculates the bias of the numerator of the
estimator, expressed as an integral over the marginal density. Evaluated at a lower boundary point this
density is only positive for u ∏ 0, so the integral is over the positive region [0,1). This applies as well
to equation (19.31) and the equations which follow. In this case the leading term of this expansion is
the first term (19.32) which is proportional to h rather than h2. Completing the calculations we find the
following.

3Calculated by simulation from 10,000 simulation replications.
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Theorem 19.5 Let the support of xi be S = [x,x]. Suppose Assumption 19.1
holds and m00(x), æ2(x) and f 0(x) are right continuous and f (x) is positive at
the boundary points. Then

E
£

bmnw(x) | X
§
= m(x)+hm0(x)µK +op (h)+Op

0

@
s

h
n

1

A

and

E
£

bmnw(x) | X
§
= m(x)°hm0(x)µK +op (h)+Op

0

@
s

h
n

1

A

where µK = 2
R1

0 K (u)du.

Theorem 19.5 shows that the asymptotic bias of the NW estimator at the boundary is O(h) and de-
pends on the slope of m(x) at the boundary. This means that when the slope is positive the NW estimator
is upward biased at the lower boundary. Similarly we can show that the NW estimator is downward bi-
ased at the upper boundary. The standard interpretation of Theorem 19.5 is that the NW estimator will
tend to high bias near boundary points.

Now let’s examine the performance of the LL estimator. We do not explicitly make the calculations
but instead refer to Cheng, Fan and Marron (1997) and Imbens and Kalyahnaraman (2012).

Define the kernel moments ∫ j =
R1

0 u j K (u)du, º j =
R1

0 u j K (u)2du, and projected kernel

K §(u) =
£

1 0
§∑

∫0 ∫1

∫1 ∫2

∏°1 ∑
1
u

∏
K (u) = ∫2 °∫1u

∫0∫2 °∫2
1

K (u).

Define its second moment

æ2
K § =

Z1

0
u2K §(u)du =

∫2
2 °∫1∫3

∫0∫2 °∫2
1

and roughness

R§
K =

Z1

0
K §(u)2du =

∫2
2º0 °2∫1∫2º1 +∫2

1º2
°
∫0∫2 °∫2

1

¢2 .

Theorem 19.6 Under the assumptions of Theorem 19.5 at any boundary point
x

1. E
£

bmLL(x) | X
§
= m(x)+

h2m00(x)æ2
K §

2
+op

°
h2¢+Op

≥q
h
n

¥

2. var
£

bmLL(x) | X
§
=

R§
Kæ

2(x)

f (x)nh
+op

µ
1

nh

∂

Theorem 19.6 shows that the asymptotic bias of the LL estimator at the boundary is O(h2), the same
as at interior points and is invariant to the slope of m(x). The theorem also shows that the asymptotic
variance has the same rate as at interior points.
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Taking Theorems 19.1, 19.2, 19.5 and 19.6 together, the local linear estimator has superior asymp-
totic properties relative to the NW estimator. For a given bandwidth h the two estimators have the same
asymptotic variance, but have different bias properties. At interior points both estimators have asymp-
totic biases of order O(h2) but at boundary points the asymptotic bias of the NW estimator is O(h), which
is of higher order. Furthermore, at interior points the bias of the LL estimator is invariant to the slope of
m(x) and its asymptotic bias only depends on the second derivative, while the bias of the NW estimator
depends on both the first and second derivatives. For these reasons, it is generally recommended to use
the local linear estimator rather than the Nadaraya-Watson estimator.

The asymptotic bias and variance of the LL estimator at the boundary is slightly different than in the
interior. The difference is that the bias and variance depend on the moments of the kernel-like function
K §(u) rather than the original kernel K (u).

We can use Theorem 19.6 to calculate the AMSE-optimal bandwidth at a boundary point. By the
same steps as for Theorem 19.3 we find

h = DK

√
æ2(x)

f (x)
°
m00(x)

¢2

!1/5

n°1/5 (19.10)

where

DK =
√

R§
K

æ4
K §

!1/5

=
√
∫2

2º0 °2∫1∫2º1 +∫2
1º2

°
∫2

2 °∫1∫3
¢2

!1/5

.

The constant DK depends only on the kernel and is given in Table ??.
An interesting calculation is to find the optimal kernel function at the boundary. By the same cal-

culations as for Theorem 19.4 we find that the optimal kernel K §(u) minimizes the roughness R§
K given

the second moment æ2
K § and as argued for Theorem 19.4 this is achieved when K §(u) equals a quadratic

function in u. Since K §(u) is the product of K (u) and a linear function this means that K (u) must be
linear in |u|, implying that K (u) is the Triangular kernel. See Cheng, Fan, and Marron (1997). This shows
that for estimation at the boundary the optimal kernel is the Triangular. However, calculations similar
to those following Theorem 19.4 show that efficiency loss4 of estimation using the Gaussian or Epanech-
nikov kernel5 is only 1%.

Equation (19.10) can be used to construct a reference bandwidth described in the previous section.
Using the same methods we obtain

hboundary = DK

√
bæ2 (ª2 °ª1)

n bf (x)
°
2 bØ2 +6 bØ3x +12 bØ4x2

¢2

!1/5

where bf (x) is a density estimator6 evaluated at the boundary point x. For a further simplification, if the
distribution of xi is approximately uniform on [ª1,ª2] then we can omit estimation of the density and
use

hboundary = DK

√
bæ2 (ª2 °ª1)2

n
°
2 bØ2 +6 bØ3x +12 bØ4x2

¢2

!1/5

4Measured by root AIMSE.
5The efficiency loss from estimation using the Rectangular kernel is 3%.
6Options include a nonparametric density estimator and the normal density evaluated at sample mean and variance for xi .
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19.11 Nonparametric Residuals and Prediction Errors

Given any nonparametric regression estimator bm(x) the fitted regression at x = xi is bm(xi ) and the
fitted residual is

bei = yi ° bm(xi ).

As a general rule, but especially when the bandwidth h is small, it is hard to view bei as a good measure of
the fit of the regression. For the NW and LL estimators, as h ! 0 then bm(xi ) ! yi and therefore bei ! 0.
This is clear overfitting as the true error ei is not zero. In general, since bm(xi ) is a local average which
includes yi , the fitted value will be necessarily close to yi and the residual bei small, and the degree of this
overfitting increases as h decreases.

A standard solution is to measure the fit of the regression at x = xi by re-estimating the model exclud-
ing the i th observation. Let em°i (x) be the leave-one-out nonparametric estimator computed without
observation i . For example, for Nadaraya-Watson regression, this is

eyi = em°i (x) =

X

j 6=i
K

≥ x j °x

h

¥
y j

X

j 6=i
K

≥ x j °x

h

¥ .

Notationally, the “°i ” subscript is used to indicate that the i th observation is omitted.
The leave-one-out predicted value for yi at x = xi is

eyi = em°i (xi )

and the leave-one-out prediction error is
eei = yi ° eyi . (19.11)

Since eyi is not a function of yi , there is no tendency for eyi to overfit for small h. Consequently, eei is a
good measure of the fit of the estimated nonparametric regression.

When possible the leave-one-out prediction errors should be used instead of the residuals bei .

19.12 Cross-Validation Bandwidth Selection

The most popular method in applied statistics to select bandwidths is cross-validation. The general
idea is to estimate the model fit based on leave-one-out estimation. Here we describe the method as
typically applied for regression estimation. The method applies to NW, LL and LP estimation, as well as
other nonparametric estimators.

To be explicit about the dependence of the estimator on the bandwidth, let us write an estimator of
m(x) with a given bandwidth h as bm(x,h).

Ideally, we would like to select h to minimize the integrated mean-squared error (IMSE) of bm(x,h) as
a estimate of m(x) :

IMSEn(h) =
Z

S
E
£
( bm(x,h)°m(x))2§ f (x)w(x)d x

where f (x) is the marginal density of xi and w(x) is an integrable weight function. The weight w(x) is
the same as used in (19.5) and can be omitted when xi has bounded support.

The difference bm(x,h)°m(x) at x = xi can be estimated by the leave-one-out prediction errors (19.11)

eei (h) = yi ° em°i (xi ,h)
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where we are being explicit about the dependence on the bandwidth h. A reasonable estimator of IMSEn(h)
is the weighted average mean squared prediction errors

CV(h) = 1
n

nX

i=1
eei (h)2w(xi ). (19.12)

This function of h is known as the cross-validation criterion. Once again, if xi has bounded support
then the weights w(xi ) can be omitted and this is typically done in practice.

It turns out that the cross-validation criterion is an unbiased estimator of the IMSE plus a constant
for a sample with n °1 observations.

Theorem 19.7
E [CV(h)] =æ2 + IMSEn°1(h) (19.13)

where æ2 = E
£
e2

i w(xi )
§
.

The proof of Theorem 19.7 is presented in Section 19.25.
Sinceæ2 is a constant independent of the bandwidth h, E [CV(h)] is simply a shifted version of IMSEn°1(h).

In particular, the h which minimizes E [CV(h)] and IMSEn°1(h) are identical. When h is large the band-
width which minimizes IMSEn°1(h) and IMSEn(h) are nearly identical, so CV(h) is essentially unbiased
as an estimator of IMSEn(h)+æ2. This considerations lead to the recommendation to select h as the
value which minimizes CV(h).

The cross-validation bandwidth bh is the value which minimizes CV(h)

hcv = argmin
h∏h`

CV(h) (19.14)

for some h` > 0. The restriction h ∏ h` can be imposed so that CV(h) is not evaluated over unreasonably
small bandwidths.

There is not an explicit solution to the minimization problem (19.14), so it must be solved numer-
ically. One method is grid search. Create a grid of values for h, e.g. [h1,h2, ...,hJ ], evaluate CV(h j ) for
j = 1, ..., J , and set

hcv = argmin
h2[h1,h2,...,hJ ]

CV(h).

Evaluation using a coarse grid is typically sufficient for practical application. Plots of CV(h) against h
are a useful diagnostic tool to verify that the minimum of CV(h) has been obtained. A computationally
more efficient method for obtaining the solution (19.14) is Golden-Section Search. See Section 12.4 of
Introduction to Econometrics.

It is possible for the solution (19.14) to be unbounded, that is, CV(h) is decreasing for large h so that
hcv =1. This is okay. It simply means that the regression estimator simplifies to its full-sample version.
For Nadaraya-Watson estimator this is bmnw(x) = y . For the local linear estimator this is bmLL(x) = bÆ+ bØx.

For NW and LL estimation, the criterion (19.12) requires leave-one-out estimation of the conditional
mean at each observation xi . This is different from calculation of the estimator bm(x) as the latter is
typically done at a set of fixed values of x for purposes of display.

To illustrate, Figure 19.3(a) displays the cross-validation criteria CV(h) for the Nadaraya-Watson and
Local Linear estimators using the data from Figure 19.1, both using the Gaussian kernel. The CV func-
tions are computed on a grid on [hrot/3,3hrot] with 200 gridpoints. The CV-minimizing bandwidths are
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Figure 19.3: Bandwidth Selection

hnw = 0.830 for the Nadaraya-Watson estimator and hLL = 0.764 for the local linear estimator. These
are slightly higher than the rule of thumb hrot = 0.551 value calculated earlier. Figure 19.3(a) shows the
minimizing bandwidths by the arrows.

The CV criterion can also be used to select between different nonparametric estimators. The CV-
selected estimator is the one with the lowest minimized CV criterion. For example, in Figure 19.3(a), you
can see that the LL estimator has a minimized CV criterion of 0.0699 which is lower than the minimum
0.0703 obtained by the NW estimator. Since the LL estimator achieves a lower value of the CV criterion,
LL is the CV-selected estimator. The difference, however, is small, indicating that the two estimators
achieve similar IMSE.

Figure 19.3(b) displays the local linear estimates bm(x) using the ROT and CV bandwidths along with
the true conditional mean m(x). The estimators track the true function quite well, and the difference
between the bandwidths is relatively minor in this application.

19.13 Asymptotic Distribution

We first provide a consistency result for the Nadaraya-Watson estimator.

Theorem 19.8 Under Assumption 19.1, bmnw(x) °!
p

m(x) and bmLL(x) °!
p

m(x).

A proof for the Nadaraya-Watson estimator is presented in Section 19.25. For the local linear estima-
tor see Fan and Gijbels (1996).

Theorem 19.8 shows that the estimators are consistent for m(x) under very mild continuity assump-
tions. In particular, no smoothness conditions on m(x) are required beyond continuity.
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We next present an asymptotic distribution result. The following shows that the kernel regression es-
timators are asymptotically normal with a non-parametric rate of convergence, a non-trivial asymptotic
bias, and a non-degenerate asymptotic variance.

Theorem 19.9 Suppose Assumption 19.1 holds. Assume in addition that
m00(x) and f 0(x) are continuous in N , that for some r > 2 and x 2N ,

E
£
|ei |r | xi = x

§
∑æ<1, (19.15)

and
nh5 =O(1). (19.16)

Then

p
nh

°
bmnw(x)°m(x)°h2Bnw(x)

¢
°!

d
N

µ
0,

RKæ
2(x)

f (x)

∂
. (19.17)

Similarly,

p
nh

°
bmLL(x)°m(x)°h2BLL(x)

¢
°!

d
N

µ
0,

RKæ
2(x)

f (x)

∂
.

A proof for the Nadaraya-Watson estimator appears in Section 19.25. For the local linear estimator,
see Fan and Gijbels (1996).

Relative to Theorem 19.8, Theorem 19.9 requires stronger smoothness conditions on the conditional
mean and marginal density. There are also two technical regularity conditions. The first is a conditional
moment bound (19.15) (which is used to verify the Lindeberg condition for the CLT) and the second is the
bandwidth bound nh5 = O(1). The latter means that the bandwidth must decline to zero at least at the
rate n°1/5, and is used7 to ensure that higher-order bias terms do not enter the asymptotic distribution
(19.17).

There are several interesting features about the asymptotic distribution which are noticeably differ-
ent than for parametric estimators. First, the estimators converge at the rate

p
nh not

p
n. Since h ! 0,p

nh diverges slower than
p

n, thus the nonparametric estimators converge more slowly than a paramet-
ric estimator. Second, the asymptotic distribution contains a non-negligible bias term h2B(x). Third, the
distribution (19.17) is identical in form to that for the kernel density estimator (Theorem 17.7 of Intro-
duction to Econometrics).

The fact that the estimators converge at the rate
p

nh has led to the interpretation of nh as the “ef-
fective sample size”. This is because the number of observations being used to construct bm(x) is propor-
tional to nh, not n as for a parametric estimator.

It is helpful to understand that the nonparametric estimator has a reduced convergence rate relative
to parametric asymptotic theory because the object being estimated – m(x) – is nonparametric. This is
harder than estimating a finite dimensional parameter, and thus comes at a cost.

Unlike parametric estimation, the asymptotic distribution of the nonparametric estimator includes
a term representing the bias of the estimator. The asymptotic distribution (19.17) shows the form of
this bias. It is proportional to the squared bandwidth h2 (the degree of smoothing) and to the function

7This could be weakened if stronger smoothness conditions are assumed. For example, if m(4)(x) and f (3)(x) are continuous
then (19.16) can be weakened to nh9 =O(1), which means that the bandwidth must decline to zero at least at the rate n°1/9.
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Bnw(x) or BLL(x) which depends on the slope and curvature of the CEF m(x). Interestingly, when m(x) is
constant then Bnw(x) = BLL(x) = 0 and the kernel estimator has no asymptotic bias. The bias is essentially
increasing in the curvature of the CEF function m(x). This is because the local averaging smooths m(x),
and the smoothing induces more bias when m(x) is curved.

The asymptotic variance of bm(x) is inversely proportional to the marginal density f (x). This means
that bm(x) has relatively low precision for regions where xi has a low density. This makes sense since
these are regions where there are relatively few observations. An implication is that the nonparametric
estimator bm(x) will be relatively inaccurate in the tails of the distribution of xi .

19.14 Undersmoothing

The bias term in the asymptotic distribution of the kernel density estimator can be technically elim-
inated if the bandwidth is selected to converge to zero faster than the optimal rate n°1/5, thus h =
o

°
n°1/5¢. This is called an under-smoothing bandwidth. By using a small bandwidth the bias is reduced

and the variance is increased. Thus the random component dominates the bias component (asymptoti-
cally). The following is the technical statement.

Theorem 19.10 Under the conditions of Theorem 19.9, and in addition nh5 =
o (1) ,

p
nh ( bmnw(x)°m(x)) °!

d
N

µ
0,

RKæ
2(x)

f (x)

∂

p
nh ( bmLL(x)°m(x)) °!

d
N

µ
0,

RKæ
2(x)

f (x)

∂
.

Theorem 19.10 has the advantage that the bias term does not appear. Consequently this form of the
theorem is popular with some authors. There are also several disadvantages. First, the assumption of an
undersmoothing bandwidth does not really eliminate the bias, it simple assumes it away. Thus in any
finite sample there is always bias. Second, it is not clear how to set a bandwidth so that it is undersmooth-
ing. Third, if a bandwidth is truly undersmoothing this implies that the estimator has increased variance
and is inefficient. Finally, the theory is simply misleading as a characterization of the distribution of the
estimator.

19.15 Conditional Variance Estimation

The conditional variance is

æ2(x) = var
£

yi | xi = x
§
= E

£
e2

i | xi = x
§

.

There are a number of contexts where it is desirable to estimate æ2(x) including prediction intervals and
confidence intervals for the estimated mean function. In general the conditional variance function is
nonparametric as economic models rarely specify the form ofæ2(x). Thus estimation ofæ2(x) is typically
done nonparametrically.
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Since æ2(x) is the CEF of e2
i given xi , it can be estimated by a nonparametric regression of e2

i on xi .
For example, the ideal NW estimator (if ei were observed) is

æ2(x) =

nX

i=1
K

≥ xi °x
h

¥
e2

i

nX

i=1
K

≥ xi °x
h

¥ .

Since the errors ei are not observed, we need to replace them with an estimator. A simple choice are
the residuals bei = yi ° bm(xi ). A better choice are the leave-one-out prediction errors eei = yi ° bm°i (xi ).
The latter are recommended for variance estimation as they are not subject to overfitting. With this
substitution the NW estimator of the conditional variance is

bæ2(x) =

nX

i=1
K

≥ xi °x
h

¥
ee2

i

nX

i=1
K

≥ xi °x
h

¥ . (19.18)

This estimator depends on a bandwidth h, but there is no reason for this bandwidth to be the same
as that used to estimate the conditional mean. The ROT or cross-validation using ee2

i as the dependent
variable can be used to select the bandwidth for estimation of bæ2(x) separately from cross-validation for
estimation of bm(x).

There is one subtle difference between CEF and conditional variance estimation. The conditional
variance is inherently non-negative æ2(x) ∏ 0 and it is desirable for the estimator to satisfy this property.
Interestingly, the NW estimator (19.18) is necessarily non-negative, since it is a smoothed average of
the non-negative squared residuals, but the LL estimator is not guaranteed to be non-negative for all x.
Furthermore, the NW estimator has as a special case the homoskedastic estimator bæ2(x) = bæ2 (full sample
variance) which may be a relevant selection. For these reasons, the NW estimator may be preferred for
conditional variance estimation.

Fan and Yao (1998) derive the asymptotic distribution of the estimator (19.18). They obtain the sur-
prising result that the asymptotic distribution of the two-step estimator bæ2(x) is identical to that of the
one-step idealized estimator æ2(x).

19.16 Variance Estimation and Standard Errors

It is relatively straightforward to calculate the exact conditional variance of the Nadaraya-Watson,
local linear, or local polynomial estimator. They can be written as

bØ(x) =
°

Z
0
K Z

¢°1 °
Z

0
K y

¢

=
°

Z
0
K Z

¢°1 °
Z

0
K m

¢
+

°
Z

0
K Z

¢°1 °
Z

0
K e

¢

where m is the n £1 vector of means m(xi ). The first component is a function only of the regressors and
the second is linear in the error e. Thus conditionally on the regressors X ,

V bØ(x) = var
£bØ | X

§
=

°
Z

0
K Z

¢°1 °
Z

0
K DK Z

¢°
Z

0
K Z

¢°1

where D = diag
°
æ2(x1), ...æ2(xn)

¢
.
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A White-type estimator can be formed by replacingæ2(xi ) with the squared residuals be2
i or prediction

errors ee2
i

bV bØ(x) =
°

Z
0
K Z

¢°1

√
nX

i=1
K

≥ xi °x
h

¥2
z i (x)z i (x)0ee2

i

!
°

Z
0
K Z

¢°1 .

A second estimator is obtained by replacing æ2(xi ) with an estimator such as (19.18)

bV bØ(x) =
°

Z
0
K Z

¢°1

√
nX

i=1
K

≥ xi °x
h

¥2
z i (x)z i (x)0bæ2(xi )

!
°

Z
0
K Z

¢°1 .

A third replaces bæ2(xi ) with the estimator bæ2(x)

bV bØ(x) =
°

Z
0
K Z

¢°1

√
nX

i=1
K

≥ xi °x
h

¥2
z i (x)z i (x)0

!
°

Z
0
K Z

¢°1 bæ2(x)

=
°

Z
0
K Z

¢°1 °
Z

0
K

2
Z

¢°
Z

0
K Z

¢°1 bæ2(x). (19.19)

A fourth uses the asymptotic formula

bV bm(x) =
RK bæ2(x)

nh bf (x)

with bæ2(x) from (19.18) and bf (x) a density estimator such as

bf (x) = 1
nb

nX

i=1
K

≥ xi °x
b

¥
(19.20)

where b is a bandwidth. (See Chapter 19 of Introduction to Econometrics.)
For local linear and local polynomial estimators the estimator bV bm(x) is the first diagonal element of

the matrix bV bØ(x). For any of the variance estimators a standard error for bm(x) is the square root of bV bm(x).

19.17 Confidence Bands

We can construct asymptotic confidence intervals. An asymptotic 95% confidence interval for m(x)
is

bm(x)±1.96
q

bV bm(x). (19.21)

This confidence interval can be plotted along with bm(x) to assess precision.
It should be noted, however, that this confidence interval has two unusual properties. First, it is

pointwise in x, meaning that it is designed to have coverage probability at each x, not uniformly across
x. Thus they are typically called pointwise confidence intervals.

Second, because it do not account for the bias, it is not an asymptotically valid confidence inter-
vas for m(x). Rather, it is an asymptotically valid confidence intervas for the pseudo-true (smoothed)
value, e.g. m(x)+h2B(x). One way of thinking about this is that the confidence intervals account for the
variance of the estimator but not its bias. A technical trick which solves this problem is to assume an
undersmoothing bandwidth. In this case the above confidence intervals are technically asymptotically
valid. This is only a technical trick as it does not really eliminate the bias only assumes it away. The plain
fact is that once we honestly acknowledge that the true CEF is nonparametric, it then follows that any
finite sample estimate will have finite sample bias, and this bias will be inherently unknown and thus
difficult to incorporate into confidence intervals.

Despite these unusual properties we can still use the interval (19.21) to display uncertainty and as a
check on the precision of the estimates.
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Figure 19.4: log(wage) regression on experience

19.18 The Local Nature of Kernel Regression

The kernel regression estimators (Nadaraya-Watson, Local Linear, and Local Polynomial) are all es-
sentially local estimators in that given h the estimator bm(x) is a function only of the sub-sample for which
xi is close to x. The other observations do not directly affect the estimator. This is reflected in the dis-
tribution theory as well. Theorem 19.8 shows that bm(x) is consistent for m(x) if the latter is continuous
at x. Theorem 19.9 shows that the asymptotic distribution of bm(x) depends only on the functions m(x),
f (x) and æ2(x) at the point x. The distribution does not depend on the global behavior of m(x).

Global features do affect the estimator bm(x), however, through the bandwidth h. The bandwidth
selection methods described here are global in nature as they attempt to minimize AIMSE. Local band-
widths (designed to minimize the AMSE at a single point x) can alternatively be employed, but these are
less commonly used, in part because such bandwidth estimators have high imprecision. Picking local
bandwidths adds extra noise.

Furthermore, selected bandwidths may be meaningfully large, so that the estimation window may
be a large portion of the sample. In this case estimation is neither local nor fully global.

19.19 Application to Wage Regression

We illustrate the methods with an application to the the CPS data set. We are interested in the non-
parametric regression of log(wage) on experience. To illustrate we take the subsample of black men with
12 years of education (high school graduates). This sample has 762 observations.

We first need to decide on the region of interest (range of experience) for which we will calculate the
regression estimator. We select the range [0,40] since most observations (90%) have experience levels
below 40 years.

To avoid boundary bias, we use the local linear estimator.
We next calculate the Fan-Ghybels rule-of-thumb bandwidth (19.9) and find hrot = 5.14. We then cal-

culate the cross-validation criterion, using the rule-of-thumb as a baseline. The CV criterion is displayed
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in Figure 19.4(a). The minimizer is hcv = 4.32 which is somewhat smaller than the ROT bandwidth.
We calculate the local linear estimator using both bandwidths and display the estimates in Figure

19.4(b). The regression functions are increasing for experience levels up to 20 years, and then become
flat. While the functions are roughly concave, they are noticably different than a traditional quadratic
specification. Comparing the estimates, the smaller CV-selected bandwidth produces a regression esti-
mate which is a bit too wavy, while the ROT bandwidth produces a regression estimate which is much
smoother, yet captures the same essential features. Based on this inspection we select the estimate based
on the ROT bandwidth (the solid line in panel (b)).
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Figure 19.5: Confidence Band Construction

Our next step is to calculate the conditional variance function. We calculate the ROT bandwidth for
a regression using the squared leave-one-out residuals (prediction errors), and find hrot = 6.77 which is
larger than the bandwidth used for conditional mean estimation. We next calculate the cross-validation
functions for conditional variance estimation (regression of squared prediction errors on experience) us-
ing both NW and LL regression. The CV functions are displayed in Figure 19.5(a). The CV plots are quite
interesting. For the LL estimator the CV function has a local minimum around h = 5 but the global min-
imizer is unbounded. The CV function for the NW estimator is globally decreasing with an unbounded
minimizer. The NW also achieves a considerably lower CV value than the LL estimator. This means
that the CV-selected variance estimator is the NW estimator with h =1, which is the simple full-sample
estimator bæ2 calculated with the prediction errors.

We next compute standard errors for the regression function estimates, using formula (19.19) with
the estimator bæ2 just described. In Figure 19.5(b) we display the estimated regression (the same as Figure
19.4 using the ROT bandwidth), along with 95% asymptotic confidence bands computed as in (19.21). By
displaying the confidence bands we can see that there is considerable imprecision in the estimator for
low experience levels. We can still see that the estimates and confidence bands show that the experience
profile is increasing up to about 20 years of experience, and then flattens above 20 years. The estimates
imply that for this population (black men who are high school graduates) the average wage rises for the
first 20 years of work experience (from 18 to 38 years of age) and then flattens, with no further increases
in average wages for the next 20 years of work experience (from 38 to 58 years of age).
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19.20 Clustered Observations

Clustered observations take the form (yi g , xi g ) for individuals i = 1, ...,ng in cluster g = 1, ...,G . The
model is

yi g = m
°
xi g

¢
+ei g

E
£
ei g | X g

§
= 0.

where X g is the stacked xi g . The assumption is that the clusters are mutually independent. Dependence
within each cluster is unstructured.

Write

z i g (x) =
µ

1
xi g °x

∂
.

Stack yi g , ei g and z i g (x) into cluster-level variables y g , eg and Z g (x). Let K g (x) = diag
n

K
≥ xi g °x

h

¥o
.

The local linear estimator can be written as

bØ(x) =
√

GX

g=1

ngX

i=1
K

≥ xi g °x

h

¥
z i g (x)z i g (x)0

!°1 √
GX

g=1

ngX

i=1
K

≥ xi g °x

h

¥
z i g (x)yi g

!

=
√

GX

g=1
Z g (x)0K g (x)Z g (x)

!°1 √
GX

g=1
Z g (x)0K g (x)y g

!

. (19.22)

The local linear estimator bm(x) = bØ1(x) is the intercept in (19.22).
The natural method to obtain prediction errors is by delete-cluster regression. The delete-cluster

estimator of Ø is

eØ(°g )(x) =
√

X

j 6=g
Z j (x)0K j (x)Z j (x)

!°1 √
X

j 6=g
Z j (x)0K j (x)y j

!

. (19.23)

The delete-cluster estimator of m (x) is the intercept em1(x) = eØ1(°g )(x) from (19.23). The delete-cluster
prediction error for observation i g is

eei g = yi g ° eØ1(°g )(xi g ). (19.24)

Let eeg be the stacked eei g for cluster g .
The variance of (19.22), conditional on the regressors X , is

V bØ(x) =
√

GX

g=1
Z g (x)0K g (x)Z g (x)

!°1 √
GX

g=1
Z g (x)0K g (x)Sg (x)K g (x)Z g (x)

!√
GX

g=1
Z g (x)0K g (x)Z g (x)

!°1

(19.25)
where

Sg = E
h

eg e
0
g | X g

i
.

The covariance matrix (19.25) can be estimated by replacing Sg with an estimator of eg e
0
g . Based on

analogy with regression estimation we suggest the delete-cluster prediction errors eeg as they are not
subject to over-fitting. This covariance matrix estimator using this choice is

bV bØ(x) =
√

GX

g=1
Z g (x)0K g (x)Z g (x)

!°1 √
GX

g=1
Z g (x)K g (x)eeg ee 0

g K g (x)Z g (x)

!√
GX

g=1
Z g (x)K g (x)Z g (x)

!°1

.

(19.26)
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The standard error for bm(x) is the square root of the first diagonal element of bV bØ(x).
There is no current theory on how to select the bandwidth h for nonparametric regression using

clustered observations. The Fan-Ghybels ROT bandwidth hrot is designed for independent observations,
so is likely to be a crude choice in the case of clustered observations. Standard cross-validation has
similar limitations. A practical alternative is to select the bandwidth h to minimize a delete-cluster cross-
valiation criterion. While there is no formal theory to justify this choice, it seems like a reasonable option.
The delete-cluster CV criterion is

CV(h) = 1
n

GX

g=1

ngX

i=1
ee2

i g

where eei g are the delete-cluster prediction errors (19.24). The delete-cluster CV bandwidth is the value
which minimizes this function:

hcv = argmin
h∏h`

CV(h).

As for the case of conventional cross-validation, it may be valuable to plot CV(h) against h to verify that
the minimum has been obtained and to assess sensitivity.

19.21 Application to Testscores

We illustrate kernel regression with clustered observations by using the Duflo, Dupas and Kremer
(2011) investigation of the effect of student tracking on testscores. Recall that the core question was effect
of the dummy variable tracking on the continuous variable testscore. A set of controls were included,
including a continuous variable percentile which recorded the student’s initial test score (as a percentile)
used for classroom assignment. We investigate the authors’ specification of this control using local linear
regression.

We took the subsample of 1487 girls who experienced tracking, and estimated the regression of
testscores on percentile. For this application we used unstandardized8 test scores which range from 0
to about 40. We used local linear regression with a Gaussian kernel.

First consider bandwidth selection. The Fan-Ghybels ROT and conventional cross-validation band-
widths are hrot = 6.7 and hcv = 12.3. We then calculated the clustered cross-validation criterion, which
has minimizer hcv = 6.2. To understand the differences, we plot the standard and clustered cross-validation
functions in Figure 19.6(a). In order to plot on the same graph we normalize each by subtracting their
minimized value (so each is minimized at zero). What we can see from Figure 19.6(a) is that while the
conventional CV criterion is sharply minimized at h = 12.3, the clustered CV criterion is essentially flat
between 5 and 11. This means that the clustered CV criterion has difficulty discriminating between these
bandwidth choices

To compare the estimated regression functions, in Figure 19.6(b) we plot the estimated regression
functions which use the bandwidths selected by conventional and clustered cross-validation. Inspect-
ing the plots, the estimator using the conventional CV bandwidth is smoother than the estimator us-
ing the smaller clustered CV bandwidth. The most noticeable differences arises at the right end of the
plot, which shows the expected test score for the students who had the very best preliminary test scores.
The estimator using the clustered CV bandwidth shows a meaningful upturn for students with initial
testscore percentile above 90%. Based on this evidence we select the local linear estimator bmLL(x) using
the clustered cross-validation bandwidth hcv = 6.2.

Using this bandwidth we estimate the delete-cluster prediction errors eeg and use these to calculate
the standard errors for the local linear estimator bmLL(x) using formula (19.26). These standard errors are

8In Section 4.22, following Duflo, Dupas and Kremer (2011) the dependent variable was standardized testscores (normalized
to have mean zero and variance one).
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Figure 19.6: TestScore as a Function of Initial Percentile

roughly twice as large as those calculated using the non-clustered formula. We use the standard errors
to calculate 95% asymptotic pointwise confidence bands as in (19.21).

Figure 19.6(c) shows our estimated regression function and pointwise 95% confidence bands. Also
plotted for comparison is an estimated linear regression line. The local linear estimator is very similar to
the global linear regression estimator for initial percentiles below 80%. But for initial percentiles above
80% the two lines diverge. The confidence bands suggest that these differences are statistically mean-
ingful. Students with initial testscores at the top of the initial distribution have higher final testscores on
average than predicted by a linear specification.

19.22 Multiple Regressors

Our analysis has focus on the case of real-valued xi for simplicity of exposition, but the methods of
kernel regression extend easily to the multiple regressor case, at the cost of a reduced rate of convergence.
In this section we consider the case of estimation of the conditional expectation function

E
£

yi | x i = x
§
= m(x)

when

x i =

0

B@
x1i

...
xdi

1

CA

is a d-vector.
For any evaluation point x and observation i , define the kernel weights

Ki (x) = K
µ

x1i °x1

h1

∂
K

µ
x2i °x2

h2

∂
· · ·K

µ
xdi °xd

hd

∂
,

a d-fold product kernel. The kernel weights Ki (x) assess if the regressor vector x i is close to the evalua-
tion point x in the Euclidean space Rd .
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These weights depend on a set of d bandwidths, h j , one for each regressor. We can group them
together into a single vector for notational convenience:

h =

0

B@
h1
...

hd

1

CA .

Given these weights, the Nadaraya-Watson estimator takes the form

bm(x) =

nX

i=1
Ki (x)yi

nX

i=1
Ki (x)

.

For the local-linear estimator, define

z i (x) =
µ

1
x i °x

∂

and then the local-linear estimator can be written as bm(x) = bÆ(x) where

µ
bÆ(x)
bØ(x)

∂
=

√
nX

i=1
Ki (x)z i (x)z i (x)0

!°1 nX

i=1
Ki (x)z i (x)yi

=
°

Z
0
K Z

¢°1
Z

0
K y

where K = diag{K1(x), ...,Kn(x)}.
In multiple regressor kernel regression cross-validation remains a recommended method for band-

width selection. The leave-one-out residuals eei and cross-validation criterion CV(h) are defined identi-
cally as in the single regressor case. The only difference is that now the CV criterion is a function over the
d-dimensional bandwidth h. This means that numerical minimization needs to be done more efficiently
than by a simple grid search.

The asymptotic distribution of the estimators in the multiple regressor case is an extension of the
single regressor case. Let f (x) denote the marginal density of x i , æ2(x) = E

£
e2

i | x i = x
§

denote the condi-
tional variance of ei = yi °m(x i ), and set |h| = h1h2 · · ·hd .

Proposition 19.1 Let bm(x) denote either the Nadarya-Watson or Local Linear
estimator of m(x). As n !1 and h j ! 0 such that n |h|!1,

p
n |h|

√

bm(x)°m(x)°
dX

j=1
h2

j B j (x)

!

°!
d

N

√

0,
Rd

Kæ
2(x)

f (x)

!

.

For the Nadaraya-Watson estimator

B j (x) = 1
2
@2

@x2
j

m(x)+ f (x)°1 @

@x j
f (x)

@

@x j
m(x)

and for the Local Linear estimator

B j (x) = 1
2
@2

@x2
j

m(x).



CHAPTER 19. NONPARAMETRIC REGRESSION 686

We do not provide regularity condition or a formal proof of the result but instead refer interested
readers to Fan and Gijbels (1996).

19.23 Curse of Dimensionality

The term “curse of dimensionality” is used to describe the phenomenon that the convergence rate of
nonparametric estimators slows as the dimension increases.

For the multiple regressor case we define the AIMSE as the integral of the squared bias plus vari-
ance, integrating with respect to f (x)w(x) where w(x) is an integrable weight function. For notational
simplicity consider the case that there is a single common bandwidth h. In this case the AIMSE of bm(x)
equals

AIMSE = h4
Z

S

√
dX

j=1
B j (x)

!2

f (x)w(x)d x +
Rd

K

nhd

Z

S
æ2(x)w(x)d x .

We see that the squared bias is of order h4, the same as in the single regressor case. The variance, how-
ever, is of larger order (nhd )°1.

If pick the bandwith to minimizing the AIMSE, we find that it takes the form h = cn°1/(4+d) for some
constant c. This generalizes the formula for the one-dimensional case. The rate n°1/(4+d) is slower than
the n°1/5 rate. This effectively means that with multiple regressors a larger bandwidth is required.

When the bandwidth is set as h = cn°1/(4+d) then the AIMSE is of order O
°
n°4/(4+d)¢. This is a slower

rate of convergence than in the one-dimensional case.

Theorem 19.11 In the multiple regression problem, the bandwidth which
minimizes the AIMSE is of order h ª n°1/(4+d). With h ª n°1/(4+d) then
AIMSE =O

°
n°4/(4+d)¢ .

See Exercise 19.6.
We see that the optimal AIMSE rate O

°
n°4/(4+d)¢ depends on the dimension d . As d increases this

rate slows. Thus the precision of kernel regression estimators worsens with multiple regressors. The
reason is the estimator bm(x) is a local average of the yi for observations such that x i is close to x , and
when there are multiple regressors the number of such observations is inherently smaller.

This phenomenon – that the rate of convergence of nonparametric estimation decreases as the di-
mension increases – is called the curse of dimensionality. It is common across most nonparametric
estimation problems and is not specific to kernel regression.

19.24 Computation

Stata has two commands which implement kernel regression: and . is
only available in Stata 15 or higher. implements local polynomial estimation for any p, including
Nadaraya-Watson (the default) and local linear estimation, and selects the bandwidth using the Fan-
Gijbels ROT method. It uses the Epanechnikov kernel by default, but the Gaussian can be selected as
an option. The command automatically displays the estimated mean function along with 95%
confidence bands with standard errors computed using (19.19).

The Stata command estimates local linear (the default) regression or Nadaraya-Watson
regression. By default it selects the bandwidth by cross-validation. It uses the Epanechnikov kernel by
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default, but the Gaussian can be selected as an option. Confidence intervals may be calculated using
the percentile bootstrap. A display of the estimated mean and 95% confidence bands at specific points
(computed using the percentile bootstrap) may be obtained with the postestimation command .

There are several R packages which implement kernel regression. One flexible choice is avail-
able in the package. Its default method is Nadaraya-Watson estimation using a Gaussian kernel with
bandwidth selected by cross-validation. There are options which allow local linear and local polynomial
estimation, alternative kernels, and alternative bandwidth selection methods.
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19.25 Technical Proofs*

For all technical proofs we make the simplifying assumption that the kernel function K (u) has bounded
support, thus K (u) = 0 for |u| > a. The results extend to the Gaussian kernel but with addition technical
arguments.

Proof of Theorem 19.1.1. Equation (19.3) shows that

E [ bmnw(x) | X ] = m(x)+
bb(x)
bf (x)

(19.27)

where bf (x) is the kernel density estimator (19.20) of f (x) with b = h and

bb(x) = 1
nh

nX

i=1
K

≥ xi °x
h

¥
(m(xi )°m(x)) . (19.28)

Theorem 17.6 of Introduction to Econometrics established that bf (x) °!
p

f (x). The proof is completed by

showing that bb(x) = h2 f (x)Bnw(x)+op

≥
h2 +1/

p
nh

¥
.

Since bb(x) is a sample average it has the expectation

E
£bb(x)

§
= 1

h
E

h
K

≥ xi °x
h

¥
(m(xi )°m(x))

i

=
Z1

°1

1
h

K
≥ v °x

h

¥
(m(v)°m(x)) f (v)d v

=
Z1

°1
K (u) (m(x +hu)°m(x)) f (x +hu)du. (19.29)

The second equality writes the expectation as an integral with respect to the density of xi . The third uses
the change-of-variables v = x +hu. We next use the two Taylor series expansions

m(x +hu)°m(x) = m0(x)hu + 1
2

m00(x)h2u2 +o(h2) (19.30)

f (x +hu) = f (x)+ f 0(x)hu +o(h).

Inserted into (19.29) we find that (19.29) equals
Z1

°1
K (u)

µ
m0(x)hu + 1

2
m00(x)h2u2 +o(h2)

∂°
f (x)+ f 0(x)hu +o(h)

¢
du (19.31)

= h
µZ1

°1
uK (u)du

∂
m0(x)

°
f (x)+o(h)

¢
(19.32)

+h2
µZ1

°1
u2K (u)du

∂µ
1
2

m00(x) f (x)+m0(x) f 0(x)
∂

+h3
µZ1

°1
u3K (u)du

∂
1
2

m00(x) f 0(x)+o(h2)

= h2
µ

1
2

m00(x) f (x)+m0(x) f 0(x)
∂
+o(h2)

= h2Bnw(x) f (x)+o(h2).

The second equality uses the fact that the kernel K (x) integrates to one, its odd moments are zero, and
the kernel variance is one. We have shown that E

£bb(x)
§
= Bnw(x) f (x)h2 +o(h2).
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Now consider the variance of bb(x). Since bb(x) is a sample average of independent components and
the variance is smaller than the second moment

var
£bb(x)

§
= 1

nh2 var
h

K
≥ xi °x

h

¥
(m(xi )°m(x))

i

∑ 1
nh2 E

∑
K

≥ xi °x
h

¥2
(m(xi )°m(x))2

∏

= 1
nh

Z1

°1
K (u)2 (m(x +hu)°m(x))2 f (x +hu)du (19.33)

= 1
nh

Z1

°1
u2K (u)2 du

°
m0(x)

¢2 f (x)
°
h2 +o(1)

¢

∑ h
n

K
°
m0(x)

¢2 f (x)+o
µ

h
n

∂
.

The second equality writes the expectation as an integral. The third uses (19.30). The final inequality
uses K (u) ∑ K from Definition 19.1.1 and the fact that the kernel variance is one. This shows that

var
£bb(x)

§
∑O

µ
h
n

∂
.

Together we conclude that

bb(x) = h2 f (x)Bnw(x)+o
°
h2¢+Op

0

@
s

h
n

1

A

and
bb(x)
bf (x)

= h2Bnw(x)+op
°
h2¢+Op

0

@
s

h
n

1

A (19.34)

Together with (19.27) this implies Theorem 19.1.1. Á

Proof of Theorem 19.2.1. Equation (19.4) states that

nh var[ bmnw(x) | X ] = bv(x)
bf (x)2

where

bv(x) = 1
nh

nX

i=1
K

≥ xi °x
h

¥2
æ2(xi )

and bf (x) is the kernel density estimator (19.20) of the marginal density f (x). Theorem 17.6 of Introduc-
tion to Econometrics established that bf (x) °!

p
f (x). The proof is completed by showing that bv(x) °!

p

RKæ
2(x) f (x).

First, writing the expectation as an integral with respect to the marginal density of xi , making the
change-of-variables v = x +hu, and appealing to the continuity of æ2(x) and f (x) at x,

E [bv(x)] =
Z1

°1

1
h

K
≥ v °x

h

¥2
æ2(v) f (v)d v

=
Z1

°1
K (u)2æ2(x +hu) f (x +hu)du

=
Z1

°1
K (u)2æ2(x) f (x)+o(1)

= RKæ
2(x) f (x).
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Second, since bv(x) is an average of independent random variables and the variance is smaller than
the second moment

nh var[bv(x)] = 1
h

var
∑

K
≥ xi °x

h

¥2
æ2(xi )

∏

∑ 1
h

Z1

°1
K

≥ v °x
h

¥4
æ4(v) f (v)d v

=
Z1

°1
K (u)4æ4(x +hu) f (x +hu)du

∑ K
2

Rkæ
4(x) f (x)+o(1)

so var[bv(x)] ! 0.
We deduce from Markov’s inequality that bv(x) °!

p
RKæ

2(x) f (x), completing the proof. Á

Proof of Theorem 19.7. Observe that m(xi )° em°i (xi ,h) is a function only of (x1, ..., xn) and (e1, ...,en)
excluding ei , and is thus uncorrelated with ei . Since eei (h) = m(xi )° em°i (xi ,h)+ei , then

E [CV(h)] = E
°
eei (h)2w(xi )

¢

= E
£
e2

i w(xi )
§
+E

£
( em°i (xi ,h)°m(xi ))2 w(xi )

§

+2E [( em°i (xi ,h)°m(xi )) w(xi )ei ]

=æ2 +E
£
( em°i (xi ,h)°m(xi ))2 w(xi )

§
. (19.35)

The second term is an expectation over the random variables xi and em°i (x,h), which are independent
as the second is not a function of the i th observation. Thus taking the conditional expectation given
the sample excluding the i th observation, this is the expectation over xi only, which is the integral with
respect to its density

E°i
£
( em°i (xi ,h)°m(xi ))2 w(xi )

§
=

Z
( em°i (x,h)°m(x))2 f (x)w(x)d x.

Taking the unconditional expecation yields

E
£
( em°i (xi ,h)°m(xi ))2 w(xi )

§
= E

∑Z
( em°i (x,h)°m(x))2 f (x)w(x)d x

∏

= IMSEn°1(h)

where this is the IMSE of a sample of size n °1 as the estimator em°i uses n °1 observations. Combined
with (19.35) we obtain (19.13), as desired. Á

Proof of Theorem 19.8. We can write the Nadaraya-Watson estimator as

bmnw(x) = m(x)+
bb(x)
bf (x)

+
bg (x)
bf (x)

(19.36)

where bf (x) is the kernel density estimator (19.20), bb(x) is defined in (19.28), and

bg (x) = 1
nh

nX

i=1
k

≥ xi °x
h

¥
ei . (19.37)

Since bf (x) °!
p

f (x) > 0 by Theorem 17.6 of Introduction to Econometrics, the proof is completed by show-

ing bb(x) °!
p

0 and bg (x) °!
p

0.
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Take bb(x). From (19.29) and the continuity of m(x) and f (x)

E
£bb(x)

§
=

Z1

°1
K (u) (m(x +hu)°m(x)) f (x +hu)du = o(1)

as h !1. From (19.33),

nh var
£bb(x)

§
∑

Z1

°1
K (u)2 (m(x +hu)°m(x))2 f (x +hu)du = o(1)

as h !1. Thus var
£bb(x)

§
°! 0. By Markov’s inequality we conclude bb(x)

p°! 0.
Take bg (x). Since bg (x) is linear in ei and E [ei | xi ] = 0, we find E

£
bg (x)

§
= 0. Since bg (x) is an average

of independent random variables, the variance is smaller than the second moment, and the definition
æ2(xi ) = E

£
e2

i | xi
§

nh var
£
bg (x)

§
= 1

h
var

h
K

≥ xi °x
h

¥
ei

i

∑ 1
h
E

∑
K

≥ xi °x
h

¥2
e2

i

∏

= 1
h
E

∑
K

≥ xi °x
h

¥2
æ2(xi )

∏

=
Z1

°1
K (u)2æ2(x +hu) f (x +hu)du

= RKæ
2(x) f (x)+o(1) (19.38)

since æ2(x) and f (x) are continuous in x. Thus var
£
bg (x)

§
°! 0. By Markov’s inequality we conclude

bg (x) °!
p

0, completing the proof. Á

Proof of Theorem 19.9. From (19.36), Theorem 17.6 of Introduction to Econometrics, and (19.34) we have

p
nh

°
bmnw(x)°m(x)°h2Bnw(x)

¢
=
p

nh

√
bg (x)
bf (x)

!

+
p

nh

√
bb(x)
bf (x)

°h2Bnw(x)

!

=
p

nh
µ bg (x)

f (x)

∂°
1+op (1)

¢
+
p

nh

0

@op
°
h2¢+Op

0

@
s

h
n

1

A

1

A

=
p

nh
µ bg (x)

f (x)

∂°
1+op (1)

¢
+

≥
op

≥p
nh5

¥
+Op (h)

¥

=
p

nh
µ bg (x)

f (x)

∂

where the final equality holds since
p

nh bg (x) = Op (1) by (19.38) and the assumption nh5 = O(1). The
proof is completed by showing

p
nh bg (x) °!

d
N

°
0,RKæ

2(x) f (x)
¢
.

Define yni = h°1/2K
° xi°x

h

¢
ei which is mean zero. Then we can write

p
nh bg (x) =

p
ny . We verify the

conditions for the Lindeberg CLT (Theorem 6.4). The summands yni are independent and mean zero. In
the notation of Theorem 6.4, set æ2

n = var
£p

ny
§
! RK f (x)æ2(x) as h ! 0. The CLT holds if we can verify

the Lindeberg condition.
It turns out that this is a quite advanced calculation and will not interest most readers. It is provided

for those interested in a complete derivation.
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Fix "> 0 and ±> 0. Since K (u) is bounded we can write K (u) ∑ K . Let nh be sufficiently large so that

µ
"nh

K

∂r°2

∏ æ

±
.

The conditional moment bound (19.15) implies that for x 2N ,

E

h
e2

i

≥
e2

i > "nh/K
¥
| xi = x

i
= E

∑ |ei |r

|ei |r°2

≥
e2

i > "nh/k
¥
| xi = x

∏

∑ E

2

64
|ei |r

≥
"nh/k

¥(r°2)/2
| xi = x

3

75

∑ ±.

Since y2
ni ∑ h°1K e2

i we find

E
£

y2
ni

°
y2

ni > "n
¢§
∑ 1

h
E

∑
K

≥ xi °x
h

¥2
e2

i

≥
e2

i > "nh/k
¥∏

= 1
h
E

∑
K

≥ xi °x
h

¥2
E

≥
e2

i

≥
e2

i > "nh/k
¥
| xi

¥∏

=
Z1

°1
K (u)2

E

h
e2

i

≥
e2

i > "nh/k
¥
| xi = x +hu

i
f (x +hu)du

∑ ±

Z1

°1
K (u)2 f (x +hu)du

= ±RK f (x)+o(1)

= o(1)

since ± is arbitrary. This is the Lindeberg condition (6.2). The Lindeberg CLT (Theorem 6.4) shows that

p
nh bg (x) =

p
ny °!

d
N

°
0,RKæ

2(x) f (x)
¢

.

This completes the proof. Á
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Exercises

Exercise 19.1 For kernel regression, suppose you rescale y , for example replace yi with 100yi , how
should the bandwidth h change? To answer this, first address how the functions m(x) and æ2(x) change
under rescaling, and then calculate how B and æ2 change. Deduce how the optimal h0 changes due to
rescaling yi . Does your answer make intuitive sense?

Exercise 19.2 Show that (19.6) minimizes the AIMSE (19.5).

Exercise 19.3 Describe in words how the bias of the local linear estimator changes over regions of con-
vexity and concavity in m(x). Does this make intuitive sense?

Exercise 19.4 Suppose the true regression function is linear m(x) =Æ+Øx and we estimate the function
using the Nadaraya-Watson estimator. Calculate the bias function B(x). Suppose Ø > 0. For which re-
gions is B(x) > 0 and for which regions is B(x) < 0? Now suppose that Ø< 0 and re-answer the question.
Can you intuitively explain why the NW estimator is positively and negatively biased for these regions?

Exercise 19.5 Suppose m(x) =Æ is a constant function. Find the AIMSE-optimal bandwith (19.6) for NW
estimation? Explain.

Exercise 19.6 Prove Theorem 19.11: Show that when d ∏ 1 the AIMSE optimal bandwidth takes the form
h0 = cn°1/(4+d) and AIMSE is O

°
n°4/(4+d)¢ .

Exercise 19.7 Take the DDK2011 dataset and the subsample of boys who experienced tracking. As in
Section 19.21, use the Local Linear estimator to estimate the regression of testscores on percentile, but
now with the subsample of boys. Plot with 95% confidence intervals. Comment on the similarities and
differences with the estimate for the subsample of girls.

Exercise 19.8 Take the dataset and the subsample of individuals with education=20 (profes-
sional degree or doctorate), with experience between 0 and 40 years.

(a) Use Nadaraya-Watson to estimate the regression of log(wage) on experience, separately for men
and women. Plot with 95% confidence intervals. Comment on how the estimated wage profiles
vary with experience. In particular, do you think the evidence suggests that expected wages fall for
experience levels above 20 for this education group?

(b) Repeat using the Local Linear estimator. How do the estimates and confidence intervals change?

Exercise 19.9 Take the dataset and the subsample of observations with Q ∑ 5.

(a) Use Nadaraya-Watson to estimate the regression of I on Q. Plot with 95% confidence intervals.

(b) Repeat using the Local Linear estimator.

(c) Is there evidence to suggest that the regression function is non-linear?

Exercise 19.10 The dataset is from Reinhart and Rogoff (2010). It contains observations on an-
nual U.S. GDP growth rates, inflation rates, and the debt/gdp ratio for the long time span 1791-2009. The
paper made the strong claim that gdp growth slows as debt/gdp increases, and in particular that this
relationship is nonlinear with debt negatively affecting growth for debt ratios exceeding 90%. Their full
dataset includes 44 countries, our extract only includes the United States.
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(a) Use Nadaraya-Watson to estimate the regression of gdp growth on the debt ratio. Plot with 95%
confidence intervals.

(b) Repeat using the Local Linear estimator.

(c) Do you see evidence of nonlinearity, and/or a change in the relationship at 90%?

(d) Now estimate a regression of gdp growth on the inflation rate. Comment on what you find.

Exercise 19.11 We will consider a nonlinear AR(1) model for gdp growth rates

yt = m(yt°1)+et

yt = 100
µµ

GDPt

GDPt°1

∂4

°1
∂

(a) Create GDP growth rates yt . Extract the level of real U.S. GDP (GDPC1) from the dataset
and make the above transformation to growth rates.

(b) Use Nadaraya-Watson to estimate m(x). Plot with 95% confidence intervals.

(c) Repeat using the Local Linear estimator.

(d) Do you see evidence of nonlinearity?



Chapter 20

Series Regression

20.1 Introduction

Chapter 19 studied nonparametric regression by kernel smoothing methods. In this chapter we study
an alternative class of nonparametric regression methods known as series regression.

The basic model is identical to that examined in Chapter 19. We assume that there are pairs (yi , xi )
such that E

£
y2

i

§
<1 and satisfy the regression model

yi = m(xi )+ei (20.1)

E [ei | xi ] = 0

E
£
e2

i | xi
§
=æ2 (xi ) .

The goal is to estimate the conditional mean function m(x). We start with the simple setting where xi is
scalar and consider more general cases later.

A series regression model is a sequence K = 1,2, ..., of approximating models mK (x) with K param-
eters. In this chapter we exclusively focus on linear series models, and in particular polynomials and
splines. This is because these are simple, convenient, and cover most applications of series methods
in applied economics. Other series models include trigonometric polynomials, wavelets, orthogonal
wavelets, B-splines, and neural networks. For a detailed review see Chen (2007).

Linear series regression models take the form

yi = x
0
K iØK +eK i (20.2)

where xK i = xK (xi ) is a vector of regressors obtained by making transformations of xi , and ØK is a coef-
ficient vector. There are multiple possible definitions of the coefficient ØK . We define1 it by projection

ØK = E
£

xK i x
0
K i

§°1
E
£

xK i yi
§

= E
£

xK i x
0
K i

§°1
E [xK i m(xi )] . (20.3)

The series regression error eK i is defined by (20.2) and (20.3), is distinct from the regression error ei in
(20.1), and is indexed by K since it depends on the specific regressors xK i . The series approximation to
m(x) is

mK (x) = xK (x)0ØK . (20.4)

1An alternative is to define ØK as the best uniform approximation as in (20.8). It is not critical so long as we are careful to be
consistent with our notation.

695
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The coefficient is typically2 estimated by least-squares

bØK =
√

nX

i=1
xK i x

0
K i

!°1 √
nX

i=1
xK i yi

!

=
°

X
0
K X K

¢°1 °
X

0
K y

¢
. (20.5)

The estimator for m(x) is
bmK (x) = xK (x)0bØK . (20.6)

The difference between specific models arises due to the different choices of transformations xK (x).
The theoretical issues we will explore in this chapter are: (1) Approximation properties of polynomi-

als and splines; (2) Consistent estimation of m(x); (3) Asymptotic normal approximations; (4) Selection
of K ; (5) Extensions.

For a textbook treatment of series regression see Li and Racine (2007). For an advanced treatment see
Chen (2007). Two seminal contributions are Andrews (1991a) and Newey (1997). Two recent important
papers are Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Chen and Christensen (2015).

20.2 Polynomial Regression

The prototypical series regression model for m(x) is a pth order polynomial

mK (x) =Ø0 +Ø1x +Ø2x2 +·· ·+Øp xp .

We can write it in vector notation as (20.4) where

xK (x) =

0

BBBB@

1
x
...

xp

1

CCCCA
.

The number of parameters is K = p+1. Notice that we index xK (x) and ØK by K as their dimensions and
values vary with K .

The implied polynomial regression model for the random pair (yi , xi ) is (20.2) with

xK i = xK (xi ) =

0

BBBB@

1
xi
...

xp
i

1

CCCCA
.

The degree of flexibility of a polynomial regression is controlled by the polynomial order p. A larger
p yields a more flexible model, while a smaller p typically results in a estimator with a smaller variance.

In general, a linear series regression model takes the form

mK (x) =Ø1ø1(x)+Ø2ø2(x)+·· ·+ØK øK (x)

where the functions ø j (x) are called the basis transformations. The polynomial regression model uses
the power basis ø j (x) = x j°1. The model mK (x) is called a series regression because it is obtained by
sequentially adding the series of variables ø j (x).

2Penalized estimators have also been recommended. We do not review these methods here.
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20.3 Illustrating Polynomial Regression

Consider the dataset and a regression of log wages on experience for women with a college
education (education= 16), separately for white women and black women. The classical Mincer model
uses a quadratic in experience. Given the large sample sizes (4682 for white women and 517 for black
women) we can consider higher order polynomials. In Figure 20.1 we plot least-squares estimates of the
conditional mean functions using polynomials of order 2, 4, 8, and 12.

Examine panel (a), which shows the estimates for the sub-sample of white women. The quadratic
specification appears mis-specified, with a shape noticably different from the other estimates. The dif-
ference between the polynomials of order 4, 8, and 12 is relatively minor, especially for experience levels
below 20.

Now examine panel (b), which shows the estimates for the sub-sample of black women. This panel
is quite different from panel (a). The estimates are erratic, and increasingly so as the polynomial order
increases. Assuming we are expecting a concave (or nearly concave) experience profile, the only estimate
which satisfies this is the quadratic.

Why the difference between panels (a) and (b)? The most likely explanation is the different sample
sizes. The sub-sample of black women has much fewer observations so the mean function is much less
precisely estimated, giving rise to the erratic plots. This suggests (informally) that it may be preferred to
use a smaller polynomial order p in the second sub-sample, or equivalently to use a larger p when the
sample size n is larger. The idea that model complexity – the number of coefficients K – should vary with
sample size n is an important feature of series regression.

The erratic nature of the estimated polynomial regressions in Figure 20.1(b) is a common feature of
higher-order estimated polynomial regressions. Better results can sometimes be obtained by a spline
regression, which is described in Section 20.5.
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Figure 20.1: Polynomial Estimates of Experience Profile, College-Educated Women
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20.4 Orthogonal Polynomials

Standard implementation of the least-squares estimator (20.5) of a polynomial regression may return
a computational error message when p is large. (See Section 3.24.) This is because the moments of x j

i

can be highly heterogeneous across j , and because the variables x j
i can be highly correlated. These two

factors imply in practice that the matrix X
0
K X K can be ill-conditioned (the ratio of the largest to smallest

eigenvalue can be quite large) and some packages will return error messages rather than compute bØK .
In most cases the condition of X

0
K X K can be dramatically improved by rescaling the observations. As

discussed in Section 3.24, a simple method for non-negative regressors is to rescale each by its sample

mean, e.g. replace x j
i with x j

i /
≥
n°1 Pn

i=1 x j
i

¥
. Even better conditioning can often be obtained by rescaling

xi to lie in [°1,1] before applying powers. In most applications one of these methods will be sufficient
for a well-conditioned regression.

A computationally more robust implementation can be obtained by using orthogonal polynomials.
These are linear combinations of the polynomial basis functions, and produce identical regression esti-
mators (20.6). The goal of orthogonal polynomials is to produce regressors which are either orthogonal
or close to orthogonal, and have similar variances, so that X

0
K X K is close to diagonal with similar diag-

onal elements. These orthogonalized regressors x
§
K i = AK xK i can be written as linear combinations of

the original variables xK i . If the regressors are orthogonalized, then the regression estimator (20.6) is
modified by replacing xK (x) with x

§
K (x) = AK xK (x).

One approach is to use sample orthogonalization. This is done by a sequence of regressions of x j
i on

the previously orthogonalized variables, and then rescaling. This will result in perfectly orthogonalized
variables. This is what is implemented in many statistical packages under the label “orthogonal poly-
nomials”, for example, the function in R. If this is done then the least-squares coefficients have no
meaning outside this specific sample, and it is not convenient for calculation of bmK (x) for values of x
other than sample values. This is the approach used for the examples presented in the previous section.

Another approach is to use an algebraic orthogonal polynomial. This is a polynomial which is or-
thogonal with respect to a known weight function w(x). Specifically, it is a sequence p j (x), j = 0,1,2, ...,
with the property that

R
p j (x)p`(x)w(x)d x = 0 for j 6= `. This means that if w(x) = f (x), the marginal

density of xi , then the basis transformations p j (xi ) will be mutually orthgonal (in expectation). Since
we do now know the density of xi this is not feasible in practice, but if w(x) is close to the density of xi ,
then we can expect that the basis transformations will be close to mutually orthogonal. To implement an
algebraic orthogonal polynomial, you first should rescale your xi variable so that it satisfies the support
for the weight function w(x).

The following three choices are most relevant for economic applications.

Legendre Polynomial. These are orthogonal with respect to the uniform density on [°1,1] . (So
should be applied to regressors scaled to have support in [°1,1].)

p j (x) = 1

2 j

jX

`=0

√
j
`

!2

(x °1) j°` (x +1)` .

For example, the first several are p0(x) = 1, p1(x) = x, p2(x) =
°
3x2 °1

¢
/2, and p3(x) =

°
5x3 °3x

¢
/2. The

best computational method is to use the recurrence relationship

p j+1(x) =
°
2 j +1

¢
xp j (x)° j p j°1(x)

j +1
.
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Laguerre Polynomial. These are orthogonal with respect to the exponential density e°x on [0,1).
(So should be applied to non-negative regressors scaled to have unit mean and variance.)

p j (x) =
jX

`=0

√
j
`

!
(°x)`

`!
.

For example, the first several are p0(x) = 1, p1(x) = 1°x, p2(x) =
°
x2 °4x +2

¢
/2, and p3(x) =

°
°x3 +9x2 °18x +6

¢
/6.

The best computational method is to use the recurrence relationship

p j+1(x) =
°
2 j +1°x

¢
p j (x)° j p j°1(x)

j +1
.

Hermite Polynomial. These are orthogonal with respect to the standard normal density on (°1,1).
(So should be applied to regressors scaled to have mean zero and variance one.)

p j (x) = j !
b j /2cX

`=0

(°1/2)` x`°2 j

`!
°

j °2`!
¢ .

For example, the first several are p0(x) = 1, p1(x) = x, p2(x) = x2 ° 1, and p3(x) = x3 ° 3x. The best
computational method is to use the recurrence relationship

p j+1(x) = xp j (x)° j p j°1(x).

The R package provides a convenient set of commands to compute many orthogonal
polynomials, including the above.

20.5 Splines

A spline is a piecewise polynomial. Typically the order of the polynomial is pre-selected to be linear,
quadratic, or cubic. The flexibility of the model is determined by the number of polynomial segments.
The join points between these segments are called knots.

To impose smoothness and parsimony it is common to constrain the spline function to have con-
tinuous derivatives up to the order of the spline. Thus a linear spline is constrained to be continuous, a
quadratic spline is constrained to have a continuous first derivative, and a cubic spline is constrained to
have continuous first and second derivatives.

A simple way to construct a regression spline is as follows. A linear spline with one knot ø is

mK (x) =Ø0 +Ø1x +Ø2 (x °ø) (x ∏ ø) .

To see that this is a linear spline, observe that for x ∑ ø the function mK (x) =Ø0+Ø1x is linear with slope
Ø1; for x ∏ ø the function mK (x) =

°
Ø0 °Ø0ø

¢
+

°
Ø1 +Ø2

¢
x is linear with slope Ø1 +Ø2, and the function is

continuous at x = ø. Note that Ø2 is the change in the slope at ø. A linear spline with two knots ø1 < ø2 is

mK (x) =Ø0 +Ø1x +Ø2 (x °ø1) (x ∏ ø2)+Ø3 (x °ø2) (x ∏ ø2) .

A quadratic spline with one knot is

mK (x) =Ø0 +Ø1x +Ø2x2 +Ø3 (x °ø)2 (x ∏ ø) .
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To see that this is a quadratic spline, observe that for x ∑ ø the function is the quadratic Ø0 +Ø1x +Ø2x2,
for x ∏ ø it is the quadratic Ø0+Ø3ø

2+
°
Ø1 °2Ø3ø

¢
x+

°
Ø2 +Ø3

¢
x2, and the first derivative is Ø1+2Ø2x and

continuous at x = ø.
In general, a pth-order spline with N knots ø1 < ø2 < ·· · < øN is

mK (x) =
pX

j=0
Ø j x j +

NX

k=1
Øp+k (x °øk )p (x ∏ øk )

which has K = N +p +1 coefficients.
The implied spline regression model for the random pair (yi , xi ) is (20.2) where

xK i = xK (xi ) =

0

BBBBBBBBBBB@

1
xi
...

xp
i

(xi °ø1)p (xi ∏ ø1)
...

(xi °øN )p (xi ∏ øN )

1

CCCCCCCCCCCA

.

In practice a spline will depend critically on the choice of the knots øk . When xi is bounded with
an approximately uniform distribution it is common to space the knots evenly so all segments have the
same length. When the distribution of xi is not uniform an alternative is to set the knots at the quantiles
j /(N +1) so that the probability mass is equalized across segments. A third alternative is to set the knots
at the points where m(x) has the greatest change in curvature (see Schumaker (2007), Chapter 7). In all
cases the set of knots ø j can change with K . Therefore a spline is a special case of an approximation of
the form

mK (x) =Ø1ø1K (x)+Ø2ø2K (x)+·· ·+ØK øK K (x)

where the basis transformations ø j K (x) depend on both j and K . Many authors call such approxima-
tions a sieve rather than a series, because the basis transformations change with K . This distinction is
not critical to our treatment so for simplicity we refer to splines as series regression models.

20.6 Illustrating Spline Regression

In Section 20.3 we illustrated regressions of log wages on experience for white and black women with
a college education. Now we consider a similar regression for black men with a college education, a
sub-sample with 394 observations.

We use a quadratic spline with four knots at experience levels of 10, 20, 30, and 40. This is a regres-
sion model with seven coefficients. The estimated regression function is displayed in Figure 20.2(a). An
estimated 6th order polynomial regression is also displayed for comparison (a 6th order polynomial is an
appropriate comparison because it also has seven coefficients).

While the spline is a quadratic over each segment, what you can see is that the first two segments
(for experience levels between 0-10 and 10-20 years) are essentially linear. Most of the curvature occurs
in the third and fourth segments (20-30 and 30-40 years), where the estimated regression function peaks
and twists into a negative slope. The estimated regression function is quite smooth.

A quadratic (or cubic) spline is useful when it is desired to impose smoothness as in Figure 20.2(a).
In contrast, a linear spline is useful when it is desired to allow for sharp changes in slope.
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Figure 20.2: Spline Regression Estimates

To illustrate we consider the data set which is a sample of 8684 urban Phillipino households
from Cox, Hansen, and Jimenez (2004). This paper studied the crowding-out impact of a family’s income
on non-governmental (e.g., extended family) income transfers. A model of altruistic transfers predicts
that extended families will make gifts (transfers) when the recipient family’s income is sufficiently low,
but will not make transfers if the recipient family’s income exceeds a threshold. A pure altruistic model
predicts that the regression of transfers received on family income should be negative with a slope of °1
up to this threshold, and be flat above this threshold. We estimated this regression (including a set of
additional controls) using a linear spline with knots at 10000, 20000, 30000, 40000, 50000, 60000, 100000,
and 150000 pesos. These knots were selected to give considerable flexibility for low income levels and
greater smoothness at higher income levels where there are fewer observations. This model has a total
of 26 coefficients.

The estimated regression function (as a function of household income) is displayed in Figure 20.2(b).
For the first two segments (incomes levels below 20000 pesos) the regression function is negatively sloped
as predicted, with a slope about °0.7 from 0 to 10000 pesos, and °0.3 from 10000 to 20000 pesos. The
estimated regression function is effectively flat for income levels above 20000 pesos. This shape is highly
consistent with the pure altruism model. A linear spline model is particularly well suited for this appli-
cation as it allows for discontinuous changes in slope.

Linear spline models with a single knot have been recently popularized by Card, Lee, Pei, and Weber
(2015) with the label regression kink design.

20.7 The Global/Local Nature of Series Regression

Recall from Section 19.18 that we described kernel regression as inherently local in nature. The
Nadaraya-Watson, Local Linear, and Local Polynomial estimators of the conditional mean m(x) are
weighted averages of yi for observations for which xi is close to x.

In contrast, series regression methods are typically described as global in nature. The estimator
bmK (x) = xK (x)0bØK is a function of the entire sample. The coefficients of a fitted polynomial (or spline)
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are affected by the global shape of the function m(x), and thus affect the estimator bmK (x) at any local
point x.

While this description has some merit, it is not a complete description. As we now show, series re-
gression estimators share the local smoothing property of kernel regression. As the number of series
terms K increase a series estimator bmK (x) = xK (x)0bØK also becomes a local weighted average estimator.

To see this, observe that we can write the estimator as

bmK (x) = xK (x)0
°

X
0
K X K

¢°1 °
X

0
K y

¢

= 1
n

nX

i=1
xK (x)0 bQ°1

K xK (xi )yi

= 1
n

nX

i=1
bwK (x, xi )yi

where bQK = n°1
X

0
K X K and

bwK (x,u) = xK (x)0 bQ°1
K xK (u).

Thus bmK (x) is a weighted average of yi using the weights bwK (x, xi ). The weight function bwK (x, xi ) ap-
pears to be maximized at xi = x, so bm(x) puts more weight on observations for which xi is close to x,
similarly to kernel regression.
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Figure 20.3: Kernel Representation of Polynomial Weight Function

To see this more precisely, observe that since bQK will be close (in large samples) to QK = E
£

xK i x
0
K i

§
,

bwK (x,u) will be close to the deterministic weight function

wK (x,u) = xK (x)0Q°1
K xK (u).

Take the case xi ªU [0,1]. In Figure 20.3 we plot the weight function wK (x,u) as a funtion of u for x = 0.5
(panel (a)) and x = 0.25 (panel (b)) for p = 4, 8, 12 in panel (a) and p = 4, 12 in panel (b). First, examine
panel (a). Here you can see that the weight function w(x,u) is symmetric in u about x. For p = 4 the
weight function appears similar to a quadratic in u, and as p increases the weight function concentrates
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its main weight around x. However, the weight function is not non-negative. It is quite similar in shape
to what are known as higher-order (or bias-reducing) kernels, which were not reviewed in the previous
chapters but are part of the kernel estimation toolkit. Second, examine panel (b). Again the weight
function is maximized at x, but now it is asymmetric in u about the point x. Still, the general features
from panel (a) carry over to panel (b). Namely, as p increases the polynomial estimator puts most weight
on observations for which xi is close to x (just as for kernel regression), but is different from conventional
kernel regression in that the weight function is not non-negative. Qualitatively similar plots are obtained
for spline regression.

There is little formal theory (of which I am aware) which makes a formal link between series regres-
sion and kernel regression, so the comments presented here are illustrative3. However, the point is that
statements of the form “Series regession is a global method; Kernel regression is a local method” may not
be complete descriptions. Both are global in nature when h is large (for kernels) or K is small (series),
and are local in nature when h is small (for kernels) or K is large (series).

20.8 Stone-Weierstrass and Jackson Approximation Theory

A good series approximation mK (x) has the property that it gets close to the true CEF m(x) as the
complexity K increases. Formal statements can be derived from the mathematical theory of the approx-
imation of functions.

An elegant and famous theorem is the Stone-Weierstrass Theorem, (Weierstrass, 1885, Stone, 1948)
which states that any continuous function can be uniformly well approximated by a polynomial of suffi-
ciently high order. Specifically, the theorem states that if m(x) is continuous on a compact set S, then for
any "> 0 there is some K sufficiently large such that

inf
Ø

sup
x2S

ØØm(x)°xK (x)0Ø
ØØ∑ ". (20.7)

Thus the true unknown m(x) can be arbitrarily well approximated by selecting a suitable polynomial.
Jackson (1912) strengthened this result to give convergence rates which depend on the smoothness

of m(x). The basic result has also been extended to spline functions. The following notation will be
useful. Define the Ø which minimizes the left-side of (20.7) as

Ø§
K = argmin

Ø
sup
x2S

ØØm(x)°xK (x)0Ø
ØØ , (20.8)

define the approximation error
r§

K (x) = m(x)°xK (x)0Ø§
K (20.9)

and define the minimized value of (20.7)

±§K
de f= inf

Ø
sup
x2S

ØØm(x)°xK (x)0Ø
ØØ= sup

x2S

ØØm(x)°xK (x)0Ø§
K

ØØ= sup
x2S

ØØr§
K (x)

ØØ . (20.10)

3Similar connections are made in the appendix of Chen, Liao, and Sun (2012).
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Theorem 20.1 If for someÆ∏ 0, m(Æ)(x) is uniformly continuous on a compact
set S, and xK (x) is either a polynomial basis or a spline basis (with uniform knot
spacing) of order s ∏Æ, then as K !1

±§K ∑ o
°
K °Æ¢

. (20.11)

Furthermore, if m(2)(x) is uniformly continuous on S and xK (x) is a linear
spline basis, then ±§K ∑O

°
K °2¢ .

For a proof for the polynomial case, see Theorem 4.3 of Lorentz (1986), or Theorem 3.12 of Schu-
maker (2007) plus his equations (2.119) and (2.121). For the spline case see Theorem 6.27 of Schumaker
(2007) plus his equations (2.119) and (2.121). For the linear spline case see Theorem 6.15 of Schumaker,
equation (6.28).

Theorem 20.1 is more useful than the classic Stone-Weierstrass Theorem, as it gives an approxima-
tion rate which depends on the smoothness order Æ. The rate o(K °Æ) in (20.11) means that the approxi-
mation error (20.10) decreases as K increases, and decreases at a faster rate whenÆ is large. The standard
interpretation is that when m(x) is smoother it is possible to approximate it with a fewer number of series
terms.

It will turn out that for our distributional theory it will be sufficient to consider the case that m(2)(x) is
uniformly continuous. For this case, Theorem 20.1 shows that polynomials and quadratic/cubic splines
achieve the rate o(K °2), and linear splines achieve the rate O(K °2). For most of of our results the latter
bound will be sufficient.

More generally, Theorem 20.1 makes a distinction between polynomials and splines, as polynomials
achieve the rate o (K °Æ) adaptively (without input from the user) while splines achieve the rate o (K °Æ)
only if the spline order s is appropriately chosen. This is an advantage for polynomials. However, as
emphasized by Schumaker (2007), splines simultaneously approximate the derivatives m(q)(x) for q <
Æ. Thus, for example, a quadratic spline simultaneously approximates the function m(x) and its first
derivative m0(x). There is no comparable result for polynomials. This is an advantage for quadratic and
cubic splines. Since economists are often more interested in marginal effects (derivatives) than in levels,
this may be a good reason to prefer such splines over polynomials.

Theorem 20.1 is a bound on the best uniform approximation error. The coefficient Ø§
K which mini-

mizes (20.11) is not, however, the projection coefficient ØK as defined in (20.3). Thus Theorem 20.1 does
not directly inform us concerning the approximation error obtained by series regression. It turns out,
however, that the projection error can be easily deduced from (20.11). It is useful to define the projection
approximation error

rK (x) = m(x)°xK (x)0ØK . (20.12)

This is similar to (20.9) but evaluated using the projection coefficient rather than the minimizing
coefficient Ø§

K (20.8). Also define rK i = rK (xi ). Assuming that xi has compact support S, the expected
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squared projection error is

±K
de f=

°
E
£
(rK i )2§¢1/2

=
µZ

S

°
m(x)°xK (x)0ØK

¢2 dF (x)
∂1/2

∑
µZ

S

°
m(x)°xK (x)0Ø§

K

¢2 dF (x)
∂1/2

∑
µZ

S
±§2

K dF (x)
∂1/2

= ±§K . (20.13)

The first inequality holds since the projection coefficient ØK minimizes the expected squared projection
error (see Section 2.25). The second inequality is the definition of ±§K . Combined with Theorem 20.1 we
have established the following result.

Theorem 20.2 If xi has compact support S, for someÆ∏ 0 m(Æ)(x) is uniformly
continuous on S, and xK (x) is either a polynomial basis or a spline basis of
order s ∏Æ, then as K !1

±K ∑ ±§K ∑ o
°
K °Æ¢

.

Furthermore, if m(2)(x) is uniformly continuous on S and xK (x) is a linear
spline basis, then ±K ∑O

°
K °2¢ .

The available theory of the approximation of functions goes beyond the results described here. For
example, there is a theory of weighted polynomial approximation (Mhaskar, 1996) which provides an
analog of Theorem 20.2 for the unbounded real line when xi has a density with exponential tails.

20.9 Regressor Bounds

The approximation result in Theorem 20.2 assumes that the regressors xi have bounded support S.
This is conventional in series regression theory, as it greatly simplifies the analysis. Bounded support
implies that the regressor function xK (x) is bounded. Define

≥K (x) =
°
xK (x)0Q°1

K xK (x)
¢1/2

(20.14)

≥K = sup
x
≥K (x) (20.15)

where QK = E
£

xK i x
0
K i

§
is the population design matrix given the regressors xK i . This implies that for all

observations °
x
0
K i Q

°1
K xK i

¢1/2 ∑ ≥K . (20.16)

The constant ≥K (x) is the normalized length of the regressor vector zK (x). The constant ≥K is the
maximum normalized length. Their values are determined by the basis function transformations and
the distribution of xi . They are invariant, however, to rescaling xK i or linear rotations.

For polynomials and splines we have explicit expressions for the rate at which ≥K grows with K .
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Theorem 20.3 If xi has compact support S with a strictly positive density f (x)
on S then

1. ≥K ∑O (K ) for polynomials

2. ≥K ∑O
°
K 1/2¢ for splines

For a proof of Theorem 20.3 see Newey (1997, Theorem 4).
Furthermore, when xi is uniformly distributed then we can explicitly calculate for polynomials that

≥K = K , so the polynomial bound ≥K ∑O (K ) cannot be improved.
To illustrate, we plot in Figure 20.4(a) the values ≥K (x) for the case xi ª U [0,1]. We plot ≥K (x) for a

polynomial of degree p = 9 and a quadratic spline with N = 7 knots (both satisfy K = 10). You can see that
the values of ≥K (x) are close to 3 for both basis transformations and most values of x, but ≥K (x) increases
sharply for x near the boundary. The maximum values are ≥K = 10 for the polynomial and ≥K = 7.4 for the
quadratic spline. While Theorem 20.3 shows the two have different rates for large K , we see for moderate
K that the differences are relatively minor.
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Figure 20.4: Normalized Regressor Lengths and Integrated Squared Error

20.10 Matrix Convergence

One of the challenges which arise when developing a theory for the least squares estimator is how to
describe the large-sample behavior of the sample design matrix

bQK = 1
n

nX

i=1
xK i x

0
K i

as K !1. The trouble is that the dimension of bQK is increasing with K , so we cannot apply a standard
WLLN.
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It turns out to be convenient for the theory if we first rotate the regressor vector so that the elements
are orthogonal in expectation. Thus we define the standardized regressors and design matrix as

exK i =Q
°1/2
K xK i (20.17)

eQK = 1
n

nX

i=1
exK i ex 0

K i .

Note that E
£
exK i ex 0

K i

§
= I K . The standardized regressors are not used in practice; they are introduced only

to simplify the theoretical derivations.
Our convergence theory will require the following fundamental rate bound on the number of coeffi-

cients K .

Assumption 20.1

1. ∏min
°
QK

¢
∏∏> 0

2. ≥2
K log(K )/n ! 0 as n,K !1

Assumption 20.1.1 ensures that the transformation (20.17) is well defined4. Assumption 20.1.2 states
that the squared maximum regressor length ≥2

K grows slower than n. Since ≥K increases with K this is a
bound on the rate at which K can increase with n. By Theorem 20.2, the rate in Assumption 20.1.2 holds
for polynomials if K 2 log(K )/n ! 0 and for splines if K log(K )/n ! 0. In either case, this means that the
number of coefficients K is growing at a rate slower than n.

We are now in a position to describe a convergence result for the standardized design matrix. The
following is Lemma 6.2 of Belloni, Chernozhukov, Chetverikov, and Kato (2015).

Theorem 20.4 If Assumption 20.1 holds then

∞∞eQK ° I K
∞∞

2
p°! 0. (20.18)

A simplified proof of Theorem 20.4 can be found in Section 20.31.
The norm in (20.18) is the spectral norm

kAk2 =
°
∏max

°
A
0
A

¢¢1/2

where ∏max (B ) denotes the largest eigenvalue of the matrix B . For a full description see Section A.23. It
is a useful norm for matrices which are growing in dimension.

For the least-squares estimator what is particularly important is the inverse of the sample design
matrix. Fortunately we can easily deduce consistency of its inverse from (20.18) when the regressors
have been orthogonalized as described.

4Technically, what is required is that ∏min

≥
B K QK B

0
K

¥
∏∏> 0 for some K £K sequence of matrices B K , or equivalently that

Assumption 20.1.1 holds after replacing xK i with B K xK i .
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Theorem 20.5 If Assumption 20.1 holds then
∞∞∞eQ°1

K ° I K

∞∞∞
2

p°! 0 (20.19)

and
∏max

≥
eQ°1

K

¥
= 1/∏min

°eQK
¢ p°! 1. (20.20)

The proof of Theorem 20.5 can be found in Section 20.31.

20.11 Consistent Estimation

In this section we give conditions for consistent estimation of m(x) by the series estimator bmK (x) =
xK (x)0bØK .

What we know from standard regression theory is that for any fixed K , bØK
p°! ØK and thus bmK (x) =

xK (x)0bØK
p°! xK (x)0ØK as n ! 1. Furthermore, from the Stone-Weierstrass Theorem we know that

xK (x)0ØK ! m(x) as K !1. It therefore seems reasonable to expect that bmK (x)
p°! m(x) as both n !1

and K !1 together. Making this argument rigorous, however, is technically challenging, in part because
the dimensions of bØK and its components are changing with K .

Since bmK (x) and m(x) are functions, convergence should be defined with respect to an appropriate
metric. For kernel regression we focused on pointwise convergence (for each value of x separately) as
that is the simplest to analyze in that context. For series regression it turns out to be simplest to describe
convergence with respect to integrated squared error (ISE). We define the latter as

ISE(K ) =
Z

( bmK (x)°m(x))2 dF (x)

where F is the marginal distribution of xi . ISE(K ) is the average squared distance between bmK (x) and
m(x), weighted by the marginal distribution of xi . The ISE is random, depends on both sample size n
and model complexity K , and its distribution is determined by the joint distribution of the observations
(yi , xi ).

We can establish the following.

Theorem 20.6 Under Assumption 20.1 and ±K = o(1), then as n,K !1,

ISE(K ) = op (1) . (20.21)

The proof of Theorem 20.6 can be found in Section 20.31.
Theorem 20.6 shows that the series estimator bmK (x) is consistent in the ISE norm under very mild

conditions. The assumption ±K = o(1) holds for polynomials and splines if K !1 and m(x) is uniformly
continuous. This result is analogous to Theorem 19.8 which showed that kernel regression estimator is
consistent if m(x) is continuous.
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20.12 Convergence Rate

Theorem 20.6 showed that the series regression estimator is consistent in the ISE norm. We now give
a rate of convergence.

Theorem 20.7 Under Assumption 20.1 and æ2 (x) ∑æ2 <1, then as n,K !1,

ISE(K ) ∑Op

µ
±2

K + K
n

∂
. (20.22)

Furthermore, if m(2)(x) is uniformly continuous then for polynomial or spline
basis functions

ISE(K ) ∑Op

µ
K °4 + K

n

∂
. (20.23)

The proof of Theorem 20.7 can be found in Section 20.31. It is based on Newey (1997).
The bound (20.23) is particularly useful as it gives an explicit rate in terms of K and n. The result

shows that the integrated squared error is bounded in probability by two terms. The first K °4 is the
squared bias. The second K /n is the estimation variance. This is analogous to the AIMSE for kernel
regression (19.5). We can see that increasing the number of series terms K affects the integrated squared
error by decreasing the bias but increasing the variance. The fact that the estimation variance is of order
K /n can be intuitively explained by the fact that the regression model is estimating K coefficients.

If desired, the bound (20.23) can be written as op
°
K °4¢+Op (K /n) for polynomials and quadratic

splines.
We are interested in the sequence K which minimizes the trade-off in (20.23). By examining the first-

order condition, we find that the sequence which minimizes this bound is K ª n1/5. With this choice we
obtain the optimal integrated squared error ISE(K ) ∑ Op

°
n°4/5¢. This is the same convergence rate as

obtained by kernel regression under similar assumptions.
It is interesting to contrast the optimal rate K ª n1/5 for series regression with h ª n°1/5 for kernel

regression. Essentially, one can view the rate K °1 in series regression as a “bandwidth” similar to kernel
regression, or one can view the rate 1/h in kernel regression as the effective number of coefficients.

The rate K ª n1/5 means that the optimal K increases very slowly with the sample size. For example,
doubling your sample size implies only a 15% increase in the optimal number of coefficients K . To obtain
a doubling in the optimal number of coefficients, you need to multiply the sample size by 32.

To illustrate, Figure 20.4(b) displays the ISE rate bounds K °4 +K /n as a function of K for n = 10,
30, 150. The filled circles mark the ISE-minimizing K , which are K = 2, 3, and 4 for the three functions.
Notice that the ISE functions are steeply downward sloping for small K , and nearly flat for large K (when
n is large). This is because the bias term K °4 dominates for small values of K while the variance term
K /n dominates for large values of K , and the latter flattens as n increases.

20.13 Asymptotic Normality

The theory we present in this section will apply to any linear function of the regression function.
That is, we consider parameters of interest which can be written as a real-valued linear function of the
regression function:

µ = a (m) .
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This includes the regression function m(x) at a given point x, derivatives of m(x), and integrals over
m(x). Given bmK (x) = xK (x)0bØK as an estimator for m(x), the estimator for µ is

bµK = a ( bmK ) = a
0
K

bØK

for some K £1 vector of constants aK 6= 0. (The relationship a ( bmK ) = a
0
K

bØK follows since a is linear in m
and bmK is linear in bØK .)

If K were fixed as n !1, then by standard asymptotic theory we would expect bµK to be asymptoti-
cally normal with variance

VK = a
0
K Q

°1
K ≠K Q

°1
K aK

where ≠K = E
£

xK i x
0
K i e2

i

§
. The standard justification, however, is not valid in the nonparametric case.

This is in part because VK may diverge as K ! 1, and in part due to the finite sample bias due to the
approximation error. Therefore a new theory is required. Interestingly, it turns out that in the nonpara-
metric case bµK is still asymptotically normal, and VK is still the appropriate variance for bµK . The proof is
different than the parametric case as the dimensions of the matrices are increasing with K , and we need
to be attentive to the estimator’s bias due to the series approximation.

Assumption 20.2 In addition to Assumption 20.1

1. lim
B!1

sup
x
E
£
e2

i

°
e2

i > B
¢
| xi = x

§
= 0

2. E
£
e2

i | xi
§
∏æ2 > 0

3. ≥K±K = o(1) as K !1

Assumption 20.2.1 is conditional square integrability. It implies that the conditional variance E
£
e2

i | xi
§

is bounded. It is used to verify the Lindeberg condition for the CLT.
Assumption 20.2.2 states that the conditional variance is nowhere degenerate. Thus there is no xi for

which yi is perfectly predictable. This is a technical condition used to bound VK from below.
Assumption 20.2.3 states that approximation error ±K declines faster than the maximal regressor

length ≥K . For polynomials a sufficient condition for this assumption is that m(2)(x) is uniformly contin-
uous. For splines a sufficient condition is that m(1)(x) is uniformly continuous.

Theorem 20.8 Under Assumption 20.2, as n !1,

p
n

°bµK °µ+a (rK )
¢

V 1/2
K

°!
d

N(0,1) . (20.24)

The proof of Theorem 20.8 can be found in Section 20.31.
Theorem 20.8 shows that the estimator bµK is approximately normal with bias °a (rK ) and variance

VK /n. The variance is the same as in the parametric case, but the asymptotic distribution contains an
asymptotic bias, similar as is found in kernel regression.
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One useful message from Theorem 20.8 is that the classical variance formula VK for bµK applies to
series regression. This motivates using conventional estimators for VK as will be discussed in Section
20.18.

Theorem 20.8 shows that the estimator bµK has a bias a (rK ) . What is this? It is the same transfor-
mation of the function rK (x) as µ = a (m) is of the regression function m(x). For example, if µ = m(x)
is the regression at a fixed point x, then a (rK ) = rK (x), the approximation error at the same point. If

µ = d
d x

m(x) is the regression derivative, then a (rK ) = d
d x

rK (x) is the derivative of the approximation
error.

This means that the bias in the estimator bµK for µ shown in Theorem 20.8 is simply the approximation
error transformed by the functional of interest. If we are estimating the regression function then the bias
is the error in approximating the regression function; if we are estimating the regression derivative then
the bias is the error in the derivative in the approximation error for the regression function.

20.14 Regression Estimation

A special yet important example of a linear estimator is the regression function at a fixed point x.
In the notation of the previous section, a (m) = m(x) and aK = xK (x). The series estimator of m(x) is
bµK = bmK (x) = xK (x)0bØK . As this is a key problem of interest, we restate the asymptotic result of Theorems
20.8 for this estimator.

Theorem 20.9 Under Assumption 20.2, as n !1,

p
n ( bmK (x)°m(x)+ rK (x))

V 1/2
K (x)

°!
d

N(0,1) (20.25)

where VK (x) = xK (x)0Q°1
K ≠K Q

°1
K xK (x).

There are several important features about the asymptotic distribution (20.25).
First, as mentioned in the previous section, it shows that the classical variance formula VK (x) applies

for the series estimator bmK (x). Second, (20.25) shows that the estimator has the asymptotic bias rK (x).
This is due to the fact that the finite order series is an approximation to the unknown regression function
m(x), and this results in finite sample bias.

There is another fascinating connection between the asymptotic variance of Theorem 20.9 and the
regression lengths ≥K (x) of (20.14). Under conditional homoskedasticity we have the simplification
VK (x) =æ2≥K (x)2. Thus the asymptotic variance of the regression estimator is proportional to the squared
regression lengths. From Figure 20.4(a) we learned that the regression length ≥K (x) is much higher at the
edge of the support of the regressors, especially for polynomials. This means that the precision of the
series regression estimator is considerably degraded at the edge of the support.

20.15 Undersmoothing

An unpleasant aspect about Theorem 20.9 is the bias term. An interesting trick is that this bias term
can be made asymptotically negligible if we assume that K increases with n at a sufficiently fast rate.
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Theorem 20.10 Under Assumption 20.2, if in addition n±§2
K ! 0 then

p
n ( bmK (x)°m(x))

V 1/2
K (x)

°!
d

N(0,1) . (20.26)

The condition n±§2
K ! 0 implies that the squared bias converges faster than the estimation variance,

so the former is asymptotically negligible. If m(2)(x) is uniformly continuous, then a sufficient condition
for polynomials and quadratic splines is that K ª n1/4. For linear splines a sufficient condition is for K to
diverge faster than K 1/4. The rate K ª n1/4 is somewhat faster than the ISE-optimal rate K ª n1/5.

The assumption n±§2
K ! 0 is often stated by authors as an innocuous technical condition. This is

misleading as it is a technical trick and should be discussed explicitly. The reason why the assumption
eliminates the bias from (20.26) is that the assumption forces the estimation variance to dominate the
squared bias so that the latter can be ignored. This means that the estimator itself is inefficient.

Because n±§2
K ! 0 means that K is larger than optimal, we say that bmK (x) is undersmoothed relative

to the optimal series estimator.
Many authors like to focus their asymptotic theory on the assumptions in Theorem 20.10 as the

distribution (20.26) appears cleaner. However, it is a poor use of asymptotic theory. There are three
problems with the assumption n±§2

K ! 0 and the approximation (20.26). First, the estimator bmK (x) is
inefficient. Second, while the assumption n±§2

K ! 0 makes the bias of lower order than the variance, it
only makes the bias of slightly lower order, meaning that the accuracy of the asymptotic approximation
is poor. Effectively, the estimator is still biased in finite samples. Third, n±§2

K ! 0 is an assumption, not
a rule for empirical practice. It is unclear what the statement “Assume n±§2

K ! 0” means in a practical
application. From this viewpoint the difference between (20.24) and (20.26) is in the assumptions, not
in the actual reality nor in the actual empirical practice. Eliminating a nuisance (the asymptotic bias)
through an assumption is a trick, not a substantive use of theory. My strong view is that the result (20.24)
is more informative than (20.26). It shows that the asymptotic distribution is normal but has a non-trivial
finite sample bias.

20.16 Residuals and Regression Fit

The fitted regression at x = xi is bmK (xi ) = x
0
K i

bØK and the fitted residual is

beK i = yi ° bmK (xi ).

The leave-one-out prediction errors are

eeK i = yi ° bmK ,°i (xi )

= yi °x
0
K i

bØK ,°i

where bØK ,°i is the least-squares coefficient with the i th observation omitted. Using (3.45) we have the
simple computational formula

eeK i = beK i (1°x
0
K i

°
X

0
K X K

¢°1
xK i )°1. (20.27)

As for kernel regression, the prediction errors eei K are better estimators of the errors than the fitted
residuals beK i , as the former do not have the tendency to over-fit when the number of series terms is large.
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20.17 Cross-Validation Model Selection

A common method for selection of the number of series terms K is cross-validation. The cross-
validation criterion is sum5 of squared prediction errors

CV(K ) =
nX

i=1
ee2

K i =
nX

i=1
be2

K i (1°x
0
K i

°
X

0
K X K

¢°1
xK i )°2. (20.28)

The CV-selected value of K is the integer which minimizes CV(K ).
As shown in Theorem 19.7, CV(K ) is an approximately unbiased estimator of the integrated mean-

squared error IMSE, which is the expected integrated squared error (ISE). The proof of the result is the
same for all nonparametric estimators (series as well as kernels) so does not need to be repeated here.
Therefore, finding the K which produces the smallest value of CV(K ) is a good indicator that the estima-
tor bmK (x) has small IMSE.

For practical implementation we first designate a set of models (sets of basis transformations and
number of variables K ) over which to search. (For example, polynomials of order 1 through Kmax for
some pre-selected Kmax.) For each, there is a set of regressors xK i which are obtained by transformations
of the original variables xi . For each set, we estimate the regression by least-squares, calculate the leave-
one-out prediction errors and the CV criterion. Since the errors are a linear operation this is a simple
calculation. The CV-selected K is the integer which produces the smallest value of CV(K ). Plots of CV(K )
against K can aid assessment and interpretation. Since the model order K is an integer, the CV criterion
for series regression is a discrete function, unlike the case of kernel regression.

If it is desired to produce an estimator bmK (x) with reduced bias it may be preferred to select a value
of K slightly higher than that selected by CV alone.
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Figure 20.5: Cross-Validation Functions for Polynomial Estimates of Experience Profile, College-
Educated Women

To illustrate, in Figure 20.5 we plot the cross-validation functions for the polynomial regression es-
timates from Figure 20.1. The lowest point marks the polynomial order which minimizes the cross-
validation function. In panel (a) we plot the CV function for the sub-sample of white women. Here we

5Some authors define CV(K ) as the average rather than the sum.
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see that the CV-selected order is p = 3, a cubic polynomial. In panel (b) we plot the CV function for the
sub-sample of black women, and find that the CV-selected order is p = 2, a quadratic. As expected from
visual examination of Figure 20.1, the selected model is more parsimonious for panel (b), most likely be-
cause it has a substantially smaller sample size. What may be surprising is that even for panel (a), which
has a large sample and smooth estimates, the CV-selected model is still relatively parsimonious.

A user who desires a reduced bias estimator might increase the polynomial orders to p = 4 or even
p = 5 for the subsample of white women, and to p = 3 for the subsample of black women. Both CV
functions are relatively similar across these values.

20.18 Variance and Standard Error Estimation

The exact conditional variance of the least squares estimator bØK under independent sampling is

V bØ =
°

X
0
K X K

¢°1

√
nX

i=1
xK i x

0
K iæ

2(x)

!
°

X
0
K X K

¢°1 . (20.29)

The exact conditional variance for the conditional mean estimator bmK (x) = xK (x)0bØK is

VK (x) = xK (x)0
°

X
0
K X K

¢°1

√
nX

i=1
xK i x

0
K iæ

2(x)

!
°

X
0
K X K

¢°1
xK (x).

Using the notation of Section 20.7 this equals

1
n2

nX

i=1
bwK (x, xi )2æ2(x).

In the case of conditional homoskedasticity the latter simplifies to

1
n

bwK (x, x)æ2 ' 1
n
≥K (x)2æ2.

where ≥K (x) is the normalized regressor length defined in (20.14). Under conditional heteroskedasticty
but large samples with K large (so that bwK (x, xi ) is a local kernel) it approximately equals

1
n

wK (x, x)æ2(x) = 1
n
≥K (x)2æ2(x).

In either case, we find that the variance is approximately

VK (x) ' 1
n
≥K (x)2æ2(x).

This shows that the variance of the series regression estimator is a scale of ≥K (x)2 and the conditional
variance. From the plot of ≥K (x) shown in Figure 20.4 we can deduce that the series regression estimator
will be relatively imprecise at the boundary of the support of xi .

The estimator of (20.29) recommended by Andrews (1991a) is

bV bØ =
°

X
0
K X K

¢°1

√
nX

i=1
xK i x

0
K i ee

2
K i

!
°

X
0
K X K

¢°1 (20.30)

where eeK i is the leave-one-out prediction error (20.27). This is the HC3 estimator. An alternative is to
replace eeK i with the least-squares residuals beK i and then multiply by a degree-of-freedom adjustment,
which is the HC1 covariance estimator. These estimators are the same as used in parametric regression.



CHAPTER 20. SERIES REGRESSION 715

Given (20.30), a variance estimator for the conditional mean estimator bmK (x) = xK (x)0bØK is

bVK (x) = xK (x)0
°

X
0
K X K

¢°1

√
nX

i=1
xK i x

0
K i ee

2
K i

!
°

X
0
K X K

¢°1
xK (x). (20.31)

A standard error for bm(x) is its square root.

20.19 Clustered Observations

Clustered observations take the form (yi g , xi g ) for individuals i = 1, ...,ng in cluster g = 1, ...,G . The
model is

yi g = m
°
xi g

¢
+ei g

E
£
ei g | X g

§
= 0

where X g is the stacked xi g . Stack yi g and ei g into cluster-level variables y g and eg .
The series regression model using cluster-level notation is

y g = X gØK +eK g .

We can write the series estimator as

bØK =
√

GX

g=1
X

0
g X g

!°1 √
GX

g=1
X

0
g y g

!

.

The cluster-level residual vector is beg = y g °X g bØK .
As for parametric regression with clustered observations, the standard assumption is that the clusters

are mutually independent, but dependence within each cluster is unstructured. We therefore use the
same variance formulae as used for parametric regression. The standard estimator is

bV CR1
bØ =

µ
G

G °1

∂°
X

0
K X K

¢°1

√
GX

g=1
X

0
g beg be 0

g X g

!
°

X
0
K X K

¢°1 .

An alternative is to use the delete-cluster prediction error

eeg = y g °X g eØK ,°g

eØK ,°g =
√

X

j 6=g
X

0
j X j

!°1 √
X

j 6=g
X

0
j y j

!

leading to the estimator

bV CR3
bØ =

°
X

0
K X K

¢°1

√
GX

g=1
X

0
g eeg ee 0

g X g

!
°

X
0
K X K

¢°1 .

There is no current theory on how to select the number of series terms K for clustered observations.
A reasonable choice is the delete-cluster cross-validation criterion, which is

CV(K ) =
GX

g=1
ee 0

g eeg .

The delete-cluster choice for K is the value which minimizes CV (K ).
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20.20 Confidence Bands

When displaying nonparametric estimators such as bmK (x) it is customary to display confidence in-
tervals. An asymptotic pointwise 95% confidence interval for m(x) is

bmK (x)±1.96 bV 1/2
K (x).

These confidence intervals can be plotted along with bmK (x).
To illustrate, Figure 20.6 plots polynomial estimates of the regression of log(wage) on experience

using the selected estimates from Figure 20.1, plus 95% confidence bands. Panel (a) plots the estimate
for the subsample of white women using p = 5. Panel (b) plots the estimate for the subsample of black
women using p = 3. The standard errors are calculated using the formula (20.31). You can see that the
confidence bands widen at the boundaries. The confidence bands are tight for the larger subsample
of white women, and significantly wider for the smaller subsample of black women. Regardless, both
plots indicate that the average wage rises for experience levels up to about 20 years, and then flattens for
experience levels above 20 years.
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Figure 20.6: Polynomial Estimates with 95% Confidence Bands, College-Educated Women

There are two deficiencies with these confidence bands. First, they do not take into account the bias
rK (x) of the series estimator. Consequently, we should interpret the confidence bounds as valid for the
pseudo-true regression (the best finite K approximation) rather than the true regression function m(x).
Second, the above confidence intervals are based on a pointwise (in x) asymptotic distribution theory.
Consequently we should interpret there coverage as having pointwise validity, and be cautious about
interpreting global shapes from the confidence bands.

20.21 Uniform Approximations

Since bmK (x) is a function it is desirable to have a distribution theory which applies to the entire
function, not just the estimator at a point. This can be used, for example, to construct confidence bands
with uniform (in x) coverage properties.
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For those familiar with empirical process theory, it might be hoped that the stochastic process

¥K (x) =
p

n ( bmK (x)°m(x))

V 1/2
K (x)

might converge to a stochastic (Gaussian) process, but this is not the case. Effectively, the process ¥K (x)
is not stochastically equicontinuous so conventional empirical process theory does not apply.

To develop a uniform theory, Belloni, Chernozhukov, Chetverikov, and Kato (2015) have introduced
what are known as strong approximations. Their method shows that ¥K (x) is equal in distribution to a
sequence of Gaussian processes plus a negligible error. Their theory (Theorem 4.4) takes the following
form. Under stronger conditions than Assumption 20.2

¥K (x) =d
xK (x)0

°
Q

°1
K ≠K Q

°1
K

¢1/2

V 1/2
K (x)

GK +op (1)

uniformly in x, where “=d ” means “equality in distribution and GK ª N(0, I K ).
This shows the distributional result in Theorem 20.10 can be interpreted as holding uniformly in x.

It can also be used to develop confidence bands (different from those from the previous section) with
asymptotic uniform coverage.

20.22 Partially Linear Model

A common use of a series regression is to allow m(x) to be nonparametric with respect to one vari-
able, yet linear in the other variables. This allows flexibility in a particular variable of interest. A partially
linear model with vector-valued regressor x1 and real-valued continuous x2 takes the form

m (x1, x2) = x
0
1Ø1 +m2(x2).

This model is commonly used when x1 are discrete (e.g. binary variables) and x2 is continuously dis-
tributed.

Series methods are particularly convenient for estimation of partially linear models, as we can re-
place the unknown function m2(x2) with a series expansion to obtain

m (x) ' mK (x)

= x
0
1Ø1 +x2K (x)0Ø2K

= x
0
KØK

where x2K = x2K (x2) are the basis transformations of x2 (typically polynomials or splines) andØ2K are co-
efficients. After transformation the regressors are xK = (x

0
1, x

0
2K ). and the coefficients areØK = (Ø0

1,Ø0
2K )0.

20.23 Panel Fixed Effects

The one-way error components nonparametric regression model is

yi t = m(xi t )+ui +"i t

for i = 1, ..., N and t = 1, ...,T . It is standard to treat the individual effect ui as a fixed effect. This model
can be interpreted as a special case of the partially linear model from the previous section, though the
dimension of ui is increasing with N .
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A series estimator approximates the function m(x) with mK (x) = xK (x)0ØK as in (20.4). This leads to
the series regression model

yi t = x
0
K i tØK +ui +"K i t

where xK i t = xK (xi t ).
The fixed effects estimator is the same as in linear panel data regression. First, the within transfor-

mation is applied to yi t and the elements of the basis transformations xK i t . This is

ẏi t = yi t ° yi

ẋK i t = xK i t °xK i t .

The transformed regression equation is

ẏi t = ẋ
0
K i tØK + "̇K i t .

What is important about the within transformation for the regressors is that it is applied to the trans-
formed variables xK i t , not the original regressor xi t . For example, in a polynomial regression the within
transformation is applied to the powers x j

i t . It is inappropriate to first apply the within transformation
to xi t and then construct the basis transformations.

The coefficient is estimated by least-squares on the within transformed variables

bØK =
√

nX

i=1

TX

t=1
ẋK i t ẋ

0
K i t

!°1 √
nX

i=1

TX

t=1
ẋK i t ẏi t

!

.

Variance estimators should be calculated using the clustered variance formulas, clustered at the level of
the individual i , as described in Section 20.19.

For selection of the number of series terms K there is no current theory. A reasonable method is to
use delete-cluster cross-validation as described in Section 20.19.

20.24 Multiple Regressors

Suppose x 2Rd is vector-valued and continuously distributed. A multivariate series approximation
can be obtained as follows. Construct a set of basis transformations for each variable separately. Then
take their tensor cross-products. Use these as regressors. For example, a pth-order polynomial is

mK (x) =Ø0 +
pX

j1=1
· · ·

pX

jd=1
x j1

1 · · ·x jd

d Ø j1,..., jd K .

This includes all powers and cross-products. The coefficient vector has dimension K = 1+pd .
The inclusion of cross-products greatly increases the number of coefficients relative to the univariate

case. Consequently series applications with multiple regressors typically require large sample sizes.

20.25 Additively Separable Models

As discussed in the previous section, when x 2 Rd a full series expansion requires a large number of
coefficients, which means that estimation precision will be low unless the sample size is quite large. A
common simplification is to treat the regression function m (x) as additively separable in the individual
regressors. This means that

m (x) = m1 (x1)+m2 (x2)+·· ·+md (xd ) .
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We then apply series expansions (polynomials or splines) separately for each component m j
°
x j

¢
.

Essentially, this is the same as the expansions discussed in the previous section, but omitted all the in-
teraction terms.

The advantage of additive separability is the reduction in dimensionality. While an unconstrained
pth order polynomial has 1+pd coefficients, an additively separable polynomial model has only 1+d p
coefficients. This is a major reduction.

The disadvantage of additive separability is that the interaction effects have been eliminated. This is
a substantive restriction on m (x).

The decision to impose additive separability can be based on an economic model which suggests the
absence of interaction effects, or can be a model selection decision similar to the selection of the number
of series terms.

20.26 Nonparametric Instrumental Variables Regression

The basic nonparametric instrumental variables (NPIV) model takes the form

yi = m(xi )+ei (20.32)

E [ei | zi ] = 0

where yi , xi and zi are real valued. Here, zi is an instrumental variable and xi is an endogenous regressor.
In recent years there have been many papers in the econometrics literature examining the NPIV

model, exploring identification, estimation, and inference. Many of these papers are mathematically ad-
vanced. Two important and accessible contributions are Newey and Powell (2003) and Horowitz (2011).
Here we describe some of the primary results.

A series estimator approximates the function m(x) with mK (x) = xK (x)0ØK as in (20.4). This leads to
the series structural equation

yi = x
0
K iØK +eK i (20.33)

where xK i = xK (xi ). For example, if a polynomial basis is used then xK i = (1, xi , ..., xK°1
i ).

Since xi is endogenous so is the entire vector xK i . Thus we need at least K instrumental varibles. It
is useful to consider the reduced form equation for xi . A nonparametric specification is

xi = g (zi )+ui

E [ui | zi ] = 0.

We can appropriate g (z) by the series expansion

g (z) ' gL(z) = zL(z)0∞L

where zL(z) is an L£1 vector of basis transformations and ∞L is an L£1 coefficient vector. For example,
if a polynomial basis is used then zLi = (1, zi , ..., zL°1

i ). Most of the literature for simplicity focuses on the
case L = K , but this is not essential to the method.

If L ∏ K we can then use zLi = zL(zi ) as instruments for xK i . The 2SLS estimator bØK ,L of ØK is

bØK ,L =
≥

X
0
K Z L

°
Z

0
L Z L

¢°1
Z

0
L X K

¥°1 ≥
X

0
K Z L

°
Z

0
L Z L

¢°1
Z

0
L y

¥
.

The estimator of m(x) is bmK (x) = xK (x)0bØK ,L . If L > K the linear GMM estimator can be similarly defined.
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One way to think about the choice of instruments is to realize that we are actually estimating reduced
form equations for each element of xK i . Thus the reduced form system is

xK i =°0K zLi +uK i

°K = E
£

zLi z
0
Li

§°1
E
£

zLi x
0
K i

§
.

For example, suppose we use a polynomial basis with K = L = 3. Then the reduced form system (ignoring
intercepts) is 2

4
xi

x2
i

x3

3

5=

2

4
°11 °21 °31

°12 °22 °32

°13 °13 °23

3

5

2

4
zi

z2
i

z3
i

3

5+

2

4
u1i

u2i

u3i

3

5 . (20.34)

This is modeling the conditional mean of xi , x2
i and x3

i as linear functions of zi , z2
i and z3

i .
To understand if the coefficient ØK is identified, it is useful to consider the simple reduced form

equation xi = ∞0 +∞1zi +ui . Assume that ∞1 6= 0 so that the equation is strongly identified and assume
for simplicity that ui is independent of zi with mean zero and variance æ2

u . The identification properties
of the reduced form are invariant to rescaling and recentering xi and zi so without loss of generality we
can set ∞0 = 0 and ∞1 = 1. Then we can calculate that the coefficient matrix in (20.34) is

2

4
°11 °21 °31

°12 °22 °32

°13 °13 °23

3

5=

2

4
1 0 0
0 1 0

3æ2
u 0 1

3

5 .

Notice that this is lower triangular and full rank. It turns out that this property holds for any values of
K = L so the coefficient matrix in (20.34) is full rank for any choice of K = L. This means that identi-
fication of the coefficient ØK is strong if the reduced form equation for xi is strong. Thus to check the
identification condition for ØK it is sufficient to check the reduced form equation for xi . A critically im-
portant caveat, however, as discussed in the following section, is that identification of ØK does not mean
that the structural function m(x) is identified.

A simple method for pointwise inference is to use conventional methods to estimate VK ,L = var
£bØK ,L

§

and then estimate var[ bmK (x)] by xK (x)0 bVK ,L xK (x) as in series regression. Bootstrap methods are typi-
cally advocated to achieve better coverage. See Horowitz (2011) for details. For state-of-the-art inference
methods see Chen and Pouzo (2015) and Chen and Christensen (2018).

20.27 NPIV Identification

In the previous section we discussed identication of the pseudo-true coefficient ØK . In this section
we discuss identification of the structural function m(x). This is considerably more challenging.

To understand how the function m(x) is determined, apply the expectation operator E [· | zi = z] to
(20.32). We find

E
£

yi | zi = z
§
= E [m(xi ) | zi = z]

with the remainder equal to zero because E [ei | zi ] = 0. We can write this equation as

µ(z) =
Z

m(x) f (x | z)d x (20.35)

whereµ(z) = E
£

yi | zi = z
§

is the conditional mean of yi given zi = z and f (x | z) is the conditional density
of xi given zi . These two functions are identified6 from the joint distribution of (yi , xi , zi ). This means

6Technically, if E
ØØyi

ØØ<1, the joint density of (zi , xi ) exists, and the marginal density of zi is positive.
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that the unknown function m(x) is the solution to the integral equation (20.35). Conceptually, you can
imagine estimating µ(z) and f (x | z) using standard techniques, and then finding the solution m(x).
In essence, this is how m(x) is defined, and is the nonparametric analog of the classical relationship
between the structural and reduced forms.

Unfortunately the solution m(x) may not be unique, even in situations where a linear IV model is
strongly identified. It is related to what is known as the ill-posed inverse problem. The latter means
that the solution m(x) is not necessarily a continuous function of µ(z). Identification requires restricting
the class of allowable functions f (x | z). This is analogous to the linear IV model, where identification
requires restrictions on the reduced form equations, but specifying and understanding the needed re-
strictions is more subtle than in the linear case.

The function m(x) is identified if it is the unique solution to (20.35). Equivalently, m(x) is not identi-
fied if we can replace m(x) in (20.35) with m(x)+±(x) for some non-trivial function ±(x) yet the solution
does not change. The latter occurs when

Z
±(x) f (x | z)d x = 0 (20.36)

for all z. Equivalently, m(x) is identified if (and only if) (20.36) holds only for the trivial function ±(x) = 0.
Newey and Powell (2003) defined this fundamental condition as completeness.

Proposition 20.1 Completeness.
m(x) is identified if (and only if) the completeness condition holds: (20.36) for
all z implies ±(x) = 0.

Completeness is a property of the reduced form conditional density f (x | z). It is unaffected by the
structural equation m(x). This is analogous to the linear IV model, where identification is a property of
the reduced form equations, not a property of the structural equation.

As we stated above, completeness may not be satisfied even if the reduced form relationship is strong.
This may be easiest to see by a constructed example7. Suppose that the reduced form is

xi = zi +ui ,

var(zi ) = 1, ui is independent of zi , and ui is distributed U [°1,1]. This reduced form equation has
R2 = 0.75 so is strong. The reduced form conditional density is f (x | z) = 1/2 on [°1+ z,1+ z]. Consider
±(x) = sin(x/º). We calculate that

Z
±(x) f (x | z)d x =

Z1+z

°1+z
sin(x/º)d x = 0

for every z, since sin(x/º) is periodic on intervals of length 2 and integrates to zero over [°1,1]. This
means that equation (20.35) holds8 for m(x)+ sin(x/º). Thus m(x) is not identified. This is despite the
fact that the reduced form equation is strong.

While identification fails for some conditional distributions f (x | z), it does not fail for all distribu-
tions. Andrews (2017) provides classes of distributions which satisfy the completeness condition and
shows that these distribution classes are quite general.

7This example was suggested by Joachim Freyberger.
8In fact, (20.36) holds for m(x)+±(x) for any function ±(x) which is periodic on intervals of legnth 2 and integrates to zero

on [°1,1].
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What does this mean in practice? If completeness fails, then the structural equation is not identified
and cannot be consistently estimated. Furthermore, by analogy with the weak instruments literature,
we expect that if the conditional distribution is close to incomplete, then the structural equation will be
poorly identified and our estimators will be imprecise. Since whether or not the conditional distribution
is complete is unknown (and more difficult to assess than in the linear model) this is very troubling for
empirical research. Effectively, in any given application we do not know whether or not the structural
function m(x) is identified.

A partial answer is provided by Freyberger (2017). He shows that while the hypothesis of incomplete-
ness cannot be tested, the joint hypothesis of incompleteness and small asymptotic bias can be tested.
By applying the test proposed in Freyberger (2017), a user can obtain evidence that their NPIV estima-
tor is well-behaved in the sense of having low bias. Unlike Stock and Yogo (2005), however, Freyberger’s
result does not address inference.

20.28 NPIV Convergence Rate

As described in Horowitz (2011), the convergence rate of bmK (x) for m(x) is

| bmK (x)°m(x)| =Op

√

K °s +K r
µ

K
n

∂1/2
!

(20.37)

where s is the smoothness9 of m(x) and r is the smoothness of the joint density fxz (x, z) of (xi , zi ). The
first term K °s is the bias due to the approximation of m(x) by mK (x) and takes the same form as for series
regression. The second term K r (K /n)1/2 is the standard deviation of bmK (x). The component (K /n)1/2 is
the same as for series regression. The extra component K r is due to the ill-posed inverse problem (see
the previous section).

From the rate (20.37) we can calculate that the optimal number of series terms is K ª n1/(2r+2s+1).
Given this rate the best possible convergence rate in (20.37) is Op

°
n°s/(2r+2s+1)¢. For r > 0 these rates

are slower than for series regression. If we consider the case s = 2, these rates are K ª n1/(2r+5) and
Op

°
n°2/(2r+5)¢, which are slower than the K ª n1/5 and Op

°
n°2/5¢ rates obtained by series regression.

A very unusual aspect of the rate (20.37) is that smoothness of fxz (x, z) adversely affects the conver-
gence rate. Larger r means a slower rate of convergence. The limiting case as r !1 (for example, joint
normality of x and z) results in a logarithmic convergence rate. This seems very strange. The reason
is that when the density fxz (x, z) is very smooth the data contain little information about the function
m(x). This is not intuitive, and requires a deeper mathematical treatment.

A practical implication of the convergence rate (20.37) is that the number of series terms K should
be much smaller than for regression estimation. Estimation variance increases quickly as K increases.
Therefore K should not be taken to be too large. In practice, however, it is unclear how to select the series
order K as standard cross-validation methods do not apply.

20.29 Nonparametric vs Parametric Identification

One of the insights from the nonparametric identification literature is that it is important to under-
stand which features of a model are nonparametrically identified, meaning that that are identified with-
out functional form assumptions, and which are only identified based on functional form assumptions.
Since functional form assumptions are dubious in most economic applications, the strong implication
is that researchers should strive to work only with models which are nonparametrically identified.

9The number of bounded derivatives.
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Even if a model is determined to be nonparametrically identified a researcher may estimate a linear
(or another simple parametric) model. This is valid because it can be viewed as an approximation to
the nonparametric structure. If, however, the model is identified only under the parametric assumption,
then it cannot be viewed as an approximation, and it is unclear how to interpret the model more broadly.

For example, in the regression model

yi = m(xi )+ei

E [ei | xi ] = 0

the conditional mean is nonparametrically identified by Theorem 2.14. This means that researchers who
estimate linear regressions (or other low-dimensional regressions) can interpret their estimated model
as an approximation to the underlying conditional mean function.

As another example, in the NPIV model

yi = m(xi )+ei

E [ei | zi ] = 0

the structural function m(x) is identified under the completeness condition. This means that researchers
who estimate linear 2SLS regressions can interpret their estimated model as an approximation to m(x)
(subject to the caveat that it is difficult to know if completeness holds).

But the analysis can also point out simple yet subtle mistakes. Take the simple IV model with one
exogenous regressor x1i and one endogenous regressor x2i

yi =Ø0 +Ø1x1i +Ø2x2i +ei (20.38)

E [ei | x1i ] = 0

with no additional instruments. Suppose that an enterprising researcher suggests using the instrument
x2

1i for x2i , using the reasoning that the assumptions impliy that E
£
x2

1i ei
§
= 0 so x2

1i is a valid instrument.
The trouble is that the basic model is not nonparametrically identified. If we write (20.38) as a partially
linear nonparametric IV problem

yi = m(x1i )+Ø2x2i +ei (20.39)

E [ei | x1i ] = 0

then we can see that this model is not identified. We need a valid excluded instrument zi . Since (20.39)
is not identified, then (20.38) cannot be viewed as a valid approximation. The apparent identification of
(20.38) critically rests on the (unknown) truth of the linearity in (20.38).

The point of this example is that (20.38) should never be estimated by 2SLS using the instrument x2
1i

for x2i , fundamentally because the nonparametric model (20.39) is not identified.
Another way to describe the mistake is to observe that x2

1i is a valid instrument in (20.38) only if it
is a valid exclusion restriction from the structural equation (20.38). Viewed in the context of (20.39) we
can see that this is a functional form restriction. As stated above, identification based on functional form
restrictions alone is highly undesirable since functional form assumptions are dubious.

20.30 Example: Angrist and Lavy (1999)

To illustrate nonparametric instrumental variables in practice, we follow Horowitz (2011) by extend-
ing the empirical work reported in Angrist and Lavy (1999). Their paper is concerned with measuring the
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causal effect of the number of students in an elementary school classroom on academic achievement.
They address this using a sample of 4067 Israeli 4th and 5th grade classrooms. The dependent variable
is the classroom average score on an achievement test. Here we consider the reading score avgverb,
and consider the mathematics score in Exercise 20.17. The explanatory variables are the number of stu-
dents in the classroom (classize), the number of students in the grade at the school (enrollment), and a
school-level index of students’ socioeconomic status that the authors call percent disadvantaged. The
variables enrollment and disadvantaged are treated as exogenous, but classize is treated as endogenous
since wealthier schools may be able to offer smaller class sizes.

The authors suggest the following instrumental variable for classsize. Israeli regulations specify that
class sizes must be capped at 40. This means that classize should be perfectly predictable from enroll-
ment. If the regulation is followed, a school with up to 40 students will have one classroom in the grade,
schools with 41-80 students will have two classrooms. The precise prediction is that classsize should
equal

p = enrollment
1+ b1+enrollment/40c (20.40)

where bac is the integer part of a. Angrist and Lavy suggest using p as an instrumental variable for clas-
size.

They estimate several specifications. We focus on equation (6) from their Table VII, which specifies
avgverb as a linear function of classize, disadvantaged, enrollment, Grade4, and the interaction of classize
and disadvantaged, where Grade4 is a dummy indicator for 4th grade classrooms. The equation is esti-
mated by instrumental variables, using p and p£disadvantaged as instruments. The observations are
treated as clustered at the level of the school. Their estimates show a negative and statistically significant
impact of classsize on reading test scores.

We are interested in a nonparametric version of their equation. To keep the specification reasonably
parsimonious yet flexible we use the following equation.

avgverb =Ø1

µ
classize

40

∂
+Ø2

µ
classize

40

∂2

+Ø3

µ
classize

40

∂3

+Ø4

µ
disadvantaged

14

∂
+Ø5

µ
disadvantaged

14

∂2

+Ø6

µ
disadvantaged

14

∂3

+Ø7

µ
classize

40

∂µ
disadvantaged

14

∂
+Ø8enrollment +Ø9Grade4+Ø10 +e.

This is a cubic equation in classize and disadvantaged, with a single interaction term, and linear in enroll-
ment and Grade4. The cubic in disadvantaged was selected by a delete-cluster cross-validation regres-
sion without classize. The cubic in classize was selected to allow for a minimal degree of nonparametric
flexibility without overparameterization. The variables classize and disadvantaged were scaled by 40 and
14, respectively, so that the regression is well conditioned. The scaling for classize was selected so that
the variable essentially falls in [0,1], and the scaling for disadvantaged was selected so that its mean is 1.

The equation is estimated by just-identified 2SLS, using (p/40), (p/40)2, (p/40)3 and (p/40)£(disadvantaged/14)
as instruments for the four variables involving classize. The parameter estimates are reported in Table
20.1. The standard errors are clustered at the level of the school. Most of the individual coefficients do
not have interpretable meaning, except the positive coefficient on enrollment shows that larger schools
achieve slightly higher testscores, and the negative coefficient on Grade4 shows that 4th grade students
have somewhat lower testscores than 5th grade students.

To obtain a better interpretation of the results we display the estimated regression functions in Figure
20.7. Panel (a) displays the estimated effect of classize on reading test scores. Panel (b) displays the



CHAPTER 20. SERIES REGRESSION 725

Table 20.1: Nonparametric Instrumental Variable Regression for Reading Test Score

classize/40 34.2
(33.4)

(classize/40)2 °61.2
(53.0)

(classize/40)3 29.0
(26.8)

disadvantaged/14 °12.4
(1.7)

(disadvantaged/14)2 3.33
(0.54)

(disadvantaged/14)3 °0.377
(0.078)

(classize/40)(disadvantaged/14) 0.81
(1.77)

enrollment 0.015
(0.007)

Grade 4 °1.96
(0.16)

Intercept 77.0
(6.9)

estimated effect of percent disadvantaged. In both figures the other variables are set at their sample
means10.

In panel (a) we can see that increasing class size decreases the average test score. This is consis-
tent with the results from the linear model estimated by Angrist and Lavy (1999). The estimated effect is
remarkably close to linear. However, the relationship is not precisely estimated, as the pointwise confi-
dence bands are wide.

In panel (b) we can see that increasing the percentage of disadvantaged students greatly decreases
the average test score. This effect is substantially greater in magnitude than the effect of class size. The ef-
fect also appears to be nonlinear. The effect is quite precisely estimated, with tight pointwise confidence
bands.

We can also use the estimated model for hypothesis testing. The question addressed by Angrist and
Lavy was whether or not class size has an effect on test scores. Within the nonparametric model esti-
mated here, this hypothesis holds under the linear restriction H0 : Ø1 = Ø2 = Ø3 = Ø7 = 0. Examining
the individual coefficient estimates and standard errors, it is unclear if this is a significant effect as none
of these four coefficient estimates is statistically different from zero. This hypothesis is better tested by
a Wald test (using cluster-robust variance estimates). This statistic is 12.7 which has an asymptotic p-
value of 0.013. This appears to suppport the hypothesis that class size has negative effect on student
performance.

We can also use the model to quantify the impact of class size on test scores. Consider the impact of
increasing a class from 20 to 40 students. In the above model the predicted impact on test scores is

µ = 1
2
Ø1 +

3
4
Ø2 +

7
8
Ø3 +

1
2
Ø4.

10If they are set at other values it does not change the qualitative nature of the plots.
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Figure 20.7: Nonparametric Instrumental Variables Estimates of the Effect of Classize and Disadvantaged
on Reading Test Scores

This is a linear function of the coefficients. The point estimate is bµ =°2.96 with a standard error of 1.21.
(The point estimate is identical to the difference between the endpoints of the estimated function shown
in panel (a).) This is a small but substantive impact.
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20.31 Technical Proofs*

Proof of Theorem 20.4. We provide a proof under the stronger rate assumption ≥2
K K /n ! 0. (The proof

presented by Belloni, Chernozhukov, Chetverikov, and Kato (2015) requires a more advanced treatment.)
Let kAkF denote the Frobenius norm (see Section A.23), and write the j th element of exK i as ex j K i . Using
(A.17),

∞∞eQK ° I K
∞∞2

2 ∑
∞∞eQK ° I K

∞∞2
F =

KX

j=1

KX

`=1

√
1
n

nX

i=1

°
ex j K i ex`K i °E

£
ex j K i ex`K i

§¢
!2

.

Then

E

h∞∞eQK ° I K
∞∞2

2

i
∑

KX

j=1

KX

`=1
var

"
1
n

nX

i=1
ex j K i ex`K i

#

= 1
n

KX

j=1

KX

`=1
var

£
ex j K i ex`K i

§

∑ 1
n
E

"
KX

j=1
ex2

j K i

KX

`=1
ex2
`K i

#

= 1
n
E

h°
ex 0

K i exK i
¢2

i

∑
≥2

K

n
E
£
ex 0

K i exK i
§

=
≥2

K K

n
! 0

where final three lines use (20.16), E
£
ex 0

K i exK i
§
= K , and ≥2

K K /n ! 0. Markov’s inequality implies (20.18).
Á

Proof of Theorem 20.5. By the spectral decomposition we can write eQK = H
0§H where H

0
H = I K and

§= diag(∏1, ...,∏K ) are the eigenvalues. Then
∞∞eQK ° I K

∞∞
2 =

∞∞H
0 (§° I K ) H

∞∞
2 = k§° I K k2 = max

j∑K

ØØ∏ j °1
ØØ°!

p
0

by Theorem 20.4. This implies
min
j∑K

ØØ∏ j
ØØ°!

p
1

which is (20.20). Similarly
∞∞∞eQ°1

K ° I K

∞∞∞
2
=

∞∞H
0 °§°1 ° I K

¢
H

∞∞
2

=
∞∞§°1 ° I K

∞∞
2

= max
j∑K

ØØØ∏°1
j °1

ØØØ

∑
max j∑K

ØØ1°∏ j
ØØ

min j∑K
ØØ∏ j

ØØ

°!
p

0.

Á
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Proof of Theorem 20.6. Using (20.12) we can write

bmK (x)°m(x) = xK (x)0
°bØK °ØK

¢
° rK (x). (20.41)

Since eK i = rK i +ei is a projection error, it satisfies E [xK i eK i ] = 0. Since ei is a regression error it satisfies
E [xK i ei ] = 0. We deduce E [xK i rK i ] = 0. Hence

R
xK (x)rK (x) f (x)d x = E [xK i rK i ] = 0. Also observe thatR

xK (x)xK (x)0dF (x) =QK and
R

rK (x)2dF (x) = E
£
r 2

K i

§
= ±2

K . Then

ISE(K ) =
Z°

xK (x)0
°bØK °ØK

¢
° rK (x)

¢2
dF (x)

=
°bØK °ØK

¢0
µZ

xK (x)xK (x)0dF (x)
∂°bØK °ØK

¢

°2
°bØK °ØK

¢0
µZ

xK (x)rK (x)dF (x)
∂
+

Z
rK (x)2dF (x)

=
°bØK °ØK

¢0
QK

°bØK °ØK
¢
+±2

K . (20.42)

We calculate that
°bØK °ØK

¢0
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(20.43)

where eX K and eQK are the orthogonalized regressors as defined in (20.17). The first inequality is the
Quadratic Inequality (B.18), the second is (20.20).

Using the fact that xK i eK i are mean zero and uncorrelated, (20.16), E
£
e2

K i

§
∑ E

£
y2

i

§
<1 and Assump-

tion 20.1.2

E
£
n°2

e
0
K X K Q

°1
K X

0
K eK

§
= n°1

E
£

x
0
K i Q

°1
K xK i e2

K i

§
(20.44)

∑
≥2

K

n
E
£
e2

K i

§

∑ o(1).

This shows that (20.43) is op (1). Combined with (20.42) we find ISE(K ) = op (1) as claimed. Á

Proof of Theorem 20.7. The assumption æ2 (x) ∑æ2 implies that

E
£
e2

K i | xi
§
= E

£
(rK i +ei )2 | xi

§
= r 2

K i +æ
2(xi ) ∑ r 2

K i +æ
2.

Thus (20.44) is bounded by

n°1
E
£
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K i Q
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K xK i r 2
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£
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K xK i
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æ2 ∑

≥2
K

n
E
£
r 2

K i

§
+n°1
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K xK i x
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=
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K

n
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K +n°1 tr(I K )æ2
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K

¢
+ K

n
æ2
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where the inequality is Assumption 20.1.2. This implies (20.43) is op
°
±2

K

¢
+Op (K /n). Combined with

(20.42) we find ISE(K ) =Op
°
±2

K +K /n
¢

as claimed. Á

Proof of Theorem 20.8. Using (20.12) and linearity

µ = a (m)

= a
°
zK (x)0ØK

¢
+a (rK )

= a
0
KØK +a (rK ) .

Thus
r

n
VK

°bµK °µ+a (rK )
¢
=

r
n

VK
a
0
K

°bØK °ØK
¢

=
s

1
nVK

a
0
K

bQ°1
K X

0
K eK
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nVK
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0
K Q

°1
K X

0
K e (20.45)

+ 1
p

nVK
a
0
K

≥
bQ°1

K °Q
°1
K

¥
X

0
K e (20.46)

+ 1
p

nVK
a
0
K

bQ°1
K X

0
K r K . (20.47)

where we have used eK = e+r K . We now take the terms in (20.45)-(20.47) separately. We show that (20.45)
is asymptotically normal and (20.46)-(20.47) are asymptotically negligible.

First, take (20.45). We can write

1
p

nVK
a
0
K Q

°1
K X

0
K e = 1

p
n

nX

i=1

1
p

VK
a
0
K Q

°1
K xK i ei . (20.48)

Observe that a
0
K Q

°1
K xK i ei /

p
VK are independent across i , mean zero, and have variance 1. We will apply

Theorem 6.4, for which it is sufficient to verify Lindeberg’s condition: for all "> 0

E
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0
K Q

°1
K xK i ei

¢2
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! 0. (20.49)

Pick ¥ > 0. Set B sufficiently large so that E
£
e2

i

°
e2

i > B
¢
| xi

§
∑ æ2¥ which is feasible by Assumption

20.2.1. Pick n sufficiently large so that ≥2
K /n ∑ "æ2/B , which is feasible under Assumption 20.1.2.

By Assumption 20.2.2
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Then by the Schwarz Inequality, (20.16), (20.50), and ≥2
K /n ∑ "æ2/B
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Then the left-side of (20.49) is smaller than
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the final inequality by (20.50). Since ¥ is arbitrary this verifies (20.49) and we conclude
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Second, take (20.46). Assumption 20.2 implies E
°
e2

i | xi
¢
∑ ǣ2 <1. Since E [e | X ] = 0, then applying
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∑ ǣ2, the Schwarz and Norm Inequalities, (20.50), Theorems 20.4 and 20.5,
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This establishes that (20.46) is op (1).
Third, take (20.47). By the Cauchy-Schwarz inequality, the Quadratic Inequality, (20.50), and (20.20),
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Observe that since the observations are independent, E [xK i rK i ] = 0, x
0
K i Q
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under Assumption 20.2.3. Thus
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K r K = op (1), (20.52) is op (1) and (20.47) is op (1).

Together, we have shown that

r
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as claimed. Á

Proof of Theorem 20.10. It is sufficient to show that
p
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Notice that by Assumption 20.2.2
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Using the definitions Ø§
K , r§

K (x) and ±§K from Section 20.8, note that
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ØK = E
£

xK i x
0
K i

§°1
E [xK i m (xi )] =Ø§

K +E
£

xK i x
0
K i

§°1
E
£

xK i r§
K i

§
.



CHAPTER 20. SERIES REGRESSION 732

Thus
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follows from the definition (20.10). We deduce that
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Equations (20.54), (20.55), and n±§2
K = o(1) together imply that

n
VK (x)
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æ2 n±§2
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which is (20.53), as required. Á
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Exercises

Exercise 20.1 Take the linear spline with three knots

mK (x) =Ø0 +Ø1x +Ø2 (x °ø1) (x ∏ ø1)+Ø3 (x °ø2) (x ∏ ø2)+Ø4 (x °ø3) (x ∏ ø3) .

Find the (inequality) restrictions on the coefficients Ø j so that mK (x) is non-decreasing.

Exercise 20.2 Take the linear spline from the previous question. Find the (inequality) restrictions on the
coefficients Ø j so that mK (x) is concave.

Exercise 20.3 Take the quadratic spline with three knots

mK (x) =Ø0 +Ø1x +Ø2x3 +Ø3 (x °ø1)2 (x ∏ ø1)+Ø4 (x °ø2)2 (x ∏ ø2)+Ø5 (x °ø3)2 (x ∏ ø3) .

Find the (inequality) restrictions on the coefficients Ø j so that mK (x) is concave.

Exercise 20.4 Consider spline estimation with one knot ø. Explain why the knot ø must be within the
sample support of xi . [Explain what happens if you estimate the regression with the knot placed outside
the support of xi ].

Exercise 20.5 You estimate the polynomial regression model:

bmK (x) = bØ0 + bØ1x + bØ2x2 +·· ·+ bØp xp .

You are interested in the regression derivative m0(x) at x.

(a) Write out the estimator bm0
K (x) of m0(x).

(b) Is bm0
K (x) is a linear function of the coefficient estimates?

(c) Use Theorem 20.8 to obtain the asymptotic distribution of bm0
K (x).

(d) Show how to construct standard errors and confidence intervals for bm0
K (x).

Exercise 20.6 Does rescaling yi or xi (multiplying by a constant) affect the CV(K ) function? The K which
minimizes it?

Exercise 20.7 Take the NPIV approximating equation (20.33) and error eK i .

(a) Does it satisfy E [eK i | zi ] = 0?

(b) If L = K , can you define ØK so that E [zK i eK i ] = 0?

(c) If L > K , does E [zK i eK i ] = 0?

Exercise 20.8 Take the dataset (full sample).

(a) Estimate a 6th order polynomial regression of log(wage) on experience. To reduce the ill-conditioned
problem, first rescale experience to lie in the interval [0,1] before estimating the regression.

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.
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(c) Interpret the findings. How do you interpret the estimated function for experience levels exceeding
65?

Exercise 20.9 Continuing the previous exercise, compute the cross-validation function (or alternatively
the AIC) for polynomial orders 1 through 8.

(a) Which order minimizes the function?

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.10 Take the dataset (full sample).

(a) Estimate a 6th order polynomial regression of log(wage) on education. To reduce the ill-conditioned
problem, first rescale education to lie in the interval [0,1].

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.11 Continuing the previous exercise, compute the cross-validation function (or alterna-
tively the AIC) for polynomial orders 1 through 8.

(a) Which order minimizes the function?

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.12 Take the dataset (full sample).

(a) Estimate quadratic spline regressions of log(wage) on experience. Estimate four models: (1) no
knots (a quadratic); (2) one knot at 20 years; (3) two knots at 20 and 40; (4) four knots at 10, 20, 30
& 40. Plot the four estimates. Intrepret your findings.

(b) Compare the four splines models using either cross-validation or AIC. Which is the preferred spec-
ification?

(c) For your selected specification, plot the estimated regression function along with 95% pointwise
confidence intervals. Intrepret your findings.

(d) If you also estimated a polynomial specification, do you prefer the polynomial or the quadratic
spline estimates?

Exercise 20.13 Take the dataset (full sample).

(a) Estimate quadratic spline regressions of log(wage) on education. Estimate four models: (1) no
knots (a quadratic); (2) one knot at 10 years; (3) three knots at 5, 10 and 15; (4) four knots at 4, 8,
12, & 16. Plot the four estimates. Intrepret your findings.

(b) Compare the four splines models using either cross-validation or AIC. Which is the preferred spec-
ification?

(c) For your selected specification, plot the estimated regression function along with 95% pointwise
confidence intervals. Intrepret your findings.

(d) If you also estimated a polynomial specification, do you prefer the polynomial or the quadratic
spline estimates?
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Exercise 20.14 The dataset is from Reinhart and Rogoff (2010). It contains observations on an-
nual U.S. GDP growth rates, inflation rates, and the debt/gdp ratio for the long time span 1791-2009. The
paper made the strong claim that gdp growth slows as debt/gdp increases, and in particular that this
relationship is nonlinear with debt negatively affecting growth for debt ratios exceeding 90%. Their full
dataset includes 44 countries, our extract only includes the United States. Let yt denote GDP growth and
let dt denote debt/gdp. We will estimate the partial linear specificaiton

yt =Æyt°1 +m(dt°1)+et

using a linear spline for m(d).

(a) Estimate (1) linear model; (2) linear spline with one knot at dt°1 = 60; (3) linear spline with two
knots at 40 and 80. Plot the three estimates.

(b) For the model with one knot, plot with 95% confidence intervals.

(c) Compare the three splines models using either cross-validation or AIC. Which is the preferred
specification?

(d) Interpret the findings.

Exercise 20.15 Take the dataset (full sample). Use a quadratic spline to estimate the regression
of testscores on percentile.

(a) Estimate five models: (1) no knots (a quadratic); (2) one knot at 50; (3) two knots at 33 and 66;
(4) three knots at 25, 50 & 75; (5) knots at 20, 40, 60, & 80. Plot the five estimates. Intrepret your
findings.

(b) Select a model. Consider using leave-cluster-one CV.

(c) For your selected specification, plot the estimated regression function along with 95% pointwise
confidence intervals. [Use cluster-robust standard errors.] Intrepret your findings.

Exercise 20.16 The dataset is from Cox, Hansen and Jimenez (2004). As described in Section
20.6 it contains a sample of 8684 urban Phillipino households. This paper studied the crowding-out
impact of a family’s income on non-governmental transfers. Estimate an analog of Figure ?? using poly-
nomial regression. Regress transfers on the regression controls (variables 2 through 16 in the dataset)
and a high-order polynomial in income. Ideally, select the polynomial order by cross-validation. You will
need to rescale the variable income before taking polynomial powers. Plot the estimated function along
with 95% pointwise confidence intervals. Comment on the similarities and differences with Figure ??.

Exercise 20.17 The dataset is from Angrist and Lavy (1999). It contains 4067 observations on
classroom test scores and explanatory variables, including those described in Section 20.30. In Section
20.30 we report a nonparametric instrumental variables regression of reading test scores (avgverb) on
classize, disadvantaged, enrollment and Grade4, using the Angrist-Levy variable (20.40) as an instrument.
Repeat the analysis, but instead of reading test scores (avgverb) use math test scores (avgmath) as the
dependent variable. Comment on the similarities and differences with the results for reading test scores.
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Regression Discontinuity

To be written.
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Chapter 22

Nonlinear Econometric Models

22.1 Introduction

This chapter surveys a set of core econometric methods which require nonlinear estimation. This
chapter is preliminary.

For more detailed textbook treatments see Maddala (1983), Cameron and Trivedi (1998), Gourieroux
(2000), Cameron and Trivedi (2005), Wooldridge (2010), and Greene (2017).

22.2 Nonlinear Least Squares

In some cases we might use a parametric regression function m (x ,µ) = E
£

yi | x i = x
§

which is a non-
linear function of the parameters µ. We describe this setting as nonlinear regression.

Example 22.1 Exponential Link Regression

m (x ,µ) = exp
°
x
0µ

¢

The exponential link function is strictly positive, so this choice can be useful when it is desired to con-
strain the mean to be strictly positive.

Example 22.2 Logistic Link Regression

m (x ,µ) =§
°
x
0µ

¢

where
§(u) =

°
1+exp(°u)

¢°1 (22.1)

is the Logistic distribution function. Since the logistic link function lies in [0,1], this choice can be useful
when the conditional mean is bounded between 0 and 1.

Example 22.3 Exponentially Transformed Regressors

m (x,µ) = µ1 +µ2 exp(µ3x)

Example 22.4 Power Transformation
m (x,µ) = µ1 +µ2xµ3

with x > 0.
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Example 22.5 Box-Cox Transformed Regressors

m (x,µ) = µ1 +µ2x(µ3)

where

x(∏) =

8
<

:

x∏°1
∏

, if ∏> 0

log(x), if ∏= 0

9
=

; (22.2)

and x > 0. The function (22.2) is called the Box-Cox Transformation and was introduced by Box and Cox
(1964). The function nests linearity (∏= 1) and logarithmic (∏= 0) transformations continuously.

Example 22.6 Continuous Threshold Regression

m (x,µ) = µ1 +µ2x +µ3 (x °µ4) (x > µ4)

Example 22.7 Threshold Regression

m (x ,µ) =
°
µ01x1

¢
(x2 < µ3)+

°
µ02x1

¢
(x2 ∏ µ3)

Example 22.8 Smooth Transition

m (x ,µ) = µ01x1 +
°
µ02x1

¢
§

µ
x2 °µ3

µ4

∂

where§(u) is the logit function (22.1).

What differentiates these examples from the linear regression model is that the conditional mean
cannot be written as a linear function of the parameter vector µ.

Nonlinear regression is sometimes adopted because the functional form m (x ,µ) is suggested by an
economic model. In other cases, it is adopted as a flexible approximation to an unknown regression
function.

The least squares estimator bµ minimizes the normalized sum-of-squared-errors

bS(µ) = 1
n

nX

i=1

°
yi °m (x i ,µ)

¢2 .

When the regression function is nonlinear, we call bµ the nonlinear least squares (NLLS) estimator. The
NLLS residuals are bei = yi °m

°
x i , bµ

¢
.

One motivation for the choice of NLLS as the estimation method is that the parameter µ is the solu-

tion to the population problem minµ E
h°

yi °m (x i ,µ)
¢2

i
.

Since the criterion bS(µ) is not quadratic, bµ must be found by numerical methods. See Chapter 12 of
Introduction to Econometrics. When m(x ,µ) is differentiable, then the FOC for minimization are

0 =
nX

i=1
mµ

°
x i , bµ

¢
bei (22.3)

where

mµ (x ,µ) = @

@µ
m (x ,µ) .
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Theorem 22.1 Asymptotic Distribution of NLLS Estimator
If the model is identified and m (x ,µ) is differentiable with respect to µ,

p
n

°bµ°µ
¢
°!

d
N(0,V µ)

V µ =
°
E
£
mµi m

0
µi

§¢°1
E
£
mµi m

0
µi e2

i

§°
E
£
mµi m

0
µi

§¢°1

where mµi = mµ(x i ,µ0).

Based on Theorem 22.1, an estimator of the asymptotic variance V µ is

bV µ =
√

1
n

nX

i=1
bmµi bm0

µi

!°1 √
1
n

nX

i=1
bmµi bm0

µi be
2
i

!√
1
n

nX

i=1
bmµi bm0

µi

!°1

where bmµi = mµ(x i , bµ) and bei = yi °m(x i , bµ).
Identification is often tricky in nonlinear regression models. Suppose that

m(x i ,µ) =Ø0
1z i +Ø0

2x i (∞)

where x i
°
∞
¢

is a function of x i and the unknown parameter ∞. Examples include xi
°
∞
¢
= x∞i , xi

°
∞
¢
=

exp
°
∞xi

¢
, and xi

°
∞

¢
= xi

°
g (xi ) > ∞

¢
. The model is linear when Ø2 = 0, and this is often a useful hy-

pothesis (sub-model) to consider. Thus we want to test

H0 :Ø2 = 0.

However, under H0, the model is
yi =Ø0

1z i +ei

and both Ø2 and ∞ have dropped out. This means that under H0, ∞ is not identified. This renders the
distribution theory presented in the previous section invalid. Thus when the truth is that Ø2 = 0, the
parameter estimates are not asymptotically normally distributed. Furthermore, tests of H0 do not have
asymptotic normal or chi-square distributions.

The asymptotic theory of such tests have been worked out by Andrews and Ploberger (1994) and B.
E. Hansen (1996). In particular, Hansen shows the validity of the multiplier bootstrap for calculation of
p-values of the above non-standard test.

Proof of Theorem 22.1 (Sketch). NLLS estimation falls in the class of optimization estimators. For this
theory, it is useful to denote the true value of the parameter µ as µ0.

The first step is to show that bµ °!
p
µ0. Proving that nonlinear estimators are consistent is more chal-

lenging than for linear estimators. We sketch the main argument. The idea is that bµ minimizes the
sample criterion function bS(µ), which (for any µ) converges in probability to the mean-squared error

function E
h°

yi °m (x i ,µ)
¢2

i
. Thus it seems reasonable that the minimizer bµ will converge in probability

to µ0, the minimizer of E
h°

yi °m (x i ,µ)
¢2

i
. It turns out that to show this rigorously, we need to show

that bS(µ) converges uniformly to its expectation E

h°
yi °m (x i ,µ)

¢2
i

, which means that the maximum

discrepancy must converge in probability to zero, to exclude the possibility that bS(µ) is excessively wig-
gly in µ. Proving uniform convergence is technically challenging, but it can be shown to hold broadly for
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relevant nonlinear regression models, especially if the regression function m (x i ,µ) is differentiable in µ.
For a complete treatment of the theory of optimization estimators see Newey and McFadden (1994).

Since bµ °!
p
µ0, bµ is close to µ0 for n large, so the minimization of bS(µ) only needs to be examined for

µ close to µ0. Let
y0

i = ei +m
0
µiµ0.

For µ close to the true value µ0, by a first-order Taylor series approximation,

m (x i ,µ) ' m (x i ,µ0)+m
0
µi (µ°µ0) .

Thus

yi °m (x i ,µ) ' (ei +m (x i ,µ0))°
°
m (x i ,µ0)+m

0
µi (µ°µ0)

¢

= ei °m
0
µi (µ°µ0)

= y0
i °m

0
µiµ.

Hence the normalized sum of squared errors function is

bS(µ) = 1
n

nX

i=1

°
yi °m (x i ,µ)

¢2 ' 1
n

nX

i=1

°
y0

i °m
0
µiµ

¢2

and the right-hand-side is the criterion function for a linear regression of y0
i on mµi . Thus the NLLS

estimator bµ has the same asymptotic distribution as the (infeasible) OLS regression of y0
i on mµi , which

is that stated in the theorem.

22.3 Least Absolute Deviations

We stated that a conventional goal in econometrics is estimation of impact of variation in x i on the
central tendency of yi . We have discussed projections and conditional means, but these are not the only
measures of central tendency. An alternative good measure is the conditional median.

To recall the definition and properties of the median, let y be a continuous random variable. The
median µ = med(y) is the value such that P

£
y ∑ µ

§
= P

£
y ∏ µ

§
= 0.5. Two useful facts about the median

are that
µ = argmin

µ
E

ØØy °µ
ØØ (22.4)

and
E
£
sgn

°
y °µ

¢§
= 0

where

sgn(u) =
Ω

1 if u ∏ 0
°1 if u < 0

is the sign function.
These facts and definitions motivate three estimators of µ. The first definition is the 50th empirical

quantile. The second is the value which minimizes 1
n

Pn
i=1

ØØyi °µ
ØØ , and the third definition is the solution

to the moment equation 1
n

Pn
i=1 sgn

°
yi °µ

¢
. These distinctions are illusory, however, as these estimators

are indeed identical.
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Now let’s consider the conditional median of y given a random vector x . Let m(x) = med
°
y | x

¢
de-

note the conditional median of y given x . The linear median regression model takes the form

yi = x
0
iØ+ei

med[ei | x i ] = 0

In this model, the linear function med
£

yi | x i = x
§
= x

0Ø is the conditional median function, and the
substantive assumption is that the median function is linear in x .

Conditional analogs of the facts about the median are

• P
£

yi ∑ x
0Ø | x i = x

§
=P

£
yi > x

0Ø | x i = x
§
= .5

• E
£
sgn(ei ) | x i

§
= 0

• E
£

x i sgn(ei )
§
= 0

• Ø= minØE
ØØyi °x

0
iØ

ØØ

These facts motivate the following estimator. Let

LAD(Ø) = 1
n

nX

i=1

ØØyi °x
0
iØ

ØØ

be the average of absolute deviations. The least absolute deviations (LAD) estimator ofØminimizes this
function

bØ= argmin
Ø

LAD(Ø)

Equivalently, it is a solution to the moment condition

1
n

nX

i=1
x i sgn

°
yi °x

0
i
bØ
¢
= 0. (22.5)

The LAD estimator has an asymptotic normal distribution.

Theorem 22.2 Asymptotic Distribution of LAD Estimator
When the conditional median is linear in x

p
n

°bØ°Ø
¢
°!

d
N(0,V )

where

V = 1
4

°
E
£

x i x
0
i f (0 | x i )

§¢°1
E
£

x i x
0
i

§°
E
£

x i x
0
i f (0 | x i )

§¢°1

and f (e | x) is the conditional density of ei given x i = x .

The variance of the asymptotic distribution inversely depends on f (0 | x) , the conditional density of
the error at its median. When f (0 | x) is large, then there are many innovations near to the median, and
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this improves estimation of the median. In the special case where the error is independent of x i , then
f (0 | x) = f (0) and the asymptotic variance simplifies

V =
°
E
£

x i x
0
i

§¢°1

4 f (0)2 (22.6)

This simplification is similar to the simplification of the asymptotic covariance of the OLS estimator
under homoskedasticity.

Computation of standard error for LAD estimates typically is based on equation (22.6). The main
difficulty is the estimation of f (0), the height of the error density at its median. This can be done with
kernel estimation techniques. See Chapter 17 of Introduction to Econometrics. While a complete proof
of Theorem 22.2 is advanced, we provide a sketch here for completeness.

Proof of Theorem 22.2: Similar to NLLS, LAD is an optimization estimator. Let Ø0 denote the true value
of Ø0.

The first step is to show that bØ°!
p
Ø0. The general nature of the proof is similar to that for the NLLS

estimator, and is sketched here. For any fixed Ø, by the WLLN, LAD(Ø) °!
p
E

ØØyi °x
0
iØ

ØØ . Furthermore, it

can be shown that this convergence is uniform in Ø. (Proving uniform convergence is more challeng-
ing than for the NLLS criterion since the LAD criterion is not differentiable in Ø.) It follows that Ø̂, the
minimizer of LAD(Ø), converges in probability to Ø0, the minimizer of E

ØØyi °x
0
iØ

ØØ.
Since sgn(a) = 1°2£ (a ∑ 0) , (22.5) is equivalent to g n(bØ) = 0, where g n(Ø) = n°1 Pn

i=1 g i (Ø) and
g i (Ø) = x i

°
1°2£

°
yi ∑ x

0
iØ

¢¢
. Let g (Ø) = E

£
g i (Ø)

§
. We need three preliminary results. First, since

E
£

g i (Ø0)
§
= 0 and E

£
g i (Ø0)g i (Ø0)0

§
= E

£
x i x

0
i

§
, we can apply the central limit theorem (Theorem 6.3)

and find that
p

ng n(Ø0) = n°1/2
nX

i=1
g i (Ø0) °!

d
N

°
0,E

£
x i x

0
i

§¢
.

Second using the law of iterated expectations and the chain rule of differentiation,

@

@Ø0 g (Ø) = @

@Ø0 E
£

x i
°
1°2£

°
yi ∑ x

0
iØ

¢¢§

=°2
@

@Ø0 E
£

x iE
£ °

ei ∑ x
0
iØ°x

0
iØ0

¢
| x i

§§

=°2
@

@Ø0 E

∑
x i

Z
x
0
iØ°x

0
iØ0

°1
f (e | x i )de

∏

=°2E
£

x i x
0
i f

°
x
0
iØ°x

0
iØ0 | x i

¢§

so
@

@Ø0 g (Ø) =°2E
£

x i x
0
i f (0 | x i )

§
.

Third, by a Taylor series expansion and the fact g (Ø) = 0

g (bØ) ' @

@Ø0 g (Ø)
°bØ°Ø

¢
.
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Together

p
n

°bØ°Ø0
¢
'

µ
@

@Ø0 g (Ø0)
∂°1p

ng (bØ)

=
°
°2E

£
x i x

0
i f (0 | x i )

§¢°1pn
°
g (bØ)°g n(bØ)

¢

' 1
2

°
E
£

x i x
0
i f (0 | x i )

§¢°1pn
°
g n(Ø0)°g (Ø0)

¢

°!
d

1
2

°
E
£

x i x
0
i f (0 | x i )

§¢°1 N
°
0,E

£
x i x

0
i

§¢

= N(0,V ) .

The third line follows from an asymptotic empirical process argument and the fact that bØ°!
p
Ø0.

22.4 Quantile Regression

Quantile regression has become quite popular in recent econometric practice. For ø 2 [0,1] the øth

quantile Qø of a random variable with distribution function F (u) is defined as

Qø = inf{u : F (u) ∏ ø}

When F (u) is continuous and strictly monotonic, then F (Qø) = ø, so you can think of the quantile as the
inverse of the distribution function. The quantile Qø is the value such that ø (percent) of the mass of the
distribution is less than Qø. The median is the special case ø= .5.

The following alternative representation is useful. If the random variable U has øth quantile Qø, then

Qø = argmin
µ

E
£
Ωø (U °µ)

§
. (22.7)

where Ωø
°
q
¢

is the piecewise linear function

Ωø
°
q
¢
=

Ω
°q (1°ø) q < 0

qø q ∏ 0
(22.8)

= q
°
ø°

°
q < 0

¢¢
.

This generalizes representation (22.4) for the median to all quantiles.
For the random variables (yi , x i ) with conditional distribution function F

°
y | x

¢
the conditional quan-

tile function qø(x) is
Qø(x) = inf

©
y : F

°
y | x

¢
∏ ø

™
.

Again, when F
°
y | x

¢
is continuous and strictly monotonic in y , then F (Qø(x) | x) = ø. For fixed ø, the

quantile regression function qø(x) describes how the øth quantile of the conditional distribution varies
with the regressors.

As functions of x , the quantile regression functions can take any shape. However for computational
convenience it is typical to assume that they are (approximately) linear in x (after suitable transforma-
tions). This linear specification assumes that Qø(x) =Ø0

øx where the coefficientsØø vary across the quan-
tiles ø. We then have the linear quantile regression model

yi = x
0
iØø+ei
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where ei is the error defined to be the difference between yi and its øth conditional quantile x
0
iØø. By

construction, the øth conditional quantile of ei is zero, otherwise its properties are unspecified without
further restrictions.

Given the representation (22.7), the quantile regression estimator bØø for Øø solves the minimization
problem

bØø = argmin
Ø

Sø(Ø)

where

Sø(Ø) = 1
n

nX

i=1
Ωø

°
yi °x

0
iØ

¢

and Ωø
°
q
¢

is defined in (22.8).
Since the quantile regression criterion function Sø(Ø) does not have an algebraic solution, numerical

methods are necessary for its minimization. Furthermore, since it has discontinuous derivatives, con-
ventional Newton-type optimization methods are inappropriate. Fortunately, fast linear programming
methods have been developed for this problem, and are widely available.

An asymptotic distribution theory for the quantile regression estimator can be derived using similar
arguments as those for the LAD estimator in Theorem 22.2.

Theorem 22.3 Asymptotic Distribution of Quantile Regression Estimator
When the øth conditional quantile is linear in x

p
n

°bØø°Øø
¢
°!

d
N(0,V ø) ,

where

V ø = ø (1°ø)
°
E
£

x i x
0
i f (0 | x i )

§¢°1
E
£

x i x
0
i

§°
E
£

x i x
0
i f (0 | x i )

§¢°1

and f (e | x) is the conditional density of ei given x i = x .

In general, the asymptotic variance depends on the conditional density of the quantile regression
error. When the error ei is independent of x i , then f (0 | x i ) = f (0) , the unconditional density of ei at 0,
and we have the simplification

V ø =
ø (1°ø)

f (0)2

°
E
£

x i x
0
i

§¢°1 .

An excellent monograph on quantile regression is Koenker (2005).

22.5 Limited Dependent Variables

y is a limited dependent variable if it takes values in a strict subset of R. The most common cases
are

• Binary: y 2 {0,1}

• Multinomial: y 2 {0,1,2, ...,k}

• Integer: y 2 {0,1,2, ...}
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• Censored: y 2R+

The traditional approach to the estimation of limited dependent variable (LDV) models is parametric
maximum likelihood. A parametric model is constructed, allowing the construction of the likelihood
function. A more modern approach is semi-parametric, eliminating the dependence on a parametric
distributional assumption. We will discuss only the first (parametric) approach, due to time constraints.
They still constitute the majority of LDV applications. If, however, you were to write a thesis involving
LDV estimation, you would be advised to consider employing a semi-parametric estimation approach.

For the parametric approach, estimation is by MLE. A major practical issue is construction of the
likelihood function.

22.6 Binary Choice

The dependent variable yi 2 {0,1}. This represents a Yes/No outcome. Given some regressors x i , the
goal is to describe P

£
yi = 1 | x i

§
, as this is the full conditional distribution.

The linear probability model specifies that

P
£

yi = 1 | x i
§
= x

0
iØ.

As P
£

yi = 1 | x i
§
= E

£
yi | x i

§
, this yields the regression: yi = x

0
iØ+ ei which can be estimated by OLS.

However, the linear probability model does not impose the restriction that 0 ∑ P
£

yi | x i
§
∑ 1. Even so

estimation of a linear probability model is a useful starting point for subsequent analysis.
The standard alternative is to use a function of the form

P
£

yi = 1 | x i
§
= F

°
x
0
iØ

¢

where F (·) is a known CDF, typically assumed to be symmetric about zero, so that F (u) = 1°F (°u). The
two standard choices for F are

• Logistic: F (u) = (1+e°u)°1 .

• Normal: F (u) =©(u).

If F is logistic, we call this the logit model, and if F is normal, we call this the probit model.
This model is identical to the latent variable model

y§
i = x

0
iØ+ei

ei ª F (e)

yi =
Ω

1 if y§
i > 0

0 otherwise.

For then

P
£

yi = 1 | x i
§
=P

£
y§

i > 0 | x i
§

=P
£

x
0
iØ+ei > 0 | x i

§

=P
£
ei >°x

0
iØ | x i

§

= 1°F
°
°x

0
iØ

¢

= F
°
x
0
iØ

¢
.
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Estimation is by maximum likelihood. To construct the likelihood, we need the conditional distribu-
tion of an individual observation. Recall that if y is Bernoulli, such thatP

£
y = 1

§
= p andP

£
y = 0

§
= 1°p,

then we can write the density of y as

f (y) = p y (1°p)1°y , y = 0,1.

In the Binary choice model, yi is conditionally Bernoulli with P
£

yi = 1 | x i
§
= pi = F

°
x
0
iØ

¢
. Thus the

conditional density is

f
°
yi | x i

¢
= p yi

i (1°pi )1°yi

= F
°
x
0
iØ

¢yi (1°F
°
x
0
iØ

¢
)1°yi .

Hence the log-likelihood function is

logLn(Ø) =
nX

i=1
log f (yi | x i )

=
nX

i=1
log

°
F

°
x
0
iØ

¢yi (1°F
°
x
0
iØ

¢
)1°yi

¢

=
nX

i=1

£
yi logF

°
x
0
iØ

¢
+ (1° yi ) log(1°F

°
x
0
iØ

¢
)
§

=
X

yi=1
logF

°
x
0
iØ

¢
+

X

yi=0
log(1°F

°
x
0
iØ

¢
).

The MLE bØ is the value of Ø which maximizes logL(Ø). Standard errors and test statistics are com-
puted by asymptotic approximations. Details of such calculations are left to more advanced courses.

22.7 Count Data

If y 2 {0,1,2, ...}, a typical approach is to employ Poisson regression. This model specifies that

P
£

yi = k | x i
§
=

exp(°∏i )∏k
i

k !
, k = 0,1,2, ...

∏i = exp(x
0
iØ).

The conditional density is the Poisson with parameter ∏i . The functional form for ∏i has been picked to
ensure that ∏i > 0.

The log-likelihood function is

logLn(Ø) =
nX

i=1
log f (yi | x i ) =

nX

i=1

°
°exp(x

0
iØ)+ yi x

0
iØ° log(yi !)

¢
.

The MLE is the value Ø̂ which maximizes logLn(Ø).
Since

E
£

yi | x i
§
=∏i = exp(x

0
iØ)

is the conditional mean, this motivates the label Poisson “regression.”
Also observe that the model implies that

var
£

yi | x i
§
=∏i = exp(x

0
iØ),

so the model imposes the restriction that the conditional mean and variance of yi are the same. This
may be considered restrictive. A generalization is the negative binomial.
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22.8 Censored Data

The idea of censoring is that some data above or below a threshold are mis-reported at the threshold.
Thus the model is that there is some latent process y§

i with unbounded support, but we observe only

yi =
Ω

y§
i if y§

i ∏ 0
0 if y§

i < 0
. (22.9)

(This is written for the case of the threshold being zero, any known value can substitute.) The observed
data yi therefore come from a mixed continuous/discrete distribution.

Censored models are typically applied when the data set has a meaningful proportion (say 5% or
higher) of data at the boundary of the sample support. The censoring process may be explicit in data
collection, or it may be a by-product of economic constraints.

An example of a data collection censoring is top-coding of income. In surveys, incomes above a
threshold are typically reported at the threshold.

The first censored regression model was developed by Tobin (1958) to explain consumption of durable
goods. Tobin observed that for many households, the consumption level (purchases) in a particular pe-
riod was zero. He proposed the latent variable model

y§
i = x

0
iØ+ei

ei ª N(0,æ2)

with the observed variable yi generated by the censoring equation (22.9). This model (now called the
Tobit) specifies that the latent (or ideal) value of consumption may be negative (the household would
prefer to sell than buy). All that is reported is that the household purchased zero units of the good.

The naive approach to estimate Ø is to regress yi on x i . This does not work because regression esti-
mates E

£
yi | x i

§
, not E

£
y§

i | x i
§
= x

0
iØ, and the latter is of interest. Thus OLS will be biased for the param-

eter of interest Ø.
[Note: it is still possible to estimate E

£
yi | x i

§
by LS techniques. The Tobit framework postulates that

this is not inherently interesting, that the parameter ofØ is defined by an alternative statistical structure.]
Consistent estimation will be achieved by the MLE. To construct the likelihood, observe that the

probability of being censored is

P
£

yi = 0 | x i
§
=P

£
y§

i < 0 | x i
§

=P
£

x
0
iØ+ei < 0 | x i

§

=P
"

ei

æ
<°

x
0
iØ

æ
| x i

#

=©
√

°
x
0
iØ

æ

!

.

The conditional density function above zero is normal:

æ°1¡

√
y °x

0
iØ

æ

!

, y > 0.

Therefore, the density function for y ∏ 0 can be written as

f
°
y | x i

¢
=©

√

°
x
0
iØ

æ

! (y=0) "

æ°1¡

√
z °x

0
iØ

æ

!# (y>0)

,
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where 1(·) is the indicator function.
Hence the log-likelihood is a mixture of the probit and the normal:

logLn(Ø) =
nX

i=1
log f (yi | x i )

=
X

yi=0
log©

√

°
x
0
iØ

æ

!

+
X

yi>0
log

"

æ°1¡

√
yi °x

0
iØ

æ

!#

.

The MLE is the value bØ which maximizes logL(Ø).

22.9 Sample Selection

The problem of sample selection arises when the sample is a non-random selection of potential ob-
servations. This occurs when the observed data is systematically different from the population of inter-
est. For example, if you ask for volunteers for an experiment, and they wish to extrapolate the effects of
the experiment on a general population, you should worry that the people who volunteer may be system-
atically different from the general population. This has great relevance for the evaluation of anti-poverty
and job-training programs, where the goal is to assess the effect of “training” on the general population,
not just on the volunteers.

A simple sample selection model can be written as the latent model

yi = x
0
iØ+e1i

Ti =
°
z
0
i∞+e0i > 0

¢
.

The dependent variable yi is observed if (and only if) Ti = 1. Else it is unobserved.
For example, yi could be a wage, which can be observed only if a person is employed. The equation

for Ti is an equation specifying the probability that the person is employed.
The model is often completed by specifying that the errors are jointly normal

µ
e0i

e1i

∂
ª N

µ
0,

µ
1 Ω

Ω æ2

∂∂
.

It is presumed that we observe {x i , z i ,Ti } for all observations.
Under the normality assumption,

e1i = Ωe0i + vi ,

where vi is independent of e0i ª N(0,1). A useful fact about the standard normal distribution is that

E [e0i | e0i >°x] =∏(x) = ¡(x)
©(x)

,

and the function ∏(x) is called the inverse Mills ratio.
The naive estimator ofØ is OLS regression of yi on x i for those observations for which yi is available.

The problem is that this is equivalent to conditioning on the event {Ti = 1}. However,

E [e1i | Ti = 1, z i ] = E
£
e1i | {e0i >°z

0
i∞}, z i

§

= ΩE
£
e0i | {e0i >°z

0
i∞}, z i

§
+E

£
vi | {e0i >°z

0
i∞}, z i

§

= Ω∏
°
z
0
i∞

¢
,
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which is non-zero. Thus
e1i = Ω∏

°
z
0
i∞

¢
+ui ,

where
E [ui | Ti = 1, z i ] = 0.

Hence
yi = x

0
iØ+Ω∏

°
z
0
i∞

¢
+ui (22.10)

is a valid regression equation for the observations for which Ti = 1.
Heckman (1979) observed that we could consistently estimate Ø and Ω from this equation, if ∞ were

known. It is unknown, but also can be consistently estimated by a Probit model for selection. The
“Heckit” estimator is thus calculated as follows

• Estimate b∞ by Probit using regressors z i . The binary dependent variable is Ti .

• Estimate
°bØ, bΩ

¢
from OLS of yi on x i and ∏(z

0
i b∞).

• The OLS standard errors will be incorrect, as this is a two-step estimator. They can be corrected us-
ing a more complicated formula. Or, alternatively, by viewing the Probit/OLS estimation equations
as a large joint GMM problem.

The Heckit estimator is frequently used to deal with problems of sample selection. However, the
estimator is built on the assumption of normality, and the estimator can be quite sensitive to this as-
sumption. Some modern econometric research is exploring how to relax the normality assumption.

The estimator can also work quite poorly if ∏
°
z
0
i b∞

¢
does not have much in-sample variation. This

can happen if the Probit equation does not “explain” much about the selection choice. Another potential
problem is that if z i = x i , then ∏

°
z
0
i b∞

¢
can be highly collinear with x i , so the second step OLS estimator

will not be able to precisely estimate Ø. Based this observation, it is typically recommended to find a
valid exclusion restriction: a variable should be in z i which is not in x i . If this is valid, it will ensure that
∏

°
z
0
i b∞

¢
is not collinear with x i , and hence improve the second stage estimator’s precision.
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Exercises

Exercise 22.1 Suppose that yi = g (x i ,µ)+ ei with E [ei | x i ] = 0, bµ is the NLLS estimator, and V̂ is the
estimate of var

£bµ
§

. You are interested in the conditional mean function E
£

yi | x i = x
§
= g (x) at some x .

Find an asymptotic 95% confidence interval for g (x).

Exercise 22.2 In Exercise 9.26, you estimated a cost function on a cross-section of electric companies.
The equation you estimated was

logT Ci =Ø1 +Ø2 logQi +Ø3 logPLi +Ø4 logPKi +Ø5 logPFi +ei . (22.11)

(a) Following Nerlove, add the variable (logQi )2 to the regression. Do so. Assess the merits of this new
specification using a hypothesis test. Do you agree with this modification?

(b) Now try a non-linear specification. Consider model (22.11) plus the extra term Ø6zi , where

zi = logQi
°
1+exp

°
°

°
logQi °Ø7

¢¢¢°1 .

In addition, impose the restriction Ø3+Ø4+Ø5 = 1. This model is called a smooth threshold model.
For values of logQi much belowØ7, the variable logQi has a regression slope ofØ2. For values much
aboveØ7, the regression slope isØ2+Ø6, and the model imposes a smooth transition between these
regimes. The model is non-linear because of the parameter Ø7.

The model works best when Ø7 is selected so that several values (in this example, at least 10 to 15)
of logQi are both below and above Ø7. Examine the data and pick an appropriate range for Ø7.

(c) Estimate the model by non-linear least squares. I recommend the concentration method: Pick 10
(or more if you like) values of Ø7 in this range. For each value of Ø7, calculate zi and estimate the
model by OLS. Record the sum of squared errors, and find the value of Ø7 for which the sum of
squared errors is minimized.

(d) Calculate standard errors for all the parameters (Ø1, ...,Ø7).

Exercise 22.3 For any predictor g (x i ) for yi , the mean absolute error (MAE) is

E

ØØyi ° g (x i )
ØØ .

Show that the function g (x) which minimizes the MAE is the conditional median m (x) = med(yi | x i ).

Exercise 22.4 Define
g (u) = ø° (u < 0) .

Let µ satisfy E
£
g (yi °µ)

§
= 0. Is µ a quantile of the distribution of yi ?

Exercise 22.5 Verify equation (22.7)

Exercise 22.6 You are interested in estimating the equation yi = x
0
iØ+ ei . You believe the regressors are

exogenous, but you are uncertain about the properties of the error. You estimate the equation both by
least absolute deviations (LAD) and OLS. A colleagye suggests that you should prefer the OLS estimate,
because it produces a higher R2 than the LAD estimate. Is your colleague correct?
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Exercise 22.7 Your model is

y§
i = x

0
iØ+ei

E [ei | x i ] = 0.

However, y§
i is not observed. Instead only a capped version is reported. That is, the dataset contains the

variable

yi =

8
<

:

y§
i if y§

i ∑ ø

ø if y§
i > ø

Suppose you regress yi on xi using OLS. Is OLS consistent for Ø? Describe the nature of the effect of the
mis-measured observation on the OLS estimate.

Exercise 22.8 Take the model

yi = x
0
iØ+ei

E [ei | x i ] = 0.

Let bØ denote the OLS estimator for Ø based on an available sample.

(a) Suppose that the i th observation is in the sample only if x1i > 0, where x1i is an element of xi .
Assume P [x1i < 0] > 0.

i Is bØ consistent for bØ?

ii If not, can you obtain an expression for its probability limit?
(For this, you may assume that ei is independent of x i and N(0,æ2).)

(b) Suppose that the i th observation is in the sample only if yi > 0.

i Is bØ consistent for bØ?

ii If not, can you obtain an expression for its probability limit?
(For this, you may assume that ei is independent of x i and N(0,æ2).)

Exercise 22.9 The Tobit model is

y§
i = x

0
iØ+ei

ei ª N
°
0,æ2¢

yi = y§
i

°
y§

i ∏ 0
¢

.

(a) Find E
£

yi | x i
§

.

Note: You may use the fact that since ei ª N
°
0,æ2¢,

E [ei (ei ∏°u)] =æ∏(u/æ) =æ¡(u/æ)/©(u/æ).

(b) Use the result from part (a) to suggest a NLLS estimator for the parameter Ø given a sample {yi , x i }.

Exercise 22.10 A latent variable y§
i is generated by

y§
i = xiØ+ei

The distribution of ei , conditional on xi , is N(0,æ2
i ), where æ2

i = ∞0 + x2
i ∞1 with ∞0 > 0 and ∞1 > 0. The

binary variable yi equals 1 if y§
i ∏ 0, else yi = 0. Find the log-likelihood function for the conditional

distribution of yi given xi (the parameters are Ø,∞0,∞1).



Chapter 23

Machine Learning

23.1 Introduction

This chapter reviews machine learning methods for econometrics. The term “machine learning” is a
new and somewhat vague term, but typically is taken to mean procedures which are primarily used for
point prediction in settings with unknown structure. Machine learning methods generally allow for large
sample sizes, large number of variables, and unknown structural form.

The chapter reviews methods for model selection, James-Stein shrinkage, model averaging, ridge
regression, LASSO, elastic net, regression trees, bagging, random forests, and ensembling. The chapter
is preliminary, with the latter material incomplete and only briefly sketched.

Model selection is a tool for selecting one model (or estimator) out of a set of models. Different model
selection methods are distinguished by the criteria used to rank and compare models.

Model averaging is a generalization of model selection. Models and estimators are averaged using
data-dependent weights.

James-Stein shrinkage modifies classical estimators by shrinking towards a reasonable target. Shrink-
ing reduces mean squared error.

Penalization methods add a parameterization penalty to a traditional criterion such as the sum of
squared errors. The resulting estimators can have characteristics similar to model selection and shrink-
age estimators. Penalization techniques can be applied even when the number of parameters is much
greater than the sample size. A quadratic penalty produces Ridge regression. An L1 penalty produces the
Lasso.

Two excellent monographs on model selection and averaging are Burnham and Anderson (1998) and
Claeskens and Hjort (2008). James-Stein shrinkage theory is thoroughly covered in Lehmann and Casella
(1998). See also Efron (2010) and Wasserman (2006). For penalization methods a classic reference is
Hastie, Tibshirani, and Friedman (2008). Introductory treatments include James, Witten, Hastie, and
Tibshirani (2013) and Efron and Hastie (2017).

This chapter is preliminary.

23.2 Model Selection

In the course of an applied project, an economist will routinely estimate multiple models. Indeed,
most applied papers include tables displaying the results from different specifications. The question
arises: Which model is best? Which should be used in practice? How can we select the best choice? This
is the question of model selection.

752
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Take, for example, a wage regression. Suppose we want a regression model which conditions on
education, experience, region, and marital status. How should we proceed? Should we estimate a simple
linear model plus a quadratic in experience? Should education enter linearly, a simple spline as in section
?, or with separate dummies for each education level? Should marital status enter as a simple dummy
(married or not) or allowing for all recorded categories? Should interactions be included? Which? How
many? That is, we need to select the specific regressors to include in the regression model.

Model selection may be mis-named. It would be more appropriate to call the issue “estimator se-
lection”. When we examine a table containing the results from multiple regressions we are comparing
multiple estimates of the same regression. One estimator may include fewer variables than another; that
is a restricted estimator. One may be estimated by least squares and another by 2SLS. Another could
be nonparametric. The underlying model is the same; the difference is the estimator. Regardless, the
literature has adopted the term “model selection” and we will adhere to this convention.

To gain some basic understanding it may be helpful to start with a stylzed example. Suppose that we
have a K £1 estimator bµ which has mean µ and variance matrix V . An alternative feasible estimator is
eµ = 0. The latter may seem like a silly estimator, but it captures the feature that model selection typically
takes the form of exclusion restrictions set coefficients to 0. In this context we can compare the accuracy
of the two estimators by their weighted mean-squared error (WMSE). For a given weight matrix W define

wmse
£bµ

§
= tr

≥
E

h°bµ°µ
¢°bµ°µ

¢0i
W

¥
= E

h°bµ°µ
¢0

W
°bµ°µ

¢i
.

The calculations simplify by setting W =V
°1, which we do for our remaining calculations.

For our two estimators we calculate that

wmse
£bµ

§
= K (23.1)

wmse
£eµ

§
= µ0V °1µ

de f= ∏. (23.2)

(See Exercise 23.1) The WMSE of bµ is smaller if K < ∏ and the WMSE of eµ is smaller if K > ∏. One insight
from this simple analysis is that we should prefer smaller (simpler) models when potentially omitted
variables have small coefficients relative to estimation variance, and should prefer larger (more compli-
cated) models when these variables have large coefficients relative to estimation variance.

Now consider a somewhat broader comparison. Suppose bµ is K £1 with mean µ and variance matrix
V . For some K £ (K °K ) full-rank matrix R consider

eµ = bµ°V R
°
R

0
V R

¢°1
R

0bµ.

This is the standard restricted estimator under the assumption R
0µ = 0. You can calculate (see Exercise

23.1) that the weighted MSE of eµ is

wmse
£eµ

§
= E

h°eµ°µ
¢0

V
°1 °eµ°µ

¢i

= µ0R
°
R

0
V R

¢°1
R

0µ+K . (23.3)

The first term is the squared bias, the second is the weighted variance. This simple expression illus-
trates the basic bias-variance trade-off. Increasing K increases the estimation variance but decreases the
squared bias, the latter by decreasing the rank of R .

The bias can be estimated by replacing bµ with µ. This squared bias estimate is biased since

E

h
bµ0R

°
R

0
V R

¢°1
R

0bµ
i
= µ0R

°
R

0
V R

¢°1
R

0µ+K °K . (23.4)
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Putting these calculations together we see that an unbiased estimator for the weighted MSE is

MK = bµ0R
°
R

0
V R

¢°1
R

0bµ+2K °K

=
°bµ° eµ

¢0
V

°1 °bµ° eµ
¢
+2K °K .

Theorem 23.1 If bµ has mean µ and variance V and eµ = bµ°V R
°
R

0
V R

¢°1
R

0bµ
then

E [MK ] = wmse
£eµ

§
°wmse

£bµ
§

.

(See Exercise 23.2 for the proof.)
The factor K in MK is constant across models so can be omitted for the purposes of model compari-

son.
In practice V is unknown. It can be replaced with a consistent estimator and we arrive at the MSE

Selection Criterion

MK = bµ0R
°
R

0 bV R
¢°1

R
0bµ+2K

=
°bµ° eµ

¢0 bV °1 °bµ° eµ
¢
+2K .

MSE selection picks the model for which the estimated WMSE MK is the smallest. For implementa-
tion, a set of models are estimated, MK calculated, and the model with the smallest MK selected.

In practice the relative magnitudes of the coefficients and estimation variance are unknown. Model
selection procedures address this uncertainty by using sample information to estimate a specific defini-
tion of model fit. Many selection procedures take the form of a penalized estimation criterion, where the
penalty depends on the number of estimated parameters.

The MSE selection criterion described here is not a common model selection tool, but we have pre-
sented it as it is the simplest to derive and understand. Furthermore, it turns out to be quite similar to
several popular methods, as we show later.

A large number of model selection criteria have been proposed. We list here those most frequently
used in applied econometrics.

We first list selection criteria for the linear regression model yi = x
0
iØ+ ei with æ2 = E

£
e2

i

§
and a

k £ 1 coefficient vector Ø. Let bØ be the least squares estimator, bei the least squares residual, and bæ2 =
n°1 Pn

i=1 be2
i be the variance estimator. The number of estimated parameters (Ø and æ2) is K = k +1.

Bayesian Information Criterion

BIC = n +n log
°
2ºbæ2¢+K log(n). (23.5)

Akaike Information Criterion

AIC = n +n log
°
2ºbæ2¢+2K . (23.6)

Cross-Validation

CV =
nX

i=1
ee2

i (23.7)

where eei are the least squares leave-one-out prediction errors.
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As we show later, there is a close connection between the AIC, CV and the MSE selection criterion.
The AIC and BIC are similar in form, but have quite different performance in practice.

We next list two commonly-used selection criteria for likelihood-based estimation. Let f (y,µ) be a
parametric density with a K £1 parameter µ. The likelihood Ln(µ) = f (y ,µ) =Qn

i=1 f (yi ,µ) is the density
evaluated at the observations. The maximum likelihood estimator bµ maximizes `n(µ) = logLn(µ).

Bayesian Information Criterion

BIC =°2`n(bµ)+K log(n). (23.8)

Akaike Information Criterion
AIC =°2logL(bµ)+2K . (23.9)

In the following sections we derive and discuss these and other model selection crieria.

23.3 Bayesian Information Criterion

The Bayesian Information Criterion (BIC), also known as the Schwarz Criterion, was introduced by
Schwarz (1978). It is appropriate for parametric models estimated by maximum likelihood, and is used
to select the model with the highest approximate probability of being the true model.

Suppose that f (y,µ) is a parametric density. The likelihood Ln(µ) = f (y ,µ) =Qn
i=1 f (yi ,µ) is the den-

sity evaluated at the observations, and the maximum likelihood estimator bµ maximizes Ln(µ). Let º(µ)
be a prior density for µ. The joint density of y and µ is f (y ,µ)º(µ). The marginal density of y is

p(y) =
Z

f (y ,µ)º(µ)dµ.

The marginal density p(y) evaluated at the observations is known as the marginal likelihood.
Schwarz (1978) established the following approximation.

Theorem 23.2 Schwarz. If the model f (y ,µ) satisfies standard regularity con-
ditions and the prior º(µ) is diffuse, then

°2log p(y) =°2`n(bµ)+K log(n)+O(1)

where the O(1) term is bounded as n !1.

A heuristic proof for normal linear regression is given in Section 23.39. A “diffuse” prior is one which
distributes weight uniformly over the parameter space.

Schwarz’s theorem shows that the marginal likelihood approximately equals the maximized likeli-
hood, multiplied by an adjustment depending on the number of estimated parameters and the sample
size. The approximation is commonly called the Bayesian Information Criterion or BIC:

BIC =°2`n(bµ)+K log(n).

The BIC is a penalized log likelihood. The term K log(n) can be interpreted as an over-parameterization
penalty. The multiplication of the log likelihood by °2 is traditional, as it puts the criterion into the same
units as a log-likelihood statistic.
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In the context of normal linear regression, we have calculated in (5.6) that

`n(bµ) =°n
2

°
log(2º)+1

¢
° n

2
log

°
bæ2¢

where bæ2 is the residual variance estimate. Hence

BIC = n log
°
2ºbæ2¢+n +K log(n).

with K = k +1.
Since n log(2º)+n does not vary across models this term is often omitted. It is better, however, to

define the BIC correctly using all terms so that comparisons across different parametric families is done
correctly. It is also useful to know that some authors define the BIC by dividing the above expression by n
(e.g. BIC = log

°
2ºbæ2¢+K log(n)/n) which does not change the rankings between models. However, this

is an unwise choice for it alters the scaling which makes it difficult to assess if two models are similar or
not with respect to the BIC metric.

Now suppose that we have two models M1 and M2 which have marginal likelihoods p1(y) and p2(y).
Assume that both models have equal prior probability. Bayes Theorem states that the probability that a
model is the true model given the data is proportional to the marginal likelihood of the model. Specifi-
cally

E
£
M1 | y

§
= p1(y)

p1(y)+p2(y)

E
£
M2 | y

§
= p2(y)

p1(y)+p2(y)
.

Bayes selection picks the model with highest probability. Thus if p1(y) > p2(y) we select M1. If
p1(y) < p2(y) we select M2.

Finding the model with largest marginal likelihood is the same as finding the model with lowest value
of °2log p(y). Theorem 23.2 shows that the latter approximately equals the BIC. BIC selection picks the
model with the lowest1 value of BIC. Thus BIC selection is approximate Bayes selection.

The above discussion concerned two models but applies to any number of models. BIC selection
picks the model with the smallest BIC. For implementation you simply estimate each model, calculate
its BIC, and compare.

The BIC may be obtained in Stata by using the command after an estimated
model.

23.4 Akaike Information Criterion for Regression

The Akaike Information Criterion (AIC) was introduced by Akaike (1973). It is used to select the
model whose estimated density is closest to the true density. It is designed for parametric models esti-
mated by maximum likelihood.

Let bf (y) be an estimate of the unknown density g (y) of the observation vector y = (y1, ..., yn). For
example, the normal linear regression estimate of g (y) is bf (y) =Qn

i=1¡bæ
°
yi °x

0
i
bØ
¢
.

To measure the distance between densities g and f Akaike used the Kullback-Leibler information
criterion (KLIC)

KLIC(g , f ) =
Z

g (y) log
µ

g (y)
f (y)

∂
d y .

1When the BIC is negative this means taking the most negative value.
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Notice that KLIC(g , f ) = 0 when f (y) = g (y). By Jensen’s inequality,

KLIC(g , f ) =°
Z

g (y) log
µ

f (y)
g (y)

∂
d y ∏° log

Z
f (y)d y = 0.

Thus KLIC(g , f ) is a non-negative measure of the deviation of f from g , with small values indicating a
smaller deviation.

g(x)
f(x)

(a) f (x) and g (x) (b) log( f (x)/g (x))

Figure 23.1: Kullback-Leibler Distance Measure

To illustrate, in Figure 23.1 we display two densities and their log ratio. In the left panel we display
two densities f (x) and g (x). For concreteness, the density g (x) is the nonparametric estimate of the log
wage density displayed in Figure 2.1. The density f (x) is the MLE of a log-normal parametric model. You
can see that the two densites are quite similar and have the same general shape. The parametric model,
however, is somewhat lower at the peak, and may over-state the right tail of the density. In the right panel
of the figure you see the log ratio log( f (x)/g (x)). The dotted line is 0 for reference. If the two densities
were the same then this plot would be the zero line. Negative values indicate regions where f (x) < g (x).
Positive values indicate regions where f (x) > g (x). In this plot we see that the largest deviations are in
the right tail, as the deviations are measured as percentage deviations. The KLIC is the weighted integral
of this log ratio function. It is a weighted average, with weights given by the density g (x). Since g (x) puts
most probability mass in the left-middle of the plot, this is the region emphasized by the KLIC calcuation.
Thus while the right tail has the largest deviations, it does not receive a large weight in the KLIC because
the density g (x) has little probability mass there.

The KLIC distance between the true and estimated densities is

KLIC(g , bf ) =
Z

g (y) log

√
g (y)
bf (y)

!

d y

=
Z

g (y) log g (y)d y °
Z

g (y) log bf (y)d y .

This is random as it depends on the estimator bf . Akaike proposed examining the expected KLIC distance

E
£
KLIC(g , bf )

§
=

Z
g (y) log g (y)d y °E

∑Z
g (y) log bf (y)d y

∏
. (23.10)
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The first term in (23.10) does not depend on the model. So minimization of expected KLIC distance
is minimization of the second term. Multiplied by 2 (similarly to the BIC) this is

T =°2E
∑Z

g (y) log bf (y)d y

∏
. (23.11)

The expectation is over the random estimator bf .
An alternative interpretation is to notice that the integral in (23.11) is an expectation over y with

respect to the true data density g (y). Thus we can write (23.11) as

T =°2E
£
log bf (ey)

§
(23.12)

where ey is an independent copy of y with density g (y). The key to understand this expression is that
both the estimator bf and the evaluation points ey are random and independently distributed. This is the
expected log-likelihood fit using the estimated model bf of an out-of-sample realization ey . Thus T can be
interpreted as an expected predictive log likelihood. Models with low values of T have good fit based on
the out-of-sample log-likelihood.

To gain further understanding we consider the simple case of the normal linear regression model
with K regressors. The log density of the model for the observations is

log f (y ,µ) =°n
2

log
°
2ºæ2¢° 1

2æ2

nX

i=1

°
yi °x

0
iØ

¢2 . (23.13)

The expected value at the true parameter values is °n
2 log

°
2ºæ2¢° n

2 . This means that the idealized value
of T is T0 = n log

°
2ºæ2¢+n. This would be the value obtained if there were no estimation error.

We now add the assumption that the variance æ2 is known. This is not realistic but simplifies the
calculations.

Theorem 23.3 Suppose bf (y) is an estimated normal linear regression model
with K regressors and a known variance æ2. Suppose that the true density g (y)
is a conditionally homoskedastic regression with variance æ2. Then

T = n log
°
2ºæ2¢+n +K (23.14)

E
£
°2`n(bµ)

§
= n log

°
2ºæ2¢+n °K . (23.15)

The proof is given in Section 23.39.
These expressions are interesting. Expression (23.14) shows that T equals the idealized value T0 plus

K . The latter is the cost of parameter estimation, measured in terms of expected KLIC distance. By
estimating parameters (rather than using the true values) the expected KLIC distance increases linearly
with K .

Expression (23.15) shows the converse story. It shows that the sample log-likelihood function is
smaller than the idealized value T0 by K . This is the cost of in-sample over-fitting. The sample log-
likelihood is an in-sample measure of fit, and therefore understates the population log-likelihood. The
two expressions together show that the sample log-likelihood is smaller than the target value T by 2K .
This is the combined cost of over-fitting and parameter estimation.
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Combining these expressions we can suggest an unbiased estimator for T . In the normal regression
model we use

AIC = n log
°
2ºbæ2¢+n +2K . (23.16)

Since n log(2º) + n does not vary across models it are often omitted. Thus for linear regression it is
common to define the AIC as

AIC = n log
°
bæ2¢+2K .

Interestingly the AIC takes a very similar form to the BIC. Both the AIC and BIC are penalized log like-
lihoods, and both penalties are proportional to the number of estimated parameters K . The difference
is that the AIC penalty is 2K while the BIC penalty is K log(n). Since 2 < log(n) if n ∏ 8 the BIC uses a
stronger parameterization penalty.

Selecting a model by the AIC is equivalent to calculating the AIC for each model and selecting the
model with the lowest2 value.

Theorem 23.4 Under the assumptions of Theorem 23.3

E [AIC] = T.

AIC is thus an unbiased estimator of T .

One of the interesting features of these results are that they are exact – there is no approximation
error – and they do not require that the true error is normally distributed. The critical assumption is
conditional homoskedasticity. If homoskedasticity fails then the AIC loses its validity. In more general
contexts these exact results do not hold but instead hold as approximations (as discussed in the next
section).

The AIC may be obtained in Stata by using the command after an estimated
model.

23.5 Akaike Information Criterion for Likelihood

For the general likelihood context Akaike proposed the criterion

AIC =°2`n(bµ)+2K .

Here, bµ is the maximum likelihood estimator, logL(bµ) is the maximized log-likelihood function, and K is
the number of estimated parameters. This specializes to (23.16) for the case of a normal linear regression
model.

As for regression, AIC selection is performed by estimating a set of models, calculating AIC for each,
and selecting the model with the smallest AIC.

The advantages of the AIC are that it is simple to calculate, easy to implement, and straightforward
to interpret. It is intuitive as it is a simple penalized likelihood.

The disadvantage is that its simplicity may be deceptive. The proof shows that the criterion is based
on a quadratic approximation to the log likelihood function and an asymptotic chi-square approxima-
tion to the classical Wald statistic. When these conditions fail then the AIC may not be accurate. For
example, if the model is an approximate (quasi) likelihood rather than a true likelihood, then the failure

2When the AIC is negative this means taking the most negative value.
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of the information matrix equality implies that the classical Wald statistic is not asymptotically normal.
In this case the accuracy of AIC fails. Another problem is that many nonlinear models have parameter
regions where parametric identification fails. In these models the quadratic approximation to the log
likelihood function fails to hold uniformly in the parameter space, so the accuracy of the AIC fails. These
qualifications point to challenges in interpretation of the AIC in nonlinear models.

The following is an analog of Theorem 23.4.

Theorem 23.5 Under standard regularity conditions for maximum likelihood
estimation, plus the assumption that certain statistics (identified in the proof)
are uniformly integrable,

E [AIC] = T +O
°
n1/2¢ .

AIC is thus an approximately unbiased estimator of T .

A sketch of the proof is given in Section 23.39.
This result shows that the AIC is, in general, a reasonable estimator of the KLIC fit of an estimated

parametric model. The theorem holds broadly for maximum likelihood estimation and thus the AIC can
be used in a wide variety of contexts.

23.6 Mallows Criterion

The Mallows Criterion was proposed by Mallows (1973) and is often called the Cp criterion. It is
appropriate for linear estimators of homoskedastic regression models.

Take the homoskedastic regression framework

yi = mi +ei

mi = m(x i )

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2.

Write the first equation in vector notation for the n observations as y = m + e. Let bm = Ay be a linear
estimator of m, meaning that A is some n £n function of the regressor matrix X only. The residuals are
be = y° bm. The class of linear estimators includes least squares, weighted least squares, kernel regression,
local linear regression, and series regression. For example, the least squares estimator using a regressor
matrix Z is the case A = Z

°
Z

0
Z

¢°1
Z

0.
Mallows (1973) proposed the criterion

Cp = be 0be +2eæ2 tr(A) (23.17)

where eæ2 is a preliminary estimator of æ2 (typically based on fitting a large model). In the case of least
squares regression this simplifies to

Cp = n bæ2 +2K eæ2. (23.18)

The Mallows crierion can be used similarly to the AIC. A set of regression models are estimated and
the criterion Cp calculated for each. The model with the smallest value of Cp is the Mallows-selected
model.
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Mallows designed the criterion Cp as an unbiased estimator of the following measure of regression
fit

R = E
"

nX

i=1
( bmi °mi )2

#

.

This is the expected squared difference between the estimated and true regression evaluated at the ob-
servations.

An alternative motivation for R is in terms of prediction accuracy. Consider an independent set of
observations eyi , i = 1, ...,n, which have the same regressors x i as those in sample. Consider prediction
of eyi given x i and the fitted regression. The least squares predictor is bmi . The sum of expected squared
prediction errors is

MSFE =
nX

i=1
E

h°
eyi ° bmi

¢2
i

.

The best possible (infeasible) value of this quantity is

MSFE0 =
nX

i=1
E

h°
eyi °mi

¢2
i

.

The difference is the prediction accuracy of the estimator:

MSFE°MSFE0 =
nX

i=1
E

h°
eyi ° bmi

¢2
i
°

nX

i=1
E

h°
eyi °mi

¢2
i

= E
"

nX

i=1
( bmi °mi )2

#

= R

which equals Mallows’ measure of regression fit. Thus R can be viewed as a measure of prediction accu-
racy.

We stated that the Mallows criterion is an unbiased estimator of R. More accurately, the adjusted
criterion C§

p = Cp ° e
0
e is unbiased for R. When comparing models Cp and C§

p are equivalent so this
substitution has no consequence for model selection.

Theorem 23.6 If bm = Ay is a linear estimator, the regression error is condition-
ally mean zero and homoskedastic, and eæ2 is unbiased for æ2, then

E

h
C§

p

i
= R

so the adjusted Mallows criterion C§
p is an unbiased estimator of R.

The proof is given in Section 23.39.

23.7 Cross-Validation Criterion

In applied statistics and machine learning the default method for model selection and tuning param-
eter selection is cross-validation. We have introduced some of the concepts throughout the textbook,
and review and unify the concepts at this point.
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In Section 3.20 we defined the leave-one-out estimator as that obtained by applying an estimation
formula to the sample omitting the i th observation. Equation (3.43), for example, gives the definition for
the least squares estimator. Theorem 3.7 gives the convenient computation formula

bØ(°i ) = bØ° 1
(1°hi i )

°
X

0
X

¢°1
x i bei

where bei are the least squares residuals and hi i are the leverage values. We also defined the leave-one-out
residual or prediction error as that obtained using the leave-one-out regression estimator, thus

eei = yi °x
0
i
bØ(°i ) = (1°hi i )°1 bei

where the second equality is from Theorem 3.7. We defined the out-of-sample mean squared error as

eæ2 = 1
n

nX

i=1
ee2

i =
1
n

nX

i=1
(1°hi i )°2 be2

i .

In Section 4.13 we defined the mean squared forecast error as the expectation of the squared out-of-
sample prediction error

MSFEn = E
£
ee2

n+1
§

.

In Theorem 4.7 we showed that eæ2 is approximately an unbiased estimator of the MSFE.
In our study of nonparametric regression (Section 19.12) we defined the cross-validation criterion

for kernel regression as the weighted average of the squared prediction errors

CV = 1
n

nX

i=1
ee2

i w(xi ).

Theorem 19.7 showed that CV is approximately unbiased for the integrated mean squared error (IMSE),
which is a standard measure of accuracy for nonparametric regression. Since CV and eæ2 are identical (in
the absence of weights) these results show that CV is an unbiased estimator for both the MSFE and IMSE,
showing a close connection between these measures of accuracy.

In Section 20.17 and equation (20.28) we defined the CV criterion for series regression as in (23.7).
Selecting the variables for series regression is identical to the problem of model selection. The results
as described above show that the CV criterion is an estimator for the MSFE and IMSE of the regression
model and is therefore a good candidate for assessing model accuracy. The validity of the CV criterion is
much broader than the AIC, as the theorems for CV do not require conditional homoskedasticity. This is
not an artifact of the proof method; cross-validation is inherently more robust than AIC or BIC.

Implementation of CV model selection is the same as for the other criteria. A set of regression models
are estimated. For each the CV criterion is calculated. The model with the smallest value of CV is the CV-
selected model.

The CV method is also much broader in concept and potential application. It applies to any estima-
tion method, so long as a “leave one out” error can be calculated. It can also be applied to other loss
functions beyond squared error loss. For example, a cross-validation estimate of absolute loss is

CV = 1
n

nX

i=1
|eei | .

Computationally and conceptually it is straightforward to select models by minimizing such criterion.
However, the properties of applying CV to general criterion is not known.

Stata does not have a standard command to calculate the CV criterion for regression models.
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23.8 K-Fold Cross-Validation

One challenge with implementation of cross validation is that it can be computationally costly when
sample sizes are very large or the estimation method is other than least squares. For least squares estima-
tion there is a simple expression for the CV criterion but this is not the case for other estimators. In such
cases to evaluate the CV criterion n separate estimators are calculated and this may be computationally
costly.

A relatively low cost simplification is to split the sample into K groups (or “folds”) and treat each
group as a hold-out sample. This effectively reduces the number of estimations from n to K . (This K is
not the number of estimated coefficients. I apologize for the possible confusion in notation but this is
the standard label.) The most common choices3 are K = 5, K = 10, and K = 20, leading to what is known
as “5-fold”, “10-fold”, and “20-fold cross validation”.

The method works by the following steps. This description is for estimation of a regression model
yi = g (x i ,µ)+ei with estimator bµ.

1. Randomly sort the observations.

2. Split the observations into K groups of (roughly) equal size n/K .

3. For k = 1, ..,K

(a) Exclude the kth group from the dataset. This produces a sample with n °n/K observations.

(b) Calculate the estimator bµ(°k) on this sample.

(c) Calculate the prediction errors eei = yi ° g (x i , bµ(°k)) for observations within the kth group.

4. This produces prediction errors for all observations.

5. Calculate CV =Pn
i=1 ee2

i .

If K = n the method is identical to leave-one-out cross validation.
A disadvantage of K -fold cross-validation is that the results can be sensitive to the initial random

sorting of the observations. Consequently some practitioners calculate the criterion M times and then
average the results. A better solution, however, at the same computation cost, is to use MK folds. The
randomness of the method diminishes as the number of folds increase.

K -fold CV can be interpreted of as an approximation to leave-one-out (n-fold) CV.

23.9 Many Selection Criteria are Similar

For the linear regression model many selection criteria have been introduced. However, many of
these alternative criteria are quite similar to one another. In this section we review some of these con-
nections.

Considering the WMSE criterion, let eæ2 denote the variance estimator of the unconstrained model.
Then

eæ2 (MK +n) = n bæ2 +2K eæ2 =Cp

the Mallows criterion for regression. Minimization of the left and rights sides are identical. Thus WMSE
and Mallows selection are identical.

3To obtain good accuracy and reliability the number of “folds” should be taken to be as large as computationally reasonable.
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Shibata (1980) proposed the criteria

Shibata = bæ2
µ
1+ 2K

n

∂

as an estimator of the MSFE. Recalling the Mallows criterion for regression (23.18) we see that Shibata =
Cp /n if we replace eæ2 with bæ2. Thus the two are quite similar in practice.

Taking logarithms and using the approximation log(1+x) ' x for small x

n logShibata = n log
°
bæ2¢+n log

µ
1+ 2K

n

∂
' n log

°
bæ2¢+2K = AIC.

Thus minimization of Shibata’s criterion and AIC are similar.
Akaike (1969) proposed the Final Prediction Error Criteria

FPE = bæ2
µ

1+K /n
1°K /n

∂
.

Using the expansions (1°x)°1 ' 1+x and (1+x)2 ' 1+2x we see that FPE ' Shibata.
Craven and Wahba (1979) proposed Generalized Cross Validation

GCV = n bæ2

(n °K )2 .

By the expansion (1°x)°2 ' 1+2x we find that

nGCV = bæ2

(1°K /n)2 ' bæ2
µ
1+ 2K

n

∂
= Shibata.

The above calculations show that the WMSE, AIC, Shibata, FPE, GCV, and Mallows criterion are all
close approximations to one another when K /n is small. Differences arise in finite samples for large K .
However, the above analysis shows that there is no fundamental difference between these criteria. They
are all estimating the same target. This is in contrast to BIC which uses a different parameterization
penalty and is asymptotically distinct.

Interestingly there also is a connection between CV and the above criteria. Again using the expansion
(1°x)°2 ' 1+2x we find that

CV =
nX

i=1
(1°hi i )°2 be2

i

'
nX

i=1
be2

i +
nX

i=1
2hi i be2

i

= n bæ2 +2
nX

i=1
x
0
i

°
X

0
X

¢°1
x i be2

i

= n bæ2 +2tr

√
°

X
0
X

¢°1

√
nX

i=1
x i x

0
i be

2
i

!!

' n bæ2 +2tr
≥°
E
°
x i x

0
i

¢¢°1 °
E
°
x i x

0
i e2

i

¢¢¥

= n bæ2 +2Kæ2

' Shibata.

The third-to-last line holds asymptotically by the WLLN. The following equality holds under conditional
homoskedasiticity. The final approximation replaces æ2 by the estimator bæ2. This calculation shows that
under the assumption of conditional homoskedasticity the CV criterion is similar to the other criteria. It
differs under heteroskedasticity, however, which is one of its primary advantages.
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23.10 Relation with Likelihood Ratio Testing

Since the AIC and BIC are penalized log-likelihoods, AIC and BIC selection are related to likelihood
ratio testing. Suppose we have two nested models M1 and M2 with log-likelihoods `1n

°bµ1
¢

and `2n
°bµ2

¢

and K1 < K2 estimated parameters. AIC selects M1 if AIC(K1) < AIC(K2) which occurs when

°2`1n
°bµ1

¢
+2K1 <°2log`2n

°bµ2
¢
)+2K2

or
LR = 2

°
`2n

°bµ2
¢
°`1n

°bµ1
¢¢
< 2r

where r = K2 °K1. Thus AIC selection is similar to selection by likelihood ratio testing with a different
critical value. Rather than using a critical value from the chi-square distribution, the “critical value” is
2r . This is not to say that AIC selection is testing (it is not). But rather that there is a similar structure in
the decision.

There are two useful practical implications. One is that when test statistics are reported in their F
form (which divide by the difference in coefficients r ) then the AIC “critical value” is 2. The AIC selects
the restricted (smaller) model if F < 2. It selects the unrestricted (larger) model if F > 2.

Another useful implication is in the case of considering a single coefficient (when r = 1). AIC selects
the coefficient (the larger model) if LR > 2. In contrast a 5% significance test “selects” the larger model
(rejects the smaller) if LR > 3.84. Thus AIC is more generous in terms of selecting larger models. An
equivalent way of seeing this is that AIC selects the coefficient if the t-ratio exceeds 1.41, while the 5%
significance test selects if the t-ratio exceeds 1.96.

Similar comments apply to BIC selection, though the effective critical values are different. For com-
paring models with coefficients K1 < K2, the BIC selects M1 if LR < log(n)r . The “critical value” for an F
statistic is log(n). Hence BIC selection becomes more strict as sample sizes increase.

23.11 Consistent Selection

An important property of a model selection procedure is whether it selects a true model in large
samples. We call such a procedure consistent.

To discuss this further we need to thoughtfully define what is a “true” model. The answer depends
on the type of model.

When a model is a parametric density or distribution f (y,µ) with µ 2£ (as in likelihood estimation)
then the model is true if there is some µ0 2 £ such that f (y,µ0) equals the true density or distribution.
Notice that it is important in this context both that the function class f (y,µ) and parameter space £ are
appropriately defined.

In a semiparametric conditional moment condition model which states E
£
g

°
yi , x i ,µ

¢
| x i

§
= 0 with

µ 2£ then the model is true if there is some µ0 2£ such that E
£
g

°
yi , x i ,µ0

¢
| x i

§
= 0. This includes the

regression model yi = m (x i ,µ)+ ei with E [ei | x i ] = 0 where the model is true if there is some µ0 2 £
such that m (x i ,µ0) = E

£
yi | x i

§
. It also includes the homoskedastic regression model which adds the

requirement that E
£
e2

i | x i
§
= æ2 is a constant. A semiparametric model does not require, however, that

the true data distribution is specified.
In a semiparametric unconditional moment condition model which states Eg

°
yi , x i ,µ

¢
= 0 with µ 2

£ then the model is true if there is some µ0 2 £ such that E
£
g

°
yi , x i ,µ0

¢§
= 0. A subtle issue here is

that when the model is just identified and £ is unrestricted then this condition typically holds and so
the model is typically true. This includes least squares regression interpreted as a projection and just-
identified instrumental variables regression.
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In a nonparametric model such as y ª f 2F , where F is some function class (such as second-order
differentiable densities) then the model is true if the true density is a member of the function class F .

A complication arises that there may be multiple true models. This cannot occur when models are
strictly non-nested (meaning that there is no common element in both model classes) but strictly non-
nested models are rare. Most models have non-trivial intersections. For example, the linear regression
models yi = Æ+ x

0
1iØ1 + ei and yi = Æ+ x

0
2iØ2 + ei with x1i and x2i containing no common elements

may appear non-nested, but they intersect when Ø1 = 0 and Ø2 = 0. As another example consider the
linear model yi = Æ+ x

0
iØ+ ei and log-linear model log(yi ) = Æ+ x

0
iØ+ ei . If we add the assumption

that ei ª N(0,æ2) then the models are non-intersecting. But if we relax normality and instead use the
conditional mean assumption E [ei | x i ] = 0 then the models are intersecting when Ø1 = 0 and Ø2 = 0.

The most common type of intersecting models are nested. In regression this occurs when the two
models are yi = x

0
1iØ1 +ei and yi = x

0
1iØ1 +x

0
2iØ2 +ei . If Ø2 6= 0 then only the second model is true. But if

Ø2 = 0 then both are true models.
In general, given a set of models M = {M1, ...,MM }, a subset M

§
are true models (as described above)

while the remainder are not true models.
A model selection rule cM selects one model from the set M . We say a method is consistent if it

asymptotically selects a true model.

Definition 23.1 A model selection rule is model selection consistent if

P

h
cM 2M

§i
! 1

as n !1.

This states that the model selection rule selects a true model with probability tending to 1 as the
sample size diverges.

A broad class of model selection methods satisfy this definition of consistency. To see this consider
the class of information criteria

IC =°2`n
°bµ

¢
+ c(n,K ).

This includes AIC (c = 2K ), BIC (c = K log(n)), and testing-based selection (c equals a fixed quantile of
the ¬2

K distribution).

Theorem 23.7 Under standard regularity conditions for maximum likelihood
estimation, selection based on IC is model selection consistent if c(n,K ) = o(n)
as n !1.

The proof is given in Section 23.39.
This result covers AIC, BIC and testing-based selection. Thus all are model selection consistent.
A major limitation with this result is that the definition of model selection consistency is weak. A

model may be true but over parameterized. To understand the distinction consider the models yi =
x
0
1iØ1 + ei and yi = x

0
1iØ1 + x

0
2iØ2 + ei . If Ø2 = 0 then both M1 and M2 are true, but M1 would be the

preferred model as it is more parsimonious. When two nested models are both true models, it is conven-
tional to think of the more parsimonious model as the correct model. In this context we do not describe



CHAPTER 23. MACHINE LEARNING 767

the larger model as an incorrect model, but rather as over-parameterized. If a selection rule asymptoti-
cally selects an over-parameterized model we say that it “over-selects”.

Definition 23.2 A model selection rule asymptotically over-selects if there are
models M1 ΩM2 such that

liminf
n!1

P

h
cM =M2 |M1

i
> 0.

The definition states that over-selection occurs when two models are nested and the smaller (short)
model is true (so both models are true models but the smaller model is more parsimonious), if the larger
model is asymptotically selected with positive probabilty.

Theorem 23.8 Under standard regularity conditions for maximum likelihood
estimation, selection based on IC asymptotically over-selects if c(n,K ) = O(1)
as n !1.

The proof is given in Section 23.39.
This result includes both AIC and testing-based selection. Thus these procedures over-select. For ex-

ample, if the models are yi = x
0
1iØ1+ei and yi = x

0
1iØ1+x

0
2iØ2+ei andØ2 = 0 holds, then these procedures

select the over-parameterized regression with positive probability.
Following this line of reasoning, it is useful to draw a distinction between true and parsimonious

models. We define the set of parsimonious models M
0 Ω M

§
as the set of true models with the fewest

number of parameters. When the models in M
§

are nested then M
0

will be a singleton. In the regres-
sion example with Ø2 = 0 then M1 is the unique parsimonious model among {M1,M2}. We introduce a
stronger consistency definition for procedures which asymptotically select parsimonious models.

Definition 23.3 A model selection rule is consistent for parsimonious models
if

P

h
cM 2M

0i! 1

as n !1.

Of the methods we have reviewed, only BIC selection is consistent for parsimonious models, as we
now show.

Theorem 23.9 Under standard regularity conditions for maximum likelihood
estimation, selection based on IC is consistent for parsimonious models if for
all K2 > K1

c(n,K2)° c(n,K1) !1 (23.19)

as n !1, yet c(n,K ) = o(n) as n !1.
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The proof is given in Section 23.39.
The condition includes BIC, as c(n,K2)° c(n,K1) = (K2 °K1) log(n) !1 if K2 > K1.
Some economists have interpreted Theorem 23.9 as indicating that BIC selection is preferred over the

other methods. This is a narrow reading of the result. In the next section we show that the other selection
procedures are asymptotically optimal in terms of model fit and in terms of out-of-sample forecasting.
Thus consistent model selection is only one of several desirable statistical properties.

23.12 Asymptotic Selection Optimality

Regressor selection by the WMSE/AIC/Shibata/Mallows/CV class turns out to be asymptotically op-
timal with respect to out-of-sample prediction under quite broad conditions. This may appear to conflict
with the results of the previous section but it does not as there is a critical difference between the goals
of consistent model selection and accurate prediction.

Our analysis will be in the homoskedastic regression model, conditioning on the regressor matrix X .
All stated expectations are conditional on X , but to keep the notation uncluttered we will often write the
expectations without explicit conditioning.

We write the regression model as

yi = mi +ei

mi =
1X

j=1
x j iØ j

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2

where x i = (x1i , x2i , ...). We can also write the regression equation in matrix notation as y = m +e.
The K th regression model uses the first K regressors xK i = (x1i , x2i , ..., xK i ). The least squares esti-

mates in matrix notation are
y = X K bØK +beK .

As in Section 23.6 define the fitted values bm = X K bØK and regression fit (out-of-sample sum of expected
squared prediction errors) as

Rn(K ) = E
£
( bm °m)0 ( bm °m)

§

though now we index R by sample size n and model K for precision.
In any sample there is an optimal model K which minimizes Rn(K ):

K opt
n = argmin

K
Rn(K ).

Model K opt
n obtains the minimized value of Rn(K )

Ropt
n = Rn(K opt

n ) = min
K

Rn(K ).

Now consider model selection using the Mallow’s criterion for regression models

Cp (K ) = be 0
K beK +2æ2K

where we explicitly index by K , and for simplicity we assume the penalty depends on the true error
variance æ2. (The results are unchanged if it is replaced by a consistent estimator.) Let the selected
model be

bKn = argmin
K

Cp (K ).
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The prediction accuracy using the Mallows-selected model is Rn( bKn). We say that a selection procedure
is asymptotically optimal if the prediction accuracy is asymptotically equivalent with the infeasible op-
timum. This can be written as

Rn( bKn)

Ropt
n

°!
p

1. (23.20)

We consider convergence in (23.20) in terms of the risk ratio since Ropt
n diverges as the sample size in-

creases.
Li (1987) established the asymptotic optimality (23.20). His result depends on the following condi-

tions.

Assumption 23.1

1. The observations (yi , xi ), i = 1, ...,n, are independent and identically dis-
tributed.

2. E [ei | x i ] = 0.

3. E
£
e2

i | x i
§
=æ2.

4. E
£
|ei |4r | xi

§
∑ B <1 for some r > 1

5. Ropt
n !1 as n !1.

6. The estimated models are nested.

Assumptions 23.1.2 and 23.1.3 state that the true model is a conditionally homoskedastic regression.
This is important for the result. Assumption 23.1.4 is a technical condition, that a conditional moment of
the error is uniformly bounded. Assumption 23.1.5 is subtle. It effectively states that there is no correctly
specified finite-dimensional model. To see this, suppose that there is a K such that the model is correctly
specified, meaning that mi =

PK
j=1 x j iØ j . In this case we can show that Rn(K ) = 0, violating Assumption

23.1.5. This is an important assumption for the optimality result. Assumption 23.1.6 is a technical con-
dition that restricts the number of estimated models. Non-nested models can be allowed but then an
alternative restriction on the number of estimated models is needed.

Theorem 23.10 Under Assumption 23.1, (23.20) holds. Thus Mallows selec-
tion is asymptotically equivalent to using the infeasible optimal model.

The proof is given in Section 23.39.
Theorem 23.10 states that Mallows selection in a conditional homoskedastic regression is asymptot-

ically optimal. The key assumptions are homoskedasticity and that all finite-dimensional models are
misspecified (incomplete), meaning that there are always omitted variables. The latter means that re-
gardless of the sample size there is always a trade-off between omitted variables bias and estimation
variance. The theorem as stated is specific for Mallows selection, but extends to AIC, Shibata, GCV, FPE,
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and CV with some additional technical considerations. The primary message is that the selection meth-
ods discussed in the previous section asymptotically select a sequence of models which are best-fitting
in the sense of minimizing the prediction error.

Using a similar argument Andrews (1991c) showed that selection by cross-validation satisfies the
same asymptotic optimality condition without requiring conditional homoskedasticity. The treatment
is a bit more technical so we do not review it here. This indicates an important advantage for cross-
validation selection over the other methods.

23.13 Focused Information Criterion

Claeskens and Hjort (2003) introduced the Focused Information Criterion (FIC) as an estimator of
the MSE of a scalar parameter of interest. The criterion is appropriate in correctly-specified likelihood
models when one of the estimated models nests all other models. Let f (y,µ) be a parametric density
with a K £ 1 parameter µ. The likelihood Ln(µ) = f (y ,µ) = Qn

i=1 f (yi ,µ) is the density evaluated at the
observations, and the unrestricted maximum likelihood estimator bµ maximizes Ln (µ).

The class of models (sub-models) allowed are those defined by a set of differentiable restrictions
r (µ) = 0. Let eµ be the restricted MLE which maximizes the likelihood subject to r (µ) = 0.

A key feature of the FIC is that it focuses on a real-valued parameter of interest µ = g (µ) where g is
some differentiable function. Claeskens and Hjort call µ the target parameter. The choice of µ is made
by the researcher, and is a critical choice. In most applications µ is the key coefficient of interest in the
application (for example, the returns to schooling in a wage regression). The unrestricted MLE for µ is
bµ= g (bµ), the restricted MLE is eµ= g (eµ).

Estimation accuracy is measured by the MSE of the estimator of the target parameter, which is the
squared bias plus the variance:

mse
£
eµ
§
= E

h°
eµ°µ

¢2
i

=
°
E
£
eµ
§
°µ

¢2 +var
£
eµ
§

.

It turns out to be convenient to normalize the MSE by that of the unrestricted estimator. We define this
as the Focus

F = mse
£
eµ
§
°mse

£
bµ
§

.

The Claeskens-Hjort FIC is an estimator of F. Specifically,

FIC =
°
eµ° bµ

¢2 °2bG 0 bV bµ
bR

≥
bR 0 bV bµ

bR
¥°1 bR 0 bV bµ

bG

where bV bµ , bG and bR are estimators of var
£bµ

§
, G = @

@µ0 g (µ) and R = @
@µ0 r (µ).

In a least squares regression y = XØ+ e with a linear restriction R
0Ø = 0 and linear parameter of

interest µ=G
0Ø the FIC equals

FIC =
µ
G

0
R

≥
R

0 °
X

0
X

¢°1
R

¥°1
R

0 °
X

0
X

¢°1 bØ
∂2

°2bæ2
G

0 °
X

0
X

¢°1
R

≥
R

0 °
X

0
X

¢°1
R

¥°1
R

0 °
X

0
X

¢°1
G .

The FIC is used similarly to AIC. The FIC is calculated for each sub-model of interest, and the model
with the lowest value of FIC is selected. All estimated models need to be sub-models of the unrestricted
model.
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The advantage of the FIC is that it is specifically targeted to minimize the MSE of the target parameter.
The FIC is therefore appropriate when the goal is to estimate a specific target parameter. A disadvantage
is that it does not necessarily produce a model with good estimates of the other parameters. For example,
in a linear regression yi = x1iØ1+x2iØ2+ei , if x1i and x2i are uncorrelated and the focus parameter is Ø1,
then the FIC will tend to select the sub-model without x2i , and thus the selected model will produce a
highly biased estimate of Ø2. Consequently when using the FIC it is dubious if attention should be paid
to estimates other than those of µ.

Computationally it may be convenient to implement the FIC using an alternative formulation. De-
fine the adjusted focus

F§ = n
°
F+2mse

£
bµ
§¢
= n

°
mse

£
eµ
§
+mse

£
bµ
§¢

.

This adds the same quantity to all models and therefore does not alter the minimizing model. Multipli-
cation by n puts the FIC in units which are easier for reporting. The estimate of the adjusted focus is an
adjusted FIC and can be written as

FIC§ = n
°
eµ° bµ

¢2 +2n bV eµ (23.21)

= n
°
eµ° bµ

¢2 +2ns
°
eµ
¢2 (23.22)

where
bV eµ = bG 0

µ
I k ° bV bµ

bR
≥
bR 0 bV bµ

bR
¥°1 bR 0 bV bµ

∂
bG

is an estimator of var
£
eµ
§

and s
°
eµ
¢
= bV 1/2

eµ is a standard error for eµ.
This means that FIC§ can be easily calculated using conventional software without additional pro-

gramming. The estimator bµ can be calculated from the full model (the long regression), the estimator
eµ and its standard error s

°
eµ
¢

from the restricted model (the short regression). The formula (23.22) can
then be applied to obtain FIC§.

The formula (23.21) also provides an intitutive understanding of the FIC. When we minimize FIC§ we
are minimizing the variance of the estimator of the target parameter (bV eµ) while not altering the estimate
eµ too much from the unrestricted estimate bµ.

When selecting from amongst just two models, the FIC selects the restricted model if

°
eµ° bµ

¢2 +2bV eµ < 0

which is the same as °
eµ° bµ

¢2

bV eµ
< 2.

The statistic to the left of the inequality is the squared t-statistic in the restricted model for testing the hy-
pothesis that µ equals the unrestricted estimator bµ, but ignoring the estimation error in the latter. Thus a
simple implementation (when just comparing two models) is to estimate the long and short regressions,
take the difference in the two estimates of the coefficient of interest, and compute a t-ratio using the
standard error from the short (restricted) regression. If this t-ratio exceeds 1.4 the FIC selects the long
regression estimate. If the t-ratio is smaller than 1.4 the FIC selects the short regression estimate.

Claeskens and Hjort motivate the FIC using a local misspecification asymptotic framework. We use a
simpler heuristic motivation. First take the unrestricted MLE. Under standard conditions bµ has asymp-
totic variance G

0
VµG where V µ =I°1. As the estimator is asymptotically unbiased it follows that

mse
£
bµ
§
' var

£
bµ
§
' n°1

G
0
VµG .
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Second take the restricted MLE. Under standard conditions eµ has asymptotic variance

G
0
≥
V µ°VµR

°
R

0
VµR

¢°1
RV µ

¥
G .

eµ also has a probability limit, say µR , which (generally) differs from µ. Together we find that

mse
£
eµ
§
' B +n°1

G
0
≥
V µ°VµR

°
R

0
VµR

¢°1
RV µ

¥
G

where B =
°
µ°µR

¢2. Subtracting, we find that the Focus is

F ' B °n°1
G

0
VµR

°
R

0
VµR

¢°1
RVµG .

A plug-in estimator of B is bB =
°
bµ° eµ

¢2. However it is biased since

E
£ bB

§
=

°
E
£
bµ° eµ

§¢2 +var
£
bµ° eµ

§

' B +var
£
bµ
§
°var

£
eµ
§

' B +n°1
G

0
VµR

°
R

0
VµR

¢°1
RVµG .

It follows that an approximately unbiased estimator for F is

bB °2n°1
G

0
VµR

°
R

0
VµR

¢°1
RVµG .

The FIC is obtained by replacing the unknown G , R , and n°1
Vµ by estimates.

23.14 Best Subset and Stepwise Regression

Suppose that we have a set of potential regressors {x1i , ..., xK i } where K is possibly very large, and we
want to select a subset of the regressors to use in a regression. Let Sm denote a subset of the regressors,
and let m = 1, ..., M denote the set of potential subsets. Given a model selection criterion (e.g. AIC,
Mallows, or CV), the best subset model is the one which minimizes the criterion across the M models.
This is conventionally implemented by estimating the M models and comparing the model selection
criteria.

If K is small this is computationally feasible, but it is not feasible when K is large. This is because
the number of potential subsets is M = 2K , which grows quickly with K . For example, K = 10 implies
M = 1024, K = 20 implies M ∏ 1,000,000, and K = 40 implies M exceeds one trillion. It simply does not
make sense to contemplate estimating all subset regressions!

If the goal is to find the set of regressors which produces the smallest selection criterion, it seems
likely that we should be able to find an approximating set of regressors at much reduced computation
cost. Some specific algorithms to implement this goal are as called stepwise, stagewise, and least angle
regression. None of these procedures are believed to actually achieve the goal of minimizing any specific
selection criterion; rather they are viewed as useful computational approximations. There is also some
potential confusion as different authors seem to use the same terms for somewhat different implemen-
tations. We use the terms here as described in Hastie, Tibshirani, and Friedman (2008).

In the following descriptions we use SSE(m) to refer to the sum of squared residuals from a fitted
model, and C (m) to refer to the selection criterion used for model comparison (AIC is most typically
used).

Backward Stepwise Regression
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1. Start with all regressors {x1i , ..., xK i } included in the “active set”.

2. For m = 0, ...,K °1

(a) Estimate the regression of yi on the active set.

(b) Identify the regressor whose omission will have the smallest impact on C (m).

(c) Put this regressor in slot K °m and delete from the active set.

(d) Calculate C (m) and store in slot K °m.

3. The model with the smallest value of C (m) is the selected model.

Backware stepwise regression requires that K < n so that regression with all variables is feasible. It
produces an ordering of the regressors from “most relevant” to “least relevant”. A simplified version is to
exit the loop when C (m) increases. (This may not yield the same result as completing the loop.) For the
case of AIC selection, step (b) can be implemented by calculating the classical (homoskedastic) t-ratio
for each active regressor and find the regressor with the smallest absolute t-ratio. (See Exercise 23.4.)

Forward Stepwise Regression

1. Start with the null set {?} as the “active set” and all regressors {x1i , ..., xK i } as the “inactive set”.

2. For m = 1, ...,min(n °1,K )

(a) Estimate the regression of yi on the active set.

(b) Identify the regressor in the inactive set whose inclusion will have the largest impact on C (m).

(c) Put this regressor in slot m and move it from the inactive to the active set.

(d) Calculate C (m) and store in slot m.

3. The model with the smallest value of C (m) is the selected model.

A simplified version is to exit the loop when C (m) increases. (This may not yield the same answer as
completing the loop.) For the case of AIC selection, step (b) can be implemented by finding the regressor
in the inactive set with the largest absolute correlation with the residual from step (a). (See Exercise 23.5.)

There are combined algorithms which check both forward and backward movements at each step.
The algorithms can also be implemented with the regressors organized into groups (so that all elements
are either included or excluded at each step). There are also old-fashioned versions which use signif-
icance testing rather than selection criterion (however this is unadvised unless implemented to minic
AIC).

Stepwise regression based on old-fashioned significance testing can be implemented in Stata using
the command. If attention is confined to models which include regressors one-at-a-time, AIC
selection can be implemented by setting the significance level equal to p = 0.32. Thus the command

implements backward stepwise regression with the AIC criterion, and
implements forward stepwise regression with the AIC criterion.

Stepwise regression can be implemented in R using the command.
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23.15 The MSE of Model Selection Estimators

While model selection intuitively makes sense, it can lead to estimators with poor sampling perfor-
mance. In this section we show that the mean squared error of estimation is not necessarily improved,
and can be considerably worsened, by model selection.

To keep things simple, consider an estimator with an exact normal distribution and known covari-
ance matrix. Normalizing the latter to the identity, we consider the setting

bµ ª N(µ, I K )

and the class of model selection estimators

bµ§ =
(

bµ if bµ0bµ > c
0 if bµ0bµ ∑ c

for some c. AIC sets c = 2K , BIC sets c = K log(n), and 5% significance testing sets c to equal the 95%
quantile of the ¬2

K distribution. It is common to call bµ§ a post-model-selection (PMS) estimator

We can explicitly calculate the MSE of bµ§.

Theorem 23.11 If bµ ª N(µ, I K ) then

mse
h
bµ§

i
= K + (2∏°K )FK+2 (c,∏)°∏FK+4 (c,∏)

where Fr (x,∏) is the non-central chi-square distribution function with r de-
grees of freedom and non-centrality parameter ∏= µ0µ.

The proof is given in Section 23.39.
The MSE is determined only by K , ∏, and c. ∏= µ0µ turns out to be an important parameter for the

MSE. As the squared Euclidean length, it indexes the magnitude of the coefficient µ.

We can see the following limiting cases. If ∏ = 0 then mse
h
bµ§

i
= K (1°FK+2 (c,0)). As ∏!1 then

mse(bµ§) ! k. The unrestricted estimator obtains if c = 0, in which case mse
h
bµ§

i
= K . As c ! 1,

mse
h
bµ§

i
! ∏. The latter fact implies that the PMS estimator based on the BIC has unbounded MSE

as n !1.
Using Theorem 23.11 we can numerically calculate the MSE. In Figure 23.2(a) and (b) we plot the

MSE of a set of estimators for a range of values of ∏. Panel (a) is for K = 1, panel (b) is for K = 5. The
dotted line marks the MSE of the unselected estimator bµ which is invariant to ∏. The other estimators
plotted are AIC selection (c = 2K ), 5% significance testing selection (chi-square critical value), and BIC
selection (c = K log(n)) for n = 200 and n = 1000.

In the plots you can see that the PMS estimators have lower MSE than the unselected estimator
roughly for ∏ < K but higher MSE for ∏ > K . The AIC estimator has MSE which is least distorted from
the unselected estimator, reaching a peak of about 1.5 for K = 1. The BIC estimators, however, have very
large MSE for larger values of ∏, and the distortion is growing as n increases. The MSE of the selection
estimators increases with ∏ until it reaches a peak, and then slowly decreases and asymptotes back to
K . Furthermore, the MSE of BIC is unbounded as n diverges. Thus for very large sample sizes the MSE
of a BIC-selected estimator can be a very large multiple of the MSE of the unselected estimator. The
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Figure 23.2: MSE and Coverage of Post-Model-Selection Estimators

plots show that if ∏ is small then there are advantages to model selection, as MSE can be greatly reduced.
However if ∏ is large then MSE can be greatly increased if BIC is used, and moderately increased if AIC is
used. A sensible reading of the plots leads to the practical recommendation to not use the BIC for model
selection, and use the AIC with care.

The numerical calculations show that MSE is reduced by selection when ∏ is small but increased
when ∏ is moderately large. What does this mean in practice? ∏ is small when µ is small, which means
the compared models are similar in terms of estimation accuracy. In these contexts model selection
can be valuable as it helps select smaller models to improve precision. However when ∏ is moderately
large (which means that µ is moderately large) the smaller model has meaningful omitted variable bias,
yet the selection criteria have difficulty detecting which model to use. The conservative BIC selection
procedure tends to select the smaller model, and thus incurs greater bias resulting in high MSE. These
considerations suggest that it is better to use the AIC when selecting among models with similar estima-
tion precision. Unfortunately it is impossible to known a priori the appropriate models.

The results of this section may appear to contradict Theorem 23.9 which showed that the BIC is con-
sistent for parsimonious models, as for all ∏> 0 in the plots the correct parsimonious model is the larger
model. Yet BIC is not selecting this model with sufficient frequency to produce a low MSE. There is no
contradiction. The consistency of the BIC appears in the lower portion of the plots, where the MSE of the
BIC estimator appears to be approximately the straight line MSE = ∏. This is the MSE of the restricted
estimator. Thus for small ∏ the BIC properly selects the true model. The fact that the MSE of the AIC
estimator somewhat exceeds that of the BIC in this region is illustrating the over-selection property of
the AIC.

23.16 Inference After Model Selection

Economists are typically interested in inferential questions, such as hypothesis tests and confidence
intervals. If an econometric model has been selected by a procedure such as AIC or CV, what are the
properties of statistical tests applied to the selected model?

To be concrete consider the regression model yi = x1iØ1+x2iØ2+ei and AIC selection of the variable
x2i . That is, we compare yi = x1iØ1 + ei with yi = x1iØ1 + x2iØ2 + ei . It is not too deep a realization
that in this context it is inappropriate to conduct conventional inference for Ø2 in the selected model.
If we select the smaller model there is no estimate of Ø2. If we select the larger it is because the t-ratio
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for Ø2 exceeds 1.4. The distribution of the t-ratio, conditional on exceeding 1.4, is not conventionally
distributed and there seems little point to push this issue further.

The more interesting and subtle question is the impact on inference concerning Ø1. This indeed is
a context of typical interest. An economist is interested in the impact of x1i on yi given a set of controls
x2i . It is common to select across these controls to find a suitable empirical model. Once this has been
obtained we want to make inferential statements about Ø1. Has selection over the controls impacted
correct inference?

To illustrate the importance of the issue we focus on a stylzed setting. The parameter of interest is
µ = E

£
y
§
°ØE [x] where we know var

£
y
§
= var

£
x
§
= 1, their correlation is zero, and we know the value of

Ø. We select over the variable x using an information criterion. This means the PMS estimator is

bµ§ = y °Øx
°
x2 > c

¢
.

After selection, the standard error is either 1 in the short regression or
p

1+Ø2 in the long regression.
Thus the PMS t-ratio can be written as

T =
bµ§ °µ
s(bµ§)

(23.23)

where
s(bµ§) =

°
x2 ∑ c

¢
+

q
1+Ø2

°
x2 > c

¢
.

A naive hypothesis test compares T with the normal critical values. A naive confidence interval
equals bµ§±1.96s(bµ§).

This model is sufficiently simple that we can calculate the distribution of T explicitly. (An expression4

for the distribution function is given below.) The distribution is a function only of Ø, µ= E [x], and c. We
focus on AIC for which c = 2, vary Ø among 0, 0.5, 1.0, and 2.0, and vary µ on a grid between 0 and 4. We
plot the coverage probabilities of nominal 95% intervals in Figure 23.2(c).

The first (dotted) line is the plot of the coverage probability for Ø = 0 as a function of µ. We can
see that the probability is exactly 95% for all values of µ. In this special case the coverage probability is
exact. The second through fourth lines are the plots for Ø> 0 as a function of µ. These plots all lie below
95% indicating undercovered. As Ø increases the coverage probability worsens. The distortion is hump-
shaped in µ, with the largest distortion for µ 2 [1,2]. This is the region where it is most difficult to detect
if µ= 0 or not. The distortion is increasing in Ø, with the worst-case coverage shown equalling 57% (far
from the nominal 95%). The coverage can be made worse, however, either by increasing Ø or c. It is also
useful to observe that the coverage is even distorted at µ= 0 (which is the ideal case where the restricted
estimator is optimal). This distortion is the effect of the AIC property of over-selection.

The message from this display is that inference after model selection is problematic. Conventional
inference procedures do not have the same distributions as expected from a non-selection theory, and
the distortions are potentially unbounded.

Theorem 23.12 The distribution function of T defined in (23.23) is

P [T ∑ t ] =©(t )+©(t °Øµ)
°
©(

p
c °µ)°©(°

p
c °µ)

¢

°
Zp

c°µ

°
p

c°µ
©

µ
Øs + t

q
1+Ø2

∂
¡(s)d s

where ¡(t ) and© (t ) are the standard normal pdf and cdf functions.

4The integral in the expression is evaluated numerically.



CHAPTER 23. MACHINE LEARNING 777

A proof of the theorem is provided in Section 23.39.

23.17 Empirical Illustration

We illustrate the model selection methods using an empirical application. Take the CPS dataset and
consider the sub-sample of Asian women, which has n = 1149 observations. Consider a log wage regres-
sion with primary interest focused on the return to experience, measured as the percentage difference
between expected wages between 0 and 30 years of experience. We consider and compare nine least
squares regressions. All include an indicator for married and three indicators for the region. The esti-
mated models range in complexity concerning how the impact of education and experience are mod-
eled.

Table 23.1: Estimates of Return to Experience among Asian Women

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
Return 13% 22% 20% 29% 40% 37% 33% 47% 45%
s.e. 7 8 7 11 11 11 17 18 17
BIC 956 907 924 964 913 931 977 925 943
AIC 915 861 858 914 858 855 916 860 857
CV 405 387 386 405 385 385 406 387 386
FIC§ 86 48 53 58 32 34 86 71 68
Education College Spline Dummy College Spline Dummy College Spline Dummy
Experience 2 2 2 4 4 4 6 6 6

Terms for experience:

• Models 1-3 include include experience and its square.

• Models 4-6 include powers of experience up to the power 4.

• Models 7-9 include powers of experience up to the power 6.

Terms for education:

• Models 1, 4, and 7 include a single dummy variable college indicating that years of education is 16
or higher.

• Models 2, 5, and 8 is a linear spline with a single knot at 9 years of education.

• Models 3, 6, and 9 include six dummy variables, for education equalling 12, 13, 14, 16, 18, and 20.

Table 23.1 reports some key estimates from the nine models. Reported are the estimate of the return
to experience as a percentage wage difference, its standard error (HC1), the BIC, AIC, CV, and FIC§, the
latter treating the return to experience as the focus. What we can see is that the estimates vary meaning-
fully, ranging from 13% to 47%. Some of the estimates also have moderately large standard errors. (In
most models the return to experience is “statistically significant”, but by large standard errors we mean
that it is difficult to pin down the precise value of the return to experience.) We can also see that the
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most important factors impacting the magnitude of the point estimate is going beyond the quadratic
specification for experience, and going beyond the simplest specification for education. Another thing
to notice is that the standard errors are most affected by the number of experience terms.

The BIC picks a parsimonious model with the linear spline in education and a quadratic in experi-
ence. The AIC and CV select a less parsimonious model with the full dummy specification for education
and a 4th order polynomial in experience. The CV criterion, however, has similar values across six of the
nine models. The FIC§ selects an intermediate model, with a linear spline in education and a 4th order
polynomial in experience.

When selecting a model using information criteria it is useful to examine several criteria. In applica-
tions decisions should be made by a combination of judgment as well as the formal criteria. In this case
the cross-validation criterion selects model 6 which has the estimate of 37%, but near-similar values of
the CV criterion are obtained by models 3 and 9, which have the estimates 20% and 45%. The FIC, which
focuses on this specific coefficient, selects model 5, which has the point estimate 40% which is similar to
the CV-selected model. Overall based on this evidence the CV-selected model and its point estimate of
37% seems an appropriate choice. However, the uncertainty reflected by the flatness of the CV criterion
suggests that uncertainty remains in the choice of specification.

23.18 Shrinkage Methods

Shrinkage methods are a broad class of estimators which reduce variance by moving an estimator bµ
towards a pre-selected point such as the zero vector. In high dimensions the reduction in variance more
than compensates for the increase in bias, resulting in improved efficiency when measured by mean
squared error. This and the next few sections review material presented in Chapter 15 of Introduction to
Econometrics.

The simplest shrinkage estimator takes the form eµ = (1°w) bµ for some shrinkage weight w 2 [0,1].
Setting w = 0 we obtain eµ = bµ (no shrinkage) and setting w = 1 we obtain eµ = 0 (full shrinkage). It is
straightforward to calculate the MSE of this estimator. Assume bµ ª (µ,V ). Then eµ has bias

bias
£eµ

§
= E

£eµ
§
°µ =°wµ, (23.24)

variance
var

£eµ
§
= (1°w)2

V , (23.25)

and weighted mean squared error (using the weight matrix W =V
°1)

wmse
£eµ

§
= K (1°w)2 +w2∏ (23.26)

where ∏= µ0V °1µ.

Theorem 23.13 If bµ ª (µ,V ) and eµ = (1°w) bµ then

1. wmse
£eµ

§
< wmse

£bµ
§

if 0 < w < 2K /(K +∏).

2. wmse
£eµ

§
is minimized by the shrinkage weight w0 = K /(K +∏).

3. The minimized WMSE is wmse
£eµ

§
= K∏/(K +∏).
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For the proof see Exercise 23.7.
Part 1 of the theorem shows that the shrinkage estimator has reduced WMSE for a range of values

of the shrinkage weight w . Part 2 of the theorem shows that the WMSE-minimizing shrinkage weight
is a simple function of K and ∏. The latter is a measure of the magnitude of µ relative to the estimation
variance. When ∏ is large (the coefficients are large) then the optimal shrinkage weight w0 is small; when
∏ is small (the coefficients are small) then the optimal shrinkage weight w0 is large. Part 3 calculates the
associated optimal WMSE. This can be substantially less than the WMSE of the original estimator bµ. For
example, if ∏= K then wmse

£eµ
§
= K /2, one-half the WMSE of the original estimator.

To construct the optimal shrinkage weight we need the unknown ∏. An unbiased estimator is b∏ =
bµ0V °1bµ°K (see Exercise 23.8) implying the shrinkage weight

bw = K
bµ0V °1bµ

. (23.27)

Replacing K with a free parameter c (which we call the shrinkage coefficient) we obtain

eµ =
µ
1° c

bµ0V °1bµ

∂
bµ. (23.28)

This class of estimators is often called a Stein-rule estimator.
This estimator has many appealing properties. It can be viewed as a smoothed selection estimator.

The quantity bµ0V °1bµ is a Wald statistic for the hypothesis H0 : µ = 0. Thus when this Wald statistic is
large (when the evidence suggests the hypothesis of a zero coefficient is false) the shrinkage estimator
is close to the original estimator bµ. However when this Wald statistic is small (when the evidence is
consistent with the hypothesis of a zero coefficient) then the shrinkage estimator moves the original
estimator towards zero.

23.19 James-Stein Shrinkage Estimator

James and Stein (1961) made the following discovery.

Theorem 23.14 Assume that bµ ª N(µ,V ), eµ is defined in (23.28), and K > 2.

1. If 0 < c < 2(K °2) then wmse
£eµ

§
< wmse

£bµ
§

.

2. The WMSE is minimized by setting c = K °2 and equals

wmse
£eµ

§
= K ° (K °2)2

E
£
Q°1

K

§

where QK ª¬2
K (∏).

See Theorem 15.3 of Introduction to Econometrics.
This result stunned the world of statistics. Part 1 shows that the shrinkage estimator has strictly

smaller WMSE for all values of the parameters, and thus dominates the original estimator. The latter
is the MLE, so this result shows that the MLE is dominated and thus inadmissible. This is a stunning
result because it had previously been assumed that it would be impossible to find an estimator which
dominates the MLE.
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Theorem 23.14 critically depends on the condition K > 2. This means that shrinkage achieves uni-
form improvements only in dimensions three or larger. In smaller dimensions shrinkage can reduce MSE
only over subsets of the parameter space.

The minimizing choice for the shrinkage coefficient c = K °2 leads to what is commonly known as
the James-Stein estimator

eµ =
µ
1° K °2

bµ0V °1bµ

∂
bµ.

In practice V is unknown so we substitute an estimator bV . This leads to

eµJS =
µ
1° K °2

bµ0 bV °1bµ

∂
bµ

which is fully feasible as it does not depend on unknowns or tuning parameters. The substitution of bV
for V can be justified by finite sample or asymptotic arguments.

23.20 Interpretation of the Stein Effect

The James-Stein Theorem appears to conflict with classical statistical theory. The original estimator
bµ is the maximum likelihood estimator. It is unbiased. It is minimum variance unbiased. It is Cramer-
Rao efficient. How can it be that the James-Stein shrinkage estimator achieves uniformly smaller mean
squared error?

Part of the answer is that classical theory has caveats. The Cramer-Rao Theorem, for example, re-
stricts attention to unbiased estimators, and thus precludes consideration of shrinkage estimators. The
James-Stein estimator has reduced MSE, but is not Cramer-Rao efficient since it is biased. Therefore the
James-Stein Theorem does not conflict with the Cramer-Rao Theorem. Rather, they are complementary
results. On the one hand, the Cramer-Rao Theorem describes the best possible variance when unbiased-
ness is an important property for estimation. On the other hand, the James-Stein Theorem shows that
if unbiasedness is not a critical property, but instead MSE is important, then there are better estimators
than the MLE.

The James-Stein Theorem may also appear to conflict with our results from Section 23.15 which
showed that selection estimators do not achieve uniform MSE improvements over the MLE. This may
appear to be a conflict since the James-Stein estimator has a similar form to a selection estimator. The
difference is that selection estimators are hard threshold rules – they are discontinuous functions of the
data – while the James-Stein estimator is a soft threshold rule – it is a continuous function of the data.
Hard thresholding tends to result in high variance; soft thresholding tends to result in low variance. The
James-Stein estimator is able to achieve reduced variance because it is a soft threshold function.

The MSE improvements achieved by the James-Stein estimator are greatest when ∏ is small. This
occurs when the parameters µ are small in magnitude relative to the estimation variance V . This means
that the user needs to choose the centering point wisely.

23.21 Positive Part Estimator

The simple James-Stein estimator has the odd property that it can “over-shrink”. When bµ0V °1bµ <
K °2 then eµ has opposite sign with bµ. This does not make sense and suggests that further improvements
can be made. The standard solution is to use “positive-part” trimming by bounding the shrinkage weight
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(23.27) below one. This estimator can be written as

eµ+ =
(

eµ, bµ0V °1bµ ∏ K °2
0, bµ0V °1bµ < K °2

=
µ
1° K °2

bµ0V °1bµ

∂

+
bµ

where (a)+ = max[a,0] is the “positive-part” function. Alternatively, it can be written as

eµ+ = bµ°
µ

K °2
bµ0V °1bµ

∂

1

bµ

where (a)1 = min[a,1]
The positive part estimator simultaneously performs “selection” as well as “shrinkage”. If bµ0V °1bµ is

sufficiently small, eµ+ “selects” 0. When bµ0V °1bµ is of moderate size, eµ+ shrinks bµ towards zero. When
bµ0V °1bµ is very large, eµ+ is close to the original estimator bµ.

Consistent with our intuition, the positive part estimator has uniformly lower WMSE than the unad-
justed James-Stein estimator.

Theorem 23.15 Under the assumptions of Theorem 23.14

wmse
h
eµ+

i
< wmse

£eµ
§

. (23.29)

For a proof see Theorem 15.6 of Introduction to Econometrics. Theorem 15.7 of Introduction to Econo-
metrics provides an explicit numerical evaluation of the MSE for the positive-part estimator.

In Figure 23.3(a) we plot wmse
h
eµ+

i
/K as a function of ∏/K for K = 4, 6, 12, and 48. The plots are uni-

formly below 1 (the normalized WMSE of the MLE) and substantially so for small and moderate values of
∏. The WMSE functions fall as K increases, demonstrating that the MSE reductions are more substantial
when K is large.
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In summary, the positive-part transformation is an important improvement over the unadjusted
James-Stein estimator. It is more reasonable, and reduces the mean squared error. The broader mes-
sage is that imposing boundary conditions can often help to regularize estimators and improve their
performance.

23.22 Shrinkage Towards Restrictions

The classical James-Stein estimator does not have much use in applications because it is rare that a
user wishes to shrink an entire parameter vector towards a specific point. Rather, it is more common to
wish to shrink a parameter vector towards a set of restrictions. Here are a few examples:

1. Shrink a long regression towards a short regression.

2. Shrink a regression towards an intercept-only model.

3. Shrink the regression coefficients towards a set of restrictions.

4. Shrink a set of estimates (or coefficients) towards their common mean.

5. Shrink a set of estimates (or coefficients) towards a parametric model.

6. Shrink a nonparametric series model towards a parametric model.

The way to think generally about these applications it that the researcher wants to allow for generality
with the large model, but believes that the smaller model may be a useful approximation. A shrinkage
estimator allows the data to smoothly select between these two options depending on the strength of
information for the two specifications.

Let bµ ª N(µ,V ) be the original estimator, for example a set of regression coefficient estimates. The
normality assumption is used for the exact theory, but can be justified based on an asymtotic approxi-
mation as well. The researcher considers a set of q > 2 linear restrictions which can be written as R

0µ = r

where R is K £q and r is q £1. A minimum distance estimator for µ is

bµR = bµ°V R
°
R

0
V R

¢°1 °
R

0bµ° r
¢

.

The Stein-rule estimator (with positive-part trimming) is

eµ+ = bµ°
√

q °2
°bµ° bµR

¢0
V

°1
°bµ° bµR

¢

!

1

°bµ° bµR

¢
.

As before, the function (a)1 = min[a,1] bounds the shrinkage weight below one.

Theorem 23.16 Under the assumptions of Theorem 23.14, if q > 2 then

wmse
h
eµ+

i
< wmse

£eµ
§

.

Thus the shrinkage estimator achieves uniformly smaller MSE if the number of restrictions is three or
greater. The number of restrictions q plays the same role as the number of parameters K in the classical
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James-Stein estimator. The same theoretical properties apply. Shrinkage achieves greater gains when
there are more restrictions q , and achieves greater gains when the restrictions are close to being satisfied
in the population. If the imposed restrictions are far from satisfied then the shrinkage estimator will have
similar performance as the original estimator. It is therefore important to select the restrictions carefully.

In practice the variance matrix V is unknown so it is replaced by an estimator bV . Thus the feasible
version of the estimators equal

bµR = bµ° bV R
°
R

0 bV R
¢°1 °

R
0bµ° r

¢

and
eµ+ = bµ°

µ
q °2

J

∂

1

°bµ° bµR

¢
(23.30)

where
J =

°bµ° bµR

¢0 bV °1 °bµ° bµR

¢
.

It is insightful to notice that J is the minimum distance statistic for the test of the hypothesis H0 :
R

0µ = r against H1 : R
0µ 6= r . Thus the degree of shrinkage is a smoothed version of the standard test of

the restrictions. When J is large (so the evidence indicates that the restrictions are false) the shrinkage
estimator is close to the unrestricted estimator bµ. When J is small (so the evidence indicates that the re-
strictions could be correct) the shrinkage estimator equals the restricted estimator bµR . For intermediate
values of J the shrinkage estimator shrinks bµ towards bµR .

We can substitute for J any similar asymptotically chi-square statistic. This includes the Wald, Likeli-
hood Ratio, and Score tests. This also includes the F statistic (which is commonly produced by statistical
software) if we multiply by q . These substitutions do not produce the same exact finite sample distribu-
tion, but are asymptotically equivalent.

In linear regression we have some very convenient simplifications available. In general, bV can be a
heteroskedastic-robust or cluster-robust covariance matrix estimator. However, if the dimension K of
the unrestricted estimator is quite large, or has sparse dummy variables, then these covariance matrix
estimators are ill-behaved and it may be better to use a classical covariance matrix estimator to perform
the shrinkage. If this is done then bV =

°
X

0
X

¢°1 s2, bµR is the constrained least-squares estimator (in most
applications the least squares estimator of the short regression), and J is a conventional (homoskedastic)
Wald statistic for a test of the restrictions. We can write the latter in F statistic form

J =
n

°
bæ2

R ° bæ2¢

s2 (23.31)

where bæ2
R and bæ2 are the least squares error variance estimators from the restricted and unrestricted

models. Thus the shrinkage weight ((q°2)/J )1 can be easily calculated from standard regression output.

23.23 Group James-Stein

The James-Stein estimator can be applied to groups (blocks) of parameters. Suppose we have the
parameter vector µ = (µ1,µ2, ...,µG ) partitioned into G groups, each of dimension Kg ∏ 3. We have a
standard estimator bµ =

°bµ1, bµ2, ..., bµG
¢

(for example, least squares regression or MLE) with variance matrix
V . Let The group James-Stein estimator is

eµ =
°eµ1, eµ2, ..., eµG

¢

eµg = bµg

√

1°
Kg °2

bµ0g V
°1
g

bµg

!

+
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where V g is the g th diagonal block of V . A feasible version of the estimator replaces V with bV and V g

with bV g .
The group James-Stein estimator shrinks each block of coefficients separately. The advantage (rela-

tive to the classical James-Stein estimator) is that this allows the shrinkage weight to vary across blocks.
Some parameter blocks can use a large amount of shrinkage while others a minimal amount. Since the
positive-part trimming is used, the estimator simultaneously performs shrinkage and selection. Blocks
with small effects will be shrunk to zero and elminated. The disadvantage of the estimator is that the
benefits of shrinkage can be reduced since the shrinkage dimension has been reduced. The trade-off
between these factors will depend on how heterogeneous the optimal shrinkage weight varies across the
parameters.

The groups should be selected based on two criteria. First, they should be selected so that the groups
separate variables by expected amount of shrinkage. Thus coefficients which are expected to be “large”
relative to their estimation variance should be grouped together, and coefficients which are expected to
be “small” should be grouped together. This will allow the estimated shrinkage weights to vary according
to the group. For example, a researcher may expect high-order coefficients in a polynomial regression to
be small relative to their estimation variance. Hence it is appropriate to group the polynomial variables
into “low order” and “high order”. Second, the groups should be selected so that the researcher’s loss
(utility) is separable across groups of coefficients. This is because the optimality theory (given below)
relies on the assumption that the loss is separable. To understand the implications of these recommen-
dations consider a wage regression. Our interpretation of the education and experience coefficients are
separable if we use them for separate purposes, such as for estimation of the return to education and the
return to experience. In this case it is appropriate to separate the education and experience coefficients
into different groups.

For an optimality theory we define weighted MSE with respect to the weight matrix W = diag(V
°1
1 , ...,V

°1
G ).

Theorem 23.17 Under the assumptions of Theorem 23.14, if WMSE is defined
with respect to W = diag(V

°1
1 , ...,V

°1
G ) and Kg > 2 for all g = 1, ...,G then

wmse
£eµ

§
< wmse

£bµ
§

.

The proof is a simple extension of the classical James-Stein theory. The block diagonal structure of
W means that the WMSE is the sum of the WMSE of each group. The classical James-Stein theory can be
applied to each group, finding that the WMSE is reduced by shrinkage group-by-group. Thus the total
WMSE is reduced by shrinkage.

23.24 Empirical Illustrations

We illustrate James-Stein shrinkage with three empirical applications.
The first application is to the same sample as used in Section 23.17, the CPS dataset with the sub-

sample of Asian women (n = 1149) focusing on the return to experience profile. We consider shrinkage
of Model 9 (6th order polynomial in experience) towards Model 3 (2nd order polynomial in experience).
The difference in the number of estimated coefficients is 4. We set bV to equal the heteroskedasticity-
consistent-consistent covariance matrix estimator. The shrinkage weight is 0.46, meaning that the Stein
Rule estimator is approximately an equal weighted average of the estimates from the two models. The
estimated experience profiles are displayed in Figure 23.3(b).
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The two least squares estimates are visually distinct. The 6th order polynomial (Model 9) shows a
steep return to experience for the first 10 years, then a wobbly experience profile up to 40 years, and
declining above that. It also shows a dip around 25 years. The quadratic specification misses some of
these features. The Stein Rule estimator is essentially an average of the two profiles. It retains most
features of the quartic specification, except that it smooths out the unappealing 25-year dip.

The second application is to the Invest1993 data set used throughout Chapter 17. This is a panel
data set of annual observations on investment decisions by corporations. We focus on the firm-specific
effects. These are of interest when studying firm heterogeneity, and is of particular importance for firm-
specific forecasting. Accurate estimation of firm effects is challenging when the number of time series
observations per firm is small.

To keep the analysis focused we restrict attention to firms which are traded on either the NYSE or
AMEX, and to the last ten years of the sample (1982-1991). Since the regressors are lagged this means
that there are at most nine time-series observations per firm. The sample has a total of N = 786 firms and
n = 5692 observations for estimation. Our baseline model is the two-way fixed effects linear regression
as reported in the fourth column of Table 17.2. Our restricted model replaces the firm fixed effects with
19 industry-specific dummy variables. This is similar to the first column of Table 17.2, except that the
trading dummy is omitted and time dummies are added. The Stein Rule estimator thus shrinks the fixed
effects model towards the industry effects model. The latter will do well if most of the fixed effects are
explained by industry rather than firm-specific variation.

Due to the large number of estimated coefficients in the unrestricted model we use the homoskedas-
tic weight matrix as a simplification. This allows the calculation of the shrinkage weight using the simple
formula (23.31) for the statistic J . The heteroskedastic covariance matrix is not appropriate, and the
cluster-robust covariance matrix will not be reliable due to the sparse dummy specification.

The estimated shrinkage weight is 0.35, which means that the Stein Rule estimator puts about 1/3
weight on the industry-effect specification and 2/3 weight on the firm-specific specification.

To report our results we focus on the distribution of the firm-specific effects. For the fixed effects
model these are the estimated fixed effects. For the industry-effect model these are the estimated in-
dustry dummy coefficients (for each firm). For the Stein Rule estimates they are a weighted average of
the two. We estimate5 the densities of the estimated firm-specific effects from the fixed-effects and Stein
Rule estimators, and plot them in Figure 23.3(c).

You can see that the fixed-effects estimate of the firm-specific density is more dispersed, while the
Stein estimator is sharper and more peaked, indicating that the fixed effects estimator attributes more
variation in firm-specific factors than the Stein estimator. The Stein estimator pulls the fixed effects
towards their common mean, adjusting for the randomness due to their estimation. Our expectation is
that the Stein estimates, if used for an application such as firm-specific forecasting, will be more accurate
because they will have reduced variance relative to the fixed effects estimates.

The third application uses the CPS dataset with the subsample of Black men (n = 2413) focusing on
the return to education across U.S. regions (Northeast, Midwest, South, West). Suppose you are asked
to flexibly estimate the return to education for Black men, allowing for the return to education to vary
across the regions. Given the model selection information from Section 23.17, a natural baseline is model
6, augmented to allow for greater variation across regions. A flexible specification interacts the six edu-
cation dummy variables with the four regional dummies (omitting the intercept), which adds 18 coeffi-
cients and allows the return to education to vary without restriction in each region.

The least squares estimate of the return to education by region is displayed in panel (a) of Figure
23.4. For simplicity we label the omitted education group (less than 12 years education) as “11 years”.

5The two densities are estimated with a common bandwidth to aid comparison. The bandwidth was selected to compromise
between those selected for the two samples. The Gaussian kernel was used.
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The estimates appear noisy due to the small samples. One feature which we can see is that the four lines
track one another for years of education between 12 and 18. That is, they are roughly linear in years of
education with the same slope but different intercepts.
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Figure 23.4: Stein Rule Estimation of Education Profiles Across Regions

To improve the precision of the estimates we shrink the four profiles towards Model 6. This means
that we are shrinking the profiles not towards each other, but towards the model with the same effect of
education but regional-specific intercepts. Again we use the heteroskedastic covariance matrix estimate.
The number of restrictions is 18. The shrinkage weight is 0.49, which means that the Stein Rule estimator
puts equal weight on the two models.

The Stein Rule estimates are displayed in panel (b) of Figure 23.4. The estimates are less noisy than
panel (a) and it is easier to see the patterns. The four lines track each other, and are approximately linear
over 12-18. For 20 years of education the four lines disperse, which seems likely due to small samples.
In panel (b) it is easier to see the patterns across regions. It appears that the northeast region has the
highest wages (conditional on education) while the west region has the lowest wages. This ranking is
constant for nearly all levels of education.

While the Stein Rule estimates shrink the nonparametric estimates towards the common-education-
factor specification, it does not impose the latter specification. The Stein Rule estimator has the ability
to put near zero weight on the common-factor model. The fact that the estimates put 1/2 weight on both
models is the choice selected by the Stein Rule and is thus data-driven.

The message from these three applications is that the James-Stein shrinkage approach can be con-
structively used to reduced estimation variance in economic applications. These applications illustrate
common forms of potential applications: Shrinkage of a flexible specification towards a simpler speci-
fication; Shrinkage of heterogeneous estimates towards homogeneous estimates; Shrinkage of fixed ef-
fects towards group dummy estimates. These three applications also employed moderately large sample
sizes (n = 1149, 2413, and 5692) yet found shrinkage weights near 50%. This shows that the benefits of
Stein shrinkage are not confined to “small” samples, but rather can be constructive used in moderately
large samples with complicated structures.
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23.25 Model Averaging

Recall that the problem of model selection is how to select a single model from a general set of mod-
els. The James-Stein shrinkage estimator smooths between two nested models by taking a weighted
average of two estimators. More generally we can take an average of an arbitrary number of estimators.
These estimators are known as model averaging estimators. The key issue for estimation is how to select
the averaging weights.

Suppose we have a set of M models M = {M1, ...,MM }. For each model there is an estimator bµm of the
parameter µ. The natural way to think about multiple models, parameters, and estimators is the same as
for model selection. All models are subsets of a general superset (overlapping) model which contains all
submodels as special cases.

Corresponding to the set of models we introduce a set of weights w = {w1, ..., wM }. It is common
to restrict the weights to be non-negative and sum to one. The set of such weights is called the RM

probability simplex.

Definition 23.4 Probability Simplex. The set S Ω R
M of vectors such thatPM

m=1 wm = 1 and wi ∏ 1 for i = 1, ..., M .

The probability simplex in R
2 and R

3 is shown in the two panels of Figure 23.5. The simplex in R
2

(the left panel) is the line between the vertices (1,0) and (0,1). An example element is the point (.7, .3)
indicated by the dot. This is the weight vector which puts weight 0.7 on model 1 and weight 0.3 on
model 2. The vertice (1,0) is the weight vector which puts all weight on model 1, corresponding to model
selection, and similarly the vertice (0,1) is the weight vector which puts all weight on model 2.

The simplex in R
3 (the right panel) is the equilateral triangle formed between (1,0,0), (0,1,0), and

(0,0,1). An example element is the point (.1, .5, .4) indicated by the dot. The edges are weight vectors
which are averages between two of the three models. For example the bottom edge are weight vectors
which divide the weight between models 1 and 2, placing no weight on model 3. The vertices are weight
vectors which put all weight on one of the three models and correspond to model selection.

Since the weights on the probability simplex sum to one, an alternative representation is to elim-
inate one weight by substitution. Thus we can set wM = 1 °PM°1

m=1 wm and define the set of vectors
w = {w1, ..., wM°1} which lie in the RM°1 unit simplex, which is the region bracketed by the probabil-
ity simplex and the origin.

Given a weight vector we define the averaging estimator

bµ (w ) =
MX

m=1
wm bµm . (23.32)

Selection estimators emerge as the special case where the weight vector w is a unit vector, e.g. the ver-
tices in Figure 23.5.

It is not absolutely necessary to restrict the weight vector of an averaging estimator to lie in the
probability simplex S , but in most cases it is a sensible restriction which improves performance. The
unadjusted James-Stein estimator, for example, is an averaging estimator which does not enforce non-
negativity of the weights. The positive-part version, however, imposes non-negativity and achieves re-
duced MSE as a result.

In Section 23.18 and Theorem 23.13 we explored the MSE of a simple shrinkage estimator which
shrinks an unrestricted estimator towards the zero vector. This is the same as a model averaging esti-
mator where one of the two estimators is the zero vector. In Theorem 23.13 we showed that the MSE
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Figure 23.5: Probability Simplex in R2 and R3

of the optimal shrinkage (model averaging) estimator is less than the unrestricted estimator. This result
extends to the case of averaging between an arbitrary number of estimators. The MSE of the optimal
averaging estimator is less than the MSE of the estimator of the full model, in any given sample.

The optimal averaging weights, however, are unknown. A number of methods have been proposed
for selection of the averaging weights.

One simple method is equal weighting. This is achieved by setting wm = 1/M and results in the
estimator

bµ§ = 1
M

MX

m=1

bµm .

The advantages of equal weighting are that it is simple, easy to motivate, and no randomness is intro-
duced by estimation of the weights. The variance of the equal weighting estimator can be calculated
since the weights are fixed. Another important advantage is that the estimator can be constructed in
contexts where it is unknown how to construct empirical-based weights, for example when averaging
models from completely different probability families. The disadvantages of equal weighting are that
the method can be sensitive to the set of models considered, there is no guarantee that the estimator will
perform better than the unrestricted estimator, and sample information is inefficiently used. In practice,
equal weighting is best used in contexts where the set of models have been pre-screened so that all are
considered “reasonable” models. From the standpoint of econometric methodology, equal weighting is
not a proper statistical method, as it is an incomplete methodology.

Despite these concerns, equal weighting can be constructively employed when summarizing infor-
mation for a non-technical audience. The relevant context is when you have a small number of rea-
sonable but distinct estimates, typially made using different assumptions. The distinct estimates are
presented to illustrate the range of possible results, and the average taken to represent the “consensus”
or “recommended” estimate.

As mentioned above, a number of methods have been proposed for selection of the averaging weights.
In the following sections we outline four popular methods: Smoothed BIC, Smoothed AIC, Mallows av-
eraging, and Jackknife averaging.
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23.26 Smoothed BIC and AIC

Recall that Schwarz’s Theorem 23.2 states that for a probability model f (y ,µ) and a diffuse prior, then
the marginal likelihood p(y) satisfies

°2log p(y) '°2`n
°bµ

¢
+K log(n) = BIC.

This has been been interpreted to mean that the model with the highest value of the right-hand-side
approximately has the highest marginal likelihood, and is thus the model with the highest probability of
being the true model.

There is another interpretation of Schwarz’s result. We can write the approximation as

p(y) ' exp(°BIC/2) .

This shows that the marginal likelihood is approximately proportional to the probability that the model
is true, conditional on the data. Thus we can set the model weight to be proportional to the right-hand-
side. These are known as BIC weights and produce the smoothed BIC estimator.

To describe the method completely, we have a set of models M = {M1, ...,MM }. Each model fm(y ,µm)
depends on a Km £ 1 parameter vector µm which is estimated by the maximum likelihood estimator
bµm . The maximized likelihood is Lm(bµm) = fm(y , bµm). The BIC for model m is BICm = °2logLm(bµm)+
Km log(n).

The BIC weights are

wm = exp(°BICm/2)
PM

j=1 exp
°
°BIC j /2

¢ .

Some properties of the BIC weights are as follows. They are non-negative, so all models receive pos-
itive weight. However models can receive weight arbitrarily close to zero, and in practice it is common
that most estimated models receive BIC weight that is essentially zero. The model which is selected
by BIC receives the greatest weight, and models which have BIC values close to the minimum receive
weights closest to the largest weight. Models whose BIC is not close to the minimum receive weight near
zero.

The Smoothed BIC (SBIC) estimator is

bµsbic =
MX

m=1
wm bµm .

The SBIC estimator is a smoother function of the data than BIC selection as there are no discontinuous
jumps across models.

An advantage of the smoothed BIC weights and estimator is that it can be used to combine models
from different probability families. As for the BIC, it is important that all models are estimated on the
same sample. It is also important that the full formula is used for the BIC (no omission of constants)
when combining models from different probability families.

Computationally it is better to implement smoothed BIC with what are called “BIC differences” rather
than the actual values of the BIC, as the formula as written can produce numerical overflow problems.
The difficulty is due to the exponentiation in the formula. This problem can be eliminated as follows. Let

BIC§ = min
1∑m∑M

BICm

denote the lowest BIC among the models and define the BIC differences

¢BICm = BICm °BIC§.
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Then

wm = exp(°BICm/2)
PM

j=1 exp
°
°BIC j /2

¢

= exp(°BICm/2)exp(BIC§/2)
PM

j=1 exp
°
°BIC j /2

¢
exp(BIC§/2)

= exp(°¢BICm/2)
PM

j=1 exp
°
°¢BIC j /2

¢ .

Thus the weights are algebraically identically whether computed on BICm or¢BICm . Since¢BICm are of
smaller magnitude than BICm overflow problems are less likely to occur.

Because of the properties of the exponential, if ¢BICm ∏ 10 then wm ∑ 0.01. Thus smoothed BIC
typically concentrates weight on models whose BIC values are close to the minimum. This means that
in practice smoothed BIC puts effective non-zero weight on a small number of models.

Burnham and Anderson (1998) follow a suggestion they credit to Akaike that if we make the same
transformation to the AIC as to the BIC to obtain the smoothed BIC weights, we obtain frequentist ap-
proximate probabilities for the models. Specifically they propose the weights

wm = exp(°AICm/2)
PM

j=1 exp
°
°AIC j /2

¢ .

They do not provide a strong theoretical justification for this specific choice of transformation, but it
seems natural given the smoothed BIC formula and does work well in simulations.

The algebraic properties of the AIC weights are similar to those of the BIC weights. All models receive
positive weight though some receive weight which is arbitrarily close to zero. The model with the smallest
AIC receives the greatest AIC weight, and models with similar AIC values receive similar AIC weights.

Computationally the AIC weights should be computed using AIC differences. Define

AIC§ = min
1∑m∑M

AICm

¢AICm = AICm °AIC§.

We can calculate that the AIC weights algebraically equal

wm = exp(°¢AICmAICm/2)
PM

j=1 exp
°
°¢AIC j /2

¢ .

As for the BIC weights, wm ∑ 0.01 if AICm ∏ 10 so the AIC weights will concentrated on models whose
AIC values are close to the minimum. However, in practice it is common that the AIC criterion is less
concentrated than the BIC criterion, as the AIC puts a smaller penalty on large penalizations, so the AIC
weights tend to be more spread out across models than the corresponding BIC weights.

The Smoothed AIC (SAIC) estimator is

bµsaic =
MX

m=1
wm bµm .

The SAIC estimator is a smoother function of the data than AIC selection.
Recall that both AIC selection and BIC selection are model selection consistent, in the sense that as

the sample size gets large the probability that the selected model is a true model is arbtrarily close to one.
Furthermore BIC is consistent for parsimonious models, and AIC asymptotically over-selects.
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These properties extend to SBIC and SAIC. In large samples, SAIC and SBIC weights will concentrate
exclusively on true models; the weight on incorrect models will asymptotically approach zero. However,
SAIC will asymptotically spread weight across both parsimonious true models and overparameterized
true models, which SBIC asymptotically will concentrate weight only on parsimonious true models.

An interesting property of the smoothed estimators is the possibility of asymptotically spreading
weight across equal-fitting parsimonious models. Suppose we have two non-nested models with the
same number of parameters with the same KLIC value so they are equally good approximations. In large
samples both SBIC and SAIC will be weighted averages of the two estimators, rather than simply selecting
one of the two.

23.27 Mallows Model Averaging

In linear regression the Mallows criterion (23.17) applies directly to the model averaging estimator
(23.32). The homoskedastic regression model is

yi = mi +ei

mi = m(x i )

E [ei | x i ] = 0

E
£
e2

i | x i
§
=æ2.

Suppose that there are M models for m(x i ), each which takes the formØ0
m xmi for some Km£1 regression

vector xmi . The mth model estimator of the coefficient is bØm =
°

X
0
m X m

¢°1
X

0
m y , and the estimator of

the vector m is bmm = P m y where P m = X m
°

X
0
m X m

¢°1
X

0
m . The corresponding residual vector is bem =

(I n °P m) y .
The model averaging estimator for fixed weights is

bmm (w ) =
MX

m=1
wmP m y = P (w ) y

where

P (w ) =
MX

m=1
wmP m .

The model averaging residual is

be (w ) = (I n °P (w )) y =
MX

m=1
wm (I n °P m) y .

The estimator bmm (w ) is linear in y so the Mallows criterion can be applied. It equals

C (w ) = be (w )0be (w )+2eæ2 tr(P (w ))

= be (w )0be (w )+2eæ2
MX

m=1
wmKm

where eæ2 is a preliminary6 estimator of æ2.
In the case of model selection the Mallows penalty is proportional to the number of estimated coeffi-

cients. In the model averaging case the Mallows penalty is the average number of estimated coefficients.

6It is typical to use the bias-corrected least squares variance estimator from the largest model.
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The Mallows-selected weight vector is that which minimizes the Mallows criterion. It can be written
as

bw mma = argmin
w2S

C (w ) . (23.33)

Computationally it is useful to observe that C (w ) is a quadratric function in w . Indeed, by defining
the n £M matrix bE = [be1, ...,beM ] of residual vectors, and the M £1 vector K = [K1, ...,KM ], the criterion is

C (w ) = w
0bE 0bE w +2eæ2

K
0
w .

The probability simplex S is defined by one equality and 2M inequality constraints. The minimiza-
tion problem (23.33) falls in the category of quadratic programming, which means optimization of a
quadratic subject to linear equality and inequality constraints. This is a well-studied area of numeri-
cal optimization and numerical solutions are widely available. In R use the command in the
package . In MATLAB use the command .

Figure 23.6 illustrates the Mallows weight computation problem. Displayed is the probability simplex
S in R

3. The axes are the weight vectors. The ellipses are the contours of the unconstrained sum of
squared errors as a function of the weight vectors projected onto the constrained set

PM
m=1 wm = 1. This is

the extension of the probability simplex as a two-dimensional plane in R3. The midpoint of the contours
is the minimizing weight vector allowing for weights outside [0,1]. The point where the lowest contour
ellipse hits the probability simplex is the solution (23.33), the Mallows selected weight vector. In the left
panel is displayed an example where the solution is the vertex (0,1,0) so the selected weight vector puts
all weight on model 2. In the right panel is displayed an example where the solution lies on the edge
between (1,0,0) and (0,0,1), meaning that the selected weight vector averages models 1 and 3, but puts
no weight on model 2. Since the contour sets are ellipses and the constraint set is a simplex, solution
points tend to be on edges and vertices, meaning that some models receive zero weight. In fact, where
there are a large number of models a generic feature of the solution is that most models receive zero
weight; the selected weight vector puts positive weight on a small subset of the eligible models.

●

●

w1 w2

w3

w1 w2

w3

●

●

Figure 23.6: Mallows Weight Selection

Once the weights bw are obtained the model averaging estimator of the coefficients are found by
averaging the model estimates bØm using the weights.
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In the special case of two nested models the Mallows criterion can be written as

C (w) = (w,1°w)
µ

be 0
1be1 be 0

1be2

be 0
2be1 be 0

2be2

∂µ
w

1°w

∂
+2eæ2 (wk1 + (1°w)k2)

= (w,1°w)
µ

be 0
1be1 be 0

2be2

be 0
2be2 be 0

2be2

∂µ
1°w

w

∂
+2eæ2 (wk1 + (1°w)k2)

= w2 °
be 0

1be1 °be 0
2be2

¢
+be 0

2be2 °2eæ2 (k2 °k1) w +2eæ2

where we assume k1 < k2 so that be 0
1be2 = y

0 (I n °P 1)(I n °P 2) y = y
0 (I n °P 2) y = be 0

2be2. The minimizer of
this criterion is

bw =
µ
eæ2 (k2 °k1)
be 0

1be1 °be 0
2be2

∂

1
.

This is the same as the Stein Rule weight (23.30) with a slightly different shrinkage constant. Thus the
Mallows averaging estimator for M = 2 is a member of the Stein Rule family. Hence for M > 2 the Mallows
averaging estimator is a generalization of the James-Stein estimator to multiple models.

Based on the latter observation, Hansen (2014) shows that the MMA estimator has lower WMSE than
the unrestricted least squares estimator when the models are nested linear regressions, the errors are ho-
moskedastic, and the models are separated by 4 coefficients or greater. The latter condition is analogous
to the conditions for improvements in the Stein Rule theory.

Hansen (2007) showed that the MMA estimator asymptotically achieves the same MSE as the infea-
sible optimal best weighted average using the theory of Li (1987) under similar conditions. This shows
that using model selection tools to select the averaging weights is asymptotically optimal for regression
fitting and point forecasting.

23.28 Jackknife (CV) Model Averaging

A disadvantage of Mallows selection is that the criterion is valid only when the errors are conditional
homoskedastic. Selection by cross-validation does not require homoskedasticity. Therefore it seems
sensible to use cross-validation rather than Mallows to select the weight vectors. It turns out that this is
a simple extension with excellent finite sample performance.

A fitted averaging regression (with fixed weights) can be written as

yi =
MX

m=1
wm x

0
mi

bØm + bei (w )

where bØm are the least squares coefficient estimates from Model m. The corresponding leave-one-out
equation is

yi =
MX

m=1
wm x

0
mi

bØm,(°i ) + eei (w )

where bØm,(°i ) are the least squares coefficient estimates from Model m when observation i is deleted.
The leave-one-out prediction errors satisfy the simple relationship

eei (w ) =
MX

m=1
wm eemi

where eemi are the leave-one-out prediction errors for model m. In matrix notation ee (w ) = eE w where eE
is the n £M matrix of leave-one-out prediction errors.
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This means that the jackknife estimate of variance (or equivalently the cross-validation criterion)
equals

CV(w ) = w
0eE 0eE w

which is a quadratic function of the weight vector. The cross-validation choice for weight vector is the
minimizer

bw jma = argmin
w2S

CV(w ) . (23.34)

Given the weights the coefficient estimates (and any other parameter of interest) are found by taking
weighted averages of the model estimates using the weight vector bw jma. Hansen and Racine (2012) call
this the Jackknife Model Averaging (JMA) estimator.

The algebraic properties of the solution are similar to Mallows. Since (23.34) minimizes a quadratic
function subject to a simplex constraint, solutions tend to be on edges and vertices, which means that
many (or most) models receive zero weight. Hence JMA weight selection simultaneously performs se-
lection and shrinkage. The solution is found numerically by quadratic programming, which is computa-
tionally simple and fast even when the number of models M is large.

Hansen and Racine (2012) showed that the JMA estimator is asymptotically equivalent to the infea-
sible optimal weighted average across least squares estimates, based on a regression fit criteria. Their
results hold under quite mild conditions, including allowing for conditional heteroskedasticity. This re-
sult is similar to Andrews (1991c) generalization of Li (1987)’s result for model selection.

The implication of this theory is that JMA weight selection is computationally simple and has excel-
lent sampling performance.

23.29 Empirical Illustration

We illustrate the model averaging methods with the empirical application from Section 23.17, which
reported wage regression estimates for the CPS sub-sample of Asian women, focusing on the return to
experience between 0 and 30 years.

Table 23.2 reports the model averaging weights obtained using the methods of SBIC, SAIC, Mallows
model averaging (MMA) and jackknife model averaging (JMA). Also reported in the final column is the
weighted average estimate of the return to experience as a percentage.

The results show that the methods put weight on somewhat different models, and different degrees
of dispersion. The SBIC puts nearly all weight on model 2. The SAIC puts nearly 1/2 of the weight on
model 6, with most of the remainder split between models 5 and 9. MMA puts nearly 1/2 of the weight
on model 9, 30% on 5 and 9% on model 1. JMA is similar to MMA but more emphasis on parsimony,
with 1/2 of the weight on model 5, 17% on model 9, 17% on model 1, and 8% on model 3. One of the
interesting things about the MMA/JMA methods is that they can split weight between quite different
models, e.g. models 1 and 9.

The averaging estimators from the non-BIC methods are similar to one another, but SBIC produces
a much smaller estimate than the other methods.

23.30 Ridge Regression

Ridge regression is a shrinkage-type estimator with similar but distinct properties from the James-
Stein estimator. There are two competing motivations for ridge regression. The traditional motivation is
to reduce the degree of collinearity among the regressors. The modern motivation (though in mathemat-
ics it predates the “traditional” motivation) is regularization of high-dimensional and ill-posed inverse
problems. We discuss both in turn.



CHAPTER 23. MACHINE LEARNING 795

Table 23.2: Model Averaging Weights and Estimates of Return to Experience among Asian Women

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Return
SBIC .02 .96 .00 .00 .04 .00 .00 .00 .00 22%
SAIC .00 .02 .10 .00 .15 .44 .00 .06 .22 38%
MMA .09 .02 .02 .00 .30 .00 .00 .00 .57 39%
JMA .17 .00 .08 .00 .57 .01 .00 .00 .17 34%

Take a linear regression model yi = x
0
iØ+ ei . In nonparametric series and “machine learning” ap-

plications the dimension of Ø can be very large, and often the regressors are highly correlated. In these
cases the least squares estimator may be undefined and/or the X

0
X matrix ill-conditioned, which can

mean that the least squares coefficient estimates are numerically unreliable. As a numerical solution to
this dilemma, Hoerl and Kennard (1970) proposed the ridge regression estimator

bØridge =
°

X
0
X +∏I k

¢°1
X

0
y

where ∏ > 0 is a shrinkage parameter. The ridge regression estimator has the property that it is well-
defined and does not suffer from multicollinearity or ill-conditioning so long as ∏ > 0. This even holds
if k > n! That is, the ridge regression estimator can be calculated even when the number of regressors
exceeds the sample size.

The constant ∏ is a tuning parameter. We discuss how to select ∏ below.
To see how ∏> 0 ensures that the inverse problem is solved, use the spectral decomposition to write

X
0
X = H

0
D H where H is orthonormal and D = diag{r1, ...,rk } is a diagonal matrix with the eigenvalues

r j of X
0
X on the diagonal. Let§=∏I k . We can write

X
0
X +∏I k = H

0§H +∏H
0
H = H

0§H +H
0§H = H

0 (D +§) H

which has eigenvalues r j +∏> 0. Thus all eigenvalues are bounded away from zero so X
0
X +∏I k is full

rank and well conditioned.
The second motivation is based on penalization. When X

0
X is ill-conditioned computing its inverse

is “ill-posed”. Techniques to deal with ill-posed estimators are called “regularization” and date back to
Tikhonov (1943). A leading method is penalization. Consider the penalized regression criterion

SSE2
°
Ø,∏

¢
=

°
y °XØ

¢0 °
y °XØ

¢
+∏Ø0Ø

=
∞∞y °XØ

∞∞2
2 +∏

∞∞Ø
∞∞2

2

where kak2 =
°
a
0
a

¢1/2 is the 2-norm. The minimizer of SSE2
°
Ø,∏

¢
is a regularized least squares estimator.

The first order condition for minimization of SSE2
°
Ø,∏

¢
over Ø is

°2X
0 °

y °XØ
¢
+2∏Ø= 0. (23.35)

The solution is bØridge. Thus the regularized (penalized) least squares estimator equals ridge regression.
This shows that the ridge regression estimator minimizes the sum of squared errors subject to a penalty
on the L2 (2-norm) magnitude of the regression coefficient. Penalizing large coefficient vectors keeps
the latter from being too large and erratic. Hence one interpretation of ∏ is the degree of penalty on the
magnitude of the coefficient vector.
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Minimization subject to a penalty has a dual representation as constrained minimization. The latter
is

min
Ø

°
y °XØ

¢0 °
y °XØ

¢

subject to Ø0Ø∑ ø for some ø> 0. To see the connection, the Lagrangian for the constrained problem is

min
Ø

°
y °XØ

¢0 °
y °XØ

¢
+∏

°
Ø0Ø°ø

¢

where ∏ is a Lagrange multiplier. The first order condition is (23.35), which is the first order condition for
the penalization problem. This shows that they have the same solution.

The practical difference between the penalization and constraint problems is that in the first you
specify the ridge parameter ∏ while in the second you specify the constraint ø. They are connected,
since the values of ∏ and ø satisfy the relationship

y
0
X

°
X

0
X +∏I k

¢°1 °
X

0
X +∏I k

¢°1
X

0
y = ø.

Thus to find ∏ given ø it is sufficient to (numerically) solve this equation.

β1

β2

● OLS
●

Ridge

β1
2 + β2

2 ≤ τ

Ridge Path

●

Figure 23.7: Ridge Regression Dual Minimization Solution

To visualize the constraint problem see Figure 23.7 which plots an example in R2. The constraint set
Ø0Ø ∑ ø is displayed as the ball about the origin and the contour sets of the sum of squared errors are
displayed as ellipses. The least squares estimator is the center of the ellipses, while the ridge regression
estimator is the point on the circle where the contour is tangent. This shrinks the least squares coefficient
towards the zero vector. Unlike the Stein estimator, however, it does not shrink along the line segment
connecting least squares with the origin, rather it shrinks along a trajectory determined by the degree of
correlation between the variables. This trajectory is displayed with the dashed lines, marked as “Ridge
path”. This is the sequence of ridge regression coefficients obtained as ∏ (or ø) is varied from small to
large. When ∏= 0 (or ø is large) the ridge estimator equals least squares. For small ∏ the ridge estimator
moves slightly towards the origin by sliding along the ridge of the contour set. As ∏ increases the ridge
estimator takes a more direct path towards the origin. This is unlike the Stein estimator, which shrinks
the least squares estimator towards the origin along the connecting line segment.
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The ridge parameter ∏ affects the sampling performance of estimation by decreasing variance and
increasing bias. Define the MSE matrix

mse
£bØ

§
= E

h°bØ°Ø
¢°bØ°Ø

¢0i
.

Theorem 23.18 In the homoskedastic linear regression model, if 0 < ∏ <
2æ2/Ø0Ø,

mse
h
bØridge

i
< mse

£bØols
§

.

Theorem 23.18 shows that the ridge estimator dominates the least squares estimator for∏ satisfying a
range of values. This holds regardless of the dimension ofØ. Since the upper bound 2æ2/Ø0Ø is unknown,
however, it is unclear if feasible ridge regression dominates least squares. The upper bound does not give
practical guidance for selection of ∏.

It is straightforward to generalize ridge regression to allow different penalties on different groups of
regressors. Take the model

yi = x
0
1iØ1 +·· ·+x

0
GØG +ei

and minimize the SSE subject to the penalty

∏1Ø
0
1Ø1 +·· ·+∏GØ

0
GØG .

The solution is
bØridge =

°
X

0
X +§

¢°1
X

0
y

where
§= diag

©
∏1I k1 , ...,∏G I kG

™
.

This allows for some coefficients to be penalized more (or less) than other coefficients. This added flex-
ibility comes at the cost of needing to select the shrinkage parameters ∏ = (∏1, ...,∏G ). One important
special case is where ∏1 = 0, thus one group of coefficients are not penalized. This enables the simple
partition of the coefficients into two groups: penalized and non-penalized.

The most popular method to select the shrinkage parameter ∏ is cross validation. The leave-one-out
ridge regression estimator, prediction errors, and CV criterion are

bØ°i (∏) =
√
X

j 6=i
x j x

0
j +§

!°1 √
X

j 6=i
x j yi

!

eei (∏) = yi °x
0
i
bØ°i

CV(∏) =
nX

i=1
eei (∏)2.

The CV-selected shrinkage parameter b∏minimizes CV(∏). The cross-validation ridge estimator is calcu-
lated using b∏.

In practice it can be tricky to minimize CV(∏). The minimum may occur at ∏ = 0 (ridge equals least
squares), or as ∏ tends to infinity (full shrinkage), or have multiple local minima. The scale of the mini-
mizing ∏ depends on the scaling of the regressors and in particular the singular values of X

0
X . It can be

important to explore CV(∏) for very small values of ∏.
As for least squares there is a simple formula to calculate the CV criterion for ridge regression which

greatly speeds computation.
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Theorem 23.19 The leave-one-out ridge regression prediction errors are

eei (∏) =
≥
1°x

0
i

°
X

0
X +§

¢°1
x i

¥°1
bei (∏)

where bei (∏) = yi °x
0
i
bØridge(∏) are the ridge regression residuals.

The proof is very similar to that of Theorem 3.7 so is omitted.
An alternative method for selection of ∏ is to minimize the Mallows criterion, which equals

C (∏) =
nX

i=1
bei (∏)2 +2bæ2 tr

≥°
X

0
X +§

¢°1 °
X

0
X

¢¥
.

where bæ2 is the variance estimator from least squares estimation. The Mallows-selected shrinkage pa-
rameter b∏ minimizes C (∏). The Mallows-selected ridge estimate is calculated using b∏. Li (1986) showed
that in the normal regression model the Mallows-selected shrinkage estimator is asymptotically equil-
valent to the infeasible best shrinkage parameter in terms of regression fit. I am unaware of a similar
optimality result for cross-validated-selected ridge estimation.

An important caveat is that the ridge regression estimator is not invariant to rescaling the regressors,
nor other linear transformations. Therefore it is common to consider applying ridge regression after
applying standardizing transformations to the regressors.
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Figure 23.8: Least Squares and Ridge Regression Estimates of the Return to Experience

To illustrate ridge regression we use the CPS dataset with the sample of Asian men with a college ed-
ucation (16 years of education or more) to estimate the experience profile. We standardize experience by
dividing by the largest experience level (69) in the sample so that experience lies in the interval [0,1]. We
regress log wages on a fifth-order polynomial in experience. We estimate the same regression by ridge
regression, shrinking all coefficients (the five experience coefficients and the intercept) with a common
penalty. Panel (a) of Figure 23.8 displays the cross-validation function calculated over the interval [0,
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0.04]. It has an internal minimum at b∏ = 0.0037. Panel (b) displays the estimated experience profiles,
least squares displayed by dashes and ridge regression (using the CV-selected shrinkage parameter) by
the solid line. The ridge regression estimate is smoother and more compelling. In this example, if we
alternatively estimate the model by ridge regression by grouping the regressors, either separating out the
intercept, or separating the intercept and first two polynomial terms, and setting the shrinkage param-
eter on this first group equal to zero, the estimated experience profile is nearly identical. That is, the
estimates obtained by shrinking the full regression towards zero, just the coefficients on experience, or
just the coefficients on experience, are all roughly equivalent.

In summary, ridge regression is a very useful shrinkage tool, though tricky to use because of selection
of the shrinkage parameter.

23.31 LASSO

In the previous section we learned that ridge regression minimizes the sum of squared errors plus an
L2 penalty on the coefficient vector. Model selection (e.g. Mallows) minimizes the sum of squared errors
plus an L0 norm penalty on the coefficient vector (the number of non-zero coefficients). An intermedi-
ate case uses an L1 penalty. This is known as the LASSO (for Least Absolute Shrinkage and Selection
Operator). The L1 penalized least squares criterion is

SSE1
°
Ø,∏

¢
=

°
y °XØ

¢0 °
y °XØ

¢
+∏

kX

j=1

ØØØ j
ØØ

=
∞∞y °XØ

∞∞2
2 +∏

∞∞Ø
∞∞

1

where kak1 =
Pk

j=1

ØØa j
ØØ is the 1-norm (L1). The LASSO estimator is the minimizer of this penalized crite-

rion
bØlasso = argmin

Ø
SSE1

°
Ø,∏

¢
.

Except for special cases the solution must be found numerically, Fortunately, computational algorithms
are surprisingly simple and fast. An important property is that when ∏> 0 the LASSO estimator is well-
defined even if k > n.

The LASSO minimization problem has the dual constrained optimization problem

bØlasso = argmin
kØk1∑ø

SSE
°
Ø

¢
.

To see that the two problems are the same observe that the constrained optimization problem has the
Lagrangian

min
Ø

°
y °XØ

¢0 °
y °XØ

¢
+∏

√
kX

j=1

ØØØ j
ØØ°ø

!

which has first order conditions
°2X

0
j

°
y °XØ

¢
+∏sgn

°
Ø j

¢
= 0

which are the same as those for minimization of the penalized criterion. Thus the solutions are identical.
The constraint set

©∞∞Ø
∞∞

1 ∑ ø
™

for the dual problem is a cross-polytope, resembling a multi-faceted
diamond. The constrained minimization problem in R2 is illustrated in Figure 23.9. The sum of squared
error contour sets are the ellipses with the least squares solution at the center. The constraint set is
the shaded polytope. The LASSO estimator is the intersection point between the constraint set and the
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Figure 23.9: LASSO Dual Minimization Solution

largest ellipse drawn, and in this example hits a vertex of the constraint set, and so the constrained esti-
mator sets bØ1 = 0. This is a typical outcome in LASSO estimation. Since we are minimizing a quadratic
subject to a polytope constraint, the solution tends to be at vertices which eliminate a subset of the co-
efficients.

The LASSO path is drawn with the dashed line. This is the sequence of solution paths obtained as
the constraint set is varied. The solution path has the property that it is a straight line from the least
squares estimator to the y-axis (in this example), at which point Ø2 is set to zero, and then the solution
path follows the y-axis to the origin. With a general number of coefficients the solution path has a similar
property, where the solution path is linear on segments until each coefficient hits zero, at which point it
is eliminated. In this particular example the solution path shows Ø2 increasing while Ø1 decreases. Thus
while LASSO is a shrinkage estimator it does not necessarily shrink the individual coefficients monoton-
ically.

It is instructive to compare Figures 23.7 and 23.9 which have the same sum of squares contours. The
ridge estimator is generically an interior solution, with no individual coefficient set to zero. The LASSO
estimator typically sets some coefficients equal to zero. However both estimators follow similar solution
paths, following the ridge of the sum of squared criterion rather than taking a direct path towards the
origin.

One case where we can explicitly calculate the LASSO estimates is when the regressors are orthogo-
nal. Suppose that X

0
X = I k and k < n. Then the first order condition for minimization simplifies to

°2
° bØols, j ° bØlasso, j

¢
+∏sgn

° bØlasso, j
¢
= 0

which has the explicit solution

bØlasso, j =

8
><

>:

bØols, j °∏/2 bØols, j >∏/2
0

ØØ bØols, j
ØØ∑∏/2

bØols, j +∏/2 bØols, j <°∏/2
.

Thus the LASSO coefficient is a continuous transformation of the least squares coefficient estimate. For
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small values of the least squares estimate the LASSO estimate is set to zero. For all other values the LASSO
estimate moves the least squares estimate towards zero by ∏/2.

β̂ols

β̂select

(a) Selection

β̂ols

β̂ridge

(b) Ridge

β̂ols

β̂lasso

(c) LASSO

Figure 23.10: Transformations of least squares coefficients by Selection, Ridge, and LASSO estimators

It is constructive to contrast this behavior with ridge regression and selection estimation. When
X

0
X = I k the ridge estimator equals bØridge = (1+∏)°1 bØols so shrinks the coefficients towards zero by

a common multiple. A selection estimator (for simplicity consider selection based on a homoskedastic
t-test with bæ2 = 1 and critical value c) equals bØridge =

°ØØ bØols, j
ØØ> c

¢ bØols, j . Thus the LASSO, ridge, and
selection estimators are all transformations of the least squares coefficient estimator. We illustrate these
transformations in Figure 23.10. Panel (a) displays the selection transformation, panel (b) displays the
ridge transformation, and panel (c) displays the LASSO transformation.

The LASSO and ridge estimators are continuous functions while the selection estimator is a discon-
tinuous function. The LASSO and selection estimators are thresholding functions, meaning that the
function equals zero for a region about the origin. Thresholding estimators are selection estimators,
since they equal zero when the least squares estimator is sufficiently small. The LASSO function is a “soft
thresholding” rule as it is a continuous function with bounded first derivative. The selection estimator
is a “hard thresholding” rule as it is discontinuous. Hard thresholding rules tend to have high variance
due to the discontinuous transformation. Consequently we expect the LASSO to have reduced variance
relative to selection estimators, permitting overall lower MSE.

As for ridge regression LASSO is not invariant to the scaling of the regressors. If you rescale a regressor
then the penalty has a completely different meaning. Consequently it is important to scale the regressors
appropriately before applying LASSO. It is conventional to scale all the variables to have mean zero and
unit variance.

LASSO is also not invariant to rotations of the regressors. For example, LASSO on (X 1, X 2) is not the
same as LASSO on (X 1 °X 2, X 2) despite having identical least-squares solutions. This is troubling as
typically there is no default specification.

Critically important for LASSO estimation is the choice of penalty ∏. The most common choice is
minimization of K-fold cross validation. Leave-one-out CV is not used as it is computationally expensive.
K-fold is a computationally feasible substitute. Many programs set the default number of folds as K = 10,
though some authors use K = 5, while others recommend K = 20. It is common to find that the results of
K-fold CV can be sensitive across runs (the methods depends on the random sorting of the observations).
In this context it is prudent to use a large number of folds K to reduce the randomness.
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23.32 Computation of the LASSO Estimator

The constraint representation of LASSO is minimization of a quadratic subject to linear inequality
constraints, so can be implemented by standard quadratic programming. This is a computationally
simple approach to estimation. For evaluation of the cross-validation function, however, it is useful
to compute the entire LASSO path. For this a computationally appropriate method is the modified LARS
algorithm. (LARS stands for least angle regression.)

The LARS algorithm produces a path of coefficients starting at the origin and ending at least squares
(when k < n). The sequence corresponds to the sequence of constraints ø which can be calculated by
the absolute sum of the coefficients, but these values (nor ∏) is used by the algorithm. The steps are as
follows.

1. Start with all coefficients equal to zero.

2. Find x j most correlated with y .

3. Increase Ø j in the direction of correlation.

(a) Compute residuals along the way.

(b) Stop when some other x` has the same correlation with the residual as x j .

(c) If a non-zero coefficient hits zero, drop from the active set of variables and recompute the
joint least squares direction.

4. Increase (Ø j ,Ø`) in their joint least squares direction until some other xm has the same correlation
with the residual.

5. Repeat until all predictors are in model.

This algorithm produces the LASSO path, but the equality between the two is not immediately appa-
rant so we do not show this here.

23.33 Elastic Net

The difference between LASSO and ridge regression is that the LASSO uses an L1 penalty while ridge
uses an L2 penalty. Since the two procedures both have advantages it seems reasonable that further
improvements can be obtained by taking a compromise between the two. While one might try an Lq

penalty for some 1 < q < 2 it turns out that this is not computationally attractive. Instead, a similar
penalty can be obtained by taking a linear combination of the L1 and L2 penalties. This is typically
written as

SSE
°
Ø,∏,Æ

¢
=

°
y °XØ

¢0 °
y °XØ

¢
+∏

≥
Æ

∞∞Ø
∞∞2

2 + (1°Æ)
∞∞Ø

∞∞
1

¥

for 0 ∑ Æ ∑ 1 and is called the Elastic Net. For Æ = 0 we obtain LASSO and for Æ = 1 we obtain ridge
regression. For small but positive Æ the constraint sets are similar to “rounded” versions of the LASSO
constraint sets.

Typically the parameters (Æ,∏) are selected by joint minimization of the K-fold cross-validation cri-
terion. Since the elastic net penalty is linear-quadratic the solution is computationally similar to LASSO.
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23.34 Regression Sample Splitting

Suppose we have observations
©

yi , xi : i = 1, ...,n
™
. Consider the model

yi =µ1
°
xi ∑ ∞

¢
+µ2

°
xi > ∞

¢
+ei

E [ei | xi ] = 0

where (µ1,µ2,∞) are unknown parameters. This model specifies that the conditional mean of yi is a step
function in xi , taking the value µ1 for small values of xi , the value µ2 for large values of xi , with a step at
xi = ∞. For a regression tree this will be viewed as an approximation and many such splits will be applied,
but for now let’s take the simple case of a single split. To give a concrete example, suppose yi is college
GPA and xi is entrance test score. The model approximates college performance by dividing students
into two groups based on their entrance test score, but the optimal split point is treated as unknown.

The question we explore in this section is how to estimate the parameters (µ1,µ2,∞).
The standard solution is (nonlinear) least squares. The coefficients

°
bµ1, bµ2, b∞

¢
minimize the sum of

squared errors

SSE
°
µ1,µ2,∞

¢
=

nX

i=1

°
yi °µ1

°
xi ∑ ∞

¢
°µ2

°
xi > ∞

¢¢2 .

By nested minimization

b∞= argmin
∞

min
µ1,µ2

SSE
°
µ1,µ2,∞

¢
= argmin

∞
SSE§ °

∞
¢

,

say. The inner minimization holds ∞ fixed. This is a regression on two dummy variables, which has the
simple solution of taking the sample means of the two subsamples. These are

bµ1(∞) =
Pn

i=1 yi
°
xi ∑ ∞

¢

Pn
i=1

°
xi ∑ ∞

¢

bµ2(∞) =
Pn

i=1 yi
°
xi > ∞

¢

Pn
i=1

°
xi > ∞

¢

the sample means for the observations where
°
xi ∑ ∞

¢
and

°
xi > ∞

¢
, respectively. We can write

SSE§ °
∞
¢
=

nX

i=1

°
yi ° bµ1(∞)

°
xi ∑ ∞

¢
° bµ2(∞)

°
xi > ∞

¢¢2 ,

the sum of squared errors after subtracting the split-sample means.
The function SSE§ °

∞
¢

is a step function taking jumps at the sample values of xi . Hence it can be be
minimized by searching over the unique values of the latter. Given the minimizer b∞, the coefficients bµ1

and bµ2 are found by taking the sample means in the two split samples.
In summary, the algorithm for obtaining the least squares coefficient estimates

°
bµ1, bµ2, b∞

¢
is as fol-

lows.

1. Find the unique N ∑ n sample values x j of xi .

2. For each of these values

(a) Set ∞= x j .

(b) Split the sample into two groups: those with xi ∑ ∞ and those with xi > ∞.
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(c) Set bµ1(∞) and bµ2(∞) as the sample mean of yi on each subsample.

(d) Calculate the sum of squared errors SSE§ °
∞
¢

on the full sample.

3. Find b∞ which minimizes SSE§ °
∞
¢
.

4. Split the sample into two groups: those with xi ∑ b∞ and those with xi > b∞.

5. Set bµ1 and bµ2 as the sample mean of yi on each subsample.

This algorithm requires N =O(n) regressions.
Now suppose we have observations

©
yi , x1i , ..., xki : i = 1, ...,n

™
. Consider the model

yi =µ1
°
xdi ∑ ∞

¢
+µ2

°
xdi > ∞

¢
+ei

E [ei | xi ] = 0

where the index d is unknown. This means that there is a single way to split the sample, but it is unknown
which regressor to use. To give a concrete example once again let yi be college GPA and xdi a set of
predictors, such as high school GDP, letters of recommendation, participation in sports, extra curricular
activities, and region of residence. Again the question is how to divide the students into “high expected
performance” and “low expected performance” but it is unknown which predictor is most useful and
which threshold to use. Again the goal is to estimate the coefficients, augmented to include d .

The least squares estimator
°
bµ1, bµ2, b∞, bd

¢
of the coefficients is obtained as a simple extension of the

previous algorithm. We simply add an extra loop by searching across the regressors. The least squares
estimator can be obtained by the following algorithm.

1. For d = 1, ...,k

(a) Perform steps 1-3 of the previous algorithm using variable xdi .

(b) Store the minimized SSE§ (d) = SSE§ °
b∞
¢
.

2. Find bd which minimizes SSE§ (d).

3. Given bd , estimate model as in the previous algorithm.

This algorithm requires
Pk

d=1 Nd = O(kn) regressions, where Nd is the number of unique values of
x j i . In most applications the number of regressions is much less than kn, because many of the regressors
will be discrete.

23.35 Regression Trees

A regression tree is a nonparametric regression using a large number of step functions. The idea is
that if a sufficiently large number of step functions (sample splits) are used then a step function can be a
good approximation to any functional form. Regression trees may be especially useful in regression with
discrete variables, where traditional kernel and series methods are not appropriate.

The literature on regression trees has developed some colorful language to describe the tools, based
on the metaphor of a living tree.

1. A split point is node.

2. A subsample is a branch.
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3. Increasing the set of nodes is growing a tree.

4. Decreasing the set of nodes is pruning a tree.

The basic structure of the regression tree algorithm is to start with zero nodes. Grow a large (non-
parsimonious) tree. Then prune back using an information criterion. The goal of the growth stage is to
develop a rich data-determined tree which has small bias but high variance (due to overparameteriza-
tion). Pruning back is an application of backward stepwise regression, with the goal of reducing over-
parameterization and estimation variance.

The basic regression tree growth algorithm is as follows. Assume the observations are
©

yi , x1i , ..., xki : i = 1, ...,n
™
.

1. Select a maximum number N of nodes.

2. Sequentially apply regression sample splits.

(a) Apply the regression sample split algorithm to split the sample into two groups.

(b) Apply the regression sample split algorithm on each sub-sample.

(c) On each branch b

i. Take the sample mean bµb of yi for observations on the branch.

ii. This is the estimator of the regression function on this branch.

iii. The residuals on the branch are bei = yi ° bµb .

(d) Select the split which produces the lowest sum of squared errors.

(e) Repeat (b)-(d) until there are N nodes (splits).

After the regression tree growth algorithm has been run, the estimated regression is a multi-dimensional
step function with N jump points.

The basic pruning algorithm is as follows.

1. Define the Mallows-type information criterion

C =
nX

i=1
be2

i +ÆN

where N is the number of nodes and Æ is a penalty parameter.

2. Compute the criterion C for the current tree.

3. Use backward stepwise regression to reduce the number of nodes:

(a) Identify the set of terminal nodes (those with no further splits).

(b) Identify the terminal node whose removal most decreases C .

(c) Prune (remove) this node.

(d) If there is no terminal node whose removal decreases C then stop pruning.

(e) Otherwise, repeat (a)-(d).
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The use of the Mallows-type criterion for node selection is presumably used because of its simplicity
even though there is not a strong theoretical case for the criterion. Regression sample splits is a non-
linear regression model for which the traditional Mallows theory does not apply. This means that it is
unclear what is a reasonable choice for Æ. Consequently a typical implementation is to use K-fold cross-
validation to select Æ.

The results of a regression tree are difficult to interpret if you are looking for regression coefficients
(there are none). Rather the output are direct estimates of the conditional mean for sub-populations.
Regression trees are typically used for prediction.

23.36 Bagging

Bagging refers to bootstrap aggregation. We focus here on its use for estimation of a regression
(conditional mean) model. The basic idea is quite simple. You generate a large number B of bootstrap
samples, estimate your regression model on each bootstrap sample, and take the average of the bootstrap
regression estimates. The mean of the bootstrap estimates is the bagging estimator.

Bagging is believed to be useful when the conditional mean estimator has low bias but high variance.
High variance occurs for hard thresholding estimators such as regression trees and model selection. Bag-
ging is a smoothing operation, which introduces bias but reduces variance. The resulting bagging esti-
mator can have lower MSE as a result. Bagging is believed to be less useful for estimators with high bias,
as bagging tends to exaggerate the bias.

We first describe the estimation algorithm. Let m(x) = E
£

yi | x i = x
§

be the conditional mean and
bm(x) an estimator (such as a regression tree). Let bmb(x) be the same estimator constructed on an inde-

pendent bootstrap sample generated by i.i.d. sampling from the observations. The bagging estimator of
m(x) is

bmbag(x) = 1
B

bX

B=1
bmb(x).

23.37 Random Forests

Random forests are a modification of bagged regression trees. The modification is designed to fur-
ther reduce estimation variance. Random forests are currently quite popular in machine learning appli-
cations.

Consider the procedure of applying bagging to regression trees. Since bootstrap samples are similar
to one another the estimated bootstrap regression trees are similar to one another, particularly in the
sense that they will tend to make sample splits on the same variables. This means that conditional on the
sample the bootstrap regression trees are positively correlated. This correlation means that the variance
of the bootstrap average remains high even when the number of bootstrap replications B is large. The
modification proposed by random forests is to decorrelate the bootstrap regression trees by introducing
extra randomness.

The basic random forest alrogithm is as follows.

1. Pick a minimum node size Nmin (recommended to set Nmin = 5).

2. Pick the number of variables m < k to select at random (recommended to set m = k/3).

3. For b = 1, ...,B

(a) Draw a random bootstrap sample.
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(b) Grow a regression tree on the bootstrap sample using the following steps until you have Nmin

nodes:

i. Select m variables at random from the k regressors.

ii. Pick the best variable and node for a regression tree from among these m variables.

iii. Split the sample at the node.

(c) Set bmb(x) as for a regression tree as the sample mean of yi on each branch of the bootstrap
tree.

4. bmrf(x) = 1
B

Pb
B=1 bmb(x).

Using randomization to reduce the number of variables from k to m at each step reduces the corre-
lation across the bootstrapped regression trees and hence reduces the variance of the bootstrap average.

23.38 Ensembling

Ensembling is the term used by the machine learning literature to signify model averaging across
machine learning algorithms. Ensembling is very popular in applied machine learning.

Suppose you have a set of estimators (e.g., CV selection, James-Stein shrinkage, JMA, SBIC, PCA,
kernel regression, series regression, ridge regression, LASSO, regression tree, bagged regression tree, and
random forest). Which should you use? The principle of model averaging suggests that you can do better
by taking a weighted average rather than just selecting one over the other. It is reasonable to expect that
one method may work well with some types of data, and other methods may work well with other types
of data. Can we use the data to inform us about which is the best weighted average?

We briefly describe here one approach for selection of the averaging weights.
Assume you are trying to predict yi and you have M predictors bymi . Consider the regression model

yi = w1 by1i +w2 by2i +·· ·+wM byMi +ei .

The coefficients are the weights. We can estimate the weights by regression of yi on the in-sample fore-
casts. The estimation should not be done by unpenalized least squares as this would simply lead to
putting all weight on the most complicated model. Instead, the recommendation is to estimate the
weights using a LASSO regression to enforce regularity.
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23.39 Technical Proofs*

Proof of Theorem 23.2 We establish the theorem under the simplifying assumptions of the normal linear
regression model with a K £1 coefficient vector Ø and known variance æ2. The likelihood function is

Ln(Ø) =
°
2ºæ2¢°n/2

exp

√

° 1
2æ2

nX

i=1

°
yi °x

0
iØ

¢2

!

.

Evaluated at the MLE bØ this equals

Ln(bØ) =
°
2ºæ2¢°n/2

exp

√

°
Pn

i=1 be2
i

2æ2

!

. (23.36)

Using (8.21) we can write

Ln(Ø) =
°
2ºæ2¢°n/2

exp

√

° 1
2æ2

√
nX

i=1
be2

i +
°bØ°Ø

¢0
X

0
X

°bØ°Ø
¢
!!

= Ln(bØ)exp
µ
° 1

2æ2

°bØ°Ø
¢0

X
0
X

°bØ°Ø
¢∂

.

For a diffuse prior º(Ø) =C the marginal likelihood is

p(y) = Ln(bØ)
Z

exp
µ
° 1

2æ2

°bØ°Ø
¢0

X
0
X

°bØ°Ø
¢∂

C dØ

= Ln(bØ)n°K /2 °
2ºæ2¢K /2

det
µ

1
n

X
0
X

∂°1/2

C

where the final equality is the multivariate normal integral. Rewriting and taking logs

°2log p(y) =°2logLn(bØ)+K logn °K log
°
2ºæ2¢+ logdet

µ
1
n

X
0
X

∂
+ logC

=°2`n(bØ)+K logn +O(1).

This is the theorem. Á

Proof of Theorem 23.3 From (23.13)
Z

g (y) log f (y , bµ)d y =°n
2

log
°
2ºæ2¢° 1

2æ2

nX

i=1

Z°
y °x

0
i
bØ
¢2

g
°
y | x i

¢
d y

=°n
2

log
°
2ºæ2¢° 1

2æ2

nX

i=1

≥
æ2 +

°bØ°Ø
¢0

x i x
0
i

°bØ°Ø
¢¥

=°n
2

log
°
2ºæ2¢° n

2
° 1

2æ2 e
0
Pe.

Thus

T =°2E
∑Z

g (y) log bf (y)d y

∏

= n log
°
2ºæ2¢+n + 1

æ2 E
£
e
0
Pe

§

= n log
°
2ºæ2¢+n +K .
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This is (23.14). The final equality holds under the assumption of conditional homoskedasticity.
Evaluating (23.13) at bØ we obtain the log likelihood

°2logLn(bØ) = n log
°
2ºæ2¢+ 1

æ2

nX

i=1
be2

i

= n log
°
2ºæ2¢+ 1

æ2 e
0
Me.

This has expectation

°E
£
2logLn(bµ)

§
= n log

°
2ºæ2¢+ 1

æ2 E
°
e
0
Pe

¢

= n log
°
2ºæ2¢+n °K .

This is (23.15). The final equality holds under conditional homoskedasticity. Á

Proof of Theorem 23.5 The proof uses Taylor expansions similar to those used for the asymptotic distri-
bution theory of the MLE in nonlinear models. We avoid technical details so this is not a full proof.

Write the model density as f (y ,µ) and the estimated model as bf (y) = f (y , bµ). Recall from (23.12) that
we can write the target T as

T =°2E
£
log f (ey , bµ)

§

where ey is an independent copy of y . Let eµ be the MLE calculated on the sample ey . This is an indepen-
dent copy of bµ. By symmetry we can write T as

T =°2E
£
log f (y , eµ)

§
. (23.37)

Define the Hessian

H =° @

@µ@µ0
E
£
log f (y,µ)

§
> 0.

Now take a second-order Taylor series expansion of the log likelihood log f (y , eµ) about bµ. This is

log f (y , eµ) = log f (y , bµ)+ @

@µ0
log f (y , bµ)

°eµ° bµ
¢
° 1

2

°eµ° bµ
¢0

H
°eµ° bµ

¢
+Op

°
n°1/2¢

= log f (y , bµ)° n
2

°eµ° bµ
¢0

H
°eµ° bµ

¢
+Op

°
n°1/2¢ . (23.38)

The second equality holds because of the first-order condition for the MLE bµ.
If the Op (n°1/2) term in (23.38) is uniformly integrable, (23.37) and (23.38) imply that

T =°E
£
2log f (y , bµ)

§
+E

h
n

°eµ° bµ
¢0

H
°eµ° bµ

¢i
+O

°
n°1/2¢

=°E
£
2logL(bµ)

§
+E

h
n

°eµ°µ
¢0

H
°eµ°µ

¢i
+E

h
n

°bµ°µ
¢0

H
°bµ°µ

¢i

+2E
h

n
°eµ°µ

¢0
H

°bµ°µ
¢i
+O

°
n°1/2¢

=°E
£
2`n(bµ)

§
+E

£
¬2

K

§
+E

£
e¬2

K

§
+O

°
n°1/2¢

=°E
£
2`n(bµ)

§
+2K +O

°
n°1/2¢

where ¬2
K and e¬2

K are chi-square random variables with K degrees of freedom. The second-to-last equal-
ity holds if

n
°bµ°µ

¢0
H

°bµ°µ
¢
°!

d
¬2

K (23.39)
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and the Wald statistic on the left-side of (23.39) is uniformly integrable. The asymptotic convergence
(23.39) holds for the MLE under standard regularity conditions (including correct specification). Á

Proof of Theorem 23.6 Our analysis is conditional on the regressors. For simplicity we write conditional
expectations as unconditional expectations to reduce notational clutter.

Using matrix notation we can write bm °m =° (I n ° A)m + Ae. We can then write the fit as

R = E
£
( bm °m)0 ( bm °m)

§

= E
£
m

0 °
I n ° A

0¢ (I n ° A)m °2m
0 °

I n ° A
0¢

Ae +e
0
A
0
Ae

§

= m
0 °

I n ° A
0¢ (I n ° A)m +æ2 tr

°
A
0
A

¢
.

Notice that this calculation relies on the assumption of conditional homoskedasticity.
Now consider the Mallows criterion. We find that

C§
p = be 0be +2eæ2 tr(A)°e

0
e

= (m +e)0
°

I n ° A
0¢ (I n ° A) (m +e)+2eæ2 tr(A)°e

0
e

= m
0 °

I n ° A
0¢ (I n ° A)m +2m

0 °
I n ° A

0¢ (I n ° A)e +e
0
A
0
Ae °2e

0
Ae +2eæ2 tr(A) .

Taking expectations and using the assumptions of conditional homoskedasticitiy and E
£
eæ2§=æ2

E

h
C§

p

i
= m

0 °
I n ° A

0¢ (I n ° A)m +æ2 tr
°

A
0
A

¢
= R.

This is the result as stated. Á

Proof of Theorem 23.7 Take any two models M1 and M2 where M1 › M
§

and M2 2 M
§

. Let their
information criterion be written as

IC1 =°2`1(bµ1)+ c(n,K1)

IC2 =°2`2(bµ2)+ c(n,K2).

Model M1 is selected over M2 if
LR < c(n,K2)° c(n,K1)

where
LR = 2

°
`2(bµ2)°`(bµ1)

¢

is the likelihood ratio statistic for testing M1 against M2. Since we have assumed that M1 is not a true
model while M2 is true, then LR diverges to+1 at rate n. This means that for anyÆ> 0, n°1+ÆLR °!

p
+1.

Furthermore, the assumptions imply n°1+Æ (c(n,K1)° c(n,K2)) °! 0. Fix "> 0. There is an n sufficiently
large such that n°1+Æ (c(n,K1)° c(n,K2)) < ". Thus

P

h
cM =M1

i
∑P

£
n°1+ÆLR < n°1+Æ (c(n,K2)° c(n,K1))

§

∑P [LR < "]

! 0.

Since this holds for any M1 ›M
§

we deduce that the selected model is in M
§

with probability approach-
ing one. This means that the selection criterion is model selection consistent as claimed. Á
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Proof of Theorem 23.8 Take the setting as described in the proof of Theorem 23.7 but now assume M1 Ω
M2 and M1,M2 2M

§
. The likelihood ratio statistic satisfies LR °!

d
¬2

r where r = K2 °K1. Let

B = limsup
n!1

(c(n,K1)° c(n,K2)) <1.

Letting Fr (u) denote the ¬2
r distribution function

P

h
cM =M2

i
=P [LR > (c(n,K2)° c(n,K1))]

∏P [LR > B ]

!P
£
¬2

r > B
§

= 1°Fr (B)

> 0

since ¬2
r has support over the positive real line and B <1. This shows that the selection criterion asymp-

totically over-selects with positive probability. Á

Proof of Theorem 23.9 Since c(n,K ) = o(n) the procedure is model selection consistent. Take two models
M1,M2 2 M

§
with K1 < K2. Since both models are true then LR = Op (1). Fix " > 0. There is a B <

1 such that LR ∑ B with probability exceeding 1 ° ". By (23.19) there is an n sufficiently large such
that(c(n,K2)° c(n,K1)) > B . Thus

P

h
cM =M2

i
∑P [LR > (c(n,K2)° c(n,K1))]

∑P [LR > B ]

∑ ".

Since " is arbitrary P
h

cM =M2

i
°! 0 as claimed. Á

Proof of Theorem 23.10 First, we examine Rn(K ). Write the predicted values in matrix notation as bmK =
X K bØK = P K y where P K = X K

°
X

0
K X K

¢°1
X

0
K . It is useful to observe that m ° bmK = M K m °P K e where

M K = I K °P K . We find that the prediction risk equals

Rn(K ) = E
£
(m ° bmK )0 (m ° bmK )

§

= E
£
(M K m °P K e)0 (M K m °P K e)

§

= m
0
M K m +E

£
e
0
P K e

§

= m
0
M K m +æ2K .

The choice of regressors affects Rn(K ) through the two terms in the final line. The first term m
0
M K m is

the squared bias due to omitted variables. As K increases this term decreases reflecting reduced omitted
variables bias. The second term æ2K is estimation variance. It is increasing in the number of regressors.
Increasing the number of regressors affects the quality of out-of-sample prediction by reducing the bias
but increasing the variance.

We next examine the adjusted Mallows criterion. We find that

C§
n (K ) = be 0

K beK +2æ2K °e
0
e

= (m +e)0 M K (m +e)+2æ2K °e
0
e

= m
0
M K m +2m

0
M K e °e

0
P K e +2æ2K .
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The next step is to show that

sup
K

ØØØØ
C§

n (K )°Rn(K )

Rn(K )

ØØØØ°!p 0 (23.40)

as n !1. To establish (23.40), observe that

C§
n (K )°Rn(K ) = 2m

0
M K e °e

0
P K e +æ2K .

Pick "> 0 and some sequence Bn !1 such that Bn/
≥
Ropt

n

¥r
! 0. (This is feasible by Assumption 23.1.5.)

By Boole’s inequality (B.24), Whittle’s inequality (B.49), the facts that m
0
M K m ∑ Rn(K ) and Rn(K ) ∏æ2K ,

Bn/
≥
Ropt

n

¥r
! 0, and

P1
K=1 K °r <1

P

∑
sup

K

ØØØØ
m

0
M K e

Rn(K )

ØØØØ> "

∏
∑

1X

K=1
P

∑ØØØØ
m

0
M K e

Rn(K )

ØØØØ> "

∏

∑ C1r

"2r

1X

K=1

ØØm0
M K m

ØØr

Rn(K )2r

∑ C1r

"2r

1X

K=1

1
Rn(K )r

= C1r

"2r

BnX

K=1

1
Rn(K )r + C1r

"2r

1X

K=Bn+1

1
Rn(K )r

∑ C1r

"2r

Bn≥
Ropt

n

¥r + C1r

"2ræ2r

1X

K=Bn+1

1
K r

! 0.

By a similar argument but using Whittle’s inequality (B.50), tr(P K P K ) = tr(P K ) = K , and K ∑æ°2Rn(K )

P

∑
sup

K

ØØØØ
e
0
P K e °æ2K

Rn(K )

ØØØØ> "

∏
∑

1X

K=1
P

∑ØØØØ
e
0
P K e °E

°
e
0
P K e

¢

Rn(K )

ØØØØ> "

∏

∑ C2r

"2r

1X

K=1

tr(P K P K )r

Rn(K )2r

= C2r

"2r

1X

K=1

K r

Rn(K )2r

∑ C1r

"2ræ2r

1X

K=1

1
Rn(K )r

! 0.

Together these imply (23.40).
Finally we show that (23.40) implies (23.20). The argument is similar to the standard consistency

proof for nonlinear estimators. (23.40) states that C§
n (K ) converges uniformly in probability to Rn(K ).

This implies that the minimizer of C§
n (K ) converges in probability to that of Rn(K ). Formally, since K opt

n
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minimizes Rn(K )

0 ∑ Rn( bKn)°Rn(K opt
n )

Rn( bKn)

=
C§

n ( bKn)°Rn(K opt
n )

Rn( bKn)
°

C§
n ( bKn)°Rn( bKn)

°Rn( bKn)

∑
C§

n ( bKn)°Rn(K opt
n )

Rn( bKn)
+op (1)

∑
C§

n (K opt
n )°Rn(K opt

n )

Rn(K opt
n )

+op (1)

∑ op (1).

The second inequality is (23.40). The following uses the facts that bKn minimizes C§
n (K ) and K opt

n mini-
mizes Rn(K ). The final is (23.40). This is (23.20). Á

Before providing the proof of Theorem 23.11 we present two technical results.

Theorem 23.20 The non-central chi-square density function obeys the recur-
sive relationship

fK (x,∏) = K
x

fK+2(x,∏)+ ∏

x
fK+4(x,∏).

The proof of Theorem 23.20 is a straightforward manipulation of the non-central chi-square density
function.

The second technical result is from Bock (1975, Theorems A&B).

Theorem 23.21 If x ª N(µ, I K ) then for any function h (u)

E
£

xh
°
x
0
x
¢§
= µE [h (QK+2)] (23.41)

E
£

x
0
xh

°
x
0
x
¢§
= KE [h (QK+2)]+∏E [h (QK+4)] (23.42)

where ∏= µ0µ and Qr ª ¬2
r (∏), a non-central chi-square random variable with

r degrees of freedom and non-centrality parameter ∏.

Proof of Theorem 23.21 To show (23.41) we first show that for Z ª N(µ,1) then for any function g (u)

E
£
Zg

°
Z2¢§=µE

£
g (Q3)

§
. (23.43)
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Assume µ> 0. Using the change-of-variables y = x2

E
£
Zg

°
Z2¢§=

Z1

°1

x
p

2º
g

°
x2¢exp

µ
°1

2

°
x °µ

¢2
∂

d x

=
Z1

0

y

2
p

2º
e°(y+µ2)/2

≥
e
p

yµ°e°
p

yµ
¥

g
°
y
¢

d y. (23.44)

By expansion and Legendre’s duplication formula

ex °e°x = 2
1X

i=0

x1+2i

(1+2i )!
=
p
ºx

1X

i=0

(x2/2)i

2i i !° (i +3/2)
.

Then (23.44) equals

µ

Z1

0
ye°(y+µ2)/2

1X

i=0

(µ2/2)i y i+1/2

23/2+i i !° (i +3/2)
g

°
y
¢

d y =µ
Z1

0
y f3(y,µ2)g

°
y
¢

d y

=µE
£
g (Q3)

§

where f3(y,∏) is the non-central chi-square density (??) with 3 degrees of freedom. This is (23.43).
Take the j th row of (23.41). Write x

0
x = x2

j + J , where x j ª N(µ j ,1) and J ª ¬2
K°1(∏°µ2

j ) are indepen-
dent. Setting g (u) = h(u + J ) and using (23.44)

E
£
x j h

°
x
0
x
¢§
= E

h
x j h

≥
x2

j + J
¥i

= E
h
E

h
x j g

≥
x2

j

¥
| J

ii

= E
£
µ jE

£
g (Q3) | J

§§

= µ jE [h (Q3 + J )]

= µ jE [h (QK+2)]

which is (23.41). The final equality uses the fact that Q3 + J ªQK+2.
Observe that x

0
x has density fK (x,∏). Using Theorem 23.20

E
£

x
0
x

°
x
0
x
¢§
=

Z1

0
xh(x) fK (x,∏)d x

= K
Z1

0
h(x) fK+2(x,∏)d x +∏

Z1

0
h(x) fK+4(x,∏)d x

= KE [h (QK+2)]+∏E [h (QK+4)]

which is (23.42). Á

Proof of Theorem 23.11 By the quadratic structure we can calculate that

MSE
h
bµ§

i
= E

h≥
bµ°µ° bµ

≥
bµ0bµ ∑ c

¥¥0 ≥bµ°µ° bµ
≥
bµ0bµ ∑ c

¥¥i

= E
h°bµ°µ

¢0 °bµ°µ
¢i
°E

h
bµ0bµ

≥
bµ0bµ ∑ c

¥i
+2E

h
µ0bµ

≥
bµ0bµ ∑ c

¥i

= K °KE [ (QK+2 ∑ c)]°∏E [ (QK+4 ∑ c)]+2∏E [ (QK+2 ∑ c)]

= K + (2∏°K )FK+2 (c,∏)°∏FK+4 (c,∏) .

The third equality uses the two results from Theorem 23.21, setting h(u) = (u ∑ c). Á

Before providing the proof of Theorem 23.12 we present the following useful result.
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Theorem 23.22 If ¡(x) and©(x) are the normal pdf and cdf functions, and ḃ ∏
0, then Z1

°1
© (a +bx)¡(x)d x =©

µ
a

p
1+b2

∂

Proof of Theorem 23.22 Let X and Y be independent N(0,1). Note that Z = Y °bX ª N(0,1+b2). Since
the integral over ¡(x) can be written as an expectation over X , and©(t ) =P [Y ∑ t ],

Z1

°1
© (a +bx)¡(x)d x = E [© (a +bX )]

=P [Y ∑ a +bX ]

=P [Z ∑ a]

=©
µ

a
p

1+b2

∂

as stated. Á

Proof of Theorem 23.12 Without loss of generality we can set E
£

y
§
= 0 so µ =°Øµ. Writing

T =
y °Øx

°
x2 > c

¢
+Øµ

°
x2 ∑ c

¢
+

p
1+Ø2

°
x2 > c

¢

we have

Pr[T ∑ t ] =P
∑

y °Øx
°
x2 > c

¢
+Øµ∑ t

°
x2 ∑ c

¢
+ t

q
1+Ø2

°
x2 > c

¢∏

=P
∑

y ∑
°
t °Øµ

¢ °
x2 ∑ c

¢
+

µ
Ø

°
x °µ

¢
+ t

q
1+Ø2

∂ °
x2 > c

¢∏

= E
∑
©

µ°
t °Øµ

¢ °
x2 ∑ c

¢
+

µ
Ø

°
x °µ

¢
+ t

q
1+Ø2

∂ °
x2 > c

¢∂∏

=©
°
t °Øµ

¢
E
£ °

x2 ∑ c
¢§
+E

∑
©

µ
Ø

°
x °µ

¢
+ t

q
1+Ø2

∂ °
x2 > c

¢∏
. (23.45)

The first term in (23.45) is

©
°
t °Øµ

¢
P

£
x2 ∑ c

§
=©

°
t °Øµ

¢°
©(

p
c °µ)°©(°

p
c °µ)

¢
.

The second term in (23.45) is
Z

x2>c
©

µ
Ø

°
r °µ

¢
+ t

q
1+Ø2

∂
¡(r °µ)dr

=
Z

(x+µ)2>c
©

µ
Øs + t

q
1+Ø2

∂
¡(s)d s

=
Z1

°1
©

µ
Øs + t

q
1+Ø2

∂
¡(s)d s °

Zp
c°µ

°
p

c°µ
©

µ
Øs + t

q
1+Ø2

∂
¡(s)d s

=© (t )°
Zp

c°µ

°
p

c°µ
©

µ
Øs + t

q
1+Ø2

∂
¡(s)d s
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where the last equality uses Theorem 23.22. Adding we obtain the result. Á

Proof of Theorem 23.18 In the following calculations we condition on the regressor matrix X to simplify
notation. In the homoskedastic regression model the bias variance of the ridge estimator is

bias
h
bØridge

i
=

≥°
X

0
X +∏I k

¢°1
X

0
X ° I k

¥
Ø=°∏

°
X

0
X +∏I k

¢°1
Ø.

It’s variance matrix is
var

h
bØridge

i
=

°
X

0
X +∏I k

¢°1 °
æ2

X
0
X

¢°
X

0
X +∏I k

¢°1 .

Hence

mse
h
bØridge

i
= var

h
bØridge

i
+bias

h
bØridge

i
bias

h
bØridge

i0

=
°

X
0
X +∏I k

¢°1 °
æ2

X
0
X

¢°
X

0
X +∏I k

¢°1 +∏2 °
X

0
X +∏I k

¢°1
ØØ0 °

X
0
X +∏I k

¢°1

=
°

X
0
X +∏I k

¢°1 °
æ2

X
0
X +∏2ØØ0¢°

X
0
X +∏I k

¢°1 .

The MSE of the least squares estimator is

mse
£bØols

§
=æ2 °

X
0
X

¢°1

=
°

X
0
X +∏I k

¢°1 °
X

0
X +∏I k

¢
æ2 °

X
0
X

¢°1 °
X

0
X +∏I k

¢°
X

0
X +∏I k

¢°1

=
°

X
0
X +∏I k

¢°1
≥
æ2

X
0
X +2æ2∏I k +æ2∏2 °

X
0
X

¢°1
¥°

X
0
X +∏I k

¢°1 .

Hence

mse
£bØols

§
°mse

h
bØridge

i
=

°
X

0
X +∏I k

¢°1
≥
2æ2∏I k +æ2∏2 °

X
0
X

¢°1 °∏2ØØ0
¥°

X
0
X +∏I k

¢°1

∏
°

X
0
X +∏I k

¢°1 °
2æ2∏I k °∏2ØØ0¢°

X
0
X +∏I k

¢°1 .

The final line is positive definite if and only if 2æ2
I k °∏ØØ0 > 0, which holds since for any Æ0Æ= 1,

Æ0 °2æ2
I k °∏ØØ0¢Æ= 2æ2 °∏

°
Æ0Ø

¢2 ∏ 2æ2 °∏Ø0Ø> 0

the final inequality by the assumption on ∏. Á
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Exercises

Exercise 23.1 Verify equations (23.1)-(23.2).

Exercise 23.2 Prove Theorem 23.1. As part of your derivation, verify equations (23.3) and (23.4).

Exercise 23.3 Find the Mallows criterion for the weighted least squares estimator of a linear regression
yi = x

0
iØ+ei yi = x

0
iØ+ei (assume conditional homoskedasticity).

Exercise 23.4 Backward Stepwise Regression. Verify the claim that for the case of AIC selection, step (b)
of the algorithm can be implemented by calculating the classical (homoskedastic) t-ratio for each active
regressor and find the regressor with the smallest absolute t-ratio.

Hint: Use the relationship between likelihood ratio and F statistics, and the equality between F and
Wald statistics, to show that for tests on one coefficient, the smallest change in the AIC is identical to
identifying the smallest squared t statistic.

Exercise 23.5 Forward Stepwise Regression. Verify the claim that for the case of AIC selection, step (b)
of the algorithm can be implemented by identifying the regressor in the inactive set with the greatest
absolute correlation with the residual from step (a).

Hint: This is challenging. First show that the goal is to find the regressor which will most decrease
SSE = be 0be = kbek2. Use a geometric argument to show that the regressor most parallel to be will most
decreases kbek. Show that this regressor has the greatest absolute correlation with be.

Exercise 23.6 An economist estimates several models, and reports their favorite specification, stating
that “the other specifications had insignificant coefficients”. How should we interpret the reported pa-
rameter estimates and t-ratios?

Exercise 23.7 Verify Theorem 23.13, including (23.24), (23.25), and (23.26).

Exercise 23.8 Under the assumptions of Theorem 23.13, show that b∏ = bµ0V °1bµ°K is an unbiased esti-
mator of ∏= µ0V °1µ

Exercise 23.9 Using the CPS dataset perform an analysis similar to that presented in Section 23.17, but
instead use the sub-sample of Hispanic women. This sample has 3003 observations. Which models
are selected by BIC, AIC, CV and FIC? (The precise information criteria you examine may be limited
depending on your software.) How do you interpret the results? Which model/estimate would you select
as your preferred choice?

Exercise 23.10 Prove Theorem 23.16 for the simpler case of the unadjusted (not positive part) Stein es-
timator eµ, V = I K and r = 0.

Extra challenge: Show under these assumptions that

wmse
£eµ

§
= K ° (q °2)2 Jq (∏R )

∏R = µ0R
°
R

0
R

¢°1
R

0µ

Exercise 23.11 Suppose you have two unbiased estimators bµ1 and bµ2 of a parameter vector bµ with co-
variance matrices V 1 and V 2. Take the goal of minimizing the unweighted mean squared error, e.g. trV 1

for bµ1. Assume that bµ1 and bµ2 are uncorrelated. [This is important.]
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(a) Show that the optimal weighted average estimator equals

1
trV 1

bµ1 + 1
trV 2

bµ2

1
trV 1

+ 1
trV 2

.

(b) Generalize to the case of M unbiased uncorrelated estimators.

(c) Interpret the formulae.

Exercise 23.12 You estimate M linear regressions yi = x
0
miØm + emi by least squares. Let bymi = x

0
mi

bØm
be the fitted values.

(a) Show that the Mallows averaging criterion is the same as

nX

i=1

°
yi °w1 by1i °w2 by2i ° · · ·°wM byMi

¢2 +2æ2
MX

m=1
wmkm .

(b) Assume the models are nested with M the largest model. If the previous criterion were minimized
over w in the probability simplex but the penalty was omitted, what would be the solution? (What
would be the minimizing weight vector?)

Exercise 23.13 You estimate M linear regressions yi = x
0
miØm+emi by least squares. Let eymi = x

0
mi

bØm(°i )
be the predicted values from the leave-one-out regressions. Show that the JMA criterion is the same as

nX

i=1

°
yi °w1 ey1i °w2 ey2i ° · · ·°wM eyMi

¢2 .
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Appendix A

Matrix Algebra

A.1 Notation

A scalar a is a single number.
A vector a is a k £1 list of numbers, typically arranged in a column. We write this as

a =

0

BBBB@

a1

a2
...

ak

1

CCCCA

Equivalently, a vector a is an element of Euclidean k space, written as a 2Rk . If k = 1 then a is a scalar.
A matrix A is a k £ r rectangular array of numbers, written as

A =

2

66664

a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

ak1 ak2 · · · akr

3

77775

By convention ai j refers to the element in the i th row and j th column of A. If r = 1 then A is a column
vector. If k = 1 then A is a row vector. If r = k = 1, then A is a scalar.

A standard convention (which we will follow in this text whenever possible) is to denote scalars by
lower-case italics (a), vectors by lower-case bold italics (a), and matrices by upper-case bold italics (A).
Sometimes a matrix A is denoted by the symbol (ai j ).

A matrix can be written as a set of column vectors or as a set of row vectors. That is,

A =
£

a1 a2 · · · ar
§
=

2

66664

Æ1

Æ2
...
Æk

3

77775

where

ai =

2

66664

a1i

a2i
...

aki

3

77775

820
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are column vectors and
Æ j =

£
a j 1 a j 2 · · · a j r

§

are row vectors.
The transpose of a matrix A, denoted A

0, A
>, or A

t , is obtained by flipping the matrix on its diagonal.
(In most of the econometrics literature, and this textbook, we use A

0, but in the mathematics literature
A
> is the convention.) Thus

A
0 =

2

66664

a11 a21 · · · ak1

a12 a22 · · · ak2
...

...
...

a1r a2r · · · akr

3

77775

Alternatively, letting B = A
0, then bi j = a j i . Note that if A is k £ r , then A

0 is r £k. If a is a k £1 vector,
then a

0 is a 1£k row vector.
A matrix is square if k = r. A square matrix is symmetric if A = A

0, which requires ai j = a j i . A square
matrix is diagonal if the off-diagonal elements are all zero, so that ai j = 0 if i 6= j . A square matrix is
upper (lower) diagonal if all elements below (above) the diagonal equal zero.

An important diagonal matrix is the identity matrix, which has ones on the diagonal. The k £ k
identity matrix is denoted as

I k =

2

66664

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

3

77775
.

A partitioned matrix takes the form

A =

2

66664

A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
...

Ak1 Ak2 · · · Akr

3

77775

where the Ai j denote matrices, vectors and/or scalars.

A.2 Complex Matrices*

Scalars, vectors and matrices may contain real or complex numbers as entries. (However, most
econometric applications exclusively use real matrices.) If all elements of a vector x are real we say that
x is a real vector, and similarly for matrices.

Recall that a complex number can be written as x = a + bi where where i =
p
°1 and a and b are

real numbers. Similarly a vector with complex elements can be written as x = a +bi where a and b are
real vectors, and a matrix with complex elements can be written as X = A +B i where A and B are real
matrices.

Recall that the complex conjugate of x = a +bi is x§ = a °bi . For matrices, the analogous concept is
the conjugate transpose. The conjugate transpose of X = A +B i is X

§ = A
0 °B

0i. It is obtained by taking
the transpose and taking the complex conjugate of each element.
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A.3 Matrix Addition

If the matrices A =
°
ai j

¢
and B =

°
bi j

¢
are of the same order, we define the sum

A +B =
°
ai j +bi j

¢
.

Matrix addition follows the commutative and associative laws:

A +B = B + A

A + (B +C ) = (A +B )+C .

A.4 Matrix Multiplication

If A is k £ r and c is real, we define their product as

Ac = c A =
°
ai j c

¢
.

If a and b are both k £1, then their inner product is

a
0
b = a1b1 +a2b2 +·· ·+ak bk =

kX

j=1
a j b j .

Note that a
0
b = b

0
a. We say that two vectors a and b are orthogonal if a

0
b = 0.

If A is k£r and B is r £ s, so that the number of columns of A equals the number of rows of B , we say
that A and B are conformable. In this event the matrix product AB is defined. Writing A as a set of row
vectors and B as a set of column vectors (each of length r ), then the matrix product is defined as

AB =

2

66664

a
0
1

a
0
2

...
a
0
k

3

77775

£
b1 b2 · · · bs

§

=

2

66664

a
0
1b1 a

0
1b2 · · · a

0
1bs

a
0
2b1 a

0
2b2 · · · a

0
2bs

...
...

...
a
0
k b1 a

0
k b2 · · · a

0
k bs

3

77775
.

Matrix multiplication is not commutative: in general AB 6= B A. However, it is associative and dis-
tributive:

A (BC ) = (AB )C

A (B +C ) = AB + AC .

An alternative way to write the matrix product is to use matrix partitions. For example,

AB =
∑

A11 A12

A21 A22

∏∑
B 11 B 12

B 21 B 22

∏

=
∑

A11B 11 + A12B 21 A11B 12 + A12B 22

A21B 11 + A22B 21 A21B 12 + A22B 22

∏
.
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As another example,

AB =
£

A1 A2 · · · Ar
§

2

66664

B 1

B 2
...

B r

3

77775

= A1B 1 + A2B 2 +·· ·+ Ar B r

=
rX

j=1
A j B j .

An important property of the identity matrix is that if A is k £ r, then AI r = A and I k A = A.
We say two matrices A and B are orthogonal if A

0
B = 0. This means that all columns of A are orthog-

onal with all columns of B .
The k £ r matrix H , r ∑ k, is called orthonormal if H

0
H = I r . This means that the columns of H are

mutually orthogonal, and each column is normalized to have unit length.

A.5 Trace

The trace of a k £k square matrix A is the sum of its diagonal elements

tr(A) =
kX

i=1
ai i .

Some straightforward properties for square matrices A and B and real c are

tr(c A) = c tr(A)

tr
°

A
0¢= tr(A)

tr(A +B ) = tr(A)+ tr(B )

tr(I k ) = k.

Also, for k £ r A and r £k B we have
tr(AB ) = tr(B A) . (A.1)

Indeed,

tr(AB ) = tr

2

66664

a
0
1b1 a

0
1b2 · · · a

0
1bk

a
0
2b1 a

0
2b2 · · · a

0
2bk

...
...

...
a
0
k b1 a

0
k b2 · · · a

0
k bk

3

77775

=
kX

i=1
a
0
i bi

=
kX

i=1
b
0
i ai

= tr(B A) .
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A.6 Rank and Inverse

The rank of the k £ r matrix (r ∑ k)

A =
£

a1 a2 · · · ar
§

is the number of linearly independent columns a j , and is written as rank(A) . We say that A has full rank
if rank(A) = r.

A square k £k matrix A is said to be nonsingular if it is has full rank, e.g. rank(A) = k. This means
that there is no k £1 c 6= 0 such that Ac = 0.

If a square k £k matrix A is nonsingular then there exists a unique matrix k £k matrix A
°1 called the

inverse of A which satisfies
A A

°1 = A
°1

A = I k .

For non-singular A and C , some important properties include

A A
°1 = A

°1
A = I k

°
A
°1¢0 =

°
A
0¢°1

(AC )°1 =C
°1

A
°1

(A +C )°1 = A
°1 °

A
°1 +C

°1¢°1
C

°1

A
°1 ° (A +C )°1 = A

°1 °
A
°1 +C

°1¢°1
A
°1.

If a k £k matrix H is orthonormal (so that H
0
H = I k ), then H is nonsingular and H

°1 = H
0. Further-

more, H H
0 = I k and H

0°1 = H .
Another useful result for non-singular A is known as the Woodbury matrix identity

(A +BC D)°1 = A
°1 ° A

°1
BC

°
C +C D A

°1
BC

¢°1
C D A

°1.

In particular, for C = 1, B = b and D = b
0 for vector b we find what is known as the Sherman–Morrison

formula °
A +bb

0¢°1 = A
°1 °

°
1+b

0
A
°1

b
¢°1

A
°1

bb
0
A
°1.

and similarly using C =°1

°
A °bb

0¢°1 = A
°1 +

°
1°b

0
A
°1

b
¢°1

A
°1

bb
0
A
°1. (A.2)

The following fact about inverting partitioned matrices is quite useful.

∑
A11 A12

A21 A22

∏°1
de f=

∑
A

11
A

12

A
21

A
22

∏
=

∑
A
°1
11·2 °A

°1
11·2 A12 A

°1
22

°A
°1
22·1 A21 A

°1
11 A

°1
22·1

∏
(A.3)

where A11·2 = A11 ° A12 A
°1
22 A21 and A22·1 = A22 ° A21 A

°1
11 A12. There are alternative algebraic representa-

tions for the components. For example, using the Woodbury matrix identity you can show the following
alternative expressions

A
11 = A

°1
11 + A

°1
11 A12 A

°1
22·1 A21 A

°1
11

A
22 = A

°1
22 + A

°1
22 A21 A

°1
11·2 A12 A

°1
22

A
12 =°A

°1
11 A12 A

°1
22·1

A
21 =°A

°1
22 A21 A

°1
11·2.
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Even if a matrix A does not possess an inverse, we can still define the Moore-Penrose generalized
inverse A

° as the matrix which satisfies

A A
°

A = A

A
°

A A
° = A

°

A A
° is symmetric

A
°

A is symmetric.

For any matrix A, the Moore-Penrose generalized inverse A
° exists and is unique.

For example, if

A =
∑

A11 0
0 0

∏

and A
°1
11 exists then

A
° =

∑
A
°1
11 0
0 0

∏
.

A.7 Orthogonal and Orthonormal Matrices

We say that two k £1 vectors h1 and h2 are orthogonal if h
0
1h2 = 0. This means that they are perpen-

dicular.
We say that a k £1 vector h is a unit vector if h

0
h = 1. This means that it has unit length in Rk .

We say that two k £1 vectors h1 and h2 are orthonormal if they are orthogonal unit vectors.
We say that the k £m1 and k £m2 matrices H 1 and H 2 are orthogonal if H

0
1H 2 = 0.

We say that the k£m (k ∏ m) matrix H is orthonormal if H
0
H = I m . This means that the columns of

H are orthonormal. Some call H an orthogonal matrix.
Typically an orthonormal matrix is written as H .
If H is a k £k orthogonal matrix then it has full rank k, H

0
H = I k , H H

0 = I k , and H
°1 = H

0.

A.8 Determinant

The determinant is a measure of the volume of a square matrix. It is written as det A or |A|.
While the determinant is widely used, its precise definition is rarely needed. However, we present the

definition here for completeness. Let A =
°
ai j

¢
be a k£k matrix . Let º=

°
j1, ..., jk

¢
denote a permutation

of (1, ...,k) . There are k ! such permutations. There is a unique count of the number of inversions of the
indices of such permutations (relative to the natural order (1, ...,k) , and let "º = +1 if this count is even
and "º =°1 if the count is odd. Then the determinant of A is defined as

det A =
X

º
"ºa1 j1 a2 j2 · · ·ak jk .

For example, if A is 2£2, then the two permutations of (1,2) are (1,2) and (2,1) , for which "(1,2) = 1
and "(2,1) =°1. Thus

det A = "(1,2)a11a22 +"(2,1)a21a12

= a11a22 °a12a21.
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For a square matrix A, the minor Mi j of the i j th element ai j is the determinant of the matrix ob-
tained by removing the i th row and j th column of A. The cofactor of the i j th element is Ci j = (°1)i+ j Mi j .
An important representation known as Laplace’s expansion relates the determinant of A to its cofactors:

det A =
kX

j=1
ai j Ci j .

This holds for all i = 1, , ..,k. This is often presented as a method for computation of a determinant.

Theorem A.1 Properties of the determinant

1. det(A) = det
°

A
0¢

2. det(c A) = ck det A

3. det(AB ) = det(B A) = (det A) (detB )

4. det
°

A
°1¢= (det A)°1

5. det
∑

A B

C D

∏
= (detD)det

°
A °B D

°1
C

¢
if detD 6= 0

6. det
∑

A B

0 D

∏
= det(A) (detD) and det

∑
A 0
C D

∏
= det(A) (detD)

7. If A is p £q and B is q £p then det
°

I p + AB
¢
= det

°
I q +B A

¢

8. If A and D are invertible then det
°

A °B D
°1

C
¢
= det(A)

det(D)
det

°
D °C A

°1
B

¢

9. det A 6= 0 if and only if A is nonsingular

10. If A is triangular (upper or lower), then det A =Qk
i=1 ai i

11. If A is orthonormal, then det A =±1

12. A
°1 = (det A)°1

C where C = (Ci j ) is the matrix of cofactors

A.9 Eigenvalues

The characteristic equation of a k £k square matrix A is

det(∏I k ° A) = 0.

The left side is a polynomial of degree k in ∏ so it has exactly k roots, which are not necessarily distinct
and may be real or complex. They are called the latent roots, characteristic roots, or eigenvalues of A. If
∏ is an eigenvalue of A, then∏I k°A is singular so there exists a non-zero vector h such that (∏I k ° A)h =
0 or

Ah = h∏.

The vector h is called a latent vector, characteristic vector, or eigenvector of A corresponding to∏. They
are typically normalized so that h

0
h = 1 and thus ∏= h

0
Ah.

Set H = [h1 · · · hk ] and§= diag{∏1, ...,∏k }. A matrix expression is

AH = H§

We now state some useful properties.
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Theorem A.2 Properties of eigenvalues. Let ∏i and hi , i = 1, ...,k, denote the k eigenvalues and eigen-
vectors of a square matrix A.

1. det(A) =Qk
i=1∏i

2. tr(A) =Pk
i=1∏i

3. A is non-singular if and only if all its eigenvalues are non-zero.

4. The non-zero eigenvalues of AB and B A are identical.

5. If B is non-singular then A and B
°1

AB have the same eigenvalues.

6. If Ah = h∏ then (I ° A)h = h(1°∏). So I °A has the eigenvalue 1°∏ and associated eigenvector h.

Most eigenvalue applications in econometrics concern the case where the matrix A is real and sym-
metric. In this case all eigenvalues of A are real and its eigenvectors are mutually orthogonal. Thus H

is orthonormal so H
0
H = I k and H H

0 = I k . When the eigenvalues are all real it is conventional to write
them in decending order ∏1 ∏∏2 ∏ · · ·∏∏k .

The following is a very important property of real symmetric matrices, which follows directly from
the equations AH = H§ and H

0
H = I k .

Theorem A.3 (Spectral Decomposition) If A is a k £ k real symmetric matrix, then A = H§H
0 where

H contains the eigenvectors and § is a diagonal matrix with the eigenvalues on the diagaonal. The
eigenvalues are all real and the eigenvector matrix satisfies H

0
H = I k .

The spectral decomposition can be alternatively written as H
0
AH =§.

If A is real, symmetric, and invertible, then by the spectral decomposition and the properties of or-
thonormal matrices, A

°1 = H
0°1§°1

H
°1 = H§°1

H
0. Thus the columns of H are also the eigenvectors of

A
°1, and its eigenvalues are ∏°1

1 , ∏°1
2 , ..., ∏°1

k .

A.10 Positive Definite Matrices

We say that a k £k real symmetric square matrix A is positive semi-definite if for all c 6= 0, c
0
Ac ∏ 0.

This is written as A ∏ 0. We say that A is positive definite if for all c 6= 0, c
0
Ac > 0. This is written as A > 0.

Some properties include:

Theorem A.4 Properties of positive semi-definite matrices

1. If A =G
0
BG with B ∏ 0 and some matrix G , then A is positive semi-definite. (For any c 6= 0, c

0
Ac =

Æ0
BÆ∏ 0 where Æ=Gc .) If G has full column rank and B > 0, then A is positive definite.

2. If A is positive definite, then A is non-singular and A
°1 exists. Furthermore, A

°1 > 0.

3. A > 0 if and only if it is symmetric and all its eigenvalues are positive.

4. By the spectral decomposition, A = H§H
0 where H

0
H = I k and § is diagonal with non-negative

diagonal elements. All diagonal elements of§ are strictly positive if (and only if) A > 0.

5. The rank of A equals the number of strictly positive eigenvalues.

6. If A > 0 then A
°1 = H§°1

H
0.

7. If A ∏ 0 and rank(A) = r ∑ k then the Moore-Penrose generalized inverse of A is A
° = H§°

H
0

where§° = diag
°
∏°1

1 ,∏°1
2 , ...,∏°1

r ,0, ...,0
¢
.
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A.11 Idempotent Matrices

A k£k square matrix A is idempotent if A A = A. When k = 1 the only idempotent numbers are 1 and
0. For k > 1 there are many possibilities. For example, the following matrix is idempotent

A =
∑

1/2 °1/2
°1/2 1/2

∏
.

If A is idempotent and symmetric with rank r , then it has r eigenvalues which equal 1 and k ° r
eigenvalues which equal 0. To see this, by the spectral decomposition we can write A = H§H

0 where H

is orthonormal and§ contains the eigenvalues. Then

A = A A = H§H
0
H§H

0 = H§2
H

0.

We deduce that§2 =§ and ∏2
i =∏i for i = 1, ...,k. Hence each ∏i must equal either 0 or 1. Since the rank

of A is r , and the rank equals the number of positive eigenvalues, it follows that

§=
∑

I r 0
0 0k°r

∏
.

Thus the spectral decomposition of an idempotent matrix A takes the form

A = H

∑
I r 0
0 0k°r

∏
H

0 (A.4)

with H
0
H = I k . Additionally, tr(A) = rank(A) and A is positive semi-definite.

If A is idempotent and symmetric with rank r < k then it does not possess an inverse, but its Moore-
Penrose generalized inverse takes the simple form A

° = A. This can be verified by checking the condi-
tions for the Moore-Penrose generalized inverse , for example A A

°
A = A A A = A.

If A is idempotent then I ° A is also idempotent.
One useful fact is that if A is idempotent then for any conformable vector c ,

c
0
Ac ∑ c

0
c (A.5)

c
0 (I ° A)c ∑ c

0
c (A.6)

To see this, note that
c
0
c = c

0
Ac +c

0 (I ° A)c .

Since A and I ° A are idempotent, they are both positive semi-definite, so both c
0
Ac and c

0 (I ° A)c are
non-negative. Thus they must satisfy (A.5)-(A.6).

A.12 Singular Values

The singular values of a k £ r real matrix A are the positive square roots of the eigenvalues of A
0
A.

Thus for j = 1, ...,r

s j =
q
∏ j

°
A
0
A

¢
.

Since A
0
A is positive semi-definite, its eigenvalues are non-negative. Thus singular values are always real

and non-negative.
The non-zero singular values of A and A

0 are the same.
When A is positive semi-definite then the singular values of A correspond to its eigenvalues.
It is convention to write the singular values in decending order s1 ∏ s2 ∏ · · ·∏ sr .
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A.13 Matrix Decompositions

There are several useful ways to decompose a matrix into the products of simpler matrices. We have
already introduced the spectral decomposition, which we repeat here for completeness. The following
apply to real matrices A.

Spectral Decomposition: If A is k£k and symmetric then A = H§H
0 where H

0
H = I k and§ is a diagonal

matrix with the (real) eigenvalues on the diagaonal.

Eigendecomposition: If A is k £k and has distinct eigenvalues there exists a nonsingular matrix P such
that A = P§P

°1 and P
°1

AP =§. The columns of P are the eigenvectors. § is diagonal with the eigen-
values on the diagonal.

Matrix Square Root: If A is k £k and positive definite we can find a matrix B such that A = B B
0. We call

B a matrix square root of A and is typically written as B = A
1/2.

The matrix B need not be unique. One matrix square root is obtained using the spectral decom-
position A = H§H

0. Then B = H§1/2
H

0 is itself symmetric and positive definite and satisfies A = B B .
Another matrix square root is the Cholesky decomposition, described in Section A.16.

Singular Value Decomposition: If A is k £ r then A =U§V
0 where U is k £k, § is k £ r and V is r £ r . U

and V are orthonormal (U 0
U = I k and V

0
V = I r ). § is a diagonal matrix with the singular values of A on

the diagonal.

Cholesky Decomposition: If A is k £k and positive definite the A = LL
0 where L is lower triangular and

full rank. See Section A.16.

QR Decomposition: If A is k £ r with k ∏ r and rank r then A =QR . Q is a k £ r and orthonormal matrix
(Q 0

Q = I r ). R is a r £ r full rank upper triangular matrix. See Section A.17.

Jordan Matrix Decomposition: If A is k£k with r unique eigenvalues then A = P J P
°1 where J takes the

Jordan normal form. The latter is a block diagonal matrix J = diag{J 1, ..., J r }. The Jordan blocks J i are
mi £mi where mi is the multiplicity of ∏i (number of eigenvalues equalling ∏i ) and take the form

J i =

2

4
∏i 1 0
0 ∏i 1
0 0 ∏i

3

5

illustrated here for mi = 3.

A.14 Generalized Eigenvalues

Let A and B be k £k matrices. The generalized characteristic equation is

det
°
µB ° A

¢
= 0.

The solutions µ are known as generalized eigenvalues of A with respect to B . Associated with each
generalized eigenvalue µ is a generalized eigenvector v which satisfies

Av = B vµ.
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They are typically normalized so that v
0
B v = 1 and thus µ= v

0
Av .

A matrix expression is
AV = BV M

where M = diag
©
µ1, ...,µk

™
.

If A and B are real and symmetric then the generalized eigenvalues are real.
Suppose in addition that B is invertible. Then the generalized eigenvalues of A with respect to B

are equal to the eigenvalues of B
°1/2

AB
°1/20. The generalized eigenvectors V of A with respect to B are

related to the eigenvectors H of B
°1/2

AB
°1/20 by the relationship V = B

°1/20
H . This implies V

0
BV = I k .

Thus the generalized eigenvectors are orthogonalized with respect to the matrix B .
If Av = B vµ then (B ° A) v = B v (1°µ). So a generalized eigenvalue of B °A with respect to B is 1°µ

with associated eigenvector v .
Generalized eigenvalue equations have an interesting dual property. The following is based on Lemma

A.9 of Johansen (1995).

Theorem A.5 Suppose that B and C are invertible p £p and r £ r matrices, respectively, and A is p £ r .
Then the generalized eigenvalue problems

det
°
µB ° AC

°1
A
0¢= 0 (A.7)

and
det

°
µC ° A

0
B

°1
A

¢
= 0 (A.8)

have the same non-zero generalized eigenvalues. Furthermore, for any such generalized eigenvalue µ, if
v and w are the associated generalized eigenvectors of (A.7) and (A.8), then

w =µ°1/2
C

°1
A
0
v . (A.9)

Proof. Let µ 6= 0 be an eigenvalue of (A.7). Using Theorem A.1.8

0 = det
°
µB ° AC

°1
A
0¢

=
det

°
µB

¢

det(C )
det

≥
C ° A

0 °µB
¢°1

A

¥

= det(B )
det(C )

det
°
µC ° A

0
B

°1
A

¢
.

Since det(B )/det(C ) 6= 0 this implies (A.9) holds. Hence µ is an eigenvalue of (A.8), as claimed.
We next show that (A.9) is an eigenvector of (A.8). Note that the solutions to (A.7) and (A.8) satisfy

B vµ= AC
°1

A
0
v (A.10)

and
C wµ= A

0
B

°1
Aw (A.11)

and are normalized so that v
0
B v = 1 and w

0
C w = 1. We show that (A.9) satisfies (A.11). Using (A.9), we

find that the left-side of (A.11) equals

C
°
µ°1/2

C
°1

A
0¢µ= A

0µ1/2 = A
0
B

°1
B vµ1/2 = A

0
B

°1
AC

°1
A
0
vµ°1/2 = A

0
B

°1
Aw

The third equality is (A.10) and the final is (A.9). This shows that (A.11) holds and thus (A.9) is an eigen-
vector of (A.8) as stated. Á
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A.15 Extrema of Quadratic Forms

The extrema of quadratic forms in real symmetric matrices can be conveniently be written in terms
of eigenvalues and eigenvectors.

Let A denote a k £k real symmetric matrix. Let ∏1 ∏ · · · ∏ ∏k be the ordered eigenvalues of A and
h1, ...,hk the associated ordered eigenvectors.

We start with results for the extrema of x
0
Ax . Throughout this Section, when we refer to the “solution”

of an extremum problem, it is the solution to the normalized expression.

• max
x 0x=1

x
0
Ax = max

x

x
0
Ax

x 0x
=∏1. The solution is x = h1. (That is, the maximizer of x

0
Ax over x

0
x = 1.)

• min
x 0x=1

x
0
Ax = min

x

x
0
Ax

x 0x
=∏k . The solution is x = hk .

Multivariate generalizations can involve either the trace or the determinant.

• max
X

0
X=I`

tr
°

X
0
AX

¢
= max

X

tr
≥°

X
0
X

¢°1 °
X

0
AX

¢¥
=P`

i=1∏i .

The solution is X = [h1, ...,h`].

• min
X

0
X=I`

tr
°

X
0
AX

¢
= min

X

≥°
X

0
X

¢°1 °
X

0
AX

¢¥
=P`

i=1∏k°i+1.

The solution is X = [hk°`+1, ...,hk ].

For a proof, see Theorem 11.13 of Magnus and Neudecker (1988).

Suppose as well that A > 0 with ordered eigenvalues ∏1 ∏∏2 ∏ · · ·∏∏k and eigenvectors [h1, ...,hk ]

• max
X

0
X=I`

det
°

X
0
AX

¢
= max

X

det
°

X
0
AX

¢

det
°

X
0
X

¢ =
Ỳ

i=1
∏i . The solution is X = [h1, ...,h`].

• min
X

0
X=I`

det
°

X
0
AX

¢
= min

X

det
°

X
0
AX

¢

det
°

X
0
X

¢ =
Ỳ

i=1
∏k°i+1. The solution is X = [hk°`+1, ...,hk ].

• max
X

0
X=I`

det
°

X
0 (I ° A) X

¢
= max

X

det
°

X
0 (I ° A) X

¢

det
°

X
0
X

¢ =
Ỳ

i=1
(1°∏k°i+1). The solution is X = [hk°`+1, ...,hk ].

• min
X

0
X=I`

det
°

X
0 (I ° A) X

¢
= min

X

det
°

X
0 (I ° A) X

¢

det
°

X
0
X

¢ =
Ỳ

i=1
(1°∏i ). The solution is X = [h1, ...,h`].

For a proof, see Theorem 11.15 of Magnus and Neudecker (1988).
We can extend the above results to incorporate generalized eigenvalue equations.
Let A and B be k £k real symmetric matrices with B > 0. Let µ1 ∏ · · ·∏µk be the ordered generalized

eigenvalues of A with respect to B and v 1, ..., v k the associated ordered eigenvectors.

• max
x 0B x=1

x
0
Ax = max

x

x
0
Ax

x 0B x
=µ1. The solution is x = v 1.

• min
x 0B x=1

x
0
Ax = min

x

x
0
Ax

x 0B x
=µk . The solution is x = v k .
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• max
X

0
B X=I`

tr
°

X
0
AX

¢
= max

X

tr
≥°

X
0
B X

¢°1 °
X

0
AX

¢¥
=P`

i=1µi .

The solution is X = [v 1, ..., v`].

• min
X

0
B X=I`

tr
°

X
0
AX

¢
= min

X

tr
≥°

X
0
B X

¢°1 °
X

0
AX

¢¥
=P`

i=1µk°i+1.

The solution is X = [v k°`+1, ..., v k ].

Suppose as well that A > 0.

• max
X

0
B X=I`

det
°

X
0
AX

¢
= max

X

det
°

X
0
AX

¢

det
°

X
0
B X

¢ =
Ỳ

i=1
µi .

The solution is X = [v 1, ..., v`].

• min
X

0
B X=I`

det
°

X
0
AX

¢
= min

X

det
°

X
0
AX

¢

det
°

X
0
B X

¢ =
Ỳ

i=1
µk°i+1.

The solution is X = [v k°`+1, ..., v k ].

• max
X

0
B X=I`

det
°

X
0 (I ° A) X

¢
= max

X

det
°

X
0 (I ° A) X

¢

det
°

X
0
B X

¢ =
Ỳ

i=1

°
1°µk°i+1

¢
.

The solution is X = [v k°`+1, ..., v k ].

• min
X

0
B X=I`

det
°

X
0 (I ° A) X

¢
= min

X

det
°

X
0 (I ° A) X

¢

det
°

X
0
B X

¢ =
Ỳ

i=1

°
1°µi

¢
.

The solution is X = [v 1, ..., v`]..

By change-of-variables, we can re-express one eigenvalue problem in terms of another. For example,
let A > 0, B > 0, and C > 0. Then

max
X

det
°

X
0
C AC X

¢

det
°

X
0
C BC X

¢ = max
X

det
°

X
0
AX

¢

det
°

X
0
B X

¢

and

min
X

det
°

X
0
C AC X

¢

det
°

X
0
C BC X

¢ = min
X

det
°

X
0
AX

¢

det
°

X
0
B X

¢ .

A.16 Cholesky Decomposition

For a k £k positive definite matrix A, its Cholesky decomposition takes the form

A = LL
0

where L is lower triangular and full rank. A lower triangular matrix (also known as a left triangular
matrix) takes the form

L =

2

66664

L11 0 · · · 0
L21 L22 · · · 0

...
...

. . .
...

Lk1 Lk2 · · · Lkk

3

77775
.

The diagonal elements of L are all strictly positive. The Cholesky decomposition is unique (for positive
definite A).
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The decomposition is very useful for a range of computations, especially when a matrix square root
is required. Algorithms for computation are available in standard packages (for example, in either
MATLAB or R).

Lower triangular matrices such as L have special properties. One is that its determinant equals the
product of the diagonal elements.

Proofs of uniqueness of the Cholesky decomposition (as well as computation) are algorithmic. Here
are the details for the case k = 3. Write out

2

4
A11 A21 A31

A21 A22 A32

A31 A32 A33

3

5= A = LL
0 =

2

4
L11 0 0
L21 L22 0
L31 L32 L33

3

5

2

4
L11 L21 L31

0 L22 L32

0 0 L33

3

5

=

2

4
L2

11 L11L21 L11L31

L11L21 L2
21 +L2

22 L31L21 +L32L22

L11L31 L31L21 +L32L22 L2
31 +L2

32 +L2
33

3

5 .

There are six equations, six knowns (the elements of A) and six unknowns (the elements of L). We can
solve for the latter by starting with the first column, moving from top to bottom. The first element has
the simple solution

L11 =
p

A11.

This has a real solution since A11 > 0. Moving down, since L11 is known, for the entries beneath L11 we
solve and find

L21 =
A21

L11
= A21p

A11

L31 =
A31

L11
= A31p

A11
.

Next we move to the second column. We observe that L21 is known. Then we solve for L22

L22 =
q

A22 °L2
21 =

s

A22 °
A2

21

A11
.

This has a real solution since A > 0. Then since L22 is known we can move down the column to find

L32 =
A32 °L31L21

L22
=

A32 ° A31 A21
A11r

A22 °
A2

21
A11

.

Finally we take the third column. All elements except L33 are known. So we solve to find

L33 =
q

A33 °L2
31 °L2

32 =

vuuuutA33 °
A2

31

A11
°

≥
A32 ° A31 A21

A11

¥2

A22 °
A2

21
A11

.

A.17 QR Decomposition

The QR decomposition is widely used for numerical problems such as matrix inversion and solving
systems of linear equations.
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Let A be an k £ r matrix, with k ∏ r and rank r . The QR decomposition of A is

A =QR

where Q is a k £r orthonormal matrix and R is a r £r full rank upper triangular matrix (also known as a
right triangular matrix).

To show that the QR decomposition exists, observe that A
0
A is r £ r and positive definite. Apply the

Cholesky decomposition to find
A
0
A = LL

0

where L is lower triangular and full rank. We then set

Q = A
°
L
0¢°1

R = L
0.

The matrix R is upper triangular by construction. Also,

Q
0
Q =

°
L
0¢°10

A
0
A

°
L
0¢°1

= L
°1

LL
0 °

L
0¢°1

= I k

so Q is orthonormal as claimed.
Numerical computation of the QR decomposition does not use the above matrix operations. Instead

it is done algorithmically. Standard methods include the Gram-Schmidt and Householder algorithms.
The Gram-Schmidt is simple to describe and implement, but the Householder is numerically more stable
and is therefore the standard implementation. Since the algorithm is involved we do not describe it here.

A.18 Solving Linear Systems

A linear system of k equations with k unknowns is

a11b1 +a12b2 +·· ·+a1k bk = c1

a21b1 +a22b2 +·· ·+a2k bk = c2

...

ak1b1 +ak2b2 +·· ·+akk bk = ck

or in matrix notation
Ab = c (A.12)

where A is k£k, and b and c are k£1. If A is full rank then the solution b = A
°1

c is unique. In this section
we describe three algorithms to numerically find the solution b. The first uses Gaussian elimination, the
second uses the QR decomposition, and the third uses the Cholesky decomposition for positive definite
A.

(1) Solving by Gaussian elimination
The solution b in (A.12) is invariant to row operations; including multiplying an equation by non-

zero numbers, and adding and subtracting equations from one another. To exploit this insight combine
the known constants A and c into a k £ (k +1) augmented matrix

[A | c] . (A.13)
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The row operations described above are the same as multiplying rows of [A | c] by non-zero numbers, and
adding and subtracting rows of [A | c] from one another. Such operations do not change the solution b.
Gaussian elimination works by applying row operations to [A | c] until the left section equals the identity
matrix I k and thus equals

[I k | d ] . (A.14)

Since row operations do not alter the solution, this means that the solution b in (A.12) also satisfies
I k b = d which implies b = d . Thus the solution b can be found as the right-most vector d in (A.14).

The Gauss-Jordan algorithm implements a sequence of row operations which obtains the solution
for any pair (A.13) such that A is full rank. The algorithm is as follows.

For r = 1, ...,k:

1. Divide the elements of row r by ar r . Thus make the changes

(a) ar i 7! ar i /ar r for i = 1, ...,k

(b) cr 7! cr /ar r

2. For rows j 6= r , subtract a j r times row r from row j . Thus make the changes

(a) a j i 7! a j i °a j r ar i for i = 1, ...,k

(b) c j 7! c j °a j r cr

Each pair of operations transforms a column of the matrix A into an column of the identity matrix
I k , starting with the first column and working sequentially to the right. The first operation (dividing by
ar r ) normalizes the r th diagonal element to unity. The second set of operations makes row operations to
transform the remaining elements of the r th column to equal zero. Since the previous columns are unit
vectors they are unaffected by these operations.

(2) Solving by QR Decomposition
First, compute the QR decomposition

A =QR

where Q is a k £k orthogonal matrix, and R is k £k and upper triangular. This is is done numerically
(typically by the Householder algorithm) as described in Section A.17. This means that (A.12) can be
written as

QRb = c .

Premultiplying by Q
0 and observing Q

0
Q = I k we obtain

Rb =Q
0
c

de f= d .

This system can be written as

r11b1 + r12b2 +·· ·+ r1,k°1bk°2 + r1k bk = d1

r22b2 +·· ·+ r2,k°1bk°2 + r2k bk = d2

...

rk°1,k°1bk°2 + rk°1,k bk = dk°1

rkk bk = dk .
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This can be solved by backwards recursion

bk = dk /rkk

bk°1 =
°
dk°1 ° rk°1,k bk

¢
/rk°1,k°1

...

b1 = (d1 ° r12b2 ° · · ·° r1k bk )/r11.

To summarize, the QR solution method is

1. Numerically compute the QR decomposition A =QR .

2. Calculate d =Q
0
c .

3. Solve for b by backward recursion.

(3) Solving by Cholesky Decomposition for positive definite A

First, compute the Cholesky decomposition

A = LR

where L is k £ k and lower triangular, and R = L
0 is upper triangular. This is is done numerically as

described in Section A.16. This means that (A.12) can be written as

LRb = c .

or
Ld = c

where d = Rb. The vector d can be solved from L and c using forward recursion. The equation

Rb = d

can then be solved for b by backwards recursion.

We have described three algorithms. Which should be used in practice? For positive definite A,
solving by the Cholesky decomposition is the preferred method as it is numerically most efficient and
stable. When A is not positive definite, solving by the QR decomposition is the preferred method as
it is numerically most stable. The advantage of the Gauss-Jordan algorithm is that it is the simplest to
program.

A.19 Algorithmic Matrix Inversion

Numerical methods for solving linear systems can be used to calculate the inverse of a full-rank k£k
matrix A. Let B = A

°1 be the inverse of A. The matrices satisfy

AB = I k

which is a matrix generalization of (A.12). The goal is to solve this system to obtain B .
(1) Solving by Gaussian elimination
Replace c in (A.13) with I k and apply the Gauss-Jordan elimination algorithm. The solution is B .
(2) Solving by QR decomposition
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Numerically compute the QR decomposition

A =QR .

This implies
QRB = I k .

Premultiplying by Q
0 and observing Q

0
Q = I k we obtain

RB =Q
0.

Write B = [b1, ...,bk ] and Q
0 =

£
q 1, ..., q k

§
. For j = 1, ...,k

Rb j = q j .

Since R is upper triangular the vector b j can be found by backwards recursion as described in Section
A.18.

(3) Solving by Cholesky decomposition for positive definite A

Compute the Cholesky decomposition
A = LR

where L is k £k and lower triangular and R = L
0 is upper triangular. This implies

LRB = I k

or
LC = I k

where C = RB . Applying forward recursion one column at a time we can solve for C . We then have

RB =C .

Applying backwards recursion one column at a time we can solve for B .

A.20 Matrix Calculus

Let x = (x1, ..., xk )0 be k £1 and g (x) = g (x1, ..., xk ) :Rk !R. The vector derivative is

@

@x
g (x) =

0

BB@

@
@x1

g (x)
...

@
@xk

g (x)

1

CCA

and
@

@x 0 g (x) =
≥

@
@x1

g (x) · · · @
@xk

g (x)
¥

.

Some properties are now summarized.

Theorem A.6 Properties of matrix derivatives

1. @
@x

°
a
0
x
¢
= @

@x

°
x
0
a

¢
= a

2. @
@x

°
x
0
A

¢
= A and @

@x 0 (Ax) = A
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3. @
@x

°
x
0
Ax

¢
=

°
A + A

0¢
x

4. @2

@x@x 0
°
x
0
Ax

¢
= A + A

0

5. @
@A

tr(B A) = B
0

6. @
@A

logdet(A) = (A
°)0

To show part 1, note that

@

@x j

°
a
0
x
¢
= @

@x j
(a1x1 +·· ·+ak xk ) = a j .

Thus

@

@x

°
a
0
x
¢
=

0

B@
a1
...

ak

1

CA= a

as claimed.

For part 2, write A = [a1, ..., am] so that

@

@x

°
x
0
A

¢
= @

@x

£
x
0
a1, ..., x

0
am

§
=

∑
@

@x

°
x
0
a1

¢
, ...,

@

@x

°
x
0
am

¢∏
= [a1, ..., am] = A

using part 1. @
@x 0 (Ax) = A follows by taking the transpose.

For part 3, notice x
0
Ax = x

0
A
0
x and apply the product rule and then part 2,

@

@x

°
x
0
Ax

¢
= @

@x

°
x
0
I k

¢
Ax + @

@x

°
x
0
A
0¢

x = I k Ax + A
0
x =

°
A + A

0¢
x .

For part 4, applying part 3 we find

@2

@x@x 0
°
x
0
Ax

¢
= @

@x

@

@x 0
°
x
0
Ax

¢
= @

@x
x
0 °

A + A
0¢= A + A

0.

For part 5, recall from Section A.5 that we can write out explicitly

tr(B A) =
X

i

X

j
ai j b j i .

Thus if we take the derivative with respect to ai j we find

@

@ai j
tr(B A) = b j i .

which is the i j th element of B
0, establishing part 5.

For part 6, recall Laplace’s expansion

det A =
kX

j=1
ai j Ci j .
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where Ci j is the i j th cofactor of A. Set C = (Ci j ). Observe that Ci j for j = 1, ...,k are not functions of ai j .
Thus the derivative with respect to ai j is

@

@ai j
logdet(A) = (det A)°1 @

@ai j
det A = (det A)°1 Ci j .

Together this implies
@

@A
logdet(A) = (det A)°1

C = A
°1

where the second equality is Theorem A.1.12.

A.21 Kronecker Products and the Vec Operator

Let A = [a1 a2 · · · an] be m £n. The vec of A, denoted by vec(A) , is the mn £1 vector

vec(A) =

0

BBBB@

a1

a2
...

an

1

CCCCA
.

Let A =
°
ai j

¢
be an m£n matrix and let B be any matrix. The Kronecker product of A and B , denoted

A ≠B , is the matrix

A ≠B =

2

66664

a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

3

77775
.

Some important properties are now summarized. These results hold for matrices for which all matrix
multiplications are conformable.

Theorem A.7 Properties of the Kronecker product

1. (A +B )≠C = A ≠C +B ≠C

2. (A ≠B ) (C ≠D) = AC ≠B D

3. A ≠ (B ≠C ) = (A ≠B )≠C

4. (A ≠B )0 = A
0 ≠B

0

5. tr(A ≠B ) = tr(A) tr(B )

6. If A is m £m and B is n £n, det(A ≠B ) = (det(A))n (det(B ))m

7. (A ≠B )°1 = A
°1 ≠B

°1

8. If A > 0 and B > 0 then A ≠B > 0

9. vec(ABC ) =
°
C

0 ≠ A
¢

vec(B )

10. tr(ABC D) = vec
°
D

0¢0 °
C

0 ≠ A
¢

vec(B )
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A.22 Vector Norms

Given any vector space V (such as Euclidean space Rm) a norm on V is a function Ω : V !R with the
properties

1. Ω (ca) = |c|Ω (a) for any complex number c and a 2V

2. Ω (a +b) ∑ Ω (a)+Ω (b)

3. If Ω (a) = 0 then a = 0.

A seminorm on V is a function which satisfies the first two properties. The second property is known
as the triangle inequality, and it is the one property which typically needs a careful demonstration (as the
other two properties typically hold by inspection).

The typical norm used for Euclidean space Rm is the Euclidean norm

kak=
°
a
0
a

¢1/2 =
√

mX

i=1
a2

i

!1/2

.

An alternative norm is the p°norm (for p ∏ 1)

kakp =
√

mX

i=1
|ai |p

!1/p

.

Special cases include the Euclidean norm (p = 2), the 1°norm

kak1 =
mX

i=1
|ai |

and the sup-norm
kak1 = max(|a1| , ..., |am |) .

For real numbers (m = 1) these norms coincide.

A.23 Matrix Norms

Two common norms used for matrix spaces are the Frobenius norm and the spectral norm. We can
write either as kAk, but may write kAkF or kAk2 when we want to be specific.

The Frobenius norm of an m £k matrix A is the Euclidean norm applied to its elements

kAkF = kvec(A)k

=
°
tr

°
A
0
A

¢¢1/2

=
√

mX

i=1

kX

j=1
a2

i j

!1/2

.

When m £m A is real symmetric then

kAkF =
√

mX

`=1
∏2
`

!1/2
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where ∏`, `= 1, ...,m are the eigenvalues of A. To see this, by the spectral decomposition A = H§H
0 with

H
0
H = I and§= diag{∏1, ...,∏m}, so

kAkF =
°
tr

°
H§H

0
H§H

0¢¢1/2 = (tr(§§))1/2 =
√

mX

`=1
∏2
`

!1/2

. (A.15)

A useful calculation is for any m £1 vectors a and b, using (A.1),

∞∞ab
0∞∞

F = tr
°
ba

0
ab

0¢1/2 =
°
b
0
ba

0
a

¢1/2 = kakkbk

and in particular ∞∞aa
0∞∞

F = kak2 . (A.16)

The spectral norm of an m £k real matrix A is its largest singular value

kAk2 = smax (A) =
°
∏max

°
A
0
A

¢¢1/2

where ∏max (B ) denotes the largest eigenvalue of the matrix B . Notice that

∏max
°

A
0
A

¢
=

∞∞A
0
A

∞∞
2

so
kAk2 =

∞∞A
0
A

∞∞1/2
2 .

If A is m £m and symmetric with eigenvalues ∏ j then

kAk2 = max
j∑m

ØØ∏ j
ØØ .

The Frobenius and spectral norms are closely related. They are equivalent when applied to a matrix
of rank 1, since

∞∞ab
0∞∞

2 = kakkbk=
∞∞ab

0∞∞
F . In general, for m £k matrix A with rank r

kAk2 =
°
∏max

°
A
0
A

¢¢1/2 ∑
√

kX

j=1
∏ j

°
A
0
A

¢
!1/2

= kAkF . (A.17)

Since A
0
A also has rank at most r , it has at most r non-zero eigenvalues, and hence

kAkF =
√

kX

j=1
∏ j

°
A
0
A

¢
!1/2

=
√

rX

j=1
∏ j

°
A
0
A

¢
!1/2

∑
°
r∏max

°
A
0
A

¢¢1/2 =
p

r kAk2 . (A.18)

Given any vector norm kak the induced matrix norm is defined as

kAk= sup
x 0x=1

kAxk= sup
x 6=0

kAxk
kxk .

To see that this is a norm we need to check that it satisfies the triangle inequality. Indeed

kA +Bk= sup
x 0x=1

kAx +B xk ∑ sup
x 0x=1

kAxk+ sup
x 0x=1

kB xk= kAk+kBk .

For any vector x , by the definition of the induced norm

kAxk ∑ kAkkxk
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a property which is called consistent norms.
Let A and B be conformable and kAk an induced matrix norm. Then using the property of consistent

norms
kABk= sup

x 0x=1
kAB xk ∑ sup

x 0x=1
kAkkB xk= kAkkBk .

A matrix norm which satisfies this property is called a sub-multiplicative norm, and is a matrix form of
the Schwarz inequality.

Of particular interest, the matrix norm induced by the Euclidean vector norm is the spectral norm.
Indeed,

sup
x 0x=1

kAxk2 = sup
x 0x=1

x
0
A
0
Ax =∏max

°
A
0
A

¢
= kAk2

2 .

It follows that the spectral norm is consistent with the Euclidean norm, and is sub-multiplicative.



Appendix B

Useful Inequalities

In this Appendix, we list a set of inequalities and bounds which are used frequently in econometric
theory, predominantly in asymptotic analysis. The proofs are presented in Section B.5.

B.1 Inequalities for Real Numbers

Triangle Inequality. For any real numbers x j

ØØØØØ

mX

j=1
x j

ØØØØØ∑
mX

j=1

ØØx j
ØØ . (B.1)

Jensen’s Inequality. If g (·) :R!R is convex, then for any non-negative weights a j such that
Pm

j=1 a j = 1,
and any real numbers x j

g

√
mX

j=1
a j x j

!

∑
mX

j=1
a j g

°
x j

¢
. (B.2)

In particular, setting a j = 1/m, then

g

√
1
m

mX

j=1
x j

!

∑ 1
m

mX

j=1
g

°
x j

¢
. (B.3)

If g (·) :R!R is concave then the inequalities in (B.2) and (B.3) are reversed.

Geometric Mean Inequality. For any non-negative real weights a j such that
Pm

j=1 a j = 1, and any non-
negative real numbers x j

xa1
1 xa2

2 · · ·xam
m ∑

mX

j=1
a j x j . (B.4)

Loève’s cr Inequality. For any real numbers x j , if 0 < r ∑ 1
ØØØØØ

mX

j=1
x j

ØØØØØ

r

∑
mX

j=1

ØØx j
ØØr (B.5)

and if r ∏ 1 ØØØØØ

mX

j=1
x j

ØØØØØ

r

∑ mr°1
mX

j=1

ØØx j
ØØr . (B.6)

843
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For the important special case m = 2 we can combine these two inequalities as

|a +b|r ∑Cr
°
|a|r +|b|r

¢
(B.7)

where Cr = max
£
1,2r°1§.

Norm Monotonicity. If 0 < t ∑ s, and any real numbers x j

ØØØØØ

mX

j=1

ØØx j
ØØs

ØØØØØ

1/s

∑
ØØØØØ

mX

j=1

ØØx j
ØØt

ØØØØØ

1/t

. (B.8)

B.2 Inequalities for Vectors

Triangle Inequality. If a = (a1, ..., am)0

kak ∑
mX

j=1

ØØa j
ØØ . (B.9)

c2 Inequality. For any m £1 vectors a and b,

(a +b)0 (a +b) ∑ 2a
0
a +2b

0
b. (B.10)

Hölder’s Inequality. If p > 1, q > 1, and 1/p +1/q = 1, then for any m £1 vectors a and b,

ØØa
0
b

ØØ∑ kakp kbkq . (B.11)

Schwarz Inequality. For any m £1 vectors a and b,

ØØa
0
b

ØØ∑ kakkbk . (B.12)

Minkowski’s Inequality. For any m £1 vectors a and b, if p ∏ 1, then

ka +bkp ∑ kakp +kbkp . (B.13)

Triangle Inequality. For any m £1 vectors a and b,

ka +bk ∑ kak+kbk . (B.14)
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B.3 Inequalities for Matrices

Schwarz Matrix Inequality. For any m £ k and k £m matrices A and B , and either the Frobenius or
spectral norm,

kABk ∑ kAkkBk . (B.15)

Triangle Inequality. For any m £k matrices A and B , and either the Frobenius or spectral norm,

kA +Bk ∑ kAk+kBk . (B.16)

Trace Inequality. For any m £m matrices A and B such that A is symmetric and B ∏ 0

tr(AB ) ∑ kAk2 tr(B ) . (B.17)

Quadratic Inequality. For any m £1 b and m £m symmetric matrix A

b
0
Ab ∑ kAk2 b

0
b. (B.18)

Strong Schwarz Matrix Inequality. For any conformable matrices A and B

kABkF ∑ kAk2 kBkF . (B.19)

Norm Equivalence. For any m £k matrix A of rank r

kAk2 ∑ kAkF ∑
p

r kAk2 . (B.20)

Eigenvalue Product Inequality. For any m£m real symmetric matrices A ∏ 0 and B ∏ 0, the eigenvalues
∏` (AB ) are real and satisfy

∏min (A)∏min (B ) ∑∏` (AB ) ∑∏max (A)∏max (B ) . (B.21)

(Zhang and Zhang, 2006, Corollary 11).

B.4 Probabability Inequalities

Monotone Probability Inequality. For any events A and B such that A Ω B ,

P [A] ∑P [B ] . (B.22)

Inclusion-Exclusion Principle. For any events A and B ,

P [A[B ] =P [A]+P [B ]°P [A\B ] . (B.23)

Boole’s Inequality (Union Bound). For any events A and B ,

P [A[B ] ∑P [A]+P [B ] . (B.24)
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Bonferroni’s Inequality. For any events A and B ,

P [A\B ] ∏P [A]+P [B ]°1. (B.25)

Expectation Equality. If x is a non-negative random variable then

E [x] =
Z1

0
P [x > u]du. (B.26)

Jensen’s Inequality. If g (·) : Rm ! R is convex, then for any random vector x for which Ekxk < 1 and
E

ØØg (x)
ØØ<1,

g (E [x]) ∑ E
£
g (x)

§
. (B.27)

If g (·) is concave the inequality is reversed.

Conditional Jensen’s Inequality. If g (·) :Rm !R is convex, then for any random vectors
°

y , x
¢

for which
E

∞∞y

∞∞<1 and E
∞∞g

°
y
¢∞∞<1,

g (E
£

y | x
§
) ∑ E

£
g

°
y
¢
| x

§
. (B.28)

If g (·) is concave the inequality is reversed.

Conditional Expectation Inequality. For any r ∏ 1 such that E
ØØy

ØØr <1, then

E
£ØØE(y | x)

ØØr §
∑ E

£ØØy
ØØr §

<1. (B.29)

Expectation Inequality. If EkY k<1 then

kE(Y )k ∑ EkY k . (B.30)

Hölder’s Inequality. If p > 1 and q > 1 and 1
p + 1

q = 1, then for any random m £n matrices X and Y ,

E

∞∞X
0
Y

∞∞∑
°
EkX kp¢1/p °

EkY kq¢1/q . (B.31)

Cauchy-Schwarz Inequality. For any random m £n matrices X and Y ,

E

∞∞X
0
Y

∞∞∑
°
EkX k2¢1/2 °

EkY k2¢1/2
. (B.32)

Matrix Cauchy-Schwarz Inequality. Tripathi (1999). For any random x 2Rm and y 2R`,

E
£

y x
0§°
E
£

x x
0§¢°

E
£

x y
0§∑ E

£
y y

0§ . (B.33)

Minkowski’s Inequality. For any random m £n matrices X and Y ,
°
EkX +Y kp¢1/p ∑

°
EkX kp¢1/p +

°
EkY kp¢1/p . (B.34)

Lyapunov’s Inequality. For any random m £n matrix X and 0 < r ∑ p,
°
EkX kr ¢1/r ∑

°
EkX kp¢1/p . (B.35)
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Markov’s Inequality (standard form). For any random vector x , non-negative function g (x) ∏ 0, and
"> 0

P
£
g (x) > "

§
∑ "°1

E
£
g (x)

§
. (B.36)

Markov’s Inequality (strong form). For any random vector x , non-negative function g (x) ∏ 0, and "> 0

P
£
g (x) > "

§
∑ "°1

E
£
g (x)

°
g (x) > "

¢§
. (B.37)

Chebyshev’s Inequality. For any random variable x and "> 0

P (|x °E [x]| > ") ∑ "°2 var[x] . (B.38)

Bernstein’s Inequality. If xi are independent random variables, E [xi ] = 0,æ2 =Pn
i=1E

£
x2

i

§
and |xi |∑ M <

1, then for all "> 0

P

"ØØØØØ

nX

i=1
xi

ØØØØØ> "

#

∑ 2exp
µ
° "2

2æ2 +2M"/3

∂
. (B.39)

Bernstein’s Inequality for vectors. If x i = (x1i , ..., xmi )0 are independent random vectors, E [x i ] = 0, æ2 =
max j

Pn
i=1E

h
x2

j i

i
and

ØØx j i
ØØ∑ M <1, then for all "> 0

P

"ØØØØØ

nX

i=1
x i

ØØØØØ> "

#

∑ 2m exp
µ
° "2

2m2æ2 +2mM"/3

∂
. (B.40)

Sub-Gaussian Inequality. If xi are independent random variables, E [xi ] = 0, and |xi |∑ ai , then for any
∏> 0

E

"

exp

√

∏
nX

i=1
xi

!#

∑ exp

√
∏2 Pn

i=1 a2
i

2

!

. (B.41)

Hoeffding’s Inequality. If xi are independent random variables, E [xi ] = 0, and |xi | ∑ ai , then for any
"> 0

P

"
nX

i=1
xi > "

#

∑ exp

√

° "2

2
Pn

i=1 a2
i

!

, (B.42)

Simple Inequality. If X and Y are independent and mean zero then

E
£
|X +Y |r

§
∑ Br

°
E |X |r +E |Y |r

¢
. (B.43)

where Br = 1 for 0 < r ∑ 1, Br = 2r°1 for 1 < r ∑ 2, Br = 2 for 2 ∑ r ∑ 3, and Br = 2r°2 for r > 3.

Difference Inequality. If X and Y are independent and identically distributed then for any 0 < r ∑ 2

E
£
|X °Y |r

§
∑ 2E

£
|X |r

§
. (B.44)

Bahr-Esseen Inequality. If xi are independent and E [xi ] = 0, then for any 0 < r ∑ 2

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

∑ 2
nX

i=1
E |xi |r . (B.45)
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Some of the following inequalities make use of Rademacher random variables "i which are two-point
discrete variables, independent of the observations, satisfying

P ["i = 1] = 1
2

P ["i =°1] = 1
2

.

Symmetrization Inequality. If xi are independent and E [xi ] = 0, then for any r ∏ 1

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

∑ DrE

ØØØØØ

nX

i=1
xi"i

ØØØØØ

r

(B.46)

where "i are independent Rademacher random variables (independent of xi ), Dr = 2 for 1 ∑ r ∑ 2, and
Dr = 2r for r > 2.

Khintchine’s Inequality. If "i are independent Rademacher random variables, then for any r > 0 and
any real numbers ai

E

ØØØØØ

nX

i=1
ai"i

ØØØØØ

r

∑ Kr

√
nX

i=1
a2

i

!r /2

. (B.47)

where Kr = 1 for r ∑ 2 and Kr = 2r /2° ((r +1)/2))/º1/2 for r ∏ 2.

Marcinkiewicz-Zygmund Inequality. If xi are independent and E [xi ] = 0 then for any r ∏ 1

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

∑ MrE

ØØØØØ

nX

i=1
x2

i

ØØØØØ

r /2

. (B.48)

where Mr = Dr Kr with Dr and Kr from the symmetrization and Khintchine inequalities.

Whittle’s Inequalities. (Whittle, 1960) If xi are independent, E [xi ] = 0 and for some r ∏ 2, E |xi |r ∑ B1r <
1, then there is a constant C1r <1 such that for any real numbers ai

E

ØØØØØ

nX

i=1
ai xi

ØØØØØ

r

∑C1r

ØØØØØ

nX

i=1
a2

i

ØØØØØ

r /2

. (B.49)

Furthermore, if E |xi |2r ∑ B2r <1, then there is a constant C2r <1 such that for any real n £n matrix A

and writing x = (x1, ..., xn)0.
E

ØØx
0
Ax °E

£
x
0
Ax

§ØØr ∑C2r tr
°

A
0
A

¢r /2 . (B.50)

Our proof shows that we can set C1r = Mr B1r and C2r = 4r Kr C 1/2
1r B 1/2

2r where Mr and Kr are from the
Marcinkiewicz-Zygmund and Khinchine inequalities.

Rosenthal’s Inequality. For any r > 0 there is a constant Rr < 1 such that if xi are independent and
E [xi ] = 0 then

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

∑ Rr

(√
nX

i=1
E
£
x2

i

§
!r /2

+
nX

i=1
E |xi |r

)

. (B.51)

Our proof establishes that (B.51) holds with Rr = 2r (r°2)/8Mr where Mr is from the Marcinkiewicz-Zygmund
inequality.

For a generalization of Rosenthal’s inequality to the matrix case see B. Hansen (2015).
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Maximal Inequality. For any r ∏ 1, if xi are independent, E [xi ] = 0, and E |xi |r <1, then for all "> 0

P

"

max
1∑ j∑n

ØØØØØ

jX

i=1
xi

ØØØØØ> "

#

∑ "°r
E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

. (B.52)

Kolmogorov’s Inequality. If xi are independent, E [xi ] = 0, and E
£
x2

i

§
<1, then for all "> 0

P

"

max
1∑ j∑n

ØØØØØ

jX

i=1
xi

ØØØØØ> "

#

∑ "°2
nX

i=1
E
£
x2

i

§
. (B.53)

Doob’s Inequality. For any r > 1, if xi are independent, E [xi ] = 0, and E |xi |r <1, then

E

"

max
1∑ j∑n

ØØØØØ

jX

i=1
xi

ØØØØØ

r #

∑
≥ r

r °1

¥r
E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

. (B.54)

Ottaviani’s Inequality. Set Si =
Pi

j=1 x j . If xi are independent, then for any "> 0

P

∑
max

1∑i∑n
|Si | > "

∏
∑ P [|Sn | > "/2]

1°max1∑i∑nP [|Sn °Si | > "/2]
. (B.55)
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B.5 Proofs*

Proof of Triangle Inequality (B.1). Take the case m = 2. Observe that

° |x1|∑ x1 ∑ |x1|
° |x2|∑ x2 ∑ |x2| .

Adding, we find
° |x1|° |x2|∑ x1 +x2 ∑ |x1|+ |x2|

which is (B.1) for m = 2. For m > 2, we apply (B.1) m °1 times. Á

Proof of Jensen’s Inequality (B.2). By the definition of convexity, for any ∏ 2 [0,1]

g (∏x1 + (1°∏) x2) ∑∏g (x1)+ (1°∏) g (x2) . (B.56)

This implies

g

√
mX

j=1
a j x j

!

= g

√

a1x1 + (1°a1)
mX

j=2

a j

1°a1
x j

!

∑ a1g (x1)+ (1°a1) g

√
mX

j=2
b j x j

!

where b j = a j /(1°a1) and
Pm

j=2 b j = 1. By another application of (B.56) this is bounded by

a1g (x1)+ (1°a1)

√

b2g (x2)+ (1°b2)g

√
mX

j=2
c j x j

!!

= a1g (x1)+a2g (x2)+ (1°a1)(1°b2)g

√
mX

j=2
c j x j

!

where c j = b j /(1°b2). By repeated application of (B.56) we obtain (B.2). Á

Proof of Geometric Mean Inequality (B.4). Since the logarithm is strictly concave, by Jensen’s inequality
(B.2)

log
°
xa1

1 xa2
2 · · ·xam

m
¢
=

mX

j=1
a j log x j ∑ log

√
mX

j=1
a j x j

!

.

Applying the exponential yields (B.4). Á

Proof of Loève’s cr Inequality (B.5). For r ∏ 1 this is a rewriting of Jensen’s inequality (B.3) with g (u) = ur .

For r < 1, define b j =
ØØx j

ØØ/
≥Pm

j=1

ØØx j
ØØ
¥

. The facts that 0 ∑ b j ∑ 1 and r < 1 imply b j ∑ br
j and thus

1 =
mX

j=1
b j ∑

mX

j=1
br

j .

This implies √
mX

j=1
x j

!r

∑
√

mX

j=1

ØØx j
ØØ
!r

∑
mX

j=1

ØØx j
ØØr .

Á
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Proof of Norm Monotonicity (B.8). Set yi =
ØØx j

ØØs and r = t/s ∑ 1. The cr inequality (B.5) impliesØØØ
Pm

j=1 y j

ØØØ
r
∑Pm

j=1 yr
j or

ØØØØØ

mX

j=1

ØØx j
ØØs

ØØØØØ

t/s

∑
mX

j=1

ØØx j
ØØt .

Raising both sides to the power 1/t yields (B.8). Á

Proof of Triangle Inequality (B.9). Apply the cr inequality (B.5) with r = 1/2 to find

kak=
ØØØØØ

mX

j=1
a2

j

ØØØØØ

1/2

∑
mX

j=1

ØØa j
ØØ .

Á

Proof of c2 Inequality (B.10). By the cr inequality (B.6) with r = 2,
°
a j +b j

¢2 ∑ 2a2
j +2b2

j . Thus

(a +b)0 (a +b) =
mX

j=1

°
a j +b j

¢2

∑ 2
mX

j=1
a2

j +2
mX

j=1
b2

j

= 2a
0
a +2b

0
b.

Á

Proof of Hölder’s Inequality (B.11). Without loss of generality assume
Pm

j=1

ØØa j
ØØp = kakp

p = 1 and
Pm

j=1

ØØb j
ØØq =

kbkq
q = 1. By the geometric mean inequality (B.4)

ØØa j b j
ØØ∑

ØØa j
ØØ ØØb j

ØØ∑
ØØa j

ØØp

p
+

ØØb j
ØØq

q
. (B.57)

By the Triangle inequality (B.1), (B.57), the assumptions
Pm

j=1

ØØa j
ØØp = 1,

Pm
j=1

ØØb j
ØØq = 1 and 1/p +1/q = 1

ØØa
0
b

ØØ=
ØØØØØ

mX

j=1
a j b j

ØØØØØ

∑
mX

j=1

ØØa j b j
ØØ

∑
mX

j=1

√ØØa j
ØØp

p
+

ØØb j
ØØq

q

!

= 1
p
+ 1

q

= 1

which is (B.11). Á

Proof of Schwarz Inequality (B.12). This is a special case of Hölder’s inequality (B.11) with p = q = 2.

ØØa
0
b

ØØ∑
mX

j=1

ØØa j b j
ØØ∑ kakkbk .
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Á
Proof of Minkowski’s Inequality (B.13). Set q = p/(p °1) so that 1/p +1/q = 1. Using the triangle in-
equality for real numbers (B.1) and two applications of Hölder’s inequality (B.11)

ka +bkp
p =

mX

j=1

ØØa j +b j
ØØp

=
mX

j=1

ØØa j +b j
ØØ ØØa j +b j

ØØp°1

∑
mX

j=1

ØØa j
ØØ ØØa j +b j

ØØp°1 +
mX

j=1

ØØb j
ØØ ØØa j +b j

ØØp°1

∑ kakp

√
mX

j=1

ØØa j +b j
ØØ(p°1)q

!1/q

+kbkp

√
mX

j=1

ØØa j +b j
ØØ(p°1)q

!1/q

=
°
kakp +kbkp

¢
ka +bkp°1

p

Solving, we find (B.13). Á

Proof of Triangle Inequality (B.14). This is Minkowski’s inequality (B.13) with p = 2. Á

Proof of Schwarz Matrix Inequality (B.15). The inequality holds for the spectral norm since it is an
induced norm. Now consider the Frobenius norm. Partition A

0 = [a1, ..., an] and B = [b1, ...,bn]. Then
by partitioned matrix multiplication, the definition of the Frobenius norm and the Schwarz inequality
(B.12)

kABkF =

∞∞∞∞∞∞∞

a
0
1b1 a

0
1b2 · · ·

a
0
2b1 a

0
2b2 · · ·

...
...

. . .

∞∞∞∞∞∞∞
F

∑

∞∞∞∞∞∞∞

ka1kkb1k ka1kkb2k · · ·
ka2kkb1k ka2kkb2k · · ·

...
...

. . .

∞∞∞∞∞∞∞
F

=
√

mX

i=1

mX

j=1
kaik2 ∞∞b j

∞∞2

!1/2

=
√

mX

i=1
kaik2

!1/2 √
mX

i=1
kbik2

!1/2

=
√

kX

i=1

mX

j=1
a

2
j i

!1/2 √
mX

i=1

kX

j=1

∞∞b j i
∞∞2

!1/2

= kAkF kBkF .

Á

Proof of Triangle Inequality (B.16). The inequality holds for the spectral norm since it is an induced
norm. Now consider the Frobenius norm. Let a = vec(A) and b = vec(B ) . Then by the definition of the
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Frobenius norm and the triangle inequality (B.14)

kA +BkF = kvec(A +B )kF

= ka +bk
∑ kak+kbk
= kAkF +kBkF .

Á

Proof of Trace Inequality (B.17). By the spectral decomposition for symmetric matices, A = H§H
0

where § has the eigenvalues ∏ j of A on its diagonal and H is orthonormal. Define C = H
0
B H which

has non-negative diagonal elements C j j since B is positive semi-definite. Then

tr(AB ) = tr(§C ) =
mX

j=1
∏ j C j j ∑ max

j

ØØ∏ j
ØØ

mX

j=1
C j j = kAk2 tr(C )

where the inequality uses the fact that C j j ∏ 0. Note that

tr(C ) = tr
°

H
0
B H

¢
= tr

°
H H

0
B

¢
= tr(B )

since H is orthonormal. Thus tr(AB ) ∑ kAk2 tr(B ) as stated. Á

Proof of Quadratic Inequality (B.18). In the trace inequality (B.17) set B = bb
0 and note tr(AB ) = b

0
Ab

and tr(B ) = b
0
b. Á

Proof of Strong Schwarz Matrix Inequality (B.19). By the definition of the Frobenius norm, the property
of the trace, the trace inequality (B.17) (noting that both A

0
A and B B

0 are symmetric and positive semi-
definite), and the Schwarz matrix inequality (B.15)

kABkF =
°
tr

°
B

0
A
0
AB

¢¢1/2

=
°
tr

°
A
0
AB B

0¢¢1/2

∑
°∞∞A

0
A

∞∞
2 tr

°
B B

0¢¢1/2

= kAk2 kBkF .

Á

Proof of Norm Equivalence (B.20). The first inequality was established in (A.17), and the second in
(A.18). Á

Proof of Monotone Probability Inequality (B.22). See Introduction to Econometrics, Theorem 1.2.4.
Á

Proof of Inclusion-Exclusion Principle (B.23). See Introduction to Econometrics, Theorem 1.2.5. Á

Proof of Boole’s Inequality (B.29). See Introduction to Econometrics, Theorem 1.2.6. Á

Proof of Bonferrroni’s Inequality (B.25). See Introduction to Econometrics, Theorem 1.2.7. Á

Proof of Expectation equality (B.26). See Introduction to Econometrics, Theorem 2.15. Á
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Proof of Jensen’s Inequality (B.27). See Introduction to Econometrics, Theorem 2.9. Á

Proof of Conditional Jensen’s Inequality (B.28). Apply Jensen’s inequality to the conditional distribu-
tion. Á

Proof of Conditional Expectation Inequality (B.29). As the function |u|r is convex for r ∏ 1, the condi-
tional Jensen’s inequality (B.28) implies

ØØE
£

y | x
§ØØr ∑ E

£ØØy
ØØr | x

§
.

Taking unconditional expectations and the law of iterated expectations, we obtain

E
£ØØE

£
y | x

§ØØr §
∑ E

£
E
£ØØy

ØØr | x
§§

= E
£ØØy

ØØr §
<1

as required. Á

Proof of Expectation Inequality (B.30). By the triangle inequality (B.16), for ∏ 2 [0,1],

k∏U 1 + (1°∏)U 2k ∑∏kU 1k+ (1°∏)kU 2k

which shows that the matrix norm g (U ) = kUk is convex. Applying Jensen’s inequality (B.27) we find
(B.30). Á

Proof of Hölder’s Inequality (B.31). See Introduction to Econometrics, Theorem 4.15. Á

Proof of Cauchy-Schwarz Inequality (B.32). See Introduction to Econometrics, Theorem 4.11. Á

Proof of Matrix Cauchy-Schwarz Inequality (B.33). Define e = y°E
£

y x
0§°
E
£

x x
0§¢°

x . Note that E
£
ee

0§∏
0 is positive semi-definite. We can calculate that

E
£
ee

0§= E
£

y y
0§°

°
E
£

y x
0§¢°

E
£

x x
0§¢°

E
£

x y
0§ .

Since the left-hand-side is positive semi-definite, so is the right-hand-side. This means

E
£

y y
0§∏ E

£
y x

0§°
E
£

x x
0§¢°

E
£

x y
0§

as stated. Á

Proof of Minkowski’s Inequality (B.34). See Introduction to Econometrics, Theorem 4.16. Á

Proof of Lyapunov’s Inequality (B.35). See Introduction to Econometrics, Theorem 2.11. Á

Proof of Markov’s Inequality (B.36) and (B.37). See Introduction to Econometrics, Theorem 7.3. Á

Proof of Chebyshev’s Inequality (B.38). See Introduction to Econometrics, Theorem 7.1. Á

Proof of Bernsteins’s Inequality (B.39). We first show

P

"
nX

i=1
xi > "

#

∑ exp
µ
° "2

2æ2 +2M"/3

∂
. (B.58)
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Set t = "/
°
æ2 +M"/3

¢
> 0. Using Markov’s inequality (B.36) the left side of (B.58) equals

P

"

exp

√

t
nX

i=1
xi

!

> exp(t")

#

∑ e°t"
E

"

exp

√

t
niX

i=1
xi

!#

= e°t"
nY

i=1
E
£
exp(t xi )

§
. (B.59)

The exponential function equals

exp(x) = 1+x +
1X

k=2

xk

k !
= 1+x + x2

2
g (x)

where g (x) = 2
P1

k=2
xk°2

k ! . Notice for x < 3 the fact k ! ∏ 2£3k°2 implies

g (x) = 2
1X

k=2

xk°2

k !
∑

1X

k=2

xk°2

3k°2
= 1

1°x/3
.

Then since t xi ∑ t M < 3,

E
£
exp(t xi )

§
= 1+E

"
t 2x2

i

2
g (t xi )

#

∑ 1+
t 2
E
£
x2

i

§

2(1° t M/3)
∑ exp

√
t 2
E
£
x2

i

§

2(1° t M/3)

!

.

This means that the right side of (B.59) is less than

exp

√

°t"+ t 2æ2

2(1° t M/3)

!

= exp
µ
° "2

2æ2 +2M"/3

∂

the equality using the defintion t = "/
°
æ2 +M"/3

¢
. This establishes (B.58).

Replacing xi with °xi in the above argument we obtain

P

"
nX

i=1
xi <°"

#

∑ exp
µ
° "2

2æ2 +2M"/3

∂
. (B.60)

Together, (B.58) and (B.60) establish (B.39). Á

Proof of Bernsteins’s Inequality for vectors (B.40). By the triangle inequality (B.9), Boole’s inequality
(B.24), and then Bernstein’s inequality (B.39)

P

"∞∞∞∞∞

nX

i=1
x i

∞∞∞∞∞> "

#

∑P
"

mX

j=1

ØØØØØ

nX

i=1
x j i

ØØØØØ> "

#

∑P
"

m[

j=1

√ØØØØØ

nX

i=1
x j i

ØØØØØ> "/m

!#

∑
mX

j=1
P

"ØØØØØ

nX

i=1
x j i

ØØØØØ> "/m

#

∑ 2m exp
µ
° ("/m)2

2æ2 +2M ("/m)/3

∂

which is (B.40). Á
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Proof of Sub-Gaussian Inequality (B.41). Using the definition of the exponential function and the fact
(2k)! ∏ 2k k ! we find that

exp(°u)+exp(u)
2

= 1
2

1X

k=0

1
k !

≥
(°u)k +uk

¥

=
1X

k=0

u2k

(2k)!

∑
1X

k=0

°
u2/2

¢k

k !

= exp
µ

u2

2

∂
. (B.61)

Set yi = (ai °xi )/2ai . Note that ∏xi = yi (°∏ai )+ (1° yi )∏ai . By the convexity of the exponential
function

exp(∏xi ) = exp
°
yi (°∏ai )+ (1° yi )∏ai

¢

∑ yi exp(°∏ai )+ (1° yi )exp(∏ai ).

Taking expectations, using E
£

yi
§
= 1/2, and then (B.61), we find that

E
£
exp(∏xi )

§
∑ E

£
yi

§
exp(°∏ai )+ (1°E

£
yi

§
)exp(∏ai )

= exp(°∏ai )+exp(∏ai )
2

∑ exp

√
∏2a2

i

2

!

. (B.62)

Since the xi are independent, and then applying (B.62),

E

"

exp

√

∏
nX

i=1
xi

!#

=
nY

i=1
E
£
exp(∏xi )

§
∑

nY

i=1
exp

√
∏2a2

i

2

!

= exp

√
∏2 Pn

i=1 a2
i

2

!

. (B.63)

This is (B.41). Á

Proof of Hoeffding’s Inequality (B.42). Set ∏ = "/
Pn

i=1 a2
i . Using Markov’s inequality (B.36), the sub-

Gaussian inequality (B.41), and the definition of ∏

P

"
nX

i=1
xi > "

#

=P
"

exp

√

∏
nX

i=1
xi

!

> exp(∏")

#

∑ exp(°∏")E

"

exp

√

∏
nX

i=1
xi

!#

∑ exp(°∏")exp

√
∏2 Pn

i=1 a2
i

2

!

= exp

√

° "2

2
Pn

i=1 a2
i

!

.

This is (B.42). Á
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Proof of Simple Inequality (B.43). For 0 < r ∑ 2 (B.43) holds by an application of the cr inequality (B.7).
For 2 < r ∑ 3 by the cr inequality (B.5), the independence of X and Y , and the assumption that they are
mean zero

E |X +Y |r = E
£
|X +Y |r°2 |X +Y |2

§

∑ E
£°
|X |r°2 +|Y |r°2¢°X 2 +2X Y +Y 2¢§

= E |X |r +2E
£
|X |r°1 Y

§
+E

£
|X |r°2 Y 2§

+E |Y |r +2E
£
|Y |r°1 X

§
+E

£
|Y |r°2 X 2§

= E |X |r +E |Y |r +E
£
|X |r°2 Y 2§+E

£
|Y |r°2 X 2§ . (B.64)

Using the geometric mean inequality (B.4) and Lyapunov’s inequality (B.35)

E
£
|X |r°2 Y 2§∑ r °2

r

°
E |X |r°2¢r /(r°2) +

µ
2
r
E
£
Y 2§

∂r /2

and similarly

E
£
|Y |r°2 X 2§∑ r °2

r

°
E |Y |r°2¢r /(r°2) +

µ
2
r
E
£

X 2§
∂r /2

.

Hence (B.64) is bounded by 2(E |X |r +E |Y |r ) as claimed.
For r > 3 instead of (B.5) use (B.5) which increases the bound by the factor 2r°3 so that the constant

is 2r°2. Á

Proof of Difference Inequality (B.44). For r = 2 (B.44) holds by direct calculation so we assume 0 < r < 2.
We start with a characterization of an absolute moment. Define the generalized cosine integral

K (r ) =
Z1

0
t°(r+1) (1°cos(t ))d t (B.65)

which is finite for 0 < r < 2. Making the change of variable t = sx and rearranging, we obtain

|x|r = K (r )°1
Z1

0
t°(r+1) (1°cos(t x))d t .

Thus for any random variable X and 0 < r < 2

E |X |r = K (r )°1
Z1

0
t°(r+1) (1°R(t ))d t (B.66)

where R(t ) = E [cos(t X )], the real part of the characteristic function of X .
Let C (t ) denote the characteristic function of X and let R(t ) denote its real part. Since X and Y are

independent and have the same distribution, the characteristic function of X °Y is C (t )C (°t ) = |C (t )|2.
The facts |C (t )|2 ∏ |R(t )|2 and |R(t )|∑ 1 imply

1° |C (t )|2 ∑ 1°R(t )2 = (1°R(t )) (1+R(t )) ∑ 2(1°R(t )) (B.67)

Using the characterization (B.66), (B.67), and then (B.66) again we find that

E |X °Y |r = K (r )°1
Z1

0
t°(r+1) °1° |C (t )|2

¢
d t

∑ 2
nX

i=1
K (r )°1

Z1

0
t°(r+1) (1°R(t ))d t

= 2E |X |r
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which is (B.44). Á

Proof of Bahr-Esseen Inequality (B.45). Our proof is taken from von Bahr and Esseen (1965). For 0 < r ∑
1 (B.45) holds by the cr inequality (B.5). For r = 2, (B.45) holds by independence and direct calculation.
We thus focus on the case 1 < r < 2.

Let yi be an independent copy of xi and let Ey denote expectation over yi . Since xi and yi have the
same distribution, Ey

£
yi

§
= 0. Thus using Jensen’s inequality (B.27) since |u|r is convex for r ∏ 1,

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

= E
ØØØØØEy

nX

i=1

°
xi ° yi

¢
ØØØØØ

r

∑ E
"

Ey

ØØØØØ

nX

i=1

°
xi ° yi

¢
ØØØØØ

r #

= E
ØØØØØ

nX

i=1
zi

ØØØØØ

r

(B.68)

where the final equality sets zi = xi ° yi .
Let Ci (t ) denote the characteristic function of xi , and let Ri (t ) denote its real part. Since xi and yi are

independent and have the same distribution, the characteristic function of zi is Ci (t )Ci (°t ) = |Ci (t )|2.

Since the zi are mutually independent, the characteristic function of
Pn

i=1 zi is
nY

i=1
|Ci (t )|2, which is real.

We next employ the following inequality. If |ai |∑ 1 then

1°
nY

i=1
ai ∑

nX

i=1
(1°ai ) . (B.69)

To establish (B.69) first do so for n = 2, and then apply induction. The inequality follows from 0 ∑
(1°a1)(1°a2) = 1°a1 °a2 +a1a2 and rearranging. Since |Ci (t )|∑ 1 (B.69) implies

1°
nY

i=1
|Ci (t )|2 ∑

nX

i=1

°
1° |Ci (t )|2

¢
. (B.70)

Recalling the characterization (B.66) and the fact that the the characteristic function of
Pn

i=1 zi is
nY

i=1
|Ci (t )|2,

applying (B.70), and then using (B.66) again

E

ØØØØØ

nX

i=1
zi

ØØØØØ

r

= K (r )°1
Z1

0
t°(r+1)

√

1°
nY

i=1
|Ci (t )|2

!

d t

∑
nX

i=1
K (r )°1

Z1

0
t°(r+1) °1° |Ci (t )|2

¢
d t

=
nX

i=1
E |zi |r

∑ 2
nX

i=1
E |zi |r .

The final inequality is (B.44) since zi = xi°yi where xi and yi are independent with the same distribution.
Combined with (B.68) this is (B.45). Á
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Proof of Symmetrization Inequality (B.46). Let yi be an independent copy of xi . As shown in (B.68)

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

∑ E
ØØØØØ

nX

i=1

°
xi ° yi

¢
ØØØØØ

r

. (B.71)

Let "i be an independent Rademacher random variable. Since xi ° yi is symmetrically distributed about
0, it has the same distribution as "i

°
xi ° yi

¢
. Thus (B.71) equals

E

ØØØØØ

nX

i=1
"i

°
xi ° yi

¢
ØØØØØ

r

= E
"

Ex y

ØØØØØ

nX

i=1
"i xi °

nX

i=1
"i yi

ØØØØØ

r #

(B.72)

where Ex y denotes expectations over xi and yi only. Conditional on {"i }, the two sums in (B.72) are
independent and identically distributed. For r ∑ 2 we employ the difference inequality (B.44) and for
r > 2 the cr inequality (B.6) . This bounds (B.72) by

DrE

ØØØØØ

nX

i=1
"i xi

ØØØØØ

r

which is (B.46). Á

Proof of Khintchine’s Inequality (B.47). For r ∑ 2 by Lyapunov’s inequality (B.35)

√

E

ØØØØØ

nX

i=1
ai"i

ØØØØØ

r !1/r

∑
√

E

ØØØØØ

nX

i=1
ai"i

ØØØØØ

2!1/2

=
√

nX

i=1
E
£
a2

i "
2
i

§
!1/2

=
√

nX

i=1
a2

i

!1/2

which is (B.47) with Kr = 1.
Take r ∏ 2. Let bi = ai /

°Pn
i=1 a2

i

¢1/2 so
Pn

i=1 b2
i = 1. Then

E

ØØØØØ

nX

i=1
ai"i

ØØØØØ

r

=
√

nX

i=1
a2

i

!r /2

E

ØØØØØ

nX

i=1
bi"i

ØØØØØ

r

. (B.73)

We show below that the expectation is bounded by replacing the bi with the common value n°1/2. Thus

E

ØØØØØ

nX

i=1
bi"i

ØØØØØ

r

∑ E
ØØØØØ

1
p

n

nX

i=1
"i

ØØØØØ

r

(B.74)

∑ limsup
n!1

E

ØØØØØ
1
p

n

nX

i=1
"i

ØØØØØ

r

= E |Z |r = 2r /2° ((r +1)/2))/º1/2

The second-to-last equality follows from the central limit theorem and the fact that "i are bounded and
thus uniformly integrable. The final equality is Theorem 5.1.4. Together with (B.73) this is (B.47) with
Kr = 2r /2° ((r +1)/2))/º1/2.

The proof is completed by showing (B.74). Without loss of generality assume bi ∏ 0 and are ordered
ascending, so that b1 is the smallest and bn is the largest. The argument below shows that the left side of

(B.74) is increased if we replace b1 and bn by the common value
q°

b2
1 +b2

n
¢

/2 (which does not alter the

sum
Pn

i=1 b2
i ). Iteratively this implies (B.74).
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Set S =Pn°1
i=2 bi"i . Then

E

"ØØØØØ

nX

i=1
bi"i

ØØØØØ

r ØØØØØ S

#

= E
£
|b1"1 +bn"n +S|r

ØØ S
§

= 1
4

£
|b1 +bn +S|r +|b1 °bn +S|r +|°b1 +bn +S|r +|°b1 °bn +S|r

§

= g (u1)+ g (u2) (B.75)

where

g (u) = 1
4

°ØØS +
p

u
ØØr +

ØØS °
p

u
ØØr ¢

u1 = (b1 +bn)2

u2 = (bn °b1)2 .

The function g (u) is convex on u ∏ 0 since S ∏ 0 and r ∏ 2. (For a formal proof see Whittle (1960, Lemma
1.) Set c = 2

°
b2

1 +b2
n
¢
. We find

g (u1)+ g (u2) = g
≥u1

c
w1 + (1° u1

c
)0

¥
+ g

≥u2

c
c + (1° u2

c
)0

¥

∑ u1

c
g (c)+ (1° u1

c
)g (0)+ u2

c
g (c)+ (1° u2

c
)g (0)

= g (c)+ g (0) .

The inequality is two applications of Jensen’s (B.2) and the final equality is u1 +u2 = c. Combined with
(B.75) we have shown that

E

"ØØØØØ

nX

i=1
bi"i

ØØØØØ

r ØØØØØ S

#

∑ g (c)+ g (0) .

The right-hand-side is (B.75) when b1 = bn =
p

c/2.
This means that the left side of (B.74) can be increased by replacing b1 and bn by the common valuep

c/2 as described earlier. Iteratively, we replace the smallest and largest bi by their common value, with
each step increasing the expectation. In the limit we obtain (B.74). Á

Proof of Marcinkiewicz-Zygmund Inequality (B.48). Let "i be independent Rademacher random vari-
ables. Let Ex and E" denote expectations over xi and "i , respectively. By the symmetrization inequality
(B.46)

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

∑ DrE

ØØØØØ

nX

i=1
"i xi

ØØØØØ

r

= DrEx

"

E"

ØØØØØ

nX

i=1
"i xi

ØØØØØ

r #

. (B.76)

The expectation E" treats xi as fixed, so we can apply Khintchine’s inequality (B.47). Thus (B.76) is
bounded by

Dr KrEx

√
nX

i=1
x2

i

!r /2

= Dr KrE

√
nX

i=1
x2

i

!r /2

.

This is (B.48). Á
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Proof of Whittle’s Inequality (B.49). By the Marcinkiewicz-Zygmund inequality (B.48), Minkowski’s in-
equality (B.34) and E |xi |r ∑ B1r

E

ØØØØØ

nX

i=1
ai xi

ØØØØØ

r

∑ MrE

ØØØØØ

nX

i=1
a2

i x2
i

ØØØØØ

r /2

∑ Mr

√
nX

i=1
a2

i

°
E |xi |r

¢2/r

!r /2

∑ B1r Mr

√
nX

i=1
a2

i

!r /2

.

which is (B.49) with C1r = B1r Mr as claimed. Á

Proof of Whittle’s Inequality (B.50). As shown in (B.68)

E

ØØx
0
Ax °E

°
x
0
Ax

¢ØØr ∑ E
ØØx

0
Ax ° y

0
Ay

ØØr (B.77)

where y = (y1, ..., yn)0 is an independent copy of x . We can write

°
x + y

¢0
A

°
x ° y

¢
= ª0

°
x ° y

¢

where ª= A
°
x + y

¢
.

Independence implies exchangeability, which implies the distribution of xi °yi conditional on xi +yi

is symmetric about the origin. To see this formally, by exchangeability

P
£
xi ° yi ∑ u | xi + yi = v

§
=P

£
yi °xi ∑ u | yi +xi = v

§

= 1°P
£

yi °xi > u | yi +xi = v
§

= 1°P
£
xi ° yi <°u | xi + yi = v

§

=P
£
xi ° yi ∏°u | xi + yi = v

§

which is the definition of a symmetric distribution. Thus we can write xi ° yi = ¥i"i where ¥i =
ØØxi ° yi

ØØ
and "i is an independent Rademacher random variable.

Denote the i th element of ª as ªi = a
0
i

°
x + y

¢
where a

0
i is the i th column of A. Then ª0

°
x ° y

¢
=Pn

i=1 ªi¥i"i . Applying Khintchine’s inequality

E

ØØx
0
Ax ° y

0
Ay

ØØr = E
ØØØØØ

nX

i=1
ªi¥i"i

ØØØØØ

r

∑ KrE

"√
nX

i=1
ª2

i ¥
2
i

!r /2#

∑ Kr

√
nX

i=1

°
E
£
|ªi |r

ØØ¥i
ØØr §¢2/r

!r /2

∑ Kr

√
nX

i=1

°
E
£
ª2r

i

§¢1/r °
E
£
¥2r

i

§¢1/r
!r /2

. (B.78)

The first inequality is Minkowski’s (B.34), the second is Cauchy-Schwarz (B.32). Observe that

E
£
¥2r

i

§
∑ 22r

E
£
x2r

i

§
∑ 22r B2r .
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By Whittle’s first inequality (B.49)

E
£
ª2r

i

§
= E

ØØØØØ

nX

j=1
a j i

°
x j + y j

¢
ØØØØØ

2r

∑ 22r C1r

√
nX

j=1
a2

j i

!r

.

Hence (B.78) is bounded by

4r Kr C 1/2
1r B 1/2

2r

√
nX

i=1

nX

j=1
a2

j i

!r /2

= 4r Kr C 1/2
1r B 1/2

2r

≥
tr

°
A
0
A

¢r /2
¥r /2

.

This is (B.50) with C2r = 4r Kr C 1/2
1r B 1/2

2r . Á

Proof of Rosenthal’s Inequality (B.51). Define µs =
Pn

i=1E |xi |s for any s > 0.
Take 0 < r ∑ 2. By Lyapunov’s inequality (B.35)

√

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r !1/r

∑
√

E

ØØØØØ

nX

i=1
xi

ØØØØØ

2!1/2

=µ1/2
2 .

Raising to the power r implies (B.51). For the remainder assume r > 2.
By the Marcinkiewicz-Zygmund inequality (B.48)

E

ØØØØØ

nX

i=1
xi

ØØØØØ

r

∑ MrE |Sn |r /2 . (B.79)

where Sn =Pn
i=1 x2

i . For any i , using the cr inequality (B.7)

|Sn |r /2°1 =
ØØØØØxi +

X

j 6=i
x j

ØØØØØ

r /2°1

∑ cr /2°1

√

|xi |r /2 +
ØØØØØ
X

j 6=i
x j

ØØØØØ

r /2°1!

Thus

E |Sn |r /2 = E
£
Sn |Sn |r /2°1§

=
nX

i=1
E
£
x2

i |Sn |r°2§

∑ cr /2°1

nX

i=1
E

"

x2
i

√

|xi |r /2 +
ØØØØØ
X

j 6=i
x j

ØØØØØ

r /2°1!#

∑ cr /2°1

√
nX

i=1
E |xi |r +

nX

i=1
E

"

x2
i

ØØØØØ
X

j 6=i
x2

j

ØØØØØ

r /2°1#!

= cr /2°1

√

µr +
nX

i=1
E
£
x2

i

§
E

ØØØØØ
X

j 6=i
x2

j

ØØØØØ

r /2°1!

∑ cr /2°1
°
µr +µ2E |Sn |r /2°1¢ . (B.80)

The second-to-last line holds since x2
i is independent of

P
j 6=i x2

j .The final inequality holds since
P

j 6=i x2
j ∑

Sn and
Pn

i=1E
£
x2

i

§
=µ2.
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Suppose 2 ∑ r ∑ 4. Then r /2°1 ∑ 1. By Jensen’s inequality (B.27) E |Sn |r /2°1 ∑ (E |Sn |)r /2°1 = µr /2°1
2 .

Also, cr /2°1 = 1. Together, we can bound (B.80) by
Pn

i=1E |xi |r +µr /2
2 . This implies

E |Sn |r /2 ∑
nX

i=1
E |xi |r +µr /2

2 . (B.81)

We now establish
E |Sn |s/2 ∑ 2s(s°2)/8 °

µs +µs/2
2

¢
(B.82)

for all s ∏ 2 by a recursive argument. (B.81) shows that (B.82) holds for 2 ∑ s ∑ 4. We now show that (B.82)
for s = r °2 implies (B.82) for s = r . Take r > 4. Using (B.80), cr /2°1 = 2r /2°2 and (B.82)

E |Sn |r /2 ∑ 2r /2°2 °
µr +µ2E |Sn |r /2°1¢

∑ 2r /2°2
≥
µr +µ22(r°2)(r°4)/8

≥
µr°2 +µ(r°2)/2

2

¥¥

∑ 2r /2°22(r°2)(r°4)/8 °
µr +µ2µr°2 +µr /2

2

¢

= 2r (r°2)/8°1 °
µr +µ2µr°2 +µr /2

2

¢
.

Using Hölder’s inequality (B.31), Hölder’s inequality for vectors (B.11), and the geometric mean inequal-
ity (B.4)

µ2µr°2 ∑µ2

nX

i=1

°
E
£
x2

i

§¢2/(r°2) °
E |xi |r

¢(r°4)/(r°2)

∑µ2

√
nX

i=1
E
£
x2

i

§
!2/(r°2) √ nX

i=1
E |xi |r

!(r°4)/(r°2)

=µr /(r°2)
2 µ(r°4)/(r°2)

r

∑ 2
r °2

µr /2
2 + r °4

r °2
µr

∑µr /2
2 +µr .

Together
E |Sn |r /2 ∑ 2r (r°2)/8 °

µr +µr /2
2

¢

which is (B.82) for s = r . This shows that (B.82) holds for all s ∏ 2.
(B.79) and (B.82) imply (B.51) for r > 2. Á

Proof of Maximal Inequality (B.52). Set Si =
Pi

j=1 x j . Note that since the observations are independent
and mean zero

E [Sn | x1, ..., xi ] =
iX

j=1
x j = Si .

By the conditional Jensen’s inequality (B.28), since |u|r is convex

|Si |r = |E [Sn | x1, ..., xi ]|r ∑ E
£
|Sn |r | x1, ..., xi

§
. (B.83)

Let Ai be the event that |Si | is the first
ØØS j

ØØ which strictly exceeds ". Formally

Ai =
Ω
|Si | > ",max

j<i

ØØS j
ØØ∑ "

æ
. (B.84)
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These events are disjoint. Their union is

A =
n[

i=1
Ai =

Ω
max
i∑n

|Si | > "

æ
.

By the same method as to prove Markov’s inequality (B.36)

"r
P [A] =

nX

i=1
"r
E [ (Ai )]

∑
nX

i=1
E
£
|Si |r (Ai )

§

∑
nX

i=1
E
£
E
£
|Sn |r | x1, ..., xi

§
(Ai )

§

=
nX

i=1
E
£
E
£
|Sn |r (Ai ) | x1, ..., xi

§§

=
nX

i=1
E
£
|Sn |r (Ai )

§

= E
£
|Sn |r (A)

§
(B.85)

∑ E |Sn |r .

The second inequality is (B.83). The following equalities use the conditioning theorem, the law of iterated
expectations, and the definition of the event A.

In our proof of Doob’s inequality below we will also (B.85) which can be written as

P

"

max
1∑ j∑n

ØØØØØ

jX

i=1
xi

ØØØØØ> "

#

∑ "°r
E

"ØØØØØ

nX

i=1
xi

ØØØØØ

r √

max
1∑ j∑n

ØØØØØ

jX

i=1
xi

ØØØØØ> "

!#

. (B.86)

Á

Proof of Kolmogorov’s Inequality (B.53). By the maximal inequality (B.52) and the independence as-
sumption

P

"

max
1∑ j∑n

ØØØØØ

jX

i=1
xi

ØØØØØ> "

#

∑ "°2
E

"√
nX

i=1
xi

!2#

= "°2
nX

i=1
æ2

i .

Á

Proof of Doob’s Inequality (B.54). Define Si =
Pi

j=1 x j and Rn = max1∑i∑n |Si |. Using the expectation
equality (B.26), the strong maximal inequality (B.86), and Hölder’s Inequality (B.31)

E
£
Rr

n
§
=

Z1

0
P

°
Rr

n > u
¢

du

=
Z1

0
P

°
Rn > u1/r ¢

du

∑
Z1

0
u°1/r

E
£
|Sn |

°
Rn > u1/r ¢§

du

∑ E
∑
|Sn |

ZRr
n

0
u°1/r du

∏

= r
r °1

E
£
|Sn |Rr°1

n
§

∑ r
r °1

°
E |Sn |r

¢1/r °
E
£
Rr

n
§¢(r°1)/r .
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Solving, we find

E
£
Rr

n
§
∑

≥ r
r °1

¥r
E |Sn |r

which is (B.54). Á

Proof of Ottaviani’s Inequality (B.55). Define Ai as in (B.84). Then for any i ,
µ
1°max

j∑n
P

£
Sn °S j > "/2

§∂
P [Ai ] = min

j∑n
P

£ØØSn °S j
ØØ∑ "/2

§
P (Ai )

∑P [|Sn °Si |∑ "/2]P (Ai )

=P [|Sn °Si |∑ "/2, Ai ]

∑P [|Sn |∑ "/2, Ai ] .

The second equality holds since |Sn °Si | is independent of Ai . The final inequality holds since |Sn °Si |∑
"/2 and |Si | > " imply |Sn | > "/2.

Summing over i we obtain

µ
1°max

j∑n
P

£
Sn °S j > "/2

§∂ nX

i=1
P [Ai ] ∑

nX

i=1
P [|Sn |∑ "/2, Ai ] .

Since the events Ai are disjoint this implies

µ
1°max

j∑n
P

£
Sn °S j > "/2

§∂
P

∑
max
i∑n

|Si | > "

∏
=

µ
1°max

j∑n
P

£
Sn °S j > "/2

§∂
P

"
n[

i=1
Ai

#

∑P
"

|Sn |∑ "/2,
n[

i=1
Ai

#

∑P [|Sn |∑ "/2] .

This is (B.55). Á



References

[1] Abadir, Karim M. and Jan R. Magnus (2005): Matrix Algebra, Cambridge University Press.

[2] Acemoglu, Daron, Simon Johnson, James A. Robinson (2001): “The Colonial Origins of Compara-
tive Development: An Empirical Investigation,” American Economic Review, 91, 1369-1401.

[3] Acemoglu, Daron, Simon Johnson, James A. Robinson (2012): “The Colonial Origins of Compar-
ative Development: An Empirical Investigation: Reply,” American Economic Review, 102, 3077–
3110.

[4] Aitken, A.C. (1935): “On least squares and linear combinations of observations,” Proceedings of the
Royal Statistical Society, 55, 42-48.

[5] Akaike, H. (1969). “Fitting autoregressive models for prediction,” Annals of the Institute of Statisti-
cal Mathematics, 21, 243–247.

[6] Akaike, H. (1973). “Information theory and an extension of the maximum likelihood principle,” in
Petrov, B. and Csaki, F. (editors), Second International Symposium on Information Theory, 267-281.
Akademiai Kiado, Budapest.

[7] Amemiya, Takeshi (1971): “The estimation of the variances in a variance-components model,”
International Economic Review, 12, 1-13.

[8] Amemiya, Takeshi (1974): “The nonlinear two-stage least-squares estimator,” Journal of Econo-
metrics, 2, 105-110.

[9] Amemiya, Takeshi (1977): “The maximum likelihood and nonlinear three-stage least squares esti-
mator in the general nonlinear simultaneous equations model,” Econometrica, 45, 955-968.

[10] Amemiya, Takeshi (1985): Advanced Econometrics, Harvard University Press.

[11] Amemiya, Takeshi. and Thomas E. MaCurdy (1986): “Instrumental-variable estimation of an error
components model, Econometrica, 54, 869-881.

[12] Anderson, Theodore W. (1951): “Estimating linear restrictions on regression coefficeints for multi-
variate normal distributions,” Annals of Mathematical Statistics, 22, 327-350.

[13] Anderson, Theodore W. and Cheng Hsiao (1982): “Formulation and estimation of dynamic models
using panel data,” Journal of Econometrics, 18, 47-82.

[14] Anderson, Theodore W. and H. Rubin (1949): “Estimation of the parameters of a single equation in
a complete system of stochastic equations,” The Annals of Mathematical Statistics, 20, 46-63.

866



REFERENCES 867

[15] Andrews, Donald W. K. (1984), “Non-strong mixing autoregressive processes,” Journal of Applied
Probability, 21, 930-934.

[16] Andrews, Donald W. K. (1991a), “Asymptotic normality of series estimators for nonparameric and
semiparametric regression models,” Econometrica, 59, 307-345.

[17] Andrews, Donald W. K. (1991b), “Heteroskedasticity and autocorrelation consistent covariance
matrix estimation,” Econometrica, 59, 817-858.

[18] Andrews, Donald W. K. (1991c): “Asymptotic optimality of generalized CL , cross-validation, and
generalized cross-validation in regression with heteroskedastic errors,” Journal of Econometrics,
47, 359-377.

[19] Andrews, Donald W. K. (1993), “Tests for parameter instability and structural change with un-
known change point,” Econometrica, 61, 821-8516.

[20] Andrews, Donald W. K. (2017), “Examples of L2-complete and boundedly-complete distributions,”
Journal of Econometrics, 199, 213-220.

[21] Andrews, Donald W. K. and Werner Ploberger (1994): “Optimal tests when a nuisance parameter is
present only under the alternative,” Econometrica, 62, 1383-1414.

[22] Angrist, Joshua D., Guido W. Imbens, and Alan B. Krueger (1991): “Jackknife instrumental variables
estimation,” Journal of Applied Econometrics, 14, 57-67.

[23] Angrist, Joshua D., Guido W. Imbens, and Donald B. Rubin (1996): “Identification of causal effects
using instrumental variables,” Journal of the American Statistical Association, 55, 650-659.

[24] Angrist, Joshua D. and Alan B. Krueger (1991): “Does compulsory school attendance affect school-
ing and earnings?” Quarterly Journal of Economics, 91, 444-455.

[25] Angrist, Joshua D. and Victor Lavy (1999): “Using Maimonides’ rule to estimate the effect of class
size on scholastic achievement,” Quarterly Journal of Economics, 114, 533-575.

[26] Angrist, Joshua D. and Jörn-Steffen Pischke (2009): Mostly Harmless Econometrics: An Empiricists
Companion, Princeton University Press.

[27] Arellano, Manuel (1987): “Computing standard errors for robust within-groups estimators,” Ox-
ford Bulletin of Economics and Statistics, 49, 431-434.

[28] Arellano, Manuel (2003): Panel Data Econometrics, Oxford University Press.

[29] Arellano, Manuel and Stephen Bond (1991): “Some tests of specification for panel data: Monte
Carlo evidence and an application to employment equations,” Review of Economic Studies, 58,
277-297.

[30] Arellano, Manuel and Olympia Bover (1995): “Another look at the instrumental variable estimation
of error-components models,” Journal of Econometrics, 68, 29-51.

[31] Ash, Robert B. (1972): Real Analysis and Probability, Academic Press.

[32] Bai, Jushan (2003): “Inferential theory for factor models of large dimensions,” Econometrica,
71,135-172.



REFERENCES 868

[33] Bai, Jushan and Serena Ng (2002): “Determining the number of factors in approximate factor mod-
els,” Econometrica, 70, 191-221.

[34] Bai, Jushan and Serena Ng (2006): “Confidence intervals for diffusion index forecasts and inference
for factor-augmented regressions,” Econometrica, 74, 1133-1150.

[35] Balestra, Pietro and Marc Nerlove (1966): “Pooling cross section and time series data in the esti-
mation of a dynamic model: The demand for natural gas,” Econometrica, 34, 585-612.

[36] Baltagi, Badi H. (2013): Econometric Analysis of Panel Data, 5th Edition, Wiley.

[37] Barro, Robert J. (1977): “Unanticipated money growth and unemployment in the United States,”
American Economic Review, 67, 101–115

[38] Basmann, R. L. (1957): “A generalized classical method of linear estimation of coefficients in a
structural equation,” Econometrica, 25, 77-83.

[39] Basmann, R. L. (1960): “On finite sample distributions of generalized classical linear identifiability
test statistics,” Journal of the American Statistical Association, 55, 650-659.

[40] Baum, Christopher F, Mark E. Schaffer, and Steven Stillman (2003): “Instrumental variables and
GMM: Estimation and testing,” The Stata Journal, 3, 1-31.

[41] Bekker, P.A. (1994): “Alternative approximations to the distributions of instrumental variable esti-
mators, Econometrica, 62, 657-681.

[42] Belloni, Alexandre, Victor Chernozhukov, Denis Chetverikov, and Kengo Kato (2015): “Some new
asymptotic theory for least squares series: Pointwise and uniform results,” Journal of Economet-
rics, 186, 345-366.

[43] Bernheim, B. Douglas, Jonathan Meer and Neva K. Novarro (2016): “Do consumers exploit com-
mitment opportunities? Evidence from natural experiments involving liquor consumption,”
American Economic Journal: Economic Policy, 8, 41-69.

[44] Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan (2004): “How much should we trust
differences-in-differences estimates?” Quarterly Journal of Economics, 119, 249-275.

[45] Blanchard, Olivier Jean and Roberto Perotti (2002): “An empirical characterization of the dynamic
effects of changes in government spending and taxes on output,” Quarterly Journal of Economics,
117, 1329-1368.

[46] Blanchard, Olivier Jean and Danny Quah (1989): “The dynamic effects of aggregate demand and
supply disturbances,” American Economic Review, 89, 655-673.

[47] Blundell, Richard and Stephen Bond (1998): “Initial conditions and moment restrictions in dy-
namic panel data models,” Journal of Econometrics, 87, 115-143.

[48] Bock, M.E. (1975): “Minimax estimators of the mean of a multivariate normal distribution,” The
Annals of Statistics, 3, 209-218.

[49] Box, George E. P. and Dennis R. Cox, (1964): “An analysis of transformations,” Journal of the Royal
Statistical Society, Series B, 26, 211-252.



REFERENCES 869

[50] Breusch, Trevor S., Graham E. Mizon and Peter Schmidt (1989): “Efficient estimation using panel
data,” Econometrica, 57, 695-700.

[51] Brockwell, Peter J. and Richard A. Davis (1991): Time Series: Theory and Methods, Second Edition,
Springer-Verlag.

[52] Burnham, Kenneth P. and David R. Anderson (1998): Model Selection and MultiModel Inference: A
Practical Information-Theoretic Approach, 2nd Edition, Springer.

[53] Cameron, A. Colin and Pravin K. Trivedi (1998): Regression Analysis of Count Data, Cambridge
University Press.

[54] Cameron, A. Colin, Johan B. Gelbach, and Douglas L. Miller (2008): “Bootstrap-based improve-
ments for inference with clustered errors,” Review of Economics and Statistics, 90, 414-437.

[55] Cameron, A. Colin and Pravin K. Trivedi (2005): Microeconometrics: Methods and Applications,
Cambridge University Press.

[56] Canova, Fabio (1995): “Vector autoregressive models: Specification, estimation, inference, and
forecasting,” in Handbook of Applied Econometrics, Volume 1: Macroeconomics, edited by M.
Hashem Peseran and Michael R. Wickens, Blackwell.

[57] Card, David (1995): “Using geographic variation in college proximity to estimate the return to
schooling,” in Aspects of Labor Market Behavior: Essays in Honour of John Vanderkamp, L.N.
Christofides, E.K. Grant, and R. Swidinsky, editors. Toronto: University of Toronto Press.

[58] Card, David and Alan B Krueger (1994): “Minimum wages and employment: A case study of the
fast-food industry in New Jersey and Pennsylvania,” American Economic Review, 84, 772-793.

[59] Card, David, David S. Lee, Zhuan Pei, and Andrea Weber (2015): “Inference on causal effects in a
generalized regression kink design,” Econometrica, 57, 695-700.

[60] Chamberlain, Gary (1987): “Asymptotic efficiency in estimation with conditional moment restric-
tions,” Journal of Econometrics, 34, 305-334.

[61] Chang, Pao Li and Shinichi Sakata (2007): “Estimation of impulse response functions using long
autoregression,” Econometrics Journal, 10, 453-469.

[62] Chao, John C., Norman R. Swanson, Jerry A. Hausman, Whitney K. Newey, and Tiemen Woutersen
(2012): “Asymptotic distribution of JIVE in a heteroskedastic IV regression with many instru-
ments,” Econometric Theory, 28, 42-86.

[63] Chen, Xiaohong (2007): “Large sample sieve estimation of semi-nonparametric models,” in James
J. Heckman and Edward E. Leamer, (eds.) Handbook of Econometrics, vol. VI, Part B, 5549-5632,
North Holland: Amsterdam.

[64] Chen, Xiaohong and Timothy M. Christensen (2015): “Optimal uniform convergence rates and
asymptotic normality for series estimators under weak dependence and weak conditions,” Journal
of Econometrics, 188, 447-465.

[65] Chen, Xiaohong and Timothy M. Christensen (2018): “Optimal sup-norm rates and uniform infer-
ence on nonlinear functionals of nonparametric IV regression,” Quantitative Economics, 9, 39-84.



REFERENCES 870

[66] Chen, Xiaohong, Zhipeng Liao, and Yixiao Sun (2012): “Sieve inference on semi-nonparametric
time series models,” Cowles Foundation Discussion Paper #1849.

[67] Chen, Xiaohong and Demian Pouzo (2015): “Sieve Wald and QLR inferences on
semi/nonparametric conditional moment models,” Econometrica, 83, 1013-1079.

[68] Cheng, Ming-Yen, Jianqing Fan and J.S. Marron (1997): “On automatic boundary corrections,” The
Annals of Statistics, 25, 1691-1708.

[69] Claeskens, Gerda and Nils Lid Hjort (2003): “The focused information criterion,” Journal of the
American Statistical Association, 98, 900-945.

[70] Claeskens, Gerda and Nils Lid Hjort (2008): Model Selection and Model Averaging, Cambridge Uni-
versity Press.

[71] Conley, Timothy G. and Christopher R. Taber (2011): “Inference with ‘difference in differences’
with a small number of policy changes,” Review of Economics and Statistics, 93, 113-125.

[72] Cox, Donald, Bruce E. Hansen, and Emmanuel Jimenez (2004): “How responsive are private trans-
fers to income? Evidence from a laissez-faire economy,” Journal of Public Economics, 88, 2193-
2219.

[73] Cragg, John G. and Stephen G. Donald (1993): “Testing identifiability and specification in instru-
mental variable models,” Econometric Theory, 9, 222-240.

[74] Craven, Peter and Grace Wahba (1979): “Smoothing noisy data with spline functions: Estimat-
ing the correct degree of smoothing by the method of generalized cross-validation”, Numerische
Mathematik, 31, 377-403

[75] Davidson, James (1994): Stochastic Limit Theory: An Introduction for Econometricians. Oxford:
Oxford University Press.

[76] Davidson, James (2000): Econometric Theory, Blackwell Publishers.

[77] Davidson, Russell and Emmanuel Flachaire (2008): “The wild bootstrap, tamed at last,” Journal of
Econometrics, 146, 162-169.

[78] Davidson, Russell and James G. MacKinnon (1993): Estimation and Inference in Econometrics, Ox-
ford University Press.

[79] Davidson, Russell and James G. MacKinnon (2004): Econometric Theory and Methods, Oxford Uni-
versity Press.

[80] Davison, A. C. and D. V. Hinkley (1997): Bootstrap Methods and their Application. Cambridge Uni-
versity Press.

[81] De Luca, Giuseppe, Jan R. Magnus, and Franco Peracchi (2018): “Balanced variable addition in
linear models” Journal of Economic Surveys, 31, 1183-1200.

[82] DiTella, Rafael and Ernesto Schargrodsky (2004): “Do police reduce crime? Estimates using the
allocation of police forces after a terrorist attack,” American Economic Review, 94, 115-138.

[83] Donald, Stephen G. and Whitney K. Newey (2001): “Choosing the number of instruments,” Econo-
metrica, 69, 1161-1191.



REFERENCES 871

[84] Donohue, John J. III and Steven D. Levitt (2001): “The impact of legalized abortion on crime,” The
Quarterly Journal of Economics, 116, 379-420.

[85] Duflo, Esther, Pascaline Dupas, and Michael Kremer (2011): “Peer effects, teacher incentives, and
the impact of tracking: Evidence from a randomized evaluation in Kenya,” American Economic
Review, 101, 1739-1774.

[86] Dufour, Jean-Marie (1997): “Some impossibility theorems in econometrics with applications to
structural and dynamic models,” Econometrica, 65, 1365-1387.

[87] Durbin, James (1954): “Errors in variables,” Review of the International Statistical Institute, 22, 23-
32.

[88] Durbin, James (1960): “The fitting of time-series models,” Revue de l’Institut International de
Statistique, 28, 233-44.

[89] Efron, Bradley (1979): “Bootstrap methods: Another look at the jackknife,” Annals of Statistics, 7,
1-26.

[90] Efron, Bradley (1982): The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Indus-
trial and Applied Mathematics.

[91] Efron, Bradley (1987): “Better bootstrap confidence intervals (with discussion)”, Journal of the
American Statistical Association, 82, 171-200.

[92] Efron, Bradley (2010): Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing and
Prediction, Cambridge University Press.

[93] Efron, Bradley and Trevor Hastie (2017): Computer Age Statistical Inference: Algorithms, Evidence,
and Data Science, Cambridge University Press.

[94] Efron, Bradley and Robert J. Tibshirani (1993): An Introduction to the Bootstrap, New York:
Chapman-Hall.

[95] Eichenbaum, Martin S., Lars Peter Hansen, and Kenneth J. Singleton (1988): “A time series anal-
ysis of representative agent models of consumption and leisure choice,” The Quarterly Journal of
Economics, 103, 51-78.

[96] Eicker, F. (1963): “Asymptotic normality and consistency of the least squares estimators for families
of linear regressions,” Annals of Mathematical Statistics, 34, 447-456.

[97] Elliott, Graham and Allan Timmermann (2016): Economic Forecasting, Princeton University Press.

[98] Enders, Walter (2014): Applied Economic Time Series, Fourth Edition, Wiley.

[99] Engle, Robert F. and Clive W. J. Granger (1987): “Co-integration and error correction: Representa-
tion, estimation and testing,” Econometrica, 55, 251-276.

[100] Fan, Jianqing (1992): “Design-adaptive nonparametric regression,” Journal of the American Statis-
tical Association, 87, 998-1004.

[101] Fan, Jianqing (1993): “Local linear regression smoothers and their minimax efficiency,” Annals of
Statistics, 21, 196-216.



REFERENCES 872

[102] Fan, Jianqing and Irene Gijbels (1996): Local Polynomial Modelling and Its Applications, Chapman
& Hall.

[103] Fan, Jianqing and Qiwei Yao (1998): “Efficient estimation of conditional variance functions in
stochastic regression,” Biometrika, 85, 645-660.

[104] Fan, Jianqing and Qiwei Yao (2003): Nonlinear Time Series: Nonparametric and Parametric Meth-
ods, New York: Springer-Verlag.

[105] Foote, Christopher L. and Christopher F. Goetz (2008): “The impact of legalized abortion on crime:
Comment,” The Quarterly Journal of Economics, 123, 407-423.

[106] Freyberger, Joachim (2017): “On completeness and consistency in nonparametric instrumental
variable models,” Econometrica, 85, 1629-1644.

[107] Frisch, Ragnar (1933): “Editorial,” Econometrica, 1, 1-4.

[108] Frisch, Ragnar and Frederick V. Waugh (1933): “Partial time regressions as compared with individ-
ual trends,” Econometrica, 1, 387-401.

[109] Fuller, Wayne A. (1977): “Some properties of a modification of the limited information estimator,”
Econometrica, 45, 939-953.

[110] Gallant, A. Ronald (1977): “Three-stage least-squares estimation for a system of simultaneous,
nonlinear, implicit equations,” Journal of Econometrics, 5, 71-88.

[111] Gallant, A. Ronald (1997): An Introduction to Econometric Theory, Princeton University Press.

[112] Gallant, A. Ronald and Dale W. Jorgenson (1979): “Statistical inference for a system of nonlinear,
implicit equations in the context of instrumental variable estimation,” Journal of Econometrics, 11,
275-302.

[113] Galton, Francis (1886): “Regression Towards Mediocrity in Hereditary Stature,” The Journal of the
Anthropological Institute of Great Britain and Ireland, 15, 246-263.

[114] Gardner, Robert (1998): “Unobservable individual effects in unbalanced panel data,” Economics
Letters, 58, 39-42.

[115] Godambe, V. P. (1991): Estimating Functions, Oxford University Press, New York.

[116] Goldberger, Arthur S. (1964): Econometric Theory, Wiley.

[117] Goldberger, Arthur S. (1968): Topics in Regression Analysis, Macmillan.

[118] Goldberger, Arthur S. (1991): A Course in Econometrics. Cambridge: Harvard University Press.

[119] Goodnight, James H. (1979): “A tutorial on the SWEEP operator,” The American Statistician, 33,
149-158.

[120] Gourieroux, Christian (2000): Econometrics of Qualitative Dependent Variables, Cambridge Uni-
versity Press.

[121] Granger, Clive W. J. (1969): “Investigating causal relations by econometric models and cross-
spectral methods,” Econometrica, 37, 424-438.



REFERENCES 873

[122] Granger, Clive W. J. (1981): “Some properties of time series data and their use in econometric
specification,” Journal of Econometrics, 16, 121-130.

[123] Granger, Clive W. J. (1989): Forecasting in Business and Economics, Second Edition, Academic Press.

[124] Granger, Clive W. J. and Paul Newbold (1986): Forecasting in Business and Economic Time Series,
Second Edition, Academic Press.

[125] Greene, William H. (2017): Econometric Analysis, Eighth Edition, Pearson.

[126] Gregory, A. and M. Veall (1985): “On formulating Wald tests of nonlinear restrictions,” Economet-
rica, 53, 1465-1468,

[127] Haavelmo, T. (1944): “The probability approach in econometrics,” Econometrica, supplement, 12.

[128] Hahn, Jinyong (1996): “A note on bootstrapping generalized method of moments estimators,”
Econometric Theory, 12, 187-197.

[129] Hall, B. H. and R. E. Hall (1993): “The Value and Performance of U.S. Corporations” (1993) Brook-
ings Papers on Economic Activity, 1-49.

[130] Hall, Peter (1992): The Bootstrap and Edgeworth Expansion, New York: Springer-Verlag.

[131] Hall, Peter (1994): “Methodology and theory for the bootstrap,” Handbook of Econometrics, Vol. IV,
eds. R.F. Engle and D.L. McFadden. New York: Elsevier Science.

[132] Hall, Peter, and C. C. Heyde (1980): Martingale Limit Theory and Its Application, Academic Press.

[133] Hall, Peter and Joel L. Horowitz (1996): “Bootstrap critical values for tests based on generalized-
method-of-moments estimation,” Econometrica, 64, 891-916.

[134] Hall, Robert E (1978): “Stochastic implications of the life cycle-permanent income hypothesis:
theory and evidence,” Journal of Political Economy, 86, 971-987.

[135] Halmos, Paul R. (1956): Lectures in Ergodic Theory, Chelsea Publishing.

[136] Hamilton, James D. (1994) Time Series Analysis, Princeton University Press.

[137] Hansen, Bruce E. (1992): “Consistent covariance matrix estimation for depenendent heterogenous
processes,” Econometrica, 60, 967-972.

[138] Hansen, Bruce E. (1996): “Inference when a nuisance parameter is not identified under the null
hypothesis,” Econometrica, 64, 413-430.

[139] Hansen, Bruce E. (2006): “Edgeworth expansions for the Wald and GMM statistics for nonlinear
restrictions,” Econometric Theory and Practice: Frontiers of Analysis and Applied Research, edited
by Dean Corbae, Steven N. Durlauf and Bruce E. Hansen. Cambridge University Press.

[140] Hansen, Bruce E. (2007): “Least squares model averaging,” Econometrica, 75, 1175-1189.

[141] Hansen, Bruce E. (2014): “Model averaging, asymptotic risk, and regressor groups,” Quantitative
Economics, 5, 495-530

[142] Hansen, Bruce E. (2015): “The integrated mean squared error of series regression and a Rosenthal
Hilbert-space inequality,” Econometric Theory, 31, 337-361.



REFERENCES 874

[143] Hansen, Bruce E. (2020): Introduction to Econometrics, manuscript.

[144] Hansen, Bruce E. and Seojeong Lee (2018): “Inference for iterated GMM under misspecification
and clustering”, working paper.

[145] Hansen, Bruce E. and Jeffrey Racine (2012): “Jackknife model averaging,” Journal of Econometrics,
167, 38-46.

[146] Hansen, Christopher B. (2007): “Asymptotic properties of a robust variance matrix estimator for
panel data when T is large, Journal of Econometrics, 141, 595-620.

[147] Hansen, Lars Peter (1982): “Large sample properties of generalized method of moments estima-
tors, Econometrica, 50, 1029-1054.

[148] Hansen, Lars Peter and Robert J. Hodrick (1980): “Forward exchange rates as optimal predictors of
future spot rates: An econometric analysis,” Journal of Political Economy, 88, 829-853.

[149] Hansen, Lars Peter, John Heaton, and A. Yaron (1996): “Finite sample properties of some alterna-
tive GMM estimators,” Journal of Business and Economic Statistics, 14, 262-280.

[150] Härdle, Wolfgang (1990): Applied Nonparametric Regression, Cambridge University Press.

[151] Harvey, Andrew (1990): The Econometric Analysis of Time Series, Second Edition, MIT Press.

[152] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2008): The Elements of Statistical Learn-
ing: Data Mining, Inferenece, and Prediction,Springer.

[153] Hausman, Jerry A. (1978): “Specification tests in econometrics,” Econometrica, 46, 1251-1271.

[154] Hausman, Jerry A., Whitney K. Newey, Tiemen Woutersen, John C. Chao, and Norman R. Swanson
(2012): “Instrumental variable estimation with heteroskedasticity and many instruments,” Quan-
titative Economics, 3, 211-255.

[155] Hausman, Jerry A. and William E. Taylor (1981): “Panel data and unobservable individual effects,”
Econometrica, 49, 1377-1398.

[156] Hayashi, Fumio (2000): Econometrics, Princeton University Press.

[157] Heckman, James (1979): “Sample selection bias as a specification error,” Econometrica, 47, 153-
161.

[158] Hinkley, D. V. (1977): “Jackknifing in unbalanced situations,” Technometrics, 19, 285-292.

[159] Hoerl, A. E. and R. W. Kennard (1970): “Ridge regression: Biased estimation for non-orthogonal
problems,” Technometrics, 12, 55-67.

[160] Holtz-Eakin, Douglas, Whitney Newey and Harvey S. Rosen (1988): “Estimating vector autoregres-
sions with panel data,” Econometrica, 56, 1371-1395.

[161] Horn, S. D., R. A. Horn, and D. B. Duncan. (1975): “Estimating heteroscedastic variances in linear
model,” Journal of the American Statistical Association, 70, 380-385.

[162] Horowitz, Joel (2001): “The Bootstrap,” Handbook of Econometrics, Vol. 5, J.J. Heckman and E.E.
Leamer, eds., Elsevier Science, 3159-3228.



REFERENCES 875

[163] Horowitz, Joel (2011): “Applied nonparametric instrumental variables estimation,” Econometrica,
79, 347-394.

[164] Hsiao, Cheng (2003): Analysis of Panel Data, 2nd Edition, Cambridge University Press.

[165] Imbens, Guido W., and Joshua D. Angrist (1994): “Identification and estimation of local average
treatment effects,” Econometrica, 62, 467-476.

[166] Jackson, D. (1912): “On the approximation by trigonometric sums and polynomials with positive
coefficients,” TAMS, 13, 491-515.

[167] James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani (2013): An Introduction to Statisti-
cal Learning: with Applications in R, Springer.

[168] James, W. and Charles M. Stein (1961): “Estimation with quadratic loss,” Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-380.

[169] Johansen, Soren (1988): “Statistical analysis of cointegrating vectors,” Journal of Economic Dynam-
ics and Control, 12, 231-254.

[170] Johansen, Soren (1991): “Estimation and hypothesis testing of cointegration vectors in the pres-
ence of linear trend,” Econometrica, 59, 1551-1580.

[171] Johansen, Soren (1995): Likelihood-Based Inference in Cointegrated Vector Auto-Regressive Models,
Oxford University Press.

[172] Johnston, Jack and John DiNardo (1997): Econometric Methods: Fourth Edition, McGraw-Hill.

[173] Jordà, Òscar (2005): “Estimation and inference of impulse responses by local projections,” Ameri-
can Economic Review, 95, 161-182.

[174] Judge, George G., W. E. Griffiths, R. Carter Hill, Helmut Lütkepohl, and Tsoung-Chao Lee (1985):
The Theory and Practice of Econometrics, Second Edition, Wiley.

[175] Keating, John W. (1992): “Structural approaches to vector autoregressions,” Federal Reserve Bank
of St. Louis Review, 74, 37-57.

[176] Kilian, Lutz (2009): “Not all oil price shocks are alike: Disentangling demand and supply shocks in
the crude oil market,” American Economic Review, 99, 1053-1069.

[177] Kilian, Lutz and Helmut Lütkepohl: (2017): Structural Vector Autoregressive Analysis, Cambridge
University Press.

[178] Kinal, Terrence W. (1980): “The existence of moments of k-class estimators,” Econometrica, 48,
241-249.

[179] Kleibergen, Frank and Richard Paap (2006): “Generalized reduced rank tests using the singular
value decomposition,” Journal of Econometrics, 133, 97-126.

[180] Koenker, Roger (2005): Quantile Regression. Cambridge University Press.

[181] Lafontaine, F. and K. J. White (1986): “Obtaining any Wald statistic you want,” Economics Letters,
21, 35-40.

[182] Lehmann, E. L. and George Casella (1998): Theory of Point Estimation, 2nd Edition, Springer.



REFERENCES 876

[183] Lehmann, E. L. and Joseph P. Romano (2005): Testing Statistical Hypotheses, 3r d Edition, Springer.

[184] Li, Ker-Chau (1986): “Asymptotic optimality of CL and generalized cross-validatio in ridge regres-
sion with application to spline smoothing,” Annals of Statistics, 14, pp. 1101-1112.

[185] Li, Ker-Chau (1987): “Asymptotic optimality for Cp , CL , cross-validation and generalized cross-
validation: Discrete Index Set,” Annals of Statistics, 15, pp. 958-975.

[186] Li, Qi and Jeffrey Racine (2007) Nonparametric Econometrics.

[187] Liu, R. Y. (1988): “Bootstrap procedures under some non-I.I.D. models,” Annals of Statistics, 16,
1696-1708.

[188] Lorentz, G. G. (1986): Approximation of Functions, Second Edition, New York: Chelsea.

[189] Lovell, Michael C. (1963): “Seasonal adjustment of economic time series,” Journal of the American
Statistical Association, 58, 993-1010.

[190] Lütkepohl, Helmut (2005): New Introduction to Multiple Time Series Analysis, Springer.

[191] MacKinnon, James G. and Halbert White (1985): “Some heteroskedasticity-consistent covariance
matrix estimators with improved finite sample properties,” Journal of Econometrics, 29, 305-325.

[192] Maddala, G. S. (1983): Limited-Dependent and Qualitative Variables in Econometrics, Cambridge
University Press.

[193] Magnus, Jan R. (2017): Introduction to the Theory of Econometrics, VU University Press.

[194] Magnus, Jan R., and H. Neudecker (1988): Matrix Differential Calculus with Applications in Statis-
tics and Econometrics, New York: John Wiley and Sons.

[195] Mallows, C. L. (1973). “Some comments on Cp ,”. Technometrics, 15, 661-675.

[196] Mammen, E. (1993): “Bootstrap and wild bootstrap for high dimensional linear models,” Annals of
Statistics, 21, 255-285.

[197] Mankiw, N. Gregory, David Romer, and David N. Weil (1992): “A contribution to the empirics of
economic growth,” The Quarterly Journal of Economics, 107, 407-437.

[198] Mariano, R. S. (1982): “Analytical small-sample distribution theory in econometrics: the simulta-
neous equations case,” International Economic Review, 23, 503-534.

[199] McCracken, Michael W. and Serena Ng (2015): FRED-MD: “A monthly database for macroeco-
nomic research,” working paper 2015-012B, Federal Reserve Bank of St. Louis.

[200] McCulloch, J. Huston (1985): “On heteros*edasticity,” Econometrica, 53, 483.

[201] Mertens, Karel and Morten O. Ravn (2013): “The dynamic effects of personal and corporate income
tax changes in the United States,” American Economic Review, 103, 1212-1247.

[202] Mhaskar, Hrushikesh N. (1996) Introduction to the theory of weighted polynomial approximation,
World Scientific.

[203] Moulton, Brent R. (1990): “An illustration of a pitfall in estimating the effects of aggregate variables
on micro units,” Review of Economics and Statistics, 72, 334-338.



REFERENCES 877

[204] Mundlak, Yair (1961): “Empirical production function free of management bias,” Journal of Farm
Economics, 43, 44-56.

[205] Murphy, Kevin M. and Robert H. Topel (1985): “Estimation and inference in two-step econometric
models,” Journal of Business and Economic Statistics, 3, 370-379.

[206] Nadaraya, E. A. (1964): “On estimating regression,” Theory of Probability and Its Applications, 9,
141-142.

[207] Nerlove, Marc (1963): “Returns to scale in electricity supply,” Chapter 7 of Measurement in Eco-
nomics (C. Christ, et al, eds.). Stanford: Stanford University Press, 167-198.

[208] Newey, Whitney K. (1985): “Generalized method of moments specification testing,” Journal of
Econometrics, 29, 229-256.

[209] Newey, Whitney K. (1990): “Semiparametric efficiency bounds,” Journal of Applied Econometrics,
5, 99-135.

[210] Newey, Whitney K. (1997): “Convergence rates and asymptotic normality for series estimators,”
Journal of Econometrics, 79, 147-168.

[211] Newey, Whitney K. and Daniel L. McFadden (1994): “Large sample estimation and hypothesis test-
ing,” in Robert Engle and Daniel McFadden, (eds.) Handbook of Econometrics, vol. IV, 2111-2245,
North Holland: Amsterdam.

[212] Newey, Whitney K. and James L. Powell (2003): “Instrumental variable estimation of nonparamet-
ric models,” Econometrica, 71, 1565-1578.

[213] Newey, Whitney K. and Kenneth D. West (1987a): “Hypothesis testing with efficient method of
moments estimation,” International Economic Review, 28, 777-787.

[214] Newey, Whitney K. and Kenneth D. West (1987b): “A simple positive semi-definite, heteroskedas-
ticity and autocorrelation consistent covariance matrix,” Econometrica, 55, 703-708.

[215] Newey, Whitney K. and Kenneth D. West (1994): “Automatic lag selection in covariance matrix
estimation,” Review of Economic Studies, 631-654.

[216] Nickell, Stephen (1981): “Biases in dynamic models with fixed effects,” Econometrica, 49, 1417-
1426.

[217] Pagan, Adrian (1984): “Econometric issues in the analysis of regressions with generated regres-
sors,” International Economic Review, 25, 221-247.

[218] Pagan, Adrian (1986): “Two stage and related estimators and their applications,” Review of Eco-
nomic Studies, 53, 517-538.

[219] Pagan, Adrian and Aman Ullah (1999): Nonparametric Econometrics, Cambridge University Press.

[220] Park, Joon Y. and Peter C. B. Phillips (1988): “On the formulation of Wald tests of nonlinear restric-
tions,” Econometrica, 56, 1065-1083.

[221] Pham, Tuan D. and Lanh T. Tran (1985): “Some mixing properties of time series models,” Stochastic
Processes and their Applications, 19, 297-303.



REFERENCES 878

[222] Phillips, Alban W. (1958): “The relation between unemployment and the rate of change of money
wage rates in the United Kingdom 1861–1957” Economica, 25, 283-299.

[223] Phillips, G. D. A. and C. Hale (1977): “The bias of instrumental variable estimators of simultaneous
equation systems,” International Economic Review, 18, 219-228.

[224] Phillips, Peter C. B. (1983): “Exact small sample theory in the simultaneous equatios model,” Hand-
book of Econometrics, Volume 1, edited by Z. Griliches and M. D. Intriligator, North-Holland.

[225] Phillips, Peter C. B. and Sam Ouliaris (1990): “Asymptotic properties of residual based tests for
cointegration,” Econometrica, 58, 165-193.

[226] Politis, Dimitris N., Joseph P. Romano, and Michael Wolf (1999): Subsampling, New York: Springer.

[227] Quenouille, M. (1949): “Approximate tests of correlation in time series,” Journal of the Royal Statis-
tical Society Series B, 11, 18-84.

[228] Ramey, Valerie A, (2016): “Macroeconomic shocks and their propagation,” in Handbook of Macroe-
conomics, Volume 2, edited by John B. Taylor and Harald Uhlig, Elsevier.

[229] Ramsey, James B. (1969): “Tests for specification errors in classical linear least-squares regression
analysis,” Journal of the Royal Statistical Society Series B, 31, 350-371.

[230] Reiersøl, Olav (1945). Confluence Analysis by Means of Instrumental Sets of Variables.

[231] Reinhart, Carmen M. and Kenneth S. Rogoff (2010): “Growth in a time of debt,” American Economic
Review: Papers and Proceedings, 573-578.

[232] Ruud, Paul A. (2000): An Introduction to Classical Econometric Theory, Oxford University Press.

[233] Samuelson, Paul A. (1939): “Interactions between the multiplier analysis and the principle of ac-
celeration,” Review of Economic Statistics, 21, 75-78.

[234] Sargan, J. D. (1958): “The estimation of economic relationships using instrumental variables,”
Econometrica, 26, 393-415.

[235] Schumaker, Larry L. (2007): Spline Functions: Basic Theory, Third Edition, Cambridge University
Press.

[236] Schwarz, G. (1978): “Estimating the dimension of a model,” The Annals of Statistics, 6, 461-464.

[237] Shao, Jun and D. Tu (1995): The Jackknife and Bootstrap. NY: Springer.

[238] Shapiro, Matthew D. and Mark W. Watson (1988): “Sources of business cycle fluctuations,” in Stan-
ley Fischer, editor, NBER Macroeconomics Annual, MIT Press, 111-148.

[239] Shibata, R. (1980): “Asymptotically efficient selection of the order of the model for estimating pa-
rameters of a linear process,” The Annals of Statistics, 8, 147-164.

[240] Sims, C. A. (1972): “Money, income and causality,” American Economic Review, 62, 540-552.

[241] Sims, C. A. (1980): “Macroeconomics and reality,” Econometrica, 48, 1-48.

[242] Staiger, D. and James H. Stock (1997): “Instrumental variables regression with weak instruments,”
Econometrica, 65, 557-586.



REFERENCES 879

[243] Stock, James H. (1987): “Asymptotic properties of least squares estimators of cointegrating vec-
tors,” Econometrica, 55, 1035-1056.

[244] Stock, James H. and Francesco Trebbi (2003). “Retrospectives: Who Invented Instrumental Vari-
able Regression?”, Journal of Economic Perspectives, 17, 177-194

[245] Stock, James H. and Mark W. Watson (2007): “Why has U.S. inflation become harder to forecast?,”
Journal of Money, Credit and Banking, 39, 3-33.

[246] Stock, James H. and Mark W. Watson (2008): “Heteroskedasticity-robust standard errors for fixed
effects panel data regression, Econometrica, 76, 155-174.

[247] Stock, James H. and Mark W. Watson (2012): “Disentangling the channels of the 2007-09 reces-
sion,” Brookings Papers on Economic Activity, 81-135.

[248] Stock, James H. and Mark W. Watson (2014): Introduction to Econometrics, 3r d edition, Pearson.

[249] Stock, James H. and Mark W. Watson (2016): “Factor models and structural vector autoregressions
in macroeconomics,” in Handbook of Macroeconomics, Volume 2, edited by John B. Taylor and
Harald Uhlig, Elsevier.

[250] Stock, James H. and Jonathan H. Wright (2000): “GMM with weak identification,” Econometrica,
68, 1055-1096.

[251] Stock, James H. and Motohiro Yogo (2005): “Testing for weak instruments in linear IV regression,”
in Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg, eds
Donald W.K. Andrews and James H. Stock, Cambridge University Press, 80-108.

[252] Stone, C. J. (1977): “Consistent nonparametric regression,” Annals of Statistics, 5, 595-645.

[253] Stone, Marshall H. (1948): “The Generalized Weierstrass Approximation Theorem,” Mathematics
Magazine, 21, 167-184.

[254] Stout, William F. (1974): Almost Sure Convergence, Academic Press.

[255] Theil, Henri. (1953): “Repeated least squares applied to complete equation systems,” The Hague,
Central Planning Bureau, mimeo.

[256] Theil, Henri (1961): Economic Forecasts and Policy. Amsterdam: North Holland.

[257] Theil, Henri. (1971): Principles of Econometrics, New York: Wiley.

[258] Tikhonov, Andrey Nikolayevich (1943): “On the stability of inverse problems,” Doklady Akademii
Nauk SSSR, 39, 195-198.

[259] Tobin, James (1958): “Estimation of relationships for limited dependent variables,” Econometrica,
26, 24-36.

[260] Tong, Howell (1990): Non-linear Time Series: A Dynamical System Approach, Oxford University
Press.

[261] Tukey, John (1958): “Bias and confidence in not quite large samples,” Annals of Mathematical
Statistics, 29, 614.



REFERENCES 880

[262] Tripathi, Gautam (1999): “A matrix extension of the Cauchy-Schwarz inequality,” Economics Let-
ters, 63, 1-3.

[263] von Bahr, Bengt and Carl-Gustav Esseen (1965): “Inequalities for the r th absolute moment of a
sum of random variables, 1 ∑ r ∑ 2,” The Annals of Mathematical Statistics, 36, 299-303.

[264] Wald, Abraham. (1940): “The fitting of straight lines if both variables are subject to error,” The
Annals of Mathematical Statistics, 11, 283-300

[265] Wald, Abraham. (1943): “Tests of statistical hypotheses concerning several parameters when the
number of observations is large,” Transactions of the American Mathematical Society, 54, 426-482.

[266] Wansbeek, T. J. and A. Kapteyn (1989): “Estimation of the error components model with incom-
plete panels,” Journal of Econometrics, 41, 341-349.

[267] Wasserman, Larry (2006): All of Nonparametric Statistics, New York: Springer.

[268] Watson, G. S. (1964): “Smooth regression analysis,” Sankya Series A, 26, 359-372.

[269] Watson, Mark W. (1994): “VARs and cointegration,” in Handbook of Econometrics, volume 4, edited
by Robert Engle and Daniel McFadden, North-Holland.

[270] Weierstrass, K. (1885): “Über die analytische Darstellbarkeit sogenannter willkürlicher Functio-
nen einer reellen Veränderlichen,” Sitzungsberichte der Königlich Preußischen Akademie der Wis-
senschaften zu Berlin, 1885.

[271] Windmeijer, Frank (2005): “A finite sample correction for the variance of linear efficient two-step
GMM estimators”, Journal of Econometrics, 126, 25-51.

[272] White, Halbert (1980): “A heteroskedasticity-consistent covariance matrix estimator and a direct
test for heteroskedasticity,” Econometrica, 48, 817-838.

[273] White, Halbert (1982): “Instrumental variables regression with independent observations,” Econo-
metrica, 50, 483-499.

[274] White, Halbert (1984): Asymptotic Theory for Econometricians, Academic Press.

[275] Halbert White and Ian Domowitz (1984): “Nonlinear regression with dependent observations,”
Econometrica, 52, 143-162.

[276] Whittle, P. (1960): “Bounds for the moments of linear and quadratic forms in independent vari-
ables,” Theory of Probability and Its Applications, 5, 302-305.

[277] Wooldridge, Jeffrey M. (2010): Econometric Analysis of Cross Section and Panel Data, 2nd edition,
MIT Press.

[278] Wooldridge, Jeffrey M. (2015): Introductory Econometrics: A Modern Approach, 6th edition, South-
western.

[279] Working, Elmer J. (1927) “What Do Statistical ‘Demand Curves’ Show?” Quarterly Journal of Eco-
nomics, 41, 212-35.

[280] Wright, Philip G. (1915): “Moore’s Economic Cycles,” Quarterly Journal of Economics. 29, 631-641.

[281] Wright, Philip G. (1928): The Tariff on Animal and Vegetable Oils, New York: MacMillan.



REFERENCES 881

[282] Wright, Sewell (1921): “Correlation and causation,” Journal of Agricultural Research, 20, 557-585.

[283] Wu, De-Min (1973): Alternative tests of independence between stochastic regressors and distur-
bances,” Econometrica, 41, 733-750.

[284] Zellner, Arnold. (1962): “An efficient method of estimating seemingly unrelated regressions, and
tests for aggregation bias,” Journal of the American Statistical Association, 57, 348-368.

[285] Zhang, Fuzhen and Qingling Zhang (2006): “Eigenvalue inequalities for matrix product,” IEEE
Transactions on Automatic Control, 51, 1506-1509.


